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Abstract

Vision Transformers have been rapidly uprising in computer vision thanks to their out-
standing scaling trends, and gradually replacing convolutional neural networks (CNNs).
Recent works on self-supervised learning (SSL) introduce siamese pre-training tasks, on
which Transformer backbones continue to demonstrate ever stronger results than CNNs.
People come to believe that Transformers or self-attention modules are inherently more
suitable than CNNs in the context of SSL. However, it is noteworthy that most if not all
prior arts of SSL with CNNs chose the standard ResNets as their backbones, whose architec-
ture effectiveness is known to already lag behind advanced Vision Transformers. Therefore,
it remains unclear whether the self-attention operation is crucial for the recent advances
in SSL - or CNNs can deliver the same excellence with more advanced designs, too? Can
we close the SSL performance gap between Transformers and CNNs? To answer these in-
triguing questions, we apply self-supervised pre-training to the recently proposed, stronger
lager-kernel CNN architecture and conduct an apple-to-apple comparison with Transform-
ers, in their SSL performance. Our results show that we are able to build pure CNN SSL
architectures that perform on par with or better than the best SSL-trained Transformers,
by just scaling up convolutional kernel sizes besides other small tweaks. Impressively, when
transferring to the downstream tasks MS COCO detection and segmentation, our SSL pre-
trained CNN model (trained in 100 epochs) achieves the same good performance as the
300-epoch pre-trained Transformer counterpart. We hope this work can help to better un-
derstand what is essential (or not) for self-supervised learning backbones. Codes will be
made public.

1 Introduction

After leading the computer vision field for a couple of decades, the dominant position of convolutional neural
networks (CNNs) (Krizhevsky et al., 2012a; Simonyan & Zisserman, 2015.; He et al., 2016; Huang et al.,
2017; Howard et al., 2017; Xie et al., 2017; Tan & Le, 2019) is being vigorously challenged by recently
emerging Vision Transformers (Dosovitskiy et al., 2021; Touvron et al., 2021; Wang et al., 2021; Vaswani
et al., 2021; Yuan et al., 2021; Zhai et al., 2022; d’Ascoli et al., 2021; Liu et al., 2021b). The emergence of
local-window self-attention (Liu et al., 2021b;a; Vaswani et al., 2021; Yang et al., 2021) significantly unleashes
the power of Transformers as general backbones taking over various computer vision benchmarks rapidly
with permissible resource budget, including ImageNet classification (Dosovitskiy et al., 2021), region-level
object detection (Dong et al., 2022), dense pixel-level semantic segmentation (Zheng et al., 2021), and video
action classification (Arnab et al., 2021).

Recently, the prominent representation power of Transformer with self-attention is also introduced into
the self-supervised learning (SSL) regime. Previous art (Trinh et al., 2019) mimics the masked language
modeling and conducts a preliminary exploration on masked patch prediction using ResNet (He et al.,
2016). iGPT (Chen et al., 2020a) pre-trains sequence Transformers to predict pixels in an auto-regressive
way as a generative model, and adopted a linear probing for classification. Dosovitskiy et al. (Dosovitskiy
et al., 2021) further pre-train vanilla ViT on large-scale JFT-300M dataset, showing the promise of ViT
on self-supervision. MoCo-v3 (Chen et al., 2021) generalizes contrastive learning to ViT achieving 84.1%

1



Under review as submission to TMLR

accuracy on ImageNet-1K (Russakovsky et al., 2015). DINO (Caron et al., 2021) proposes a self-distillation
self-supervision paradigm where two ViT models fed with the same image but different views are trained
to minimize their output probability distribution. They show that under this form of self-supervision, ViT
explicitly contains segmentation information. Recently, EsViT (Li et al., 2021) and MoBY (Xie et al., 2021)
illustrate that more advanced Swin Transformer (Liu et al., 2021b) can also be applied with SSL, standing
out as a better backbone than ViT and CNNs. However, it is worth noting that most if not all previous arts
chose the standard ResNets as the CNN backbone whose architectural design is known to already lag behind
advanced Vision Transformers (Liu et al., 2022b), rendering unfair comparisons between Transformers and
CNNs.

Since the backbone choice is a crucial ingredient to SSL, it is more desirable to draw a relatively fair
comparison between CNNs and Transformers to better understand if the self-attention in Transformers is
crucial to the recent advances in SSL, or if CNNs with state-of-the-art designs can have the same promise.
In this paper, we turn to the recently proposed, stronger CNN architecture - ConvNeXt (Liu et al., 2022b).
By modernizing the seemingly “old-fashioned” ResNet towards the design of Swin Transformer, ConvNeXt
favorably rivals Swin Transformer on ImageNet classification and downstream tasks, which can therefore
conduct a more apple-to-apple comparison with Transformers in the context of SSL. Our work is intended
to test whether the recent strike of CNNs can be generalized to the SSL regime, as well as build a new
state-of-the-art baseline for self-supervised CNNs in the era of Transformers. We briefly summarize our
contributions below:

∎ An intriguing phenomenon is first observed in our paper: while ConvNeXt demonstrates compelling
performance over strong Swin Transformers in supervised learning, its performance in SSL is no
better than the original Transformer backbone - ViT.

∎ Nevertheless, simply adding two small adaptions (i. naively scaling the kernel size up; ii. adding
Batchnorm layers after depthwise convolutions) to vanilla ConvNeXt, we are able to build attention-
free CNNs, which we dubbed Big ConvNet SSL (BC-SSL), to perform on par or even better than the
best SSL-trained Transformers with linear probe and k-NN evaluation on ImageNet classification,
while enjoying faster inference throughput (up to 40% faster on A100 GPU).

∎ More impressively, when transferring to downstream tasks such as linear classification, detection, and
segmentation, our modified CNN architecture demonstrates significantly larger performance gains.
Simply as it is, our SSL pre-trained BC-SSL (trained in 100 epochs) achieves equally good perfor-
mance to the 300-epoch pre-trained Swin Transformer counterparts on MS COCO object detection
and segmentation.

∎ We also observe an encouraging trend of robustness evaluation, that is, the robustness of BC-SSL
monotonously improves as the kernel size scales up to 15×15, performing an all-around win over
Swin-T in terms of both clean and robust accuracy.

We mainly focus on probing self-supervised large-kernel CNNs using ConvNext in this work, yet we are
aware of other CNN architectures positively equipped with even larger kernels like RepLKNet (Ding et al.,
2022) and SLaK (Liu et al., 2022a), which could also be competitive baselines in this regime. Although we
observe that the benefits of large kernels seem to saturate at 9×9 kernels in self-supervised ConvNeXt, we
do not exclude the possibility that other architectures such as RepLKNet or SLaK can benefit more from
increasing kernels further, which we leave as future work.

2 Related Work

2.1 Visual Self-Supervised Learning

Most if not all self-supervised learning methods in computer vision can be categorized as discriminative or
generative (Grill et al., 2020).
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Contrastive learning is a leading direction in discriminative approaches that achieve state-of-the-art SSL
performance (Chen et al., 2020b; He et al., 2020; van den Oord et al., 2018; Hénaff et al., 2019; Hjelm
et al., 2019; Bachman et al., 2019; He et al., 2020; Chen et al., 2020d; 2021). Contrastive methods avoid
a costly pixel-level generation step and aim to learn augmentation-invariant representation by bringing the
representation between different augmented pairs of the same image (positive pairs) closer and pushing the
representation of augmented views from different images (negative pairs) away from each other (Wu et al.,
2018; Doersch & Zisserman, 2017; Chen et al., 2020b). A drawback of this approach is the requirement
of comparing features from a large number of images (including positive pairs and negative pairs) simulta-
neously. More importantly, such an approach usually needs a large batch of data (Chen et al., 2020b) or
memory banks (He et al., 2020; Wu et al., 2018) to obtain sufficient negative pairs.

Many works start to propose various techniques to eliminate the negative pairs due to the cumbersome
comparisons between different examples. DeepCluster (Caron et al., 2018) successfully avoids the usage of
negative pairs by applying a clustering process. More specifically, it uses the representation from the prior
phase to cluster data points, after which the cluster index of the data point is treated as the classification
target for the new representation. Follow-up work continues to improve the effectiveness and efficiency of
simultaneous clustering and representation learning (Asano et al., 2019; Caron et al., 2018; 2019; Huang
et al., 2019; Li et al., 2020; Zhuang et al., 2019). BYOL (Grill et al., 2020) is another milestone work
that effectively removes the negative pairs with strong results. BYOL feeds two networks with different
augmented views of the same image. The online network is trained online to predict the representation
of the target network whose weights are updated with a slow-moving average (momentum encoder) of the
former. The momentum encoder was claimed to be crucial to prevent collapse. A follow-up study (Chen
& He, 2021) shows that stop-gradient operation plays an essential role in preventing collapsing and BYOL
works even without a momentum encoder at some performance cost. Inspired by mean teacher (Tarvainen
& Valpola, 2017) and BYOL, DINO uses a self-distillation-based loss instead of a contrastive loss achieving
strong SSL performance with ViT (Dosovitskiy et al., 2021). EsViT (Li et al., 2021) recently explore DINO
to Swin Transformers. They propose to match the region-level features together with the view-level features
for multi-stage Transformers and further establish a new state-of-the-art bar for SSL.

Generative methods seek to jointly learn data and representation together (Donahue et al., 2016; Donahue
& Simonyan, 2019; Brock et al., 2018; Donahue et al., 2016) with either auto-encoding of images (Vincent
et al., 2008; Kingma & Welling, 2013; Rezende et al., 2014) or adversarial learning (Goodfellow et al.,
2020). Recent generative approaches revisit the mask language modeling in images as pre-training tasks
have achieved competitive finetuning performance (Dosovitskiy et al., 2021; Bao et al., 2021; He et al., 2022;
Zhou et al., 2021; Xie et al., 2022).

The vast majority of recent breakthroughs achieved in SSL are accompanied by advanced Transformer
architecture. Therefore, it is important to decouple SSL from Transformers and to see whether self-attention-
free architectures like CNN can deliver the same excellence with more advanced designs too.

2.2 Large Kernels in Supervised Learning

Large kernels in supervised learning have a long history, stemming from the 2010s (Krizhevsky et al., 2012b;
Szegedy et al., 2015; 2017), where AlexNet (Krizhevsky et al., 2012b) adopts 11×11 kernels in the first
convolutional layer for instance. Global Convolutional Network (Peng et al., 2017) replaces a 2D convolution
with two parallels of stacked 1D convolution, with kernel size up to 25×1 + 1×25. The idea has recently
been revisited in SegNeXt (Guo et al., 2022) to build an efficient multi-scale attention module. Perhaps
predominantly due to the popularity of VGG (Simonyan & Zisserman, 2014), people start to blindly stack
multiple small kernels (i.e., 1×1 or 3×3) to obtain a large receptive field for computer vision tasks (He et al.,
2016; Howard et al., 2017; Xie et al., 2017; Huang et al., 2017).

Motivated by the large window size of Swin Transformer, ConvNeXt (Liu et al., 2022b) explores the in-
verted bottleneck design equipped with 7×7 kernels, evincing the promise of large kernels holds for CNN.
RepLKNet (Ding et al., 2022) is a concurrent work that scales kernel size to 31×31 using an auxiliary 5×5
kernel. SLaK (Liu et al., 2022a) pushes the kernel size to 51×51 by employing certain decomposition and spar-
sity techniques, improving the training stability and memory scalability of large convolutions kernels. More
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Table 1: Linear and k-NN classification on ImageNet-1K. Models are pre-trained for 100 epochs with
DINO.

Model Kernel Size Param (M) Linear k-NN
ResNet-50 3×3 23 67.14 58.88
ConvNeXt-T 3×3 28 73.27 67.98
ConvNeXt-T 5×5 28 73.82 68.34
ConvNeXt-T 7×7 29 74.10 68.65
ViT-S - 21 73.51 68.77
Swin-T - 28 74.98 69.72

recently, Chen et al. (2022); Xiao et al. (2022) reveals the feasibility of large kernels for 3D CNNs and time
series classification too, respectively. However, the potential of modern large-kernel CNNs has never been
explored in the context of self-supervised learning. Our paper conducts a pilot study asking whether we can
close the SSL performance gap between Transformers and CNNs by introducing these stronger large-kernel
CNN architectures.

3 Modern Large-Kernel CNNs in Self-Supervised Learning

In this section, we will carry out the exploration of the modern large-kernel CNNs in self-supervised learn-
ing. A brief recap of modern large-kernel CNNs is provided first, followed by the evaluation of the vanilla
ConvNeXt in SSL showing inferior performance to its Transformers competitors. We consequently study
several design choices built upon which we can bridge the performance gap between modern large-kernel
CNNs between SoTA Transformers, i.e., Swin Transformers, in SSL.

3.1 A Brief Recap of ConvNeXt

ConvNeXt (Liu et al., 2022b), a recently emerging pure CNN model armed with more sophisticated archi-
tecture design, heats up the debate between CNNs and Transformers in supervised learning. It thoroughly
investigates the architecture designs used in Swin Transformers and assembles a set of principles that sub-
stantially boosts the performance of a standard ResNet-50 to the level of the state-of-the-art Transformers.
Specifically, ConvNeXt adopts a different stage compute ratio (1:1:9:1); a ViT-style patchify stem that divides
images into non-overlapped patches; depthwise convolution and inverted bottleneck with an increase of net-
work width; 7×7 large kernels instead of 3×3; replacing ReLU (Nair & Hinton, 2010) with GELU (Hendrycks
& Gimpel, 2016); substituting BatchNorm (Ioffe, 2017) with LayerNorm (Ba et al., 2016). Built upon the
following set of principles, ConvNeXt is able to match or even outperform Swin Transformers under most
scenarios in supervised learning. Ding et al. (Ding et al., 2022) and Liu et al. (Liu et al., 2022a) further
push along the direction of large kernel and demonstrate the possibility of scaling kernel size up to 31×31
and 51×51, while achieving even better performance, respectively.

3.2 Vanilla ConvNeXt in SSL

We first examine whether the vanilla ConvNeXt can close the performance gap between Transformers and
CNNs. We choose the state-of-the-art self-distillation with no labels (DINO) (Caron et al., 2021) as our SSL
framework with 4 architectures: ResNet-50, ConvNeXt-T, ViT-S with 16×16 patch size, and Swin-T with
4×4 patch size. We choose ConvNeXt-T as the representative of modern CNN architectures mainly due to
its several similarities with the SoTA SSL-trained Swin-T (Liu et al., 2021b) in terms of (1) parameter count;
(2) throughput; (3) and supervised performance. We follow the vanilla 100-epoch training configuration used
in DINO and pre-train models on ImageNet-1K without labels with AdamW (Loshchilov & Hutter, 2019)
and a batch size of 512. Cosine learning rate decay is used whose base learning rate is scaled with the batch
size as lr = 0.0005 ∗ batchsize/256. Weight decay is also decayed from 0.04 to 0.4 with a cosine function.
The teacher temperature of self-distillation τ is set as 0.4. We report the results of two evaluation protocols
k-NN and linear probing in Table 1.
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Figure 1: Block designs for ConvNeXt and BC-SSL. “DW” refers to depthwise convolution and “PW”
stands for pointwise convolution. To fully translate the promise of modern CNNs in supervised learning to
self-supervised learning, two small adaptions are adopted on the original ConvNeXt: (1) adding BatchNorm
layers after large depthwise kernels; (2) naively scaling up convolutional kernel size to 9×9.
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Figure 2: k-NN Accuracy of ConvNeXt-T, BC-SSL-T, and Swin-T with various kernel sizes.
BC-SSL-T improves the k-NN accuracy over the standard ConvNeXt-T by 1.67%. Models are pre-trained
for 100 epochs with DINO.

We observe that even with the standard 3 × 3 kernels, the superb architecture design of ConvNeXt directly
brings 6.13% higher linear probing accuracy over the “old-fashion” ResNet. Increasing kernel size from 3×3
to 7×7 continuously boosts the accuracy by 0.83%. However, the performance of standard ConvNeXt with
7×7 kernels still falls behind its Transformer competitors. The above observation indicates that the promise
of modern CNN designs in supervised learning seems can not be fully translated to the SSL scenario.

3.3 Pushing the Limits of ConvNeXt in SSL

Adding BatchNorm after large depthwise kernels. By default, ConvNeXt is a BatchNorm-free ar-
chitecture. Substituting Batchnorm with LayerNorm slightly improves the performance as reported in the
original work. Albeit that BatchNorm may have many intricacies that cause detrimental effects on perfor-
mance (Wu & Johnson, 2021) in supervised learning, it historically plays an essential role in self-supervised
learning. It has been shown that batch normalization is crucial for BYOL to achieve good performance (Grill
et al., 2020; Richemond et al., 2020). MoCo-v3 (Chen et al., 2021) shows that removing all BatchNorm layers
in the MLP heads causes a 2.1% accuracy drop. MoBY (Xie et al., 2021) confirms a similar phenomenon in
Swin Transformers.
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In contrast to these previous arts, we investigate the effect of batch normalization in the backbone. More
specifically, we choose to add a BatchNorm layer after each depthwise convolutional kernel in the ConvNeXt
backbone. Table 2 demonstrates that this small modification consistently improves the performance of
self-supervised ConvNeXt across various batch sizes.

Table 2: Linear classification of ConvNeXt with vs. without BatchNorm (BN) after Depthwise
convolutions on ImageNet-1K. Models are pre-trained for 100 epochs with DINO.

Model Linear Classification
Kernel Size 3×3 5×5 7×7 9×9 15×15
ConvNeXt-T w/o BN 73.27 73.82 74.10 74.52 74.28
ConvNeXt-T w/ BN 74.04 74.35 74.48 75.01 74.47

Naively scaling up convolutional kernel sizes. The larger kernel benefit of ConvNeXt reaches a
saturation point at 7×7 in supervised learning (Liu et al., 2022b). While it is possible to expand performance
gains by further enlarging kernels, sophisticated techniques like structure re-parameterization (Ding et al.,
2022) and sparsity (Liu et al., 2022a) are required. Nonetheless, we empirically find that in self-supervised
learning the kernel size can be favorably scaled to 9×9 without bells and whistles as shown in Table 2.
However, an accuracy drop occurs when we further increase the kernel size to 15×15. Although increasing
kernel sizes beyond 9×9 does not provide more performance gains for ConvNeXt, we do not exclude the
possibility that other large-kernel recipes such as RepLKNet and SLaK can benefit more from increasing
kernel further, as we have observed much improvement room of promise in supervised learning (Ding et al.,
2022; Liu et al., 2022a). Potential future work is how to fully explore the capacity of larger kernels beyond
9×9 in self-supervised learning.

Until now, we have finished our exploration of modern large-kernel CNNs in self-supervised learning and
ended up with our modified architecture in Figure 1, which we dubbed BC-SSL. The above two small
tweaks (adding BatchNorm after depthwise convolutions and scaling convolutional kernel sizes to 9×9) bring
encouraging performance gains. Figure 2 shows that the added BatchNorm consistently brings around
0.7% k-NN accuracy gains to ConvNeXt across kernel sizes, and enlarging kernels from 7×7 to 9×9 further
increases the performance by 0.97%, outperforming Swin Transformers. Overall we achieve an encouraging
1.67% accuracy improvement over the vanilla ConvNeXt even under a small-scale pre-training regime.

In the next section, we will evaluate the scalability of BC-SSL in terms of training time and model size, as
well as the transferability on downstream tasks. From now on, we will choose 9×9 as our default kernel size
and add a BatchNorm layer after depthwise convolutions in each residual block for BC-SSL.

4 Main Evaluations of BC-SSL

We first evaluate the proposed BC-SSL backbone in SSL with the standard self-supervised benchmark on
ImageNet-1K (Russakovsky et al., 2015). We also evaluate the quality of the learned representations by
conducting downstream transfer learning on MS COCO detection and segmentation (Lin et al., 2014), 18
small datasets, and several ImageNet-level robustness benchmarks.

4.1 Evaluation on ImageNet-1K

Implementation details. To conduct an apple-to-apple comparison between BC-SSL and Transformers,
we follow the current state-of-the-art SSL-trained Transformer results (Caron et al., 2021; Li et al., 2021;
Xie et al., 2021) and adopt DINO (Caron et al., 2021) as our SSL framework. We construct two variants
of BC-SSL, BC-SSL-T and BC-SSL-S, to be of similar sizes to Swin-T and Swin-B. We then train them
with the full 300-epoch training recipe as reported in Caron et al. (2021). Concretely, all models are
trained with AdamW (Loshchilov & Hutter, 2019) and a batch size of 512, with a learning rate scaled as lr =
0.0005∗batchsize/256, decayed with a cosine schedule. The temperature of the teacher linearly increases from
0.04 to 0.07 within the first 30 epochs as a warm-up phase, while the temperature of the student is set to be 0.1
constantly. As suggested by Caron et al. (2021), we remove the last layer normalization of the DINO head for
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Table 3: Comparison with SoTA SSL results across different architectures on ImageNet-1K. The patch size
is 16×16 and 4×4 for ViT and Swin Transformers, respectively, and the window size of Swin Transform-
ers is set as default 7×7. ViT-BN is ViT that replaces the LayerNorm before MLP blocks by BatchNorm.
“RN152w2+SK” refers to ResNet-152 with 2× wider channels and selective kernels (Li et al., 2019). Through-
put numbers are obtained from DINO (Caron et al., 2021) except for Swin Transformer and BC-SSL, which
are measured by us using a V100 GPU (black) and an A100 GPU (blue), respectively, following (Liu et al.,
2022b). On an A100 GPU, SSL pre-trained BC-SSL can have a much higher (up to 40%) throughput than
SSL pre-trained Swin Transformer.

Method Architecture #Parameters (M) ↓ Throughput ↑ Linear ↑ k-NN ↑
SoTA SSL with Big Model Sizes

iGPT (Chen et al., 2020a) iGPT-XL 6801 - 72.0 -
SCLR (Chen et al., 2020b) RN50w4 375 117 76.8 69.3
SwAV (Caron et al., 2020) RN50w5 586 76 78.5 67.1
BYOL (Grill et al., 2020) RN50w4 375 117 78.6 –
MoCo-v3 (Chen et al., 2021) ViT-H-BN/16 632 32 79.1 -
SimCLR-v2 (Chen et al., 2020c) RN152w2+SK 354 - 79.4 -
BYOL (Grill et al., 2020) RN200w2 250 123 79.6 73.9

SoTA SSL with Small Model Sizes
BYOL (Grill et al., 2020) RN50 23 1237 74.4 64.8
MoBY (Xie et al., 2021) Swin-T 28 758/1326 75.1 -
DCv2 (Caron et al., 2020) RN50 23 1237 75.2 67.1
SwAV (Caron et al., 2020) RN50 23 1237 75.3 65.7
DINO (Caron et al., 2021) RN50 23 1237 75.3 67.5
MoCo-v3 (Chen et al., 2021) ViT-B 85 312 76.7 -
DINO (Caron et al., 2021) ViT-S 21 1007 77.0 74.5
DINO (Li et al., 2021) Swin-T 28 758/1326 77.0 74.2
DINO (Ours) BC-SSL-T 29 762/1777 (+34%) 77.8 75.7
DINO (Caron et al., 2021) ViT-B 85 312 78.2 76.1
DINO (Li et al., 2021) Swin-S 49 437/857 79.2 76.8
DINO (Ours) BC-SSL-S 50 442/1197 (+40%) 79.0 76.6

improving stability. Following BYOL (Grill et al., 2020) and DINO, we choose color jittering, Gaussian blur
and solarization for the data augmentations and multi-crop (Caron et al., 2020) with a bicubic interpolation.

Evaluation protocols. Same as Caron et al. (2021); Li et al. (2021); Xie et al. (2021); Chen et al. (2021),
we report top-1 linear probe and k-NN accuracy on ImageNet-1K validation set. For linear probing, random
size cropping and horizontal flips are adopted as augmentation. The backbone is frozen and only the classifier
is trained by SGD for 100 epochs with a small learning rate of 0.001, which is decayed with a cosine decay
schedule. Besides, we also evaluate the learned representation with a simple non-parametric evaluation -
k-Nearest neighbor (k-NN) classifiers. We first store the features of the training data learned by the pre-
training backbone; find the k nearest features that match the feature of a test image; and vote for the label.
The comparison results are reported in Table 3.

Comparisons with ResNets. We first compare the performance of BC-SSL with the standard ResNet-
50 (23M) mainly shown on the bottom panel. We observe that BC-SSL-T dramatically outperforms the
best SSL-trained ResNet-50 (DINO) by 2.5% with linear probe and 8.2% with k-NN, demonstrating that
the superiority of modern CNNs over the conventional ResNets can be generalized to the longer training
time regime. When compared with bigger ResNets on the top panel, our 300-epoch trained BC-SSL-S with
50M parameters is able to achieve comparable performance to those large-scale ResNets with hundreds of
parameters (usually trained for around 1000 epochs), while enjoying up to 5.8× higher throughput.

Comparisons with Transformers. We next compare BC-SSL with two strong Transformer baselines:
ViT and Swin Transformer as reported on the bottom panel in Table 3. Overall, BC-SSL provides a positive
signal that modern CNNs perform satisfactorily against two strong Transformer baselines in terms of the
accuracy-computation trade-off. Without using any sophisticated attention modules, BC-SSL-T outperforms
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Swin-T by 0.8% with linear probing and 1.5% with k-NN. Our larger model BC-SSL-S further boosts the
linear classification accuracy to 79.0%, matching the performance of Swin-S, while being slightly faster in
inference throughput than the latter when tested on a V100 GPU (442 vs 437). However, when being
benchmarked on the more advanced A100 GPU marked with blue colors, BC-SSL-S is 40% faster than
Swin-S (1197 vs 857), thanks to the efficient convolutional modules and simple design choices. Moreover,
the promise of BC-SSL also holds when compared to the Transformers trained with contrastive methods,
i.e., ViT-S trained with MoCo-v3, achieving 2.3% higher accuracy.

4.2 Evaluation on Downstream COCO Object Detection and Segmentation

One advantage of convolutional architectures compared with Transformers with global self-
attention (Vaswani et al., 2017; Dosovitskiy et al., 2021) is its preferable low computational complexity
with respect to image size, allowing it to be efficiently transferred to downstream tasks with high resolution.
To evaluate the transferability of the learned representations of BC-SSL, we also conduct transfer learning
on MS COCO object detection and segmentation (Lin et al., 2014). Following previous arts (Li et al.,
2021; Xie et al., 2021; Liu et al., 2022b), We finetune Mask R-CNN (He et al., 2017) on the COCO dataset
with BC-SSL backbone for a 3× (36 epochs) schedule. Layer-wise learning rate decay (Bao et al., 2021)
and stochastic depth rate are adopted. The hyperparameters are exactly the same as the ones reported in
supervised ConvNeXt (Liu et al., 2022b). By using this set of hyperparameters and configurations, we not
only can conduct a fair comparison among various SSL results, but also can compare our self-supervised
models with their supervised counterparts. To better understand the behavior of BC-SSL in different SSL
training regimes, we evaluate two groups of BC-SSL models: 100-epoch pre-trained models and 300-epoch
pre-trained models. Table 4 shows the results. We summarize the main observations below:

Table 4: Object detection and segmentation on MS COCO. Models are pre-trained on ImageNet-1K
and finetuned using Mask-RCNN for 36 epochs. The performance of BC-SSL is implemented by us and the
results of other models are obtained from their original papers.

Method Architecture Kernel Size APbox
↑ APbox

50 ↑ APbox
75 ↑ APmask

↑ APmask
50 ↑ APmask

75 ↑

300-epoch supervised learning
Supervised (Liu et al., 2022b) Swin-T - 46.0 68.1 50.3 41.6 65.1 44.9
Supervised (Liu et al., 2022b) ConvNeXt-T 7×7 46.2 67.9 50.8 41.7 65.0 44.9

100-epoch SSL pre-training
DINO BC-SSL-T 3×3 45.0 66.3 49.6 40.5 63.5 43.6
DINO BC-SSL-T 5×5 45.9 67.3 50.6 41.1 64.3 44.3
DINO BC-SSL-T 7×7 46.1 67.4 50.8 41.2 64.5 44.2
DINO BC-SSL-T 9×9 46.3 67.6 51.0 41.3 64.7 44.4

300-epoch SSL pre-training
DINO (Li et al., 2021) Swin-T - 46.2 67.9 50.5 41.7 64.8 45.1
EsViT (Li et al., 2021) Swin-T - 46.2 68.0 50.6 41.6 64.9 44.8
DINO BC-SSL-T 9×9 46.6 68.1 51.3 41.6 65.0 44.5

1 Performance increases as the kernel size. In the middle group of Table 4, we report the performance
of BC-SSL (trained in 100 epochs) with increasing kernel sizes from 3×3 to 9×9. We can observe a very clear
trend that the performance increases as the kernel size. While BC-SSL-T with 3×3 kernels suffers from a
big performance gap to 300-epoch pre-trained Swin-T, it gradually approaches and eventually matches the
performance of the latter using 9×9 kernels. The performance makes sense since larger kernels obtain a larger
effective receptive field (ERF) and benefit more on the high-resolution dense prediction tasks (Liu et al.,
2022a). This result highlights the better transferability of large-kernel convolutions over the Transformers
on dense prediction downstream tasks.

2 BC-SSL outperforms self-supervised Transformers. When pre-trained with the full training recipe
in 300 epochs, BC-SSL-T further boosts the performance of self-supervised CCNs on COCO over the Swin-T
by a good margin, especially in terms of the box AP.

3 BC-SSL performs better than its supervised counterpart. Moreover, our self-supervised BC-
SSL also outperforms its supervised counterpart as reported on the top panel. Given the accuracy of
self-supervised BC-SSL falls short of the supervised one reported in (Liu et al., 2022b), this phenomenon
indicates that the large kernel design in SSL brings more benefits to downstream tasks than the pre-training
ImageNet task.
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4.3 Evaluation on Robustness
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Figure 3: Training curves of different architectures using DINO.

Recent studies on out-of-distribution robustness (Bai et al., 2021; Paul & Chen, 2022; Zhang et al., 2022;
Mao et al., 2022) show that Transformers are much more robust than CNNs when testing under distribution
shifts. For instance, Mao et al. (Mao et al., 2022) demonstrate that DeiT (Touvron et al., 2021), Swin-T, and
RVI (Mao et al., 2022) achieve stronger robustness than ResNet. Given the advanced architecture designs
in BC-SSL, we ask if the modern large-kernel CNNs can launch a successful counterattack in self-supervised
learning?

To answer this question, we directly test our linear probing classification models on several robustness bench-
marks including ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), ImageNet-
Sketch (Wang et al., 2019) and ImageNet-C (Hendrycks & Dietterich, 2019) datasets. Mean corruption error
(mCE) is reported for ImageNet-C and top-1 accuracy is reported for the rest of datasets.

We again observe an encouraging trend in Table 5, that is, the robustness of BC-SSL monotonously improves
as the kernel size scales up to 15×15. First, Swin-T indeed achieves better robustness performance than
ResNet-50 in both settings, confirming the findings in (Bai et al., 2021; Mao et al., 2022). It is then
interesting to observe that BC-SSL with the smallest 3×3 kernels is already more robust than Swin-T, and
our 9×9 model further performs an all-around win over Swin-T including both clean and robust accuracy,
being blessed by large kernels. It is worth noting that while the 15×15 kernel undergoes a small clean
accuracy drop compared to 9×9 kernel, it brings a notable improvement in robustness demonstrating the
promise of large kernels in the context of robustness.

Table 5: Robustness evaluation of BC-SSL. All results are obtained by directly testing our ImageNet-1K
linear probing models on several robustness benchmark datasets. We do not make use of any specialized
modules or additional fine-tuning procedures.

Method Architecture Kernel Size FLOPs (G) / #Param. (M) ↓ Clean (linear) ↑ Clean (k-NN) ↑ C ↓ SK ↑ R ↑ A ↑
100-epoch SSL pre-training

DINO ResNet-50 3×3 4.1 / 23 67.1 58.9 71.85 14.77 15.02 0.76
DINO ViT-S - 4.6 / 21 73.5 68.8 59.57 20.08 21.89 3.04
DINO Swin-T - 4.5 / 28 75.0 69.7 61.86 20.16 20.18 3.49
DINO BC-SSL-T 3×3 4.4 / 28 74.0 68.4 61.82 23.18 21.60 3.80
DINO BC-SSL-T 5×5 4.4 / 28 74.4 68.8 61.48 23.45 22.92 4.75
DINO BC-SSL-T 7×7 4.5 / 29 74.5 69.4 60.40 24.55 22.92 4.74
DINO BC-SSL-T 9×9 / 29 75.0 70.3 59.39 24.55 22.79 4.66
DINO BC-SSL-T 15×15 4.8 / 30 74.5 69.7 58.80 25.33 23.25 5.31

300-epoch SSL pre-training
DINO ResNet-50 3×3 4.1 / 23 75.3 67.5 70.28 14.24 14.4 0.88
DINO Swin-T - 4.5 / 28 77.0 74.2 59.39 21.96 21.18 5.34
DINO BC-SSL-T 9×9 4.5 / 29 77.8 75.7 57.44 25.32 23.82 5.72
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5 Qualitative Study

5.1 k-NN Monitor

k-NN Monitor is a widely used tool to monitor training dynamics of self-supervised learning (Wu et al.,
2018; Chen et al., 2021). To better understand the training dynamics of different architectures, we sparsely
perform k-NN evaluation every 20 epochs and depict the results in Figure 3. BC-SSL-T shares an extremely
similar pattern with Swin-T albeit with a consistently higher accuracy: an upsurging increase followed by a
slight drop. The peak accuracy is reached around the 260 epoch.

5.2 Visualization

In this section, we provide visualizations through two popular tools Grad-CAM (Selvaraju et al., 2017) and
Eigen-CAM (Muhammad & Yeasin, 2020) to understand the mechanism discrepancy behind the decisions
made by different SSL-trained architectures. Grad-CAM is a label-dependent localization technique that
can generate visual explanations for various architectures including CNNs and Transformers. Eigen-CAM
is a label-free technique that takes the first principle component of the 2D activations to generate bounding
boxes for object localization and segmentation. This combination can evaluate the quality of both, the rep-
resentations learned by backbone and linear probing. Following the tutorials in (Gildenblat & contributors,
2021), we choose the representation learned by the last layer from the last stage to visualize CNN models.
For Transformers, we choose the features after the first LayerNorm layer in the last stage’s last block. Since
the activation of Transformers is usually not 2D, we further reshape it to 2D spatial images.

We compare across ResNet-50, ViT-S, Swin-T, and BC-SSL-T with various kernel sizes in Appendix Figure 4.
From the heatmaps, we can conclude that CNNs with 3×3 kernels (ResNet-50 and BC-SSL) either capture the
smallest range of important pixels or no important pixels to make decisions. As the kernel size continuously
increases, the red regions (corresponding to high scores) also gradually expand, and desirably cover the
labeled object when the kernels are large enough, i.e., 9×9, 15×15. This indicates that large kernels inherently
have a larger effective receptive field than smaller kernels, leading to more robust and accurate prediction.
On the other hand, it seems that Transformers with self-attention tend to be good at capturing shapes than
CNNs, although sometimes their red, shaped heatmaps are completely located on the background. This
behavior is in line with the findings in supervised learning (Diesendruck & Bloom, 2003), where ViT are
reported to have a higher shape bias than CNNs, whereas CNNs usually tend to preserve textures rather
than shapes.

6 Conclusions

This work does not propose a novel method or model but instead provides an empirical study on an incremen-
tal baseline inspired by the recent breakthroughs in self-supervised learning: rethinking self-supervised CNNs
in the era of Transformers. Increasingly stronger results achieved by new self-supervised training recipes
accompanied by advanced Transformers make people start to believe that Transformers or self-attention
operations are inherently more suitable than CNNs in the context of SSL. In this paper, we decouple SSL
from Transformers and ask whether self-attention-free architectures like CNN can deliver the same excellence
with more advanced designs too. We provide an encouraging signal that we are able to build pure CNN SSL
architectures that perform on par with or better than the best SSL-trained Transformers, by just scaling
up convolutional kernel sizes besides several small tweaks. Our results highlight that the simple design of
convolutional operations remains powerful in self-supervised learning.
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