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Abstract

Retrieval-Augmented Generation (RAG) en-001
hances the performance of LLMs across var-002
ious tasks by retrieving relevant information003
from external sources, particularly on text-004
based data. For structured data, such as knowl-005
edge graphs, GraphRAG has been widely used006
to retrieve relevant information. However, re-007
cent studies have revealed that structuring im-008
plicit knowledge from text into graphs can009
benefit certain tasks, extending the applica-010
tion of GraphRAG from graph data to general011
text-based data. Despite their successful ex-012
tensions, most applications of GraphRAG for013
text data have been designed for specific tasks014
and datasets, lacking a systematic evaluation015
and comparison between RAG and GraphRAG016
on widely used text-based benchmarks. In017
this paper, we systematically evaluate RAG018
and GraphRAG on well-established benchmark019
tasks, such as Question Answering and Query-020
based Summarization. Our results highlight021
the distinct strengths of RAG and GraphRAG022
across different tasks and evaluation perspec-023
tives. Inspired by these observations, we in-024
vestigate strategies to integrate their strengths025
to improve downstream tasks. Additionally,026
we provide an in-depth discussion of the short-027
comings of current GraphRAG approaches and028
outline directions for future research.029

1 Introduction030

Retrieval-Augmented Generation (RAG) has031

emerged as a powerful approach to enhance down-032

stream tasks by retrieving relevant knowledge from033

external data sources. It has achieved remarkable034

success in various real-world applications, such035

as healthcare (Xu et al., 2024), law (Wiratunga036

et al., 2024), finance (Zhang et al., 2023), and edu-037

cation (Miladi et al., 2024). This success has been038

further amplified with the advent of Large Lan-039

guage Models (LLMs), as integrating RAG with040

LLMs significantly improves their faithfulness by041

mitigating hallucinations, reducing privacy risks,042

and enhancing robustness (Zhao et al., 2023; Huang 043

et al., 2023). In most existing RAG systems, re- 044

trieval is primarily conducted from text databases 045

using lexical and semantic search. 046

Graphs, as a fundamental data structure, encode 047

rich relational information and have been exten- 048

sively utilized across real-world domains, including 049

knowledge representation, social network analysis, 050

and biomedical research (Wu et al., 2020; Ma and 051

Tang, 2021; Wu et al., 2023). Motivated by this, 052

GraphRAG has recently gained attention for re- 053

trieving graph-structured data, such as knowledge 054

graphs (KGs) and molecular graphs (Han et al., 055

2024; Peng et al., 2024). Beyond leveraging exist- 056

ing graphs, GraphRAG has also demonstrated its 057

effectiveness for text-based tasks after structuring 058

implicit knowledge from text into graph represen- 059

tations, benefiting applications such as global sum- 060

marization (Edge et al., 2024; Zhang et al., 2024), 061

planning (Lin et al., 2024) and reasoning (Han et al., 062

2025). 063

While previous studies have demonstrated the 064

potential of GraphRAG for text-based tasks by 065

converting sequential text into graphs, most of 066

them primarily focus on specific tasks and well- 067

designed datasets. Consequently, the applicability 068

of GraphRAG to broader, real-world text-based 069

tasks remains unclear, particularly when compared 070

to RAG, which has seen widespread adoption 071

across diverse applications. This raises a critical 072

question: What are the advantages and disadvan- 073

tages of applying GraphRAG to general text-based 074

tasks compared to RAG? 075

To bridge this gap, we systematically evaluate 076

the performance of RAG and GraphRAG on gen- 077

eral text-based tasks using widely adopted datasets, 078

including Question Answering and Query-based 079

Summarization. Specifically, we assess two rep- 080

resentative GraphRAG methods: (1) Knowledge 081

Graph-based GraphRAG (Liu, 2022), which ex- 082

tracts a Knowledge Graph (KG) from text and per- 083
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forms retrieval solely based on the KG and (2)084

Community-based GraphRAG (Edge et al., 2024),085

which retrieves information not only from the con-086

structed KG but also from hierarchical communi-087

ties within the graph. For the Question Answer-088

ing task, we conduct experiments on both single-089

hop and multi-hop QA under single-document and090

multi-document scenarios. Similarly, for the Query-091

based Summarization task, we evaluate both single-092

document and multi-document summarization to093

comprehensively assess the effectiveness of RAG094

and GraphRAG.095

Based on our comprehensive evaluation, we096

conduct an in-depth analysis of the strengths and097

weaknesses of RAG and GraphRAG across dif-098

ferent tasks. Our findings reveal that RAG and099

GraphRAG are complementary, each excelling in100

different aspects. For the Question Answering task,101

we observe that RAG performs better on single-102

hop questions and those requiring detailed infor-103

mation, while GraphRAG is more effective for104

multi-hop questions. In the Query-based Summa-105

rization task, RAG captures fine-grained details,106

whereas GraphRAG generates more diverse and107

multi-faceted summaries. Building on these in-108

sights, we investigate two strategies from different109

perspectives to integrate their unique strengths and110

enhance the overall performance. Our main contri-111

butions are as follows:112

• Systematical Evaluation : This is the very first113

work to systematically evaluate and compare114

RAG and GraphRAG on text-based tasks using115

widely adopted datasets and evaluations.116

• Task-Specific Insights: We provide an in-depth117

analysis of the distinct strengths of RAG and118

GraphRAG, demonstrating their complementary119

advantages across different types of queries and120

objectives.121

• Hybrid Retrieval Strategies: Based on our122

findings on the unique strengths of RAG and123

GraphRAG, we propose two strategies to im-124

prove overall performance: (1) Selection, where125

queries are dynamically assigned to either RAG126

or GraphRAG based on their characteristics, and127

(2) Integration, where both methods are inte-128

grated to leverage their complementary strengths.129

• Challenges and Future Directions: We discuss130

the limitations of current GraphRAG approaches131

and outline potential future research directions132

for broader applicability.133

2 Related Works 134

2.1 Retrieval-Augmented Generation 135

Retrieval-Augmented Generation (RAG) has been 136

widely applied to enhance the performance of 137

Large Language Models (LLMs) by retrieving rele- 138

vant information from external sources, addressing 139

the limitation of LLMs’ restricted context windows, 140

improving factual accuracy, and mitigating halluci- 141

nations (Fan et al., 2024; Gao et al., 2023). Most 142

RAG systems primarily process text data by first 143

splitting it into chunks (Finardi et al., 2024). When 144

a query is received, RAG retrieves relevant chunks 145

either through lexical search (Ram et al., 2023) 146

or by computing semantic similarity (Karpukhin 147

et al., 2020), embeddings both the query and text 148

chunks into a shared vector space. Advanced tech- 149

niques, such as pre-retrieval processing (Ma et al., 150

2023; Zheng et al., 2023a) and post-retrieval pro- 151

cessing (Dong et al., 2024; Xu et al., 2023), as 152

well as fine-tuning strategies (Li et al., 2023), have 153

further enhanced RAG’s effectiveness across var- 154

ious domains, including QA) (Yan et al., 2024), 155

dialogue generation (Izacard et al., 2023), and text 156

summarization (Jiang et al., 2023). 157

Several studies have evaluated the effectiveness 158

of RAG systems across various tasks (Yu et al., 159

2024; Chen et al., 2024; Es et al., 2023), such 160

as multi-hop question answering (Tang and Yang, 161

2024), biomedical question answering (Xiong et al., 162

2024), and text generation (Liu et al., 2023). How- 163

ever, no existing study has simultaneously and 164

systematically evaluated and compared RAG and 165

GraphRAG on these general text-based tasks. 166

2.2 Graph Retrieval-Augmented Generation 167

While RAG primarily processes text data, many 168

real-world scenarios involve graph-structured data, 169

such as knowledge graphs (KGs), social graphs, 170

and molecular graphs (Xia et al., 2021; Ma and 171

Tang, 2021). GraphRAG (Han et al., 2024; Peng 172

et al., 2024) aims to retrieve information from var- 173

ious types of graph-structured data. The inherent 174

structure of graphs enhances retrieval by captur- 175

ing relationships between connected nodes. For 176

example, hyperlinks between documents can im- 177

prove retrieval effectiveness in question answering 178

tasks(Li et al., 2022). Currently, most GraphRAG 179

studies focus on retrieving information from exist- 180

ing KGs for downstream tasks such as KG-based 181

QA (Tian et al., 2024; Yasunaga et al., 2021) and 182

Fact-Checking (Kim et al., 2023). 183
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Figure 1: The illustration of RAG, KG-based GraphRAGs and Community-based GraphRAGs.

Despite leveraging the existing graphs, recent184

studies have explored incorporating graph con-185

struction into GraphRAG to enhance text-based186

tasks. For example, Dong et al. (2024) construct187

document graphs using Abstract Meaning Repre-188

sentation (AMR) to improve document ranking.189

Edge et al. (2024) construct graphs from documents190

using LLMs, where nodes represent entities and191

edges capture relationships between them. Based192

on these graphs, they generate hierarchical com-193

munities and corresponding community summaries194

or reports. Their approach focuses on the global195

query summarization task, retrieving information196

from both the constructed graphs and their hierar-197

chical communities. Additionally, Han et al. (2025)198

propose an iterative graph construction approach199

using LLMs to improve reasoning tasks.200

These studies highlight the potential of201

GraphRAG in processing text-based tasks by con-202

structing graphs from textual data. However, their203

focus is limited to specific tasks and evaluation204

settings. It remains unclear how GraphRAG per-205

forms on general text-based tasks compared to206

RAG. More importantly, when and how should207

GraphRAG be applied to such tasks for optimal208

effectiveness? Our work aims to bridge this gap by209

systematically evaluating GraphRAG and compar-210

ing it with RAG on general text-based tasks.211

3 Evaluation Methodology212

In this section, we introduce the details of our213

evaluation framework. We primarily evaluate one214

representative RAG system and two representative215

GraphRAG systems, as illustrated in Figure 1.216

3.1 RAG 217

We adopt a representative semantic similarity- 218

based retrieval approach as our RAG 219

method (Karpukhin et al., 2020). Specifically, we 220

first split the text into chunks, each containing 221

approximately 256 tokens. For indexing, we use 222

OpenAI’s text-embedding-ada-002 model, which 223

has demonstrated effectiveness across various 224

tasks (Nussbaum et al., 2024). For each query, we 225

retrieve chunks with Top-10 similarity scores. To 226

generate responses, we employ two open-source 227

models of different sizes: Llama-3.1-8B-Instruct 228

and Llama-3.1-70B-Instruct (Dubey et al., 2024). 229

For single-document tasks, we generate a sepa- 230

rate RAG system for each document, ensuring that 231

queries corresponding to a specific document are 232

processed within its respective indexed chunk pool. 233

For multi-document tasks, we use a shared RAG 234

system by indexing all documents together. 235

3.2 GraphRAG 236

We select two representative GraphRAG meth- 237

ods for a comprehensive evaluation, as shown 238

in Figure 1, namely KG-based GraphRAG and 239

Community-based GraphRAG. 240

In the KG-based GraphRAG (KG- 241

GraphRAG) (Liu, 2022), a knowledge graph is first 242

constructed from text chunks using LLMs through 243

triplet extraction. When a query is received, its 244

entities are extracted and matched to those in 245

the constructed KG using LLMs. The retrieval 246

process then traverses the graph from the matched 247

entities and gathers triplets (head, relation, tail) 248

from their multi-hop neighbors as the retrieved 249
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content. Additionally, for each triplet, we can250

retrieve the corresponding text associated with251

it. We define two variants of KG-GraphRAG: (1)252

KG-GraphRAG (Triplets), which retrieves only the253

triplets, and (2) KG-GraphRAG (Triplets+Text),254

which retrieves both the triplets and their associated255

source text. We implement the KG-GraphRAG256

methods using LlamaIndex (Liu, 2022) 1.257

For the Community-based GraphRAG (Edge258

et al., 2024), in addition to generating KGs using259

LLMs, hierarchical communities are constructed260

using graph community detection algorithms, as261

shown in Figure 1. Each community is associ-262

ated with a corresponding text summary or report,263

where lower-level communities contain detailed264

information from the original text. The higher-265

level communities further provide summaries of266

the lower-level communities. Due to the hierar-267

chical community structure, there are two primary268

retrieval methods for retrieving relevant informa-269

tion given a query: Local Search and Global270

Search. In Local Search, entities, relations, their271

descriptions, and lower-level community reports272

are retrieved based on entity matching between the273

query’s extracted entities and the constructed graph.274

We refer to this method as Community-GraphRAG275

(Local). In Global Search, only high-level com-276

munity summaries are retrieved based on semantic277

similarity to the query. We refer to this method as278

Community-GraphRAG (Global). The Community-279

GraphRAG methods are implemented using Mi-280

crosoft GraphRAG (Edge et al., 2024)2. In this281

paper, we primarily use GPT-4o-mini to construct282

the graphs. The results using GPT-4o are also pro-283

vided in Appendix A.10.284

To ensure a fair comparison, we adopt the same285

settings for both RAG and GraphRAG methods,286

including the chunking strategy, embedding model,287

and generation LLMs. We select two represen-288

tative RAG tasks, i.e., Question Answering and289

Query-based Summarization, to evaluate RAG and290

GraphRAG simultaneously.291

4 Question Answering292

QA is one of the most widely used tasks for evalu-293

ating the performance of RAG systems. QA tasks294

come in various forms, such as single-hop QA,295

multi-hop QA, and open-domain QA (Wang, 2022).296

To systematically assess the effectiveness of RAG297

and GraphRAG in these tasks, we evaluate them298

1https://www.llamaindex.ai/
2https://microsoft.github.io/graphrag

on widely used QA datasets and employ standard 299

evaluation metrics. 300

4.1 Datasets and Evaluation Metrics 301

To comprehensively evaluate the performance of 302

GraphRAG on general QA tasks, we select four 303

widely used datasets that cover different perspec- 304

tives. For the single-hop QA task, we select 305

the Natural Questions (NQ) dataset (Kwiatkowski 306

et al., 2019). For the multi-hop QA task, we se- 307

lect HotPotQA (Yang et al., 2018) and MultiHop- 308

RAG (Tang and Yang, 2024) datasets. The 309

MultiHop-RAG dataset categorizes queries into 310

four types: Inference, Comparison, Temporal, and 311

Null queries. To further analyze the performance 312

of RAG and GraphRAG at a finer granularity, we 313

also include NovelQA (Wang et al., 2024a), which 314

contains 21 different types of queries. For more 315

details, please refer to Appendix A.1.1. We use 316

Precision (P), Recall (R), and F1-score as evalu- 317

ation metrics for the NQ and HotPotQA datasets, 318

while accuracy is used for the MultiHop-RAG and 319

NovelQA datasets following their original papers. 320

4.2 QA Main Results 321

The performance comparison for the NQ and Hot- 322

PotQA datasets is presented in Table 1, while that 323

of MultiHop-RAG is shown in Table 2. The overall 324

and average performance are reported as weighted 325

averages. Due to space constraints, partial results 326

of NovelQA with the Llama 3.1-8B model are 327

shown in Table 3, with the full results available 328

in Appendix A.2. Based on these results, we make 329

the following observations: 330

1. RAG excels on detailed single-hop queries. 331

RAG performs well on single-hop queries and 332

queries that require detailed information. This 333

is evident from its performance on the single- 334

hop dataset (NQ) as well as the single-hop (sh) 335

and detail-oriented (dtl) queries in the NovelQA 336

dataset, as shown in Table 1 and Table 3. 337

2. GraphRAG, particularly Community- 338

GraphRAG (Local), excels on multi-hop 339

queries. For instance, it achieved the best 340

performance on both the HotPotQA and 341

MultiHop-RAG datasets. Although its overall 342

performance on the NovelQA dataset is lower 343

than that of RAG, it still performs well on the 344

multi-hop (mh) queries in NovelQA dataset. 345

3. Community-GraphRAG (Global) often strug- 346

gles on QA tasks. This is due to the global 347

search retrieves only high-level communities, 348
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Table 1: Performance comparison (%) on NQ and Hotpot datasets. The best results are highlighted in bold, and the
second-best results are underlined.

Method

NQ Hotpot

Llama 3.1-8B Llama 3.1-70B Llama 3.1-8B Llama 3.1-70B

P R F1 P R F1 P R F1 P R F1

RAG 71.70 63.93 64.78 74.55 67.82 68.18 62.32 60.47 60.04 66.34 63.99 63.88
KG-GraphRAG (Triplets only) 40.09 33.56 34.28 37.84 31.22 28.50 26.88 24.81 25.02 32.59 30.63 30.73
KG-GraphRAG (Triplets+Text) 58.36 48.93 50.27 60.91 52.75 53.88 45.22 42.85 42.60 51.44 48.99 48.75
Community-GraphRAG (Local) 69.48 62.54 63.01 71.27 65.46 65.44 64.14 62.08 61.66 67.20 64.89 64.60
Community-GraphRAG (Global) 60.76 54.99 54.48 61.15 55.52 55.05 45.72 47.60 45.16 48.33 48.56 46.99

Table 2: Performance comparison (%) on the MultiHop-RAG dataset across different query types.

Method LLama 3.1-8B Llama 3.1-70B

Inference Comparison Null Temporal Overall Inference Comparison Null Temporal Overall

RAG 92.16 57.59 96.01 30.70 67.02 94.85 56.31 91.36 25.73 65.77
KG-GraphRAG (Triplets only) 55.76 22.55 98.67 18.70 41.24 76.96 32.36 94.35 19.55 50.98
KG-GraphRAG (Triplets+Text) 67.40 34.70 97.34 17.15 48.51 85.91 35.98 86.38 21.61 54.58
Community-GraphRAG (Local) 86.89 60.63 80.07 50.60 69.01 92.03 60.16 88.70 49.06 71.17
Community-GraphRAG (Global) 89.34 64.02 19.27 53.34 64.40 89.09 66.00 13.95 59.18 65.69

Table 3: Performance comparison (%) on the NovelQA dataset across different query types with LLama 3.1-8B.

RAG KG-GraphRAG (Triplets+Text)

chara mean plot relat settg span times avg chara mean plot relat settg span times avg
mh 68.75 52.94 58.33 75.28 92.31 64.00 33.96 47.34 mh 52.08 52.94 44.44 55.06 69.23 64.00 28.61 38.37
sh 69.08 62.86 66.11 75.00 78.35 - - 68.73 sh 36.84 45.71 40.17 87.50 36.08 - - 39.93
dtl 64.29 45.51 78.57 10.71 83.78 - - 55.28 dtl 38.57 30.90 42.86 21.43 32.43 - - 33.60
avg 67.78 50.57 67.37 60.80 80.95 64.00 33.96 57.12 avg 40.00 36.23 41.09 49.60 38.10 64.00 28.61 37.80

Community-GraphRAG (Local) Community-GraphRAG (Global)

chara mean plot relat settg span times avg chara mean plot relat settg span times avg
mh 68.75 64.71 55.56 67.42 92.31 52.00 35.83 47.01 mh 54.17 58.82 55.56 56.18 53.85 68.00 20.59 34.39
sh 59.87 58.57 65.69 87.50 64.95 - - 63.43 sh 45.39 50.00 55.65 87.50 38.14 - - 49.65
dtl 54.29 37.64 62.50 25.00 70.27 - - 46.88 dtl 28.57 29.78 32.14 87.50 40.54 - - 30.89
avg 60.00 44.91 64.05 59.20 68.71 52.00 35.83 53.03 avg 42.59 36.98 51.66 52.00 40.14 68.00 20.59 39.17

leading to a loss of detailed information. This is349

particularly evident from its lower performance350

on detail-oriented queries in the NovelQA351

dataset. Additionally, Community-GraphRAG352

(Global) tends to hallucinate in QA tasks, as353

shown by its poor performance on Null queries354

in the MultiHop-RAG dataset, which should ide-355

ally be answered as ‘insufficient information.’356

However, this summarization approach may be357

beneficial for queries that require comparing358

different topics or understanding their tempo-359

ral ordering, such as Comparison and Temporal360

queries in the MultiHop-RAG dataset (Table 2).361

4. KG-based GraphRAG also generally under-362

perform on QA tasks. This is because it re-363

trieves information solely from the constructed364

knowledge graph, which contains only entities365

and their relations. However, the extracted en-366

tities and relations may be incomplete, leading367

to gaps in the retrieved information. To verify368

this, we calculated the retrieval accuracy in Ap-369

pendix A.3. We found that only around 65.8%370

of answer entities exist in the constructed KG371

for the Hotpot dataset and 65.5% for the NQ372

dataset. These findings highlight a key limita- 373

tion in KG-based retrieval and suggest the need 374

for improved KG construction methods to en- 375

hance graph completeness for QA. 376

To better illustrate the differences, we also provide 377

case studies comparing the retrieved content of 378

RAG and GraphRAG in Appendix A.4. 379

4.3 Comparative QA Analysis 380
In this section, we conduct a detailed analysis of 381

the behavior of RAG and GraphRAG, focusing 382

on their strengths and weaknesses. In the follow- 383

ing discussion, we refer to Community-GraphRAG 384

(Local) as GraphRAG, as it demonstrates perfor- 385

mance comparable to RAG. We categorize queries 386

into four groups: (1) Queries correctly answered 387

by both methods, (2) Queries correctly answered 388

only by RAG (RAG-only), (3) Queries correctly an- 389

swered only by GraphRAG (GraphRAG-only), and 390

(4) Queries answered incorrectly by both methods. 391

The confusion matrices representing these four 392

groups using the Llama 3.1-8B model are shown 393

in Figure 2. Notably, the proportions of queries 394

correctly answered exclusively by GraphRAG and 395

RAG are significant. For example, 13.6% of 396
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Figure 2: Confusion matrices comparing GraphRAG and RAG correctness across datasets using Llama 3.1-8B.

queries are GraphRAG-only, while 11.6% are RAG-397

only on MultiHop-RAG dataset. This phenomenon398

highlights the complementary properties of RAG399

and GraphRAG, and each method has its own400

strengths and weaknesses. Therefore, leveraging401

their unique advantages has the potential to im-402

prove overall performance.403

4.4 Improving QA Performance404
Building on the complementary properties of RAG405

and GraphRAG, we investigate the following two406

strategies to enhance overall QA performance.407

Strategy 1: RAG vs. GraphRAG Selection.408

In Section 4.2, we observe that RAG generally409

performs well on single-hop queries and those410

requiring detailed information, while GraphRAG411

(Community-GraphRAG (Local)) excels in multi-412

hop queries that require reasoning. Therefore, we413

hypothesize that RAG is well-suited for fact-based414

queries, which rely on direct retrieval and detailed415

information, whereas GraphRAG is more effective416

for reasoning-based queries that involve chaining417

multiple facts together. Therefore, given a query,418

we employ a classification mechanism to determine419

whether it is fact-based or reasoning-based. Each420

query is then assigned to either RAG or GraphRAG421

based on the classification results. Specifically, we422

leverage the in-context learning ability of LLMs423

for classification (Dong et al., 2022; Wei et al.,424

2023). Further details and prompts can be found425

in Appendix A.5. In this strategy, either RAG or426

GraphRAG is selected for each query, and we refer427

to this strategy as Selection.428

Strategy 2: RAG and GraphRAG Integration.429

We also explore the Integration strategy to lever-430

age the complementary strengths of RAG and431

GraphRAG. Both RAG and GraphRAG retrieve432

information for a query simultaneously. The re-433

trieved results are then concatenated and fed into434

the generator to produce the final output.435

We conduct experiments to verify the effective-436

ness of the two proposed strategies. Specifically,437

we evaluate overall performance across all selected 438

datasets. For the MultiHop-RAG and NovelQA 439

datasets, we use the overall accuracy, while for the 440

NQ and HotPotQA datasets, we use the F1 score 441

as the evaluation metric. The results are shown 442

in Figure 3 and Appendix A.6. From these re- 443

sults, we observe that both strategies generally 444

enhance overall performance. For example, on 445

the MultiHop-RAG dataset with Llama 3.1-70B, 446

Selection and Integration improve the best method 447

by 1.1% and 6.4%, respectively. When comparing 448

the Selection and Integration strategies, the Integra- 449

tion strategy usually achieves higher performance 450

than the Selection strategy. However, Selection 451

strategy processes each query using either RAG or 452

GraphRAG, making it more efficient. In contrast, 453

Integration strategy yields better performance but 454

requires each query to be processed by both RAG 455

and GraphRAG, increasing computational cost. 456

5 Query-Based Summarization 457

Query-based summarization tasks are widely used 458

to evaluate the performance of RAG systems (Ram 459

et al., 2023; Yu et al., 2023). GraphRAG has 460

also demonstrated its effectiveness in summariza- 461

tion tasks (Edge et al., 2024). However, Edge 462

et al. (2024) only evaluate its effectiveness on the 463

global summarization task and rely on LLM-as-a- 464

Judge (Zheng et al., 2023b) for performance as- 465

sessment. In Section 5.3, we show that the LLM- 466

as-a-Judge evaluation method for summarization 467

tasks introduces position bias, which can impact 468

the reliability of results. A systematic comparison 469

of RAG and GraphRAG on general query-based 470

summarization across widely used datasets remains 471

unexplored. To address this gap, we conduct a com- 472

prehensive evaluation in this section, leveraging 473

widely used datasets and evaluation metrics. 474

5.1 Datasets and Evaluation Metrics 475
We adopt two widely used single-document query- 476

based summarization datasets, SQuALITY (Wang 477

et al., 2022) and QMSum (Zhong et al., 2021), 478
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Figure 3: Overall QA performance comparison of different methods.

and two multi-document query-based summa-479

rization datasets, ODSum-story and ODSum-480

meeting (Zhou et al., 2023), for our evaluation.481

Unlike the LLM-generated global queries used in482

the unreleased datasets of Edge et al. (2024), most483

queries in the selected datasets focus on specific484

roles or events. Since these datasets contain one485

or more human-written ground truth summaries486

for each query, we use ROUGE-2 (Lin, 2004) and487

BERTScore (Zhang et al., 2019) as evaluation met-488

rics to measure lexical and semantic similarity be-489

tween the predicted and ground truth summaries.490

5.2 Summarization Experimental Results491

We evaluate both the KG-based and Community-492

based GraphRAG methods, along with the Inte-493

gration strategy discussed in Section 4.4. The re-494

sults of Llama3.1-8B model on Query-based single495

document summarization and multiple document496

summarization are shown in Table 4 and Table 5, re-497

spectively. The results of Llama3.1-70B are shown498

in Appendix A.7. Based on these results, we can499

make the following observations:500

1. RAG generally performs well on query-based501

summarization tasks. This is particularly true502

on multi-document summarization datasets.503

2. KG-based GraphRAG benefit from combin-504

ing triplets with their corresponding text.505

This improves performance by incorporating506

more details, making predictions closer to the507

human-written ground truth summaries.508

3. Community-based GraphRAG performs bet-509

ter with the Local search method. Local510

search retrieves entities, relations, and low-511

level communities, while the Global search512

method retrieves only high-level summaries.513

This demonstrates the importance of detailed514

information in the selected datasets.515

4. The Integration strategy often performs com-516

parably to RAG alone, as explained in Ap-517

pendix A.6. 518

5.3 Position Bias in Existing Evaluation 519

From the results in Section 5.2, the Community- 520

based GraphRAG, particularly with global search, 521

generally underperforms compared to RAG on the 522

selected datasets. This contrasts with the findings 523

of Edge et al. (2024), where Community-based 524

GraphRAG with global search outperformed both 525

local search and RAG. There are two key dif- 526

ferences between our evaluation and Edge et al. 527

(2024). First, their study primarily focuses on 528

global summarization, which captures the overall 529

information of an entire corpus, whereas the se- 530

lected datasets in our evaluation contain queries re- 531

lated to specific roles or events. Second, Edge et al. 532

(2024) assess performance by comparing RAG 533

and GraphRAG outputs using LLM-as-a-Judge 534

without ground truth, whereas we evaluate results 535

against ground truth summaries using ROUGE and 536

BERTScore. These metrics emphasize similarity 537

to the reference summaries, which often contain 538

more detailed information. 539

We further conduct an evaluation following Edge 540

et al. (2024), using the LLM-as-a-Judge method 541

from two perspectives: Comprehensiveness and 542

Diversity. Comprehensiveness measures how well 543

the summary covers details of the query, while 544

Diversity evaluates whether the answer provides 545

a broad and globally inclusive perspective. Full 546

prompt details are in Appendix A.8. Specifically, 547

we input summaries from RAG and GraphRAG 548

into the prompt and ask the LLM to choose the 549

better one for each metric. To account for posi- 550

tion bias, we evaluate two orderings: Order 1 (O1) 551

places the RAG summary first, and Order 2 (O2) 552

places GraphRAG first. We report the proportion of 553

times each method is preferred, where a higher pro- 554

portion indicates stronger performance as judged 555

by the LLM. 556

7



Table 4: The performance of query-based single document summarization task using Llama3.1-8B.

Method

SQuALITY QMSum

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 15.09 8.74 10.08 74.54 81.00 77.62 21.50 3.80 6.32 81.03 84.45 82.69
KG-GraphRAG (Triplets only) 11.99 6.16 7.41 82.46 84.30 83.17 13.71 2.55 4.15 80.16 82.96 81.52
KG-GraphRAG (Triplets+Text) 15.00 9.48 10.52 84.37 85.88 84.92 16.83 3.32 5.38 80.92 83.64 82.25
Community-GraphRAG (Local) 15.82 8.64 10.10 83.93 85.84 84.66 20.54 3.35 5.64 80.63 84.13 82.34
Community-GraphRAG (Global) 10.23 6.21 6.99 82.68 84.26 83.30 10.54 1.97 3.23 79.79 82.47 81.10
Integration 15.69 9.32 10.67 74.56 81.22 77.73 21.97 3.80 6.34 80.89 84.47 82.63

Table 5: The performance of query-based multiple document summarization task using Llama3.1-8B.

Method

ODSum-story ODSum-meeting

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 15.39 8.44 9.81 83.87 85.74 84.57 15.50 6.43 8.77 83.12 85.84 84.45
KG-GraphRAG (Triplets only) 11.02 5.56 6.62 82.09 83.91 82.77 11.64 4.87 6.58 81.13 84.32 82.69
KG-GraphRAG (Triplets+Text) 9.19 5.82 6.22 79.39 83.30 81.03 11.97 4.97 6.72 81.50 84.41 82.92
Community-GraphRAG (Local) 13.84 7.19 8.49 83.19 85.07 83.90 15.65 5.66 8.02 82.44 85.54 83.96
Community-GraphRAG (Global) 9.40 4.47 5.46 81.46 83.54 82.30 11.44 3.89 5.59 81.20 84.50 82.81
Integration 14.77 8.55 9.53 83.73 85.56 84.40 15.69 6.15 8.51 82.87 85.81 84.31
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Figure 4: Comparison of LLM-as-a-Judge evaluations for RAG and GraphRAG. "Local" refers to the evaluation of
RAG vs. GraphRAG-Local, while "Global" refers to RAG vs. GraphRAG-Global.

The results of RAG vs. GraphRAG (Local) and557

RAG vs. GraphRAG (Global) on the QMSum and558

ODSum-story datasets are presented in Figure 4.559

More result can be found in Appendix A.9. We560

can make the following observations: (1) Posi-561

tion bias (Shi et al., 2024; Wang et al., 2024b) is562

evident in the LLM-as-a-Judge evaluations for563

summarization task, as changing the order of the564

two methods significantly affects the predictions.565

This effect is particularly strong in the compari-566

son between RAG and GraphRAG (Local), where567

the LLMs make completely opposite decisions568

depending on the order, as shown in Figures 4a569

and 4c. However, (2) Comparison between RAG570

and GraphRAG (Global): While the proportions571

vary, RAG consistently outperforms GraphRAG572

(Global) in Comprehensiveness but underperforms573

in Diversity as shown in Figures 4b and 4d. This re-574

sult suggests that Community-based GraphRAG575

with Global Search focuses more on the global576

aspects of whole corpus, whereas RAG captures 577

more detailed information. 578

In addition to performance comparisons, we also 579

include a time analysis of indexing, retrieval, and 580

generation, as well as token and storage analyses 581

for both methods in Appendix A.11, providing fur- 582

ther insights into their practical trade-offs. 583

6 Conclusion 584

In this paper, we systematically evaluate and com- 585

pare RAG and GraphRAG on general text-based 586

tasks. Our analysis reveals the distinct strengths 587

of RAG and GraphRAG in QA and query-based 588

summarization, as well as evaluation challenges in 589

summarization tasks, providing valuable insights 590

for future research. Building on these findings, we 591

propose two strategies to enhance QA performance. 592

Future work can explore improving GraphRAG 593

through better graph construction or developing 594

novel approaches to combine RAG and GraphRAG 595

methods for both effectiveness and efficiency. 596
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Limitations597

In this paper, we evaluate and compare RAG and598

GraphRAG on Question Answering and Query-599

based Summarization tasks. Future work can ex-600

tend this study to additional tasks to further assess601

the strengths and applicability of GraphRAG. For602

example, tasks such as planning (Wu et al., 2024)603

and mathematical reasoning (Feng et al., 2021)604

have been shown to benefit from graph represen-605

tations. However, the distinct advantages and lim-606

itations of RAG and GraphRAG in these settings607

remain to be systematically explored. Additionally,608

the graph construction in all GraphRAG methods609

explored in this work relies on LLM-based con-610

struction, where LLMs extract entities and rela-611

tions. However, other graph construction models612

designed for text processing exist and can be inves-613

tigated in future studies. Finally, we only use the614

basic retriever for RAG and GraphRAG. There are615

also other retrievers such as GNN-based retrievers616

and LLM-based retrievers for GraphRAG. We do617

not use GNN-based or LLM-based retrieval meth-618

ods due to limitations in our setting. GNN-based619

retrievers require node-level supervision, which620

is unavailable in our dynamically constructed and621

often incomplete graphs. LLM-based retrievers622

typically rely on fixed relation types, whereas our623

graphs contain diverse and open-ended relations.624

To ensure a fair and consistent comparison between625

RAG and GraphRAG, we adopt a simple retrieval626

approach. Nonetheless, exploring how advanced627

retrieval strategies can be adapted to dynamically628

constructed KGs in GraphRAG is an interesting629

direction for future work.630

References631

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.632
2024. Benchmarking large language models in633
retrieval-augmented generation. In Proceedings of634
the AAAI Conference on Artificial Intelligence, vol-635
ume 38, pages 17754–17762.636

Jialin Dong, Bahare Fatemi, Bryan Perozzi, Lin F Yang,637
and Anton Tsitsulin. 2024. Don’t forget to connect!638
improving rag with graph-based reranking. arXiv639
preprint arXiv:2405.18414.640

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan641
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,642
Tianyu Liu, et al. 2022. A survey on in-context learn-643
ing. arXiv preprint arXiv:2301.00234.644

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,645
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,646

Akhil Mathur, Alan Schelten, Amy Yang, Angela 647
Fan, et al. 2024. The llama 3 herd of models. arXiv 648
preprint arXiv:2407.21783. 649

Darren Edge, Ha Trinh, Newman Cheng, Joshua 650
Bradley, Alex Chao, Apurva Mody, Steven Truitt, 651
and Jonathan Larson. 2024. From local to global: A 652
graph rag approach to query-focused summarization. 653
arXiv preprint arXiv:2404.16130. 654

Shahul Es, Jithin James, Luis Espinosa-Anke, and 655
Steven Schockaert. 2023. Ragas: Automated eval- 656
uation of retrieval augmented generation. arXiv 657
preprint arXiv:2309.15217. 658

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, 659
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing 660
Li. 2024. A survey on rag meeting llms: Towards 661
retrieval-augmented large language models. In Pro- 662
ceedings of the 30th ACM SIGKDD Conference on 663
Knowledge Discovery and Data Mining, pages 6491– 664
6501. 665

Weijie Feng, Binbin Liu, Dongpeng Xu, Qilong Zheng, 666
and Yun Xu. 2021. Graphmr: Graph neural network 667
for mathematical reasoning. In Proceedings of the 668
2021 conference on empirical methods in natural 669
language processing, pages 3395–3404. 670

Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pe- 671
dro Gengo, Celio Larcher, Marcos Piau, Pablo Costa, 672
and Vinicius Caridá. 2024. The chronicles of rag: 673
The retriever, the chunk and the generator. arXiv 674
preprint arXiv:2401.07883. 675

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 676
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen 677
Wang. 2023. Retrieval-augmented generation for 678
large language models: A survey. arXiv preprint 679
arXiv:2312.10997. 680

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan 681
Ding, Yongjia Lei, Mahantesh Halappanavar, Ryan A 682
Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. 683
2024. Retrieval-augmented generation with graphs 684
(graphrag). arXiv preprint arXiv:2501.00309. 685

Haoyu Han, Yaochen Xie, Hui Liu, Xianfeng Tang, 686
Sreyashi Nag, William Headden, Yang Li, Chen Luo, 687
Shuiwang Ji, Qi He, et al. 2025. Reasoning with 688
graphs: Structuring implicit knowledge to enhance 689
llms reasoning. arXiv preprint arXiv:2501.07845. 690

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 691
Zhangyin Feng, Haotian Wang, Qianglong Chen, 692
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023. 693
A survey on hallucination in large language models: 694
Principles, taxonomy, challenges, and open questions. 695
arXiv preprint arXiv:2311.05232. 696

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas 697
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi- 698
Yu, Armand Joulin, Sebastian Riedel, and Edouard 699
Grave. 2023. Atlas: Few-shot learning with retrieval 700
augmented language models. Journal of Machine 701
Learning Research, 24(251):1–43. 702

9



Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing703
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,704
Jamie Callan, and Graham Neubig. 2023. Ac-705
tive retrieval augmented generation. arXiv preprint706
arXiv:2305.06983.707

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick708
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A Appendix907

A.1 Dataset908

In this section, we introduce the used datasets in the question answering tasks and query-based summa-909

rization tasks.910

A.1.1 Question Answering911

In the QA tasks, we use the following four widely used datasets:912

• Natural Questions (NQ) (Kwiatkowski et al., 2019): The NQ dataset is a widely used benchmark913

for evaluating open-domain question answering systems. Introduced by Google, it consists of real914

user queries from Google Search with corresponding answers extracted from Wikipedia. Since it915

primarily contains single-hop questions, we use NQ as the representative dataset for single-hop916

QA. We treat NQ as a single-document QA task, where multiple questions are associated with each917

document. Accordingly, we build a separate RAG system for each document in the dataset.918

• Hotpot (Yang et al., 2018): HotpotQA is a widely used multi-hop question dataset that provides919

10 paragraphs per question. The dataset includes varying difficulty levels, with easier questions920

often solvable by LLMs. To ensure a more challenging evaluation, we randomly selected 1,000 hard921

bridging questions from the development set of HotpotQA. Additionally, we treat HotpotQA as a922

multi-document QA task and build a single RAG system to handle all questions.923

• MultiHop-RAG (Tang and Yang, 2024): MultiHop-RAG is a QA dataset designed to evaluate924

retrieval and reasoning across multiple documents with metadata in RAG pipelines. Constructed925

from English news articles, it contains 2,556 queries, with supporting evidence distributed across 2926

to 4 documents. The dataset includes four query types: Inference queries, which synthesize claims927

about a bridge entity to identify it; Comparison queries, which compare similarities or differences928

and typically yield "yes" or "no" answers; Temporal queries, which examine event ordering with929

answers like "before" or "after"; and Null queries, where no answer can be derived from the retrieved930

documents. It is also a multi-document QA task.931

• NovelQA (Wang et al., 2024a): NovelQA is a benchmark designed to evaluate the long-text un-932

derstanding and retrieval ability of LLMs using manually curated questions about English novels933

exceeding 50,000 words. The dataset includes queries that focus on minor details or require cross-934

chapter reasoning, making them inherently challenging for LLMs. It covers various query types935

such as details, multi-hop, single-hop, character, meaning, plot, relation, setting, span, and times.936

Key challenges highlighted by NovelQA include grasping abstract meanings (meaning questions),937

understanding nuanced relationships (relation questions), and tracking temporal sequences and spatial938

extents (span and time questions), emphasizing the difficulty of maintaining and applying contextual939

information across long narratives. We use it for single-document QA task.940

A.1.2 Query-based Summarization941

In the Query-based Summarization tasks, we adopt the following four widely used datasets:942

• SQuALITY (Wang et al., 2022): SQuALITY (Summary-format QUestion Answering with Long943

Input Texts) is a question-focused, long-document, multi-reference summarization dataset. It consists944

of short stories from Project Gutenberg, each ranging from 4,000 to 6,000 words. Each story is paired945

with five questions, and each question has four reference summaries written by Upwork writers and946

NYU undergraduates. SQuALITY is designed as a single-document summarization task, making it a947

valuable benchmark for evaluating summarization models on long-form content.948

• QMSum (Zhong et al., 2021): QMSum is a human-annotated benchmark for query-based, multi-949

domain meeting summarization, containing 1,808 query-summary pairs from 232 meetings across950

multiple domains. We use QMSum as a single-document summarization task in our evaluation.951
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• ODSum (Zhou et al., 2023): The ODSum dataset is designed to evaluate modern summarization 952

models in multi-document contexts and consists of two subsets: ODSum-story and ODSum-meeting. 953

ODSum-story is derived from the SQuALITY dataset, while ODSum-meeting is constructed from 954

QMSum. We use both ODSum-story and ODSum-meeting for the multi-document summarization 955

task in our evaluation. 956

A.2 More results on NovelQA dataset 957

In this section, we present the missing results for the NovelQA dataset from the main sections. These in- 958

clude the performance of KG-GraphRAG (Triplets) with LLaMA 3.1-8B (Table 6), RAG with LLaMA 3.1- 959

70B (Table 7), KG-GraphRAG (Triplets) with LLaMA 3.1-70B (Table 8), KG-GraphRAG (Triplets+Text) 960

with LLaMA 3.1-70B (Table 9), Community-GraphRAG (Local) with LLaMA 3.1-70B (Table 10), and 961

Community-GraphRAG (Global) with LLaMA 3.1-70B (Table 11). 962

Table 6: The performance of KG-GraphRAG (Triplets) with Llama 3.1-8B model on NovelQA dataset.

KG-GraphRAG(Triplet) character meaning plot relat settg span times avg
mh 31.25 17.65 41.67 50.56 38.46 64 26.47 32.89
sh 35.53 45.71 30.54 62.5 27.84 - - 33.75
dtl 31.43 24.72 35.71 17.86 27.03 - - 27.37
avg 33.7 29.81 32.63 44 28.57 64 26.47 31.88

Table 7: The performance of RAG with Llama 3.1-70B model on NovelQA dataset.

RAG character meaning plot relat settg span times avg
mh 64.58 82.35 77.78 69.66 84.62 36 36.63 48.5
sh 70.39 70 76.57 75 83.51 - - 75.27
dtl 60 51.12 76.79 67.86 83.78 - - 61.25
avg 66.67 58.11 76.74 69.6 83.67 36 36.63 61.42

Table 8: The performance of KG-GraphRAG (Triplets) with Llama 3.1-70B model on NovelQA dataset.

KG-GraphRAG (Triplets) character meaning plot relat settg span times avg
mh 50 76.47 75 43.82 76.92 24 22.46 33.72
sh 52.63 62.86 55.23 12.5 50.52 - - 54.06
dtl 35.71 26.97 39.29 53.57 37.84 - - 33.6
avg 47.78 39.62 54.68 44 49.66 24 22.46 41.18

Table 9: The performance of KG-GraphRAG (Triplets+Text) with Llama 3.1-70B model on NovelQA dataset.

KG-GraphRAG (Triplets+Text) character meaning plot relat settg span times avg
mh 56.25 58.82 63.89 51.69 84.62 24 21.39 33.72
sh 51.97 61.43 55.65 50 50.52 - - 54.42
dtl 34.29 25.28 41.07 50 37.84 - - 32.52
avg 48.15 36.98 54.08 51.2 50.34 24 21.39 41.05

A.3 Retrieval accuracy of different methods 963

In this subsection, we compare the retrieval accuracy of various methods. Since there is no ground-truth 964

label for the retrieval step, we evaluate effectiveness by reporting retrieval accuracy, defined as the 965

proportion of cases where the ground-truth answer appears in the retrieved content. We conduct this 966

evaluation on the Hotpot and NQ datasets. 967
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Table 10: The performance of Community-GraphRAG (Local) with Llama 3.1-70B model on NovelQA dataset.

Community-GraphRAG (Local) character meaning plot relat settg span times avg
mh 77.08 70.59 63.89 77.53 92.31 28 32.35 46.68
sh 68.42 71.43 74.9 62.5 74.23 - - 72.44
dtl 55.71 37.08 69.64 64.29 75.68 - - 51.49
avg 66.67 48.3 72.81 73.6 76.19 28 32.35 57.32

Table 11: The performance of Community-GraphRAG (Global) with Llama 3.1-70B model on NovelQA dataset.

Community-GraphRAG (Global) character meaning plot relat settg span times avg
mh 47.92 58.82 55.56 57.3 61.54 16 35.83 41.53
sh 42.76 42.86 54.39 25 40.21 - - 47
dtl 24.29 22.47 32.14 50 35.14 - - 27.64
avg 38.89 30.19 50.76 53.6 40.82 16 35.83 40.21

Table 12: Retrieval accuracy of different methods on Hotpot and NQ datasets

Method Hotpot NQ
RAG 0.886 0.867

KG-GraphRAG(Triplets only) 0.392 0.3218
KG-GraphRAG(Triplets+Text) 0.698 0.615
Community-GraphRAG (Local) 0.6753 0.422
Community-GraphRAG (Global) 0.886 0.833

As shown in the Table 12, KG-GraphRAG (Triplets only) achieves relatively low retrieval accuracy,968

particularly on NQ. This is primarily due to the incompleteness of the constructed knowledge graphs—only969

65.8% of answer entities exist in the HotpotQA KG, and 65.5% in the NQ KG. In contrast, Community-970

GraphRAG, which leverages community-level summarization, demonstrates significantly better retrieval971

performance.972

These findings highlight several potential directions for improvement:973

1. Enhancing KG construction to increase entity and relation coverage.974

2. Combining structured graph information with raw text to improve retrieval robustness and complete-975

ness.976

A.4 Case studies for the question answering task977

In this section, we present examples where RAG fails but GraphRAG succeeds. In Case 1 (Figure 5), RAG978

fails because it does not retrieve all the relevant chunks required for answering the multi-hop reasoning979

question. KG-RAG also fails due to missing information during knowledge graph construction. However,980

Community-GraphRAG is able to answer correctly by leveraging community-level summarizations that981

capture the necessary context. In Case 2 (Figure 6), both KG-GraphRAG and Community-GraphRAG982

succeed because they capture the reasoning chain—either through explicit graph paths or through summa-983

rization within the same community. In contrast, RAG fails due to insufficient retrieved information.984

A.5 RAG vs. GraphRAG Selection985

We classify QA queries into Fact-based and Reasoning-based queries. Fact-based queries are processed986

using RAG, while Reasoning-based queries are handled by GraphRAG. The Query Classification prompt987

is shown in Figure 7.988

A.6 RAG and GraphRAG Integration989

In this section, we explore the effect of integrating RAG and GraphRAG for the question answering task.990

Specifically, we concatenate the retrieved results from both RAG and GraphRAG before passing them to991
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Case 1

Question: Alexander Kerensky was defeated and destroyed by the Bolsheviks in the course
of a civil war that ended when ?
RAG:
Lesser battles of the war continued on the periphery for two more years, and minor skirmishes
with the remnants of the White forces in the Far East continued well into 1923. The war ended in
1923
Answer: 1923
KG-GraphRAG:
Answer: “Insufficient Information.”
Community-GraphRAG:
Alexander Kerensky: Alexander Kerensky was defeated and destroyed by the Bolsheviks in the
course of the Russian Civil War.
Russian Civil War: The Russian Civil War was a significant multi-party conflict that took place
in the former Russian Empire from November 1917 to October 1922, following the October
Revolution.
Answer: October 1922
Gold Answer: October 1922

Figure 5: Case 1 from Hotpot dataset.

Case 2

Question: Which British first-generation jet-powered medium bomber was used in the South
West Pacific theatre of World War II?
RAG:
Answer: “Insufficient Information.”
KG-GraphRAG:
No. 12 Squadron → COMBAT_IN → South West Pacific theatre of WWII;
No. 2 Squadron → EQUIPPED_WITH → English Electric Canberra jets;
Answer: English Electric Canberra jets
Community-GraphRAG:
English Electric Canberra: The English Electric Canberra is a British first-generation jet-powered
medium bomber that was manufactured during the 1950s. ...It saw action as a bomber unit in the
South West Pacific theatre of World War II and, equipped with English Electric Canberra jets...
Answer: English Electric Canberra
Gold Answer: English Electric Canberra

Figure 6: Case 2 from Hotpot dataset.

the LLM. The results are presented in Table 13, Table 14, Table 15, Table 16, and Table 17, respectively. 992

For most cases, the integration of RAG and GraphRAG improves performance. However, we observe a 993

performance drop when integrating with Llama 3.1–8B on the MultiHop-RAG dataset. This degradation 994

is primarily attributed to a significant decline on Null queries—those requiring the model to respond 995

with “Insufficient Information.” By concatenating the retrieved results from both RAG and GraphRAG, 996

the input length increases considerably, making the 8B model more susceptible to hallucination and 997

the generation of incorrect answers. This vulnerability is more pronounced in the 8B model due to its 998

limited capacity, whereas the 70B model demonstrates greater robustness to longer contexts and handles 999

ambiguous information more conservatively. In contrast, for other query types such as Comparison and 1000
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Prompt for Query Classification

System Prompt: Classifying Queries into Fact-Based and Reasoning-Based Categories
You are an AI model tasked with classifying queries into one of two categories based on their
complexity and reasoning requirements.
Category Definitions
1. Fact-Based Queries
- The answer can be directly retrieved from a knowledge source or requires details.
- The query does not require multi-step reasoning, inference, or cross-referencing multiple sources.
2. Reasoning-Based Queries
- The answer cannot be found in a single lookup and requires cross-referencing multiple sources,
logical inference, or multi-step reasoning.
Examples
Fact-Based Queries
{{ Fact-Based Queries Examples }}
Reasoning-Based Queries
{{ Reasoning-Based Queries Examples }}

Figure 7: Prompt for Query Classification.

Temporal, the integration strategy yields notable gains on both model sizes.1001

Table 13: Performance comparison of RAG, GraphRAG, and their integration on NQ and Hotpot datasets

NQ Hotpot
Datasets Llama 3.1-8B Llama 3.1-70B Llama 3.1-8B Llama 3.1-70B
Method P R F1 P R F1 P R F1 P R F1

RAG 71.70 63.93 64.78 74.55 67.82 68.18 62.32 60.47 60.04 66.34 63.99 63.88
GraphRAG 69.48 62.54 63.01 71.27 65.46 65.44 64.14 62.08 61.66 67.20 64.89 64.60
Integration 72.81 65.91 66.28 75.67 69.75 69.75 67.21 65.09 64.76 69.22 66.70 66.50

Table 14: The performance of Llama 3.1-8B on MultiHop-RAG dataset

8B Inference Comparison Null Temporal Overall
RAG 92.16 57.59 96.01 30.7 67.02

GraphRAG 86.89 60.63 80.07 50.6 69.01
Integration 89.71 64.14 50.17 53.34 68.19

Table 15: The performance of Llama 3.1-70B on MultiHop-RAG dataset

70B Inference Comparison Null Temporal Overall
RAG 94.85 56.31 91.36 25.73 65.77

GraphRAG 92.03 60.16 88.7 49.06 71.17
Integration 96.45 73.48 59.47 66.72 77.62

For the query-based summarization task, we observed that the Integration strategy generally performs1002

comparably to RAG, but not significantly better. This is because the evaluation is based on human-written1003

ground-truth summaries, which tend to focus on detailed and faithful representations of the original text.1004

RAG directly retrieves text segments that often match these detailed references more closely, as shown in1005

Figure 4 of our paper. In contrast, GraphRAG primarily retrieves structured information (e.g., entities1006

and relations), which omit finer details needed to align with ground-truth summaries. As a result, while1007
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Table 16: Performance of integrating RAG and GraphRAG with Llama 3.1–8B on the NovelQA dataset.

Integration character meaning plot relat settg span times avg
mh 70.83 58.82 63.89 73.03 84.62 60.00 36.90 49.17
sh 62.50 64.29 74.90 62.50 79.38 - - 70.85
dtl 60.00 43.82 83.93 21.43 72.97 - - 54.20
avg 63.33 50.19 75.23 60.80 78.23 60.00 36.90 58.36

Integration combines complementary views, the added structured content from GraphRAG does not 1008

consistently enhance alignment with detailed ground-truth summaries, leading to comparable or slightly 1009

lower scores. 1010

Table 17: Performance of integrating RAG and GraphRAG with Llama 3.1–70B on the NovelQA dataset.

Integration character meaning plot relat settg span times avg
mh 77.08 70.59 83.33 77.53 92.31 44.00 37.97 51.99
sh 74.34 74.29 82.43 75.00 87.63 - - 80.04
dtl 67.14 53.37 92.86 75.00 89.19 - - 67.21
avg 72.96 60.00 84.29 76.80 88.44 44.00 37.97 65.97

A.7 Query-based Summarization Results with Llama3.1-70B model 1011

In this section, we present the results for Query-based Summarization tasks using the LLaMA 3.1-70B 1012

model. The results for single-document summarization are shown in Table 18, while the results for 1013

multi-document summarization are provided in Table 19. 1014

Table 18: The performance of query-based single document summarization task using Llama3.1-70B.

Method

SQuALITY QMSum

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 11.85 14.24 11.00 85.96 85.76 85.67 10.42 10.00 9.53 86.14 85.92 86.02
KG-GraphRAG(Triplets only) 8.53 10.28 7.46 84.13 83.97 83.89 10.62 6.25 7.48 83.20 84.72 83.94
KG-GraphRAG(Triplets+Text) 6.57 10.14 6.00 80.52 82.23 81.07 8.64 7.85 7.29 84.10 84.55 84.31
Community-GraphRAG(Local) 12.54 10.31 9.61 84.50 85.33 84.71 13.69 7.43 9.14 84.09 85.85 84.95
Community-GraphRAG(Global) 8.99 4.78 5.60 81.64 83.64 82.44 10.97 4.40 6.01 81.93 84.67 83.26
Combine 13.59 11.32 10.55 84.88 85.76 85.12 13.16 8.67 9.93 85.18 86.21 85.69

Table 19: The performance of query-based multiple document summarization task using Llama3.1-70B.

Method

ODSum-story ODSum-meeting

ROUGE-2 BERTScore ROUGE-2 BERTScore

P R F1 P R F1 P R F1 P R F1

RAG 15.60 9.98 11.09 74.80 81.29 77.89 18.81 6.41 8.97 83.56 85.16 84.34
KG-GraphRAG(Triplets only) 10.08 9.12 8.48 75.71 81.93 78.66 11.52 3.41 4.79 81.19 83.07 82.11
KG-GraphRAG(Triplets+Text) 10.98 16.67 11.42 76.74 81.92 79.21 13.09 6.31 7.70 84.07 84.24 84.14
Community-GraphRAG(Local) 14.20 11.34 11.25 75.44 81.81 78.46 16.17 7.87 9.23 84.17 84.85 84.49
Community-GraphRAG(Global) 10.46 6.30 7.08 74.63 81.24 77.77 10.65 1.99 3.28 79.78 82.53 81.12
Combine 14.76 12.17 11.72 75.39 81.75 78.41 17.57 8.64 10.34 84.51 85.14 84.81

A.8 The LLM-as-a-Judge Prompt 1015

The LLM-as-a-Judge prompt can be found in Figure 8. 1016
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LLM-as-a-Judge Prompt

You are an expert evaluator assessing the quality of responses in a query-based summarization task.

Below is a query, followed by two LLM-generated summarization answers. Your task is to evaluate
the best answer based on the given criteria. For each aspect, select the model that performs better.
Query
{{query}}
Answers Section
The Answer of Model 1:
{{answer 1}}
The Answer of Model 2:
{{answer 2}}
Evaluation Criteria Assess each LLM-generated answer independently based on the following
two aspects:
1. Comprehensiveness
- Does the answer fully address the query and include all relevant information?
- A comprehensive answer should cover all key points, ensuring that no important details are
missing.
- It should present a well-rounded view, incorporating relevant context when necessary.
- The level of detail should be sufficient to fully inform the reader without unnecessary omission
or excessive brevity.

2. Global Diversity
- Does the answer provide a broad and globally inclusive perspective?
- A globally diverse response should avoid narrow or region-specific biases and instead consider
multiple viewpoints.
- The response should be accessible and relevant to a wide, international audience rather than
assuming familiarity with specific local contexts.

Figure 8: LLM-as-a-Judge Prompt.

A.9 The LLM-as-a-Judge Results on more datasets1017

In the main section, we present LLM-as-a-Judge results for the OMSum and ODSum-story datasets. Here,1018

we provide additional results on the SQuALITY and ODSum-meeting datasets, as shown in Figure 9.
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Figure 9: Comparison of LLM-as-a-Judge evaluations for RAG and GraphRAG. "Local" refers to the evaluation of
RAG vs. GraphRAG-Local, while "Global" refers to RAG vs. GraphRAG-Global. "Order 1" corresponds to the
prompt where RAG result is presented before GraphRAG, whereas "Order 2" corresponds to the reversed order.

1019
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A.10 Graph Construction with different LLMs 1020

In the main paper, we use GPT-4o-mini to extract entities and relationships for graph construction due to 1021

cost considerations. To investigate whether stronger LLMs yield better performance, we also use GPT-4o 1022

for graph extraction. Specifically, we evaluate this on the MultiHop-RAG and ODSum-story datasets, 1023

representing question answering and summarization tasks, respectively. We focused on Community- 1024

GraphRAG (Local) as a representative method (GraphRAG) and evaluated it with both LLaMA3.1-8B 1025

and LLaMA3.1-70B for generation. 1026

The results are shown in Table 20, Table 21, Table 22 and Table 23, respectively. The results show that 1027

using a stronger LLM (GPT-4o) for graph extraction generally improves the performance of GraphRAG on 1028

both question answering and summarization tasks. However, the overall conclusion regarding the relative 1029

performance of RAG and GraphRAG remains consistent across different graph construction backbones. 1030

Table 20: Performance of different graph construction methods with Llama 3.1–8B on the MultiHop-RAG dataset.

Inference Comparison NULL Temporal Overall
RAG 92.16 57.59 96.01 30.7 67.02

GPT-4o-mini 86.89 60.63 80.07 50.6 69.01
GPT-4o 88.11 62.62 70.43 49.74 68.74

Table 21: Performance of different graph construction methods with Llama 3.1–70B on the MultiHop-RAG dataset.

70B Inference Comparison NULL Temporal Overall
RAG 94.85 56.31 91.36 25.73 65.77

GPT-4o-mini 92.03 60.16 88.70 49.06 71.17
GPT-4o 93.63 66.59 81.06 58.49 75.08

Table 22: Performance of different graph construction methods with Llama 3.1–8B on the ODSum-story dataset.

ROUGE-2 BERTScore
P R F1 P R F1

RAG 15.39 8.44 9.81 83.87 85.74 84.57
GPT-4o-mini 13.84 7.19 8.49 83.19 85.07 83.90

GPT-4o 13.99 7.45 8.64 83.24 85.1 83.94

Table 23: Performance of different graph construction methods with Llama 3.1–8B on the ODSum-story dataset.

ROUGE-2 BERTScore
P R F1 P R F1

RAG 11.85 14.24 11.09 85.96 85.76 85.67
GPT-4o-mini 12.54 10.31 9.61 84.51 85.33 84.71

GPT-4o 12.08 10.84 9.72 84.66 85.28 84.77

A.11 Computation and Storage Analysis 1031

In this section, we explore the computational and storage trade-offs of RAG, KG-GraphRAG, and 1032

Community-GraphRAG. We report construction time, retrieval time, and storage size on two representative 1033

datasets: MultiHop-RAG (for question answering) and ODSum-story (for summarization). The results are 1034

presented in the Table 24 and Table 25, respectively. 1035

From the reults, we have the following observations: 1036

• Construction time: KG-GraphRAG incurs the highest construction time due to the use of LLMs for 1037

triplet extraction. However, this process is performed offline. 1038
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Table 24: The time and storage analysis on MultiHop-RAG dataset.

Method Construction Time Retrieval time Storage
RAG 135 1724 127MB

KG-GraphRAG 7702 14434 117MB
Community-GraphRAG 5560 1249 165MB

Table 25: The time and storage analysis on ODSum-story dataset

Method Construction Time Retrieval time Storage
RAG 74 350 71MB

KG-GraphRAG 6496 3527 44MB
Community-GraphRAG 2828 282 104MB

• Storage: GraphRAG variants generally consume less storage than RAG, with KG-GraphRAG being1039

the most compact due to structured representations.1040

• Retrieval time: KG-GraphRAG shows the highest latency, caused by LLM-based entity expansion1041

during graph traversal. In contrast, Community-GraphRAG achieves the fastest retrieval through1042

direct entity matching, even outperforming RAG.1043

We also assessed the average retrieved token count, retrieval time, generation time, and performance of1044

our hybrid strategies (Selection and Integration) on the MultiHop-RAG dataset with the Llama3.1-70B1045

model. The results are summarized in Table 26. As shown, the Integration strategy yields the highest1046

performance but introduces the most overhead in terms of tokens and latency due to combining both RAG1047

and GraphRAG content. In contrast, the Selection strategy provides a more balanced trade-off, improving1048

performance over both RAG and GraphRAG individually, while keeping token and time costs significantly1049

lower than GraphRAG.1050

Table 26: Comparison of retrieved tokens, retrieval time, generation time, and performance using Llama 3.1–70B.

Average Retrieved Tokens Retrieval Time Generation Time Performance
RAG 3631 1724 3640 65.77

GraphRAG 9770 1249 6272 71.17
Selection 8040 1562 5530 72.3

Integration 13401 2973 9674 77.62

Besides runtime and storage, we also analyze the number of tokens retrieved by Community-GraphRAG1051

and RAG. The results are shown in Table 27.1052

Table 27: The retrieved number of tokens.

RAG Community-GraphRAG
MultiHop-RAG 3631 9770
ODSum-Story 2279 10244

In our experimental setup, RAG retrieves the top-10 text chunks, while Community-GraphRAG (Local)1053

retrieves the top-10 entities and their associated relations. As shown in Table 27, Community-GraphRAG1054

results in significantly more input tokens due to the inclusion of entities, entity descriptions, relations,1055

relation descriptions, and community summaries.1056

To ensure a fair comparison, we conducted an additional experiment in which we increased the number1057

of retrieved text chunks for RAG to match the total number of input tokens retrieved by Community-1058

GraphRAG. The results are shown in Table 28, Table 29, Table 30 and Table 31. While increasing1059

RAG’s input size does lead to slight performance gains, our main conclusions remain unchanged: RAG1060
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performs better on inference-style queries and summarization tasks, where detailed information is directly 1061

retrievable. In contrast, GraphRAG performs better on complex queries such as Comparison and Temporal 1062

types in MultiHop-RAG, which require multi-hop reasoning and aggregation. 1063

Table 28: Performance comparison of RAG, token-matched RAG, and GraphRAG using Llama 3.1–8B on MultiHop-
RAG dataset.

Inference Comparison NULL Temporal Overall
RAG 92.16 57.59 96.01 30.7 67.02

RAG_Same Token 95.34 59.81 89.04 36.71 69.33
GraphRAG 86.89 60.63 80.07 50.6 69.01

Table 29: Performance comparison of RAG, token-matched RAG, and GraphRAG using Llama 3.1–70B on
MultiHop-RAG dataset.

70B Inference Comparison NULL Temporal Overall
RAG 94.85 56.31 91.36 25.73 65.77

RAG_Same Token 95.96 59.58 88.7 43.74 71.01
GraphRAG 92.03 60.16 88.7 49.06 71.17

Table 30: Performance comparison of RAG, token-matched RAG, and GraphRAG using Llama 3.1–8B on ODSum-
Story dataset.

8B ROUGE-2 BERTScore
P R F1 P R F1

RAG 15.39 8.44 9.81 83.87 85.74 84.57
RAG_Same Token 14.16 10.02 10.16 84.34 85.74 84.82

GraphRAG 13.84 7.19 8.49 83.19 85.07 83.9

Table 31: Performance comparison of RAG, token-matched RAG, and GraphRAG using Llama 3.1–70B on ODSum-
Story dataset.

ROUGE-2 BERTScore
P R F1 P R F1

RAG 11.85 14.24 11.09 85.96 85.76 85.67
RAG_Same Token 12.82 14.07 11.34 85.86 86 85.73

GraphRAG 12.54 10.31 9.61 84.51 85.33 84.71
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