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ABSTRACT

We study the online restless bandit problem, where each arm evolves according to
a Markov chain independently, and the reward of pulling an arm depends on both
the current state of the corresponding Markov chain and the action. The agent
(decision maker) does not know the transition kernels and reward functions, and
cannot observe the states of arms even after pulling. The goal is to sequentially
choose which arms to pull so as to maximize the expected cumulative rewards col-
lected. In this paper, we propose TSEETC, a learning algorithm based on Thomp-
son Sampling with Episodic Explore-Then-Commit. The algorithm proceeds in
episodes of increasing length and each episode is divided into exploration and
exploitation phases. In the exploration phase in each episode, action-reward sam-
ples are collected in a round-robin way and then used to update the posterior as
a mixture of Dirichlet distributions. At the beginning of the exploitation phase,
TSEETC generates a sample from the posterior distribution as true parameters. It
then follows the optimal policy for the sampled model for the rest of the episode.
We establish the Bayesian regret bound Õ(

√
T ) for TSEETC, where T is the time

horizon. This is the first bound that is close to the lower bound of restless ban-
dits, especially in an unobserved state setting. We show through simulations that
TSEETC outperforms existing algorithms in regret.

1 INTRODUCTION

The restless multi-armed problem (RMAB) is a general setup to model many sequential decision
making problems ranging from wireless communication (Tekin & Liu, 2011; Sheng et al., 2014),
sensor/machine maintenance (Ahmad et al., 2009; Akbarzadeh & Mahajan, 2021) and healthcare
(Mate et al., 2020; 2021). This problem considers one agent and N arms. Each arm i is modulated
by a Markov chain M i with state transition function P i and reward function Ri. At each time, the
agent decides which arm to pull. After the pulling, all arms undergo an action-dependent Markovian
state transition. The goal is to decide which arm to pull to maximize the expected reward, i.e.,
E[
∑T
t=1 rt], where rt is the reward at time t and T is the time horizon.

In this paper, we consider the online restless bandit problem with unknown parameters (transition
functions and reward functions) and unobserved states. Many works concentrate on learning
unknown parameters (Liu et al., 2010; 2011; Ortner et al., 2012; Wang et al., 2020; Xiong et al.,
2022a;b) while ignoring the possibility that the states are also unknown. The unobserved states
assumption is common in real-world applications, such as cache access (Paria & Sinha, 2021) and
recommendation system (Peng et al., 2020). In the cache access problem, the user can only get
the perceived delay but cannot know whether the requested content is stored in the cache before or
after the access. Moreover, in the recommender system, we do not know the user’s preference for
the items. There are also some studies that consider the unobserved states. However, they often
assume the parameters are known (Mate et al., 2020; Meshram et al., 2018; Akbarzadeh & Mahajan,
2021) and there is a lack of theoretical result (Peng et al., 2020; Hu et al., 2020). And the existing
algorithms (Zhou et al., 2021; Jahromi et al., 2022) with theoretical guarantee do not match the
lower regret bound of RMAB (Ortner et al., 2012).

One common way to handle the unknown parameters but with observed states is to use the optimism
in the face of uncertainty (OFU) principle (Liu et al., 2010; Ortner et al., 2012; Wang et al., 2020).
The regret bound in these works is too weak sometimes, because the baseline they consider, such
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as pulling the fixed arms (Liu et al., 2010), is not optimal in RMAB problem. Ortner et al. (2012)
derives the lower bound Õ(

√
T ) for RMAB problem. However, it is not clear whether there is an

efficient computational method to search out the optimistic model in the confidence region (Laksh-
manan et al., 2015). Another way to estimate the unknown parameters is Thompson Sampling (TS)
method (Jung & Tewari, 2019; Jung et al., 2019; Jahromi et al., 2022; Hong et al., 2022). TS algo-
rithm does not need to solve all instances that lie within the confident sets as OFU-based algorithms
(Ouyang et al., 2017). What’s more, empirical studies suggest that TS algorithms outperform OFU-
based algorithms in bandit and Markov decision process (MDP) problems (Scott, 2010; Chapelle &
Li, 2011; Osband & Van Roy, 2017).

Some studies assume that only the states of pulled arms are observable (Mate et al., 2020; Liu
& Zhao, 2010; Wang et al., 2020; Jung & Tewari, 2019). They translate the partially observable
Markov decision process (POMDP) problem into a fully observable MDP by regarding the state
last observed and the time elapsed as a meta-state (Mate et al., 2020; Jung & Tewari, 2019), which
is much simpler due to more observations about pulled arms. Mate et al. (2020), and Liu & Zhao
(2010) derive the optimal index policy but they assume the known parameters. Restless-UCB in
Wang et al. (2020) achieves the regret bound of Õ(T 2/3), which does not match the lower bound
Õ(
√
T ) regret, and also restricted to a specific Markov model. There are also some works that

consider that the arm’s state is not visible even after pulling (Meshram et al., 2018; Akbarzadeh &
Mahajan, 2021; Peng et al., 2020; Hu et al., 2020; Zhou et al., 2021; Yemini et al., 2021) and the
classic POMDP setting (Jahromi et al., 2022). However, there are still some challenges unresolved.
Firstly, Meshram et al. (2018) and Akbarzadeh & Mahajan (2021) study the RMAB problem with
unobserved states but with known parameters. However, the true value of the parameters are often
unavailable in practice. Secondly, the works study RMAB from a learning perspective, e.g., Peng
et al. (2020); Hu et al. (2020) but there are no regret analysis. Thirdly, existing policies with regret
bound Õ(T 2/3) (Zhou et al., 2021; Jahromi et al., 2022) often do not have a regret guarantee that
scales as Õ(

√
T ), which is the lower bound in RMAB problem (Ortner et al., 2012). Yemini et al.

(2021) considers the arms are modulated by two unobserved states and with linear reward. This
linear structure is quite a bit of side information that the decision maker can take advantage of for
decision making and problem-dependent log(T ) is given.

To the best of our knowledge, there are no provably optimal policies that perform close to the offline
optimum and match the lower bound in restless bandit, especially in unobserved states setting. The
unobserved states bring much challenges to us. Firstly, we need to control estimation error about
states, which itself is not directly observed. Secondly, the error depends on the model parameters in
a complex way via Bayesian updating and the parameters are still unknown. Thirdly, since the state
is not fully observable, the decision-maker cannot keep track of the number of visits to state-action
pairs, a quantity that is crucial in the theoretical analysis. We design a learning algorithm TSEETC
to estimate these unknown parameters, and benchmarked on a stronger oracle, we show that our
algorithm achieves a tighter regret bound. In summary, we make the following contributions:

Problem formulation. We consider the online restless bandit problems with unobserved states and
unknown parameters. Compared with Jahromi et al. (2022), our reward functions are unknown.

Algorithmic design. We propose TSEETC, a learning algorithm based on Thompson Sampling with
Episodic Explore-Then-Commit. The whole learning horizon is divided into episodes of increasing
length. Each episode is split into exploration and exploitation phases. In the exploration phase, to
estimate the unknown parameters, we update the posterior distributions about unknown parameters
as a mixture of Dirichlet distributions. For the unobserved states, we use the belief state to encode
the historical information. In the exploitation phases, we sample the parameters from the posterior
distribution and derive an optimal policy based on the sampled parameter. What’s more, we design
the determined episode length in an increasing manner to control the total episode number, which is
crucial to bound the regret caused by exploration.

Regret analysis. We consider a stronger oracle which solves POMDP based on our belief state.
And we define the pseudo-count to store the state-action pairs. Under a Bayesian framework, we
show that the expected regret of TSEETC accumulated up to time T is bounded by Õ(

√
T ) , where

Õ hides logarithmic factors. This bound improves the existing results (Zhou et al., 2021; Jahromi
et al., 2022).

2



Under review as a conference paper at ICLR 2023

Experiment results. We conduct the proof-of-concept experiments, and compare our policy with
existing baseline algorithms. Our results show that TSEETC outperforms existing algorithms and
achieve a near-optimal regret bound.

2 RELATED WORK

We review the related works in two main domains: learning algorithm for unknown parameters, and
methods to identify unknown states.

Unknown parameters. Since the system parameters are unknown in advance, it is essential to
study RMAB problems from a learning perspective. Generally speaking, these works can be divided
into two categories: OFU (Ortner et al., 2012; Wang et al., 2020; Xiong et al., 2022a; Zhou et al.,
2021; Xiong et al., 2022b) or TS based (Jung et al., 2019; Jung & Tewari, 2019; Jahromi et al.,
2022; Hong et al., 2022). The algorithms based on OFU often construct confidence sets for the
system parameters at each time, find the optimistic estimator that is associated with the maximum
reward, and then select an action based on the optimistic estimator. However, these methods may
not perform close to the offline optimum because the baseline policy they consider, such as pulling
only one arm, is often a heuristic policy and not optimal. In this case, the regret bound O(log T )
(Liu et al., 2010) is less meaningful. Apart from these works, posterior sampling (Jung & Tewari,
2019; Jung et al., 2019) were used to solve this problem. A TS algorithm generally samples a set
of MDP parameters randomly from the posterior distribution, then actions are selected based on the
sampled model. Jung & Tewari (2019) and Jung et al. (2019) provide theoretical guarantee Õ(

√
T )

in the Bayesian setting. TS algorithms are confirmed to outperform optimistic algorithms in bandit
and MDP problems (Scott, 2010; Chapelle & Li, 2011; Osband & Van Roy, 2017).

Unknown states. There are some works that consider the states of the pulled arm are observed (Mate
et al., 2020; Liu & Zhao, 2010; Wang et al., 2020; Jung & Tewari, 2019). Mate et al. (2020) and
Liu & Zhao (2010) assumes the unobserved states but with known parameters. Wang et al. (2020)
constructs an offline instance and give the regret bound Õ(T 2/3). Jung & Tewari (2019) considers
the episodic RMAB problems and the regret bound Õ(

√
T ) is guaranteed in the Bayesian setting.

Some studies assume that the states are unobserved even after pulling. Akbarzadeh & Mahajan
(2021) and Meshram et al. (2018) consider the RMAB problem with unknown states but known
system parameters. And there is no regret guarantee. Peng et al. (2020) and Hu et al. (2020) consider
the unknown parameters but there are also no any theoretical results. The most similar to our work is
Zhou et al. (2021) and Jahromi et al. (2022). Zhou et al. (2021) considers that all arms are modulated
by a common unobserved Markov Chain. They proposed the estimation method based on spectral
method (Anandkumar et al., 2012) and learning algorithm based on upper confidence bound (UCB)
strategy (Auer et al., 2002). They also give the regret bound Õ(T 2/3) and there is a gap between
the lower bound Õ(

√
T ) (Ortner et al., 2012). Jahromi et al. (2022) considers the POMDP setting

and propose the pseudo counts to store the state-action pairs. Their learning algorithm is based on
Ouyang et al. (2017) and the regret bound is also Õ(T 2/3). And their algorithm is not programmable
due to the pseudo counts is conditioned on the true counts which is uncountable.

3 PROBLEM SETTING

Consider a restless bandit problem with one agent and N arms. Each arm i ∈ [N ] := {1, 2, . . . , N}
is associated with an independent discrete–time Markov chainMi = (Si, P i), where Si is the state
space and P i ∈ RSi×Si

the transition functions. Let sit denote the state of arm i at time t and
st = (s1t , s

2
t , . . . , s

N
t ) the state of all arms. Each arm i is also associated with a reward functions

Ri ∈ RSi×R, where Ri (r | s) is the probability that the agent receives a reward r ∈ R when he
pulls arm i in state s. We assume the state spaces Si and the reward set R are finite and known to
the agent. The parameters P i and Ri, i ∈ [N ] are unknown, and the state st is also unobserved to
the agent. For the sake of notational simplicity, we assume that all arms have the same state spaces
S with size S. Our result can be generalized in a straightforward way to allow different state spaces.

The whole game is divided into T time steps. The initial state si1 for each arm i ∈ [N ] is drawn from
a distribution hi independently, which we assume to be known to the agent. At each time t, the agent
chooses one arm at ∈ [N ] to pull and receives a reward rt ∈ R with probability Rat(rt | satt ). Note
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that only the pulled arm has the reward feedback. His decision on which arm at to pull is based on
the observed history Ht = [a1, r1, a2, r2 · · · , at−1, rt−1]. Note that the states of the arms are never
observable, even after pulling. Each arm i makes a state transition independently according to the
associated P i, whether it is pulled or not. This process continues until the end of the game. The
goal of the agent is to maximize the total expected reward.

We use θ to denote the unknown P i and Ri for i ∈ [N ] collectively. Since the true states are
unobservable, the agent maintains a belief state bit = [bit(s, θ), s ∈ Si] ∈ ∆Si for each arm i, where

bit(s, θ) := P
(
sit = s | Ht, θ

)
,

and ∆Si :=
{
b ∈ RSi

+ :
∑
s∈Si b(s) = 1

}
is the probability simplex in RSi

. Note that bit(s, θ) de-
pends on the unknown model parameter θ, which itself has to be learned by the agent. We aggregate
all arms as a whole Markov chainM and denote its transition matrix and reward function as P and
R, respectively. For a given θ, the overall belief state bt = (b1t , b

2
t , · · · , bNt ) is a sufficient statistic

for Ht−1 (Smallwood & Sondik, 1973), so the agent can base his decision at time t on bt only. Let
∆b := ∆S1 × · · · ×∆SN . A deterministic stationary policy π : ∆b → [N ] maps a belief state to an
action. The long-term average reward of a policy π is defined as

Jπ(h, θ) := lim sup
T→∞

1

T
E

[
T∑
t=1

rt

∣∣∣ h, θ] . (1)

We use J(h, θ) = supπ J
π(h, θ) to denote the optimal long-term average reward. We assume

J(h, θ) is independent of the initial distribution h as in Jahromi et al. (2022) and denoted it by J(θ).
We make the following assumption.
Assumption 1. The smallest element ϵ1 in the transition functions P i, i ∈ N is bigger than zero.
Assumption 2. The smallest element ϵ2 in the reward functions Ri, i ∈ N is bigger than zero.

Assumption 1 and Assumption 2 are strong in general, but they help us bound the error of belief
estimation (De Castro et al., 2017). Assumption 1 also makes the MDP weakly communicating
(Bertsekas et al., 2011). For weakly communicating MDP, it is known that there exists a bounded
function v(·, θ) : ∆b → R such that for all b ∈ ∆b (Bertsekas et al., 2011),

J(θ) + v(b, θ) = max
a

{
r(b, a) +

∑
r

P (r | b, a, θ)v (b′, θ)

}
, (2)

where v is the relative value function, r(b, a) =
∑
s

∑
r b
a(s, θ)Ra(r | s)r is the expected reward,

b′ is the updated belief after obtaining the reward r, and P (r | b, a, θ) is the probability of observing
r in the next step, conditioned on the current belief b and action a. The corresponding optimal
policy is the maximizer of the right part in equation 2. Since the value function v(, θ) is finite, we
can bound the span function sp(θ) := maxb v(b, θ) −minb v(b, θ) as Zhou et al. (2021). We show
the details about this bound in Proposition 1 and denote the bound as H .

We consider the Bayesian regret. The parameters θ∗ is randomly generated from a known prior
distribution Q at the beginning and then fixed but unknown to the agent. We measure the efficiency
of a policy π by its regret, defined as the expected gap between the cumulative reward of an offline
oracle and that of π, where the oracle is the optimal policy with the full knowledge of θ∗, but
unknown states. The offline oracle is similar to Zhou et al. (2021), which is stronger than those
considered in Azizzadenesheli et al. (2016) and Fiez et al. (2018). We focus on the Bayesian regret
of policy π (Ouyang et al., 2017; Jung & Tewari, 2019) as follows,

RT := Eθ∗∼Q

[
T∑
t=1

(J(θ∗)− rt)

]
. (3)

The above expectation is with respect to the prior distribution about θ∗, the randomness in state
transitions and the random reward.

4 THE TSEETC ALGORITHM

In section 4.1, we define the belief state and show how to update it with new observation. In section
4.2, we show how to update the posterior distributions under unknown states. In section 4.3, we
show the details about our learning algorithm TSEETC.
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4.1 BELIEF ENCODER FOR UNOBSERVED STATE

Here we focus on the belief update for arm i with true parameters θ∗. At time t, the belief for arm
i in state s is bit(s, θ

∗). Then after the pulling of arm i, we obtain the observation rt. The belief
bit(s

′, θ∗) can be update as follows:

bit+1(s
′, θ∗) =

∑
s b
i
t(s, θ

∗)Ri∗ (rt | s)P i∗(s′ | s)∑
s b
i
t(s, θ

∗)Ri∗ (rt | s)
, (4)

where the P i∗(s
′ | s) is the probability of transitioning from state s at time t to state s′ andRi∗ (rt | s)

is the probability of obtain reward rt under state s.

If the arm i is not pulled, we update its belief as follows:

bit+1(s
′, θ∗) =

∑
s

bit(s, θ
∗)P i∗(s

′ | s). (5)

Then at each time, we can aggregate the belief of all arms as bt. Based on equation 2 , we can derive
the optimal action at for current belief bt.

4.2 MIXTURE OF DIRICHLET DISTRIBUTION

In this section, we estimate the unknown P i and Ri based on Dirichlet distribution. The Dirichlet
distribution is parameterized by a count vector, ϕ = (ϕ1, . . . , ϕk), where ϕi ≥ 0, such that the
density of probability distribution is defined as f(p | ϕ) ∝

∏k
i=1 p

ϕi−1
i (Ghavamzadeh et al., 2015).

Since the true states are unobserved, all state sequences should be considered, with some weight
proportional to the likelihood of each state sequence (Ross et al., 2011). Denote the reward history
collected from time t1 till t2 for arm i as rit1:t2 and similarly the states history is denoted as sit1:t2 .
And the belief state history is denoted as bit1:t2 . Then with these history information, the posterior
distribution gt(P i) and gt(Ri) at time t can be updated as in Lemma 1.
Lemma 1. Under the unobserved state setting and assuming transition function P i with prior
g0
(
P i
)
= f(P

i−ϵ11
1−ϵ1 | ϕi) , reward function Ri with prior g0

(
Ri
)
= f(R

i−ϵ21
1−ϵ2 | ψi), with the

information ri0:t and bi0:t , then the posterior distribution are as follows:

gt
(
P i
)
∝
∑
s̄it∈St

i

g0
(
P i
)
w(si0:t)

∏
s,s′

(
P i(s′ | s)− ϵ1

1− ϵ1
)N

i
s,s′(s̄

i
t)+ϕ

i
s,s′−1, (6)

gt
(
Ri
)
∝
∑
s̄it∈St

i

g0
(
Ri
)
w(si0:t)

∏
s,r

(
Ri(r | s)− ϵ2

1− ϵ2
)N

i
s,r(s̄

i
t)+ψ

i
s,r−1. (7)

where w(si0:t) is the likelihood of state sequence si0:t and 1 is the vector with one in each position.

The element 1 can be different lengths in correspondence with the dimension of P and R. This
procedure is summarized in Algorithm 1.

Algorithm 1 Posterior Update for Ri(s, ·) and P i(s, ·)
1: Input: the history length τ1, the state space Si, the belief history bi0:τ1 , the reward history ri0:τ1 ,

the initial parameters ϕis,s′ , ψ
i
s,r, for s, s′ ∈ Si, r ∈ R,

2: generate Sτ1i possible state sequences
3: calculate the weight w(j) =

∏τ1
t=1 b

i
t(s, θ), j ∈ S

τ1
i

4: for j in 1, . . . ,Sτ1i do
5: count the occurence times of event (s, s′) and (s, r) as N i

s,s′ , N
i
s,r in sequence j

6: update ϕis,s′ ← ϕis,s′ +N i
s,s′ , ψ

i
s,r ← ψis,r +N i

s,r

7: aggregate the ϕis,s′ as ϕ(j), ψis,r as ψ(j) for all s, s′ ∈ Si, r ∈ R
8: end for
9: update the mixture Dirichlet distribution
gτ1(P

i) ∝
∑Sτ1

i
j=1 w(j)f(

P i−ϵ11
1−ϵ1 | ϕ(j)),

gτ1(R
i) ∝

∑Sτ1
i
j=1 w(j)f(

Ri−ϵ21
1−ϵ2 | ψ(j))
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With Algorithm 1, we can update the posterior distribution about the unknown parameters and sam-
ple from the posterior distribution as true parameters. The belief estimation error can be bounded by
the distance between the sampled parameters and the true values (Proposition 2 ). The theoretical
guarantee about estimation errors about unknown parameters is provided in Lemma 2.

4.3 OUR ALGORITHM

Our algorithm, TSEETC, operates in episodes with different lengths. Each episode is split into
exploration phase and exploitation phase. Denote the episode number is KT and the first time in
each episode is denoted as tk. We use Tk to denote the length of episode k and it can be determined
as: Tk = T1 + k − 1, where T1 =

⌈√
T+1
2

⌉
. The length of exploration phase in each episode is

fixed as τ1 which satisfies τ1KT = O(
√
T ) and τ1 ≤ T1+KT−1

2 . With these notations, our whole
algorithm is shown below.

Algorithm 2 Thompson Sampling with Episodic Explore-Then-Commit
1: Input: prior g0(P ),g0(R), initial belief b0, exploration length τ1, the first episode length T1
2: for episode k = 1, 2, . . . , do
3: start the first time of episode k, tk := t
4: generate R(tk) ∼ gtk−1+τ1(R) and P (tk) ∼ gtk−1+τ1(P )
5: for t = tk, tk + 1, ..., tk + τ1 do
6: pull the arm i for τ1/N times in a round robin way
7: receive the reward rt
8: update the belief bit using R(tk), P (tk) based on equation 4
9: update the belief bjt , j ∈ N \ {i} using P (tk) based on equation 5

10: end for
11: for i = 1, 2, . . . , N do
12: input the obtained rt1:t1+τ1 , ..., rtk:tk+τ1 , bt1:t1+τ1 , ..., btk:tk+τ1 to Algorithm 1 to update

the posterior distribution gtk+τ1(P ), gtk+τ1(R)
13: end for
14: generate R(tk + τ1) ∼ gtk+τ1(P ), P (tk + τ1) ∼ gtk+τ1(R)
15: for i in 0, 1, . . . , N do
16: re-update the belief bit from time 0 to tk + τ1 based on R(tk + τ1) and P (tk + τ1)
17: end for
18: compute π∗

k(·) = Oracle (·, R(tk + τ1), P (tk + τ1))
19: for t = tk + τ1 + 1, · · · , tk+1 − 1 do
20: apply action at = π∗

k (bt)
21: observe new reward rt+1

22: update the belief bt of all arms based equation 4, equation 5
23: end for
24: end for

In episode k, for the exploration phase, we first sampled the θtk from the distribution gtk−1+τ1(P )
and gtk−1+τ1(R). We pull each arm for τ1/N times in a round robin way. For the pulled arm, we
update its belief based on equation 4 using θtk . For the arms that are not pulled, we update its belief
based on equation 5 using θtk . The reward and belief history of each arm are input into Algorithm 1
to update the posterior distribution after the exploration phase. Then we sample the new θtk+τ1 from
the posterior distribution, and re-calibrate the belief bt based on the most recent estimated θtk+τ1 .
Next we enter into the exploitation phase . Firstly we derive the optimal policy πk for the sampled
parameter θtk+τ1 . Then we use policy πk for the rest of the episode k.

We control the increasing of episode length in a deterministic manner. Specially, the length for
episode k is just one more than the last episode k. In such a deterministic increasing manner,
the episode number KT is bounded by O(

√
T ) as in Lemma 10. Then the regret caused by the

exploration phases can be bound by O(
√
T ), which is an crucial part in Theorem 1.

In TSEETC, for the unknown states, we propose the belief state to estimate the true states. What’s
more, under the unobserved state setting, we consider all possible state transitions and update the
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posterior distribution of unknown parameters as mixture of each combined distribution, in which
each occurence is summed with different weight.
Remark 1. We use an Oracle to derive the optimal policy for the sampled parameters in Algorithm
2. The Oracle can be the Bellman equation for POMDP as we introduced in equation 2, or the
approximation methods (Pineau et al., 2003; Silver & Veness, 2010) , etc. The approximation error
is discussed in Remark 3.

5 PERFORMANCE ANALYSIS

In section 5.1, we show our theoretical results and some discussions. In section 5.2, we provide a
proof sketch and the detailed proof is in Appendix B.

5.1 REGRET BOUND AND DISCUSSIONS

Theorem 1. Suppose Assumptions 1,2 hold and the Oracle returns the optimal policy in each
episode. The Bayesian regret of our algorithm satisfies

RT ≤ 48C1C2S
√
NT log(NT ) + (τ1∆R+H + 4C1C2SN)

√
T + C1C2,

where C1 = L1 + L2N +N2 + S2, C2 = rmax +H are constants independent with time horizon
T , L1 = 4(1−ϵ1)2

Nϵ21ϵ2
, L2 = 4(1−ϵ1)2

ϵ31
, ϵ1 and ϵ2 are the minimum elements of the functions P ∗ and R∗,

respectively. τ1 is the fixed exploration length in each episode, ∆R is the biggest gap of the reward
obtained at each two different time, H is the bounded span, rmax is the maximum reward obtain
each time, N is the number of arms and S is the state size for each arm.

Remark 2. The Theorem 1 shows that the regret of TSEETC is upper bound by Õ(
√
T ). This is

the first bound that matches the lower bound in restless bandit problem (Ortner et al., 2012) in
such unobserved state setting. Although TSEETC looks similar to explore-then-commit (Lattimore
& Szepesvári, 2020), a key novelty of TSEETC lies in using the approach of posterior sampling to
update the posterior distribution of unknown parameters as the mixture of each combined distribu-
tion. Our algorithm balances exploration and exploitation in a deterministic-episode manner and
ensures the episode length grows at a linear rate, which guarantees that the total episode number is
bounded by O(

√
T ). Therefore the total regret caused by exploration is well controlled by O(

√
T )

and this is better than the bound O(T 2/3) in Zhou et al. (2021). What’s more, in the exploitation
phase, our regret bound Õ(

√
T ) is also better than Õ(T 2/3) (Zhou et al., 2021). This shows our

posterior sampling based method is superior to UCB based solution (Osband & Van Roy, 2017).
In Jahromi et al. (2022), their pseudo count of state-action pair is always smaller than the true
counts with some probability at any time. However, in our algorithm, the sampled parameter is
more concentrated on true values with the posterior update. Therefore, our pseudo count (defined
in equation 13) based on belief approximates the true counts more closely, which helps us obtain a
tighter bound.

5.2 PROOF SKETCH

In our algorithm, the total regret can be decomposed as follows:

RT = Eθ∗

[
kT∑
k=1

tk+τ1∑
tk

J(θ∗)− rt

]
︸ ︷︷ ︸

Regret (A)

+Eθ∗

[
kT∑
k=1

tk+1−1∑
tk+τ1+1

J(θ∗)− rt

]
︸ ︷︷ ︸

Regret (B)

. (8)

Bounding Regret (A). The Regret (A) is the regret caused in the exploration phase of each episode.
This term can be simply bounded as follows:

Regret (A) ≤ Eθ∗

[
kT∑
k=1

τ1∆R

]
≤ τ1∆RkT (9)

where ∆R = rmax − rmin is the biggest gap of the reward received at each two different times.
The regret in equation 9 is related with the episode number kT , which can be bounded asO(

√
T ) in

Lemma 10.

7
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Bounding Regret (B). Next we bound Regret(B) in the exploitation phase. Define b̂t is the be-
lief updated with parameter θk and b∗t represents the belief with θ∗. During episode k, based on
equation 2 for the sampled parameter θk and that at = π∗(b̂t), we can write:

J (θk) + v(b̂t, θk) = r(b̂t, at) +
∑
r

P (r | b̂t, at, θk)v(b′, θk). (10)

With this equation, we proceed by decomposing the regret as:

Regret(B) = R1 +R2 +R3 +R4 (11)

where each term is defined as follows:

R1 = Eθ∗
kT∑
k=1

[(Tk − τ1 − 1) (J(θ∗)− J(θk))] ,

R2 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
v(b̂t+1, θk)− v(b̂t, θk)

)]
,

R3 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(∑
r

P
[
r | b̂t, at, θk

]
v(b′, θk)− v(b̂t+1, θk)

)]
,

R4 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
r(b̂t, at)− r(b∗t , at)

)]
.

Bounding R1. One key property of Posterior Sampling algorithms is that for given the historyHtk ,
the true parameter θ∗ and sampled θk are identically distributed at the time tk as stated in Lemma
13. Due to the length Tk determined and independent with θk, then R1 is zero thanks to this key
property.

Bounding R2. The regret R2 is the telescopic sum of value function and can be bounded as R2 ≤
HKT . It solely depends on the episode number and the upper boundH of span function. As a result,
R2 reduce to a finite bound over the number of episodes kT , which can be bounded in Lemma 10.

BoundingR3 andR4. The regret termsR3 andR4 is related with estimation error about θ. Thus we
should bound the parameters’ error especially in our unobserved state setting. Recall the definition
of ϕ, ψ, we can define the posterior mean of P̂ i(s′ | s) and R̂i(r | s) for arm i at time t as follows:

P̂ i(s′ | s)(t) =
ϵ1 + (1− ϵ1)ϕis,s′(t)

Sϵ1 + (1− ϵ1)
∥∥ϕis,·(t)∥∥1 , R̂i(r | s)(t) =

ϵ2 + (1− ϵ2)ψis,r(t)
Sϵ2 + (1− ϵ2)

∥∥ψis,·(t)∥∥1 . (12)

We also define the pesudo count of the state-action pair (s, a) before the episode k as

N i
tk
(s, a) =

∥∥ψis,·(tk)∥∥1 − ∥∥ψis,·(0)∥∥1 (13)

where ψis,·(tk) represents the count of state-action z = (s, a) pair before the episode k. Let Mi
k

be the set of plausible MDPs in episode k with reward function R (r | z) and transition function
P (s′ | z) satisfying,∑

s′∈S

∣∣∣P (s′ | z)− P̂ ik (s′ | z)
∣∣∣ ≤ βk(z), ∑

r∈R

∣∣∣R (r | z)− R̂ik (r | z)
∣∣∣ ≤ βk(z), (14)

where βik(s, a) :=
√

14S log(2NtkT )

max{1,Ni
tk

(s,a)} is chosen conservatively (Auer et al., 2008) so thatMi
k con-

tains both P i∗ and P ik, Ri∗ and Rik with high probability. P i∗ and Ri∗ are the true parameters as we
defined in section 4.1. Specially, for the unobserved state setting, the belief error under different
parameters is upper bounded by the gap between the estimators as in Proposition 2. Then the core
of the proofs lies in deriving a high-probability confidence set with our pesudo counts and show that
the estimated error accumulated to T for each arm is bounded by

√
T . Then with the error bound

for each arm, we can derive the final error bound about the MDP aggregated by all arms as stated in
Lemma 2 .

8
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Lemma 2. (estimation errors) The total estimation error about transition functions accumulated by
all exploitation phases satisfies the following bound

Eθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥P ∗ − Pk∥1

]
≤ 48SN

√
NT log(NT ) + 4SN2

√
T +N. (15)

The Lemma 2 shows that the accumulated error is bounded by O(
√
T ), which is crucial to obtain

the final bound as the observed-states setting (Ortner et al., 2012; Jung & Tewari, 2019). With
C1 = L1 + L2N + N2 + S2, We show the final bound about R3, R4 and the detailed proof in
Appendix B.3,B.4.
Lemma 3. R3 satisfies the following bound

R3 ≤ 48C1SH
√
NT logNT + 4C1SNH

√
T + C1H.

Lemma 4. R4 satisfies the following bound

R4 ≤ 48C1Srmax
√
NT log(NT ) + 4C1SNrmax

√
T + C1rmax.

6 NUMERICAL EXPERIMENTS

In this section, we present proof-of-concept experiments and approximately implement TSEETC .
We consider two arms and there are two hidden states for each arm. We pull just one arm each time.
The learning horizon T = 50000, and each algorithm runs 100 iterations. The transition functions
and reward functions for all arms are the same. We initialize the algorithm with uninformed Dirich-
let prior on the unknown parameters. We compare our algorithm with simple heuristics ϵ-greedy
(Lattimore & Szepesvári, 2020) (ϵ = 0.01), and Sliding-Window UCB (Garivier & Moulines, 2011)
with specified window size, RUCB (Liu et al., 2010), Q-learning (Hu et al., 2020) and SEEU (Zhou
et al., 2021). The results are shown in Figure 1. We can find that TSEETC has the minimum regret
among these algorithms.

Figure 1: The cumulative regret Figure 2: The log-log regret

In Figure 2, we plot the cumulative regret versus T of the six algorithms in log-log scale. We observe
that the slopes of all algorithms except for our TSEETC and SEEU are close to one, suggesting that
they incur linear regrets. What is more, the slope of TSEETC is close to 0.5, which is better than
SEEU. This is consistent with our theoretical result.

7 CONCLUSION

In this paper, we consider the restless bandit with unknown states and unknown dynamics. We
propose the TSEETC algorithm to estimate these unknown parameters and derive the optimal pol-
icy. We also establish the Bayesian regret of our algorithm as Õ(

√
T ) which is the first bound that

matches the lower bound especially in restless bandit problems with unobserved states . Numer-
ical results validate that the TSEETC algorithm outperforms other learning algorithms in regret.
A related open question is whether our method can be applied to the setting where the transition
functions are action dependent. We leave it for future research.
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A TABLE OF NOTATIONS

Notation Description
T The length of horizon
KT The episode number of time T
Tk The episode length of episode k
τ1 The fixed exploration length in each episode
P i The transition functions for arm i
Ri The reward function for arm i
Pk The sampled transition function for aggregated MDP
Rk The sampled reward function for aggregated MDP
rt The reward obtained at time t

bit(s, θ) The belief state for being in state s at time t for arm i with parameter θ
b̂t The belief of all arms at time t with parameter θk
b∗t The belief of all arms at time t with parameter θ∗
at The action at time t

J(θk) The optimal long term average reward with parameter θk
rmax The maximum reward obtained each time
rmin The minimum reward obtained each time
∆R The biggest gap of the obtained reward

B PROOF OF THEOREM 1

Recall that our goal is to minimize the regret :

RT := Eθ∗
[
T∑
t=1

(J(θ∗)− rt)

]
. (16)

rt depends on the state st and at. Thus rt can be written as r(st, at). Due to
Eθ∗ [r (st, at) | Ht−1] = r(b∗t , at) for any t, we have,

RT := Eθ∗
[
T∑
t=1

(J(θ∗)− r(b∗t , at))

]
. (17)

In our algorithm, each episode is split into the exploration and exploitation phase then we can rewrite
the regret as:

RT = Eθ∗
[
kT∑
k=1

tk+τ1∑
tk

(J(θ∗)− r (b∗t , at)) +
kT∑
k=1

tk+1−1∑
tk+τ1+1

(J(θ∗)− r (b∗t , at))

]
, (18)

where τ1 is the exploration length for each episode. τ1 is a constant. tk is the start time of episode k.
Define the first part as Regret (A) which is caused by the exploration operations. The another part
Regret (B) is as follows.

Regret (A) = Eθ∗
[
kT∑
k=1

tk+τ1∑
tk

(J(θ∗)− r (b∗t , at))

]
,

Regret (B) = Eθ∗
[
kT∑
k=1

tk+1−1∑
tk+τ1+1

(J(θ∗)− r (b∗t , at))

]
.

Recall that the reward set isR and we define the maximum reward gap inR as ∆R = rmax−rmin.
Then we get:

J(θ∗)− r (b∗t , at) ≤ ∆R.

Then Regret (A) can be simply upper bounded as follows:

Regret (A) ≤ Eθ∗
[
kT∑
k=1

τ1∆R

]
≤ τ1∆RkT .

13
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Regret (A) is related with the episode number kT obviously, which is bounded in Lemma 10. Next
we should bound the term Regret (B).

During the episode k, based on equation 2, we get:

J (θk) + v(b̂t, θk) = r(b̂t, at) +
∑
r

P (r | b̂t, at, θk)v (b′, θk) , (19)

where J (θk) is the optimal long-term average reward when the system parameter is θk, b̂t is the
belief at time t updated with parameter θk, r(b̂t, at) is the expected reward we can get when the
action at is taken for the current belief b̂t, b′ is the updated belief based on equation 4 with parameter
θk when the reward r is received.

Using this equation, we proceed by decomposing the regret as:

Regret(B) = R1 +R2 +R3 +R4, (20)

where

R1 = Eθ∗
kT∑
k=1

[(Tk − τ1 − 1) (J(θ∗)− J(θk))] ,

R2 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
v(b̂t+1, θk)− v(b̂t, θk)

)]
,

R3 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(∑
r

P (r | b̂t, at, θk)v(b′, θk)− v(b̂t+1, θk)

)]
,

R4 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
r(b̂t, at)− r(b∗t , at)

)]
.

Next we bound the four parts one by one.

B.1 BOUND R1

Lemma 5. R1 satisfies that R1 = 0.

Proof. Recall that:

R1 = Eθ∗
kT∑
k=1

[(Tk − τ1 − 1) (J(θ∗)− J(θk)] .

For each episode, Tk is determined and is independent with θk. Based on Lemma 13, we know that,

Eθ∗ [J(θ∗)] = Eθ∗ [J(θk)].

therefore, the part R1 is 0.

B.2 BOUND R2

Lemma 6. R2 satisfies the following bound

R2 ≤ HKT ,

where KT is the total number of episodes until time T .

Proof. Recall that R2 is the telescoping sum of value function at time t+ 1 and t.

R2 = Eθ∗
kT∑
k=1

[
tk+1−1∑

t=tk+τ1+1

[
v(b̂t+1, θk)− v(b̂t, θk)

]]
. (21)
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We consider the whole sum in episode k, then the R2 can be rewrite as:

R2 = Eθ∗
kT∑
k=1

[
v(b̂tk+1

, θk)− v(b̂tk+τ1+1, θk)
]
.

Due to the span of v(b, θ) is bounded by H as in proposition 1 , then we can obtain the final bound,

R2 ≤ HKT .

B.3 BOUND R3

In this section, we first rewrite the R3 in section B.3.1. In section B.3.2, we show the details about
how to bound R3.

B.3.1 REWRITE R3

Lemma 7. (Rewrite R3 ) The regret R3 can be bounded as follows:

R3 ≤ HEθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

||P ∗ − Pk||1

]
+HEθ∗

[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

||b∗t − b̂t||1

]

+ S2HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥R∗ −Rk∥1

]
,

where Pk is the sampled transition functions in episode k, Rk is the sampled reward functions in
episode k, b∗t is the belief at time t updated with true P ∗ and R∗, b̂t is the belief at time t updated
with sampled Pk, Rk.

Proof. The most part is similar to Jahromi et al. (2022), except that we should handle the unknown
reward functions.

Recall that R3 = Eθ∗
∑kT
k=1

[∑tk+1−1
t=tk+τ1+1

(∑
r P (r | b̂t, at, θk)v (b′, θk)− v(b̂t+1, θk)

)]
.

Recall that Ht is the history of actions and observations prior to action at. Conditioned on Ht, θ∗
and θk, the only random variable in b̂t+1 is rt+1, then we can get,

Eθ∗
[
v(b̂t+1, θk) | Ht, θk

]
=
∑
r∈R

v (b′, θk)P (r | b∗t , at, θ∗), (22)

where P (r | b∗t , at, θ∗) is the probability of getting reward r given b∗t , at, θ
∗. By the law of proba-

bility, P (r | b∗t , at, θ∗) can be written as follows,

P (r | b∗t , at, θ∗) =
∑
s′

R∗ (r | s′)P (st+1 = s′ | Ht, θ∗)

=
∑
s′

R∗ (r | s′)
∑
s

P ∗ (st+1 = s′ | st = s,Ht, at, θ∗)P (st = s | Ht, θ∗)

=
∑
s

∑
s′

b∗t (s)P
∗ (s′ | s)R∗ (r | s′) ,

(23)
where P ∗ is the transition functions for the MDP aggregated by all arms, R∗ is the reward function
for the aggregated MDP. Therefore, we can rewrite the R3 as follows,

R3 = Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r∈R

(P (r | b̂t, at, θk)− P (r | b∗t , at, θ∗)v (b′, θk)

)]
.

15



Under review as a conference paper at ICLR 2023

Based on equation 23, we get

R3 = Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)R
∗ (r | s′)

∑
s

b∗t (s)P
∗(s′ | s)

)]

= Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)P
∗(s′ | s)

)]

+ Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)P
∗(s′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)R
∗ (r | s′)

∑
s

b∗t (s)P
∗(s′ | s)

)]
.

(24)

where Rk is the sampled reward function for aggregated MDP, Pk is the sampled transition function
for aggregated MDP.

Define

R′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)

[∑
s

b̂t(s)Pk(s
′ | s)−

∑
s

b∗t (s)P
∗(s′ | s)

])]
,

R′′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk) [Rk (r | s′)−R∗ (r | s′)]
∑
s

b∗t (s)P
∗(s′ | s)

)]
.

Bounding R′
3. The part R′

3 can be bounded as Jahromi et al. (2022).

R′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)

[∑
s

b̂t(s)Pk(s
′ | s)−

∑
s

b∗t (s)P
∗(s′ | s)

])]
= R′

3(0) +R′
3(1)

where

R′
3(0) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)Pk(s
′ | s)

)]

R′
3(1) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)P
∗(s′ | s)

)]
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For R′
3(0), because

∑
r Rk (r | s′) = 1,

∑
s′ Pk(s

′ | s) = 1,v (b′, θk) ≤ H , we have

R′
3(0) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)Pk(s
′ | s)

)]

= Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

(b̂t(s)− b∗t (s)Pk(s′ | s)

)]

≤ Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

|b̂t(s)− b∗t (s)|Pk(s′ | s)

)]

≤ HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s

|b̂t(s)− b∗t (s)|

)]

= HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∥∥∥b̂t(s)− b∗t (s)∥∥∥
1

)]
,

where the first inequality is due to b̂t(s) − b∗t (s) ≤ |b̂t(s) − b∗t (s)| and the second inequality is
because

∑
r Rk (r | s′) = 1,

∑
s′ Pk(s

′ | s) = 1, v (b′, θk) ≤ H .

For the first term inR′
3(1) , note that conditioned onHt, θ∗, the distribution of st is b∗t . Furthermore,

at is measurable with respect to the sigma algebra generated byHt, θk since at = π∗(b̂t, θk). Thus,
we have

Eθ∗
[
v (b′, θk)

∑
s

P ∗ (s′ | s) b∗(s) | Ht, θk

]
= v (b′, θk)Eθ∗ [P ∗ (s′ | s) | Ht, θk] . (25)

Eθ∗
[
v (b′, θk)

∑
s

Pk (s
′ | s) b∗(s) | Ht, θk

]
= v (b′, θk)Eθ∗ [Pk (s′ | s) | Ht, θk] . (26)

Substitute equation 25, equation 26 into R′
3(1), we have

R′
3(1) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′) (Pk(s′ | s)− P ∗(s′ | s))

)]

≤ Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′) |Pk(s′ | s)− P ∗(s′ | s)|

)]

≤ HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s′

|Pk(s′ | s)− P ∗(s′ | s)|

)]

≤ HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∥Pk − P ∗∥1)

]
,

where the first inequality is because Pk(s′ | s)− P ∗(s′ | s) ≤ |Pk(s′ | s)− P ∗(s′ | s)|, the second
inequality is due to v (b′, θk) ≤ H and

∑
r Rk (r | s′) = 1.

Therefore we obtain the final results,

R′
3 ≤ HE

[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

||P ∗ − Pk||1

]
+HE

[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

||b∗t − b̂t||1

]
.
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Bounding R′′
3 . For part R′′

3 , note that for any fixed s′,
∑
s b

∗
t (s)P

∗(s′ | s) ≤ S, therefore we can
bound R′′

3 as follows,

R′′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk) [Rk (r | s′)−R∗ (r | s′)]
∑
s

b∗t (s)P
∗(s′ | s)

)]

≤ SHEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s′

∑
r

[Rk (r | s′)−R∗ (r | s′)]

)]

≤ SHEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

S ∥Rk −R∗∥1

]

≤ S2HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥Rk −R∗∥1

]
,

(27)
where the first inequality is due to v (b′, θk) ≤ H and

∑
s b

∗
t (s)P

∗(s′ | s) ≤ S , the second
inequality is due to for any fixed s′,

∑
r [Rk (r | s′)−R∗ (r | s′)] ≤ ∥Rk −R∗∥1.

B.3.2 BOUND R3

Lemma 8. R3 satisfies the following bound

R3 ≤ 48(L1 + L2N +N + S2)SH
√
NT log(NT ) + (L1 + L2N +N + S2)H

+ 4(L1 + L2N +N2 + S2)SNH(T1 +KT − τ1 − 1).

Proof. Recall that the R3 is as follows:

R3 = Eθ∗
kT∑
k=1

[
tk+1−1∑

t=tk+τ1+1

(∑
r

P [r | b̂t, at, θk]v (b′, θk)− v(b̂t+1, θk)

)]
.

This regret terms are dealing with the model estimation errors. That is to say, they depend on
the on-policy error between the sampled transition functions and the true transition functions, the
sampled reward functions and the true reward functions. Thus we should bound the parameters’ error
especially in our unobserved state setting. Based on the parameters in our Dirichlet distribution, we
can define the empirical estimation of reward function and transition functions for arm i as follows:

P̂ i(s′ | s)(t) =
ϵ1 + (1− ϵ1)ϕis,s′(t)

Sϵ1 + (1− ϵ1)
∥∥ϕis,·(t)∥∥1 , R̂i(r | s)(t) =

ϵ2 + (1− ϵ2)ψis,r(t)
Sϵ2 + (1− ϵ2)

∥∥ψis,·(t)∥∥1 . (28)

where ϕis,s′(t) is the parameters in the posterior distribution of P i at time t, ψis,r(t) is the parameters
in the posterior distribution of Ri at time t. We also define the pseudo count N i

tk
(s, a) of the state-

action pair (s, a) before the episode k for arm i as

N i
tk
(s, a) =

∥∥ψis,·(tk)∥∥1 − ∥∥ψis,·(0)∥∥1 .
For notational simplicity, we use z = (s, a) ∈ S ×A and zt = (st, at) to denote the corresponding
state-action pair. Then based on Lemma 7 we can decompose the R3 as follows,

R3 = Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

P [r | b̂t, at, θk]v (b′, θk)− v(b̂t+1, θk)

)]

= Eθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

[∑
r

(
P (r | b̂t, at, θk)− P (r | b∗t , at, θ∗)

)
v(b′, θk)

]]
≤ R0

3 +R1
3 +R2

3
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where

R0
3 = HEθ∗

[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥P ∗ − Pk∥1

]
,

R1
3 = HEθ∗

[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

||b∗t − b̂t||1

]
,

R2
3 = S2HEθ∗

[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥R∗ −Rk∥1

]
.

Note that the following results are all focused on one arm. Define P i∗ is the true transition function
for arm i, P ik is the sampled transition function for arm i. We can extend the results on a arm to the
aggregated large MDP based on Lemma 11.

Bounding R0
3. Since 0 ≤ v (b′, θk) ≤ H from our assumption , each term in the inner summation

is bounded by ∑
s′∈S
|
(
P i∗ (s

′ | zt)− P ik (s′ | zt)
)
|v (s′, θk)

≤H
∑
s′∈S

∣∣P i∗ (s′ | zt)− P ik (s′ | zt)∣∣
≤H

∑
s′∈S

∣∣∣P i∗ (s′ | zt)− P̂ ik (s′ | zt)∣∣∣+H
∑
s′∈S

∣∣∣P ik (s′ | zt)− P̂ ik (s′ | zt)∣∣∣ .
where P i∗ (s

′ | zt) is the true transition function, P ik (s
′ | zt) is the sampled reward function and

P̂ ik (s
′ | zt) is the posterior mean. The second inequality above in due to triangle inequality. Let

Mi
k be the set of plausible MDPs in episode k with reward functionR (r | z) and transition function

P (s′ | z) satisfying,∑
s′∈S

∣∣∣P (s′ | z)− P̂ ik (s′ | z)
∣∣∣ ≤ βik(z), ∑

r∈R

∣∣∣R (r | z)− R̂ik (r | z)
∣∣∣ ≤ βik(z),

where βik(s, a) :=
√

14S log(2NtkT )

max{1,Ni
tk

(s,a)} is chosen conservatively (Auer et al., 2008) so thatMi
k con-

tains both P i∗ and P ik, Ri∗ and Rik with high probability. P i∗ and Ri∗ are the true parameters as we
defined in section 4.1. Note that βik(z) is the confidence set with δ = 1/tk. Recall the definition ofψ,
we can define the pseudo count of state-action pair (s, a) as N i

tk
(s, a) =

∥∥ψis,·(tk)∥∥1 − ∥∥ψis,·(0)∥∥1.
Then we can obtain,∑

s′∈S

∣∣∣P i∗ (s′ | zt)− P̂ ik (s′ | zt)∣∣∣+ ∑
s′∈S

∣∣∣P ik (s′ | zt)− P̂ ik (s′ | zt)∣∣∣
≤ 2βik (zt) + 2

(
I{P i

∗ /∈Bk} + I{P i
k /∈Bk}

)
.

(29)

We assume the length of the last episode is the biggest. Note that even the assumption does not
hold, we can enlarge the sum items as TKT−1 − τ1. This does not affect the order of our regret
bound. With our assumption, because the all episode length is not bigger than the last episode, that
is tk+1 − 1− (tk + τ1) ≤ TKT

− τ1, then we can obtain,

KT∑
k=1

tk+1−1∑
t=tk+τ1

βik (zt) ≤
KT∑
k=1

TkT
−τ1∑

t=1

βik (zt) . (30)

Note that
∑
s′∈S

∣∣∣P i∗ (s′ | zt)− P̂ ik (s′ | zt)∣∣∣ ≤ 2 is always true. And with our assumption τ1 ≤
T1+KT−1

2 , it is easy to show that when N i
tk
≥ TkT − τ1, βik (zt) ≤ 2 holds. Then we can obtain,
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KT∑
k=1

TkT
−τ1∑

t=1

min{2, βik (zt)} ≤
KT∑
k=1

TkT
−τ1∑

t=1

2I(N i
tk
< TkT − τ1)

+

KT∑
k=1

TkT
−τ1∑

t=1

I(N i
tk
≥ TkT − τ1)

√
14S log (2NtkT )

max
(
1, N i

tk
(zt)

) .
(31)

Consider the first part in equation 31. Obviously, the maximum ofN i
tk

is TkT −τ1. Because there
are totally SA state-action pairs, therefore, the first part in equation equation 31 can be bounded as,∑KT

k=1

∑TkT
−τ1

t=1 2I(N i
tk
< TkT − τ1) ≤ 2(TkT − τ1)SA. Due to TkT = T1 +KT − 1 and Lemma

10, we get ,
2(TkT − τ1)SA = 2(T1 +KT − τ1 − 1)SA = O(

√
T ).

Consider the second part in 31. Denote the N i
t (s, a) is the count of (s, a) before time t(not

including t). Due to we just consider the exploration phase in each episode, then N i
t (s, a) can be

calculated as follows,
N i
t (s, a) =

∣∣{τ < t, τ ∈ [tk, tk + τ1], k ≤ k(t) :
(
siτ , a

i
τ

)
= (s, a)

}∣∣ ,
where k(t) is the episode number where the time t is in.

In the second part in equation 31, when N i
tk
≥ TkT − τ1, based on our assumption τ1 ≤ T1+KT−1

2 ,
we can get,

τ1 ≤
T1 +KT − 1

2
,

2τ1 ≤ T1 +KT − 1 = TkT .
therefore, TkT − τ1 ≥ τ1. Because N i

tk
≥ TkT − τ1, then N i

tk
(s, a) ≥ τ1. For any t ∈

[tk, tk + τ1],we have
N i
t (s, a) ≤ N i

tk
(s, a) + τ1 ≤ 2N i

tk
(s, a).

Therefore N i
t (s, a) ≤ 2N i

tk
(s, a). Next we can bound the confidence set when Nt(s, a) ≤

2Ntk(s, a) as follows,
KT∑
k=1

TkT
−τ1∑

t=1

βik (zt) ≤
KT∑
k=1

tk+1−1∑
t=tk

√
14S log (2NtkT )

max
(
1, N i

tk
(zt)

)
≤

KT∑
k=1

tk+1−1∑
t=tk

√
14S log (2NT 2)

max
(
1, N i

tk
(zt)

)
=

T∑
t=1

√
28S log (2NT 2)

max
(
1, N i

t (zt)
)

≤
√

56S log(2NT )

T∑
t=1

1√
max

(
1, N i

t (zt)
) .

(32)

where the second inequality in equation 32 is due to tk ≤ T for all episodes and the first equality is
due to N i

t (s, a) ≤ 2N i
tk
(s, a).

Then similar to Ouyang et al. (2017), since N i
t (zt) is the count of visits to zt, we have

T∑
t=1

1√
max

(
1, N i

t (zt)
) =

∑
z

T∑
t=1

I{zt=z}√
max

(
1, N i

t (z)
)

=
∑
z

I{Ni
T+1(z)>0} +

Ni
T+1(z)−1∑
j=1

1√
j


≤
∑
z

(
I{Ni

T+1(z)>0} + 2
√
N i
T+1(z)

)
≤ 3

∑
z

√
N i
T+1(z).
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Since
∑
z N

i
T+1(z) ≤ T , we have

3
∑
z

√
N i
T+1(z) ≤ 3

√
SN

∑
z

N i
T+1(z) = 3

√
SNT . (33)

With equation 32 and equation 33 we get

2H

KT∑
k=1

tk+1−1∑
t=tk

βik (zt) ≤ 6
√
56HS

√
NT log(NT ) ≤ 48HS

√
NT log(NT ).

Then we can bound the equation 30 as follows,

KT∑
k=1

tk+1−1∑
t=tk

βik (zt) ≤ 24S
√
NT log(NT ) + 2SA(T1 +KT − τ1 − 1). (34)

Choose the δ = 1/T in Lemma 12, and based by Lemma 13, we obtain that

P
(
P ik /∈ Bk

)
= P

(
P i∗ /∈ Bk

)
≤ 1

15Tt6k
.

Then we can obtain,

2Eθ∗
[
KT∑
k=1

Tk
(
I{θ∗ /∈Bk} + I{θk /∈Bk}

)]
≤ 4

15

∞∑
k=1

t−6
k ≤

4

15

∞∑
k=1

k−6 ≤ 1. (35)

Therefore we obtain

2HEθ∗
[
KT∑
k=1

Tk
(
I{θ∗ /∈Bk} + I{θk /∈Bk}

)]
≤ H. (36)

Therefore, we can obtain the bound for one arm as follows,

Eθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s′∈S

(
P i∗ (s

′ | zt)− P ik (s′ | zt)
)
v (s′, θk)

)]
≤ H + 4SNH(T1 +KT − τ1 − 1) + 48HS

√
NT log(NT ).

(37)

Next we consider the state transition of all arms. Recall that the states of all arms at time t is st.
Because every arm evolves independently, then the transition probability from state st to state st+1

is as follows,

P (st+1 | st, θ∗) =
N∏
i=1

P i∗
(
sit+1 | sit

)
,

where P i∗ is the true transition functions of arm i. Based by the Lemma 11 and our assumption that
all arms have the same state space S, we can obtain∑

st+1

|P (st+1 | st, θ∗)− P (st+1 | st, θk)| ≤
N∑
i

∥∥P i∗ (sit+1 | sit
)
− P ik

(
sit+1 | sit

)∥∥
1

≤ N
∥∥P i∗ (sit+1 | sit

)
− P ik

(
sit+1 | sit

)∥∥
1
.

(38)

Therefore, we can bound the R0
3 as follows:

R0
3 ≤ NH + 4SN2H(T1 +KT − τ1 − 1) + 48SNH

√
NT log(NT ). (39)

Bounding R1
3. Based on the Proposition 2, we know that∥∥∥b∗t − b̂t∥∥∥

1
≤ L1∥R∗ −Rk∥1 + L2 max

s
∥P ∗(s, :)− Pk(s, :)∥2 .
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Note that the elements in the true transition matrix P ∗ and the sampled matrix Pk is between the
interval (0, 1). Then based on the facts about norm, we know that

max
s
∥P ∗(s, :)− Pk(s, :)∥2 ≤ ∥P

∗ − Pk∥1 .

Therefore , we can bound the belief error at any time as follows:∥∥∥b∗t − b̂t∥∥∥
1
≤ L1∥R∗ −Rk∥1 + L2∥P ∗ − Pk∥1. (40)

Recall in the confidence for Mk, the error bound is the same for ∥R∗ −Rk∥1 and ∥P ∗ − Pk∥1, and
based by the bound in equation 34 and equation 35, we can bound the R1

3 as follows:

R1
3 ≤ HEθ∗

[
KT∑
k=1

tk+1−1∑
t=tk

(L1∥R∗ −Rk∥1 + L2∥P ∗ − Pk∥1)

]

≤ (L1 + L2N)HEθ∗
[
KT∑
k=1

tk+1−1∑
t=tk

(
2βik (zt) + 2

(
I{P∗ /∈Bk} + I{Pk /∈Bk}

))]
≤ 48(L1 + L2N)SH

√
NT log(NT ) + (L1 + L2N)H

4(L1 + L2N)SNH(T1 +KT − τ1 − 1).

(41)

Bounding R2
3. Based on equation 34 and equation 35, we can bound R2

3 as follows,

R2
3 = S2HEθ∗

[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥R∗(· | s)−Rk(· | s)∥1

]

≤ S2HEθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

(
2βik (zt) + 2

(
I{R∗ /∈Bk} + I{Rk /∈Bk}

))]
≤ HS2 + 4S3NH(T1 +KT − τ1 − 1) + 48HS3

√
NT log(NT ).

(42)

Combine the bound in equation 39, equation 41 and equation 42, we bound the term R3 as follows:

R3 ≤ 48(L1 + L2N)SH
√
NT log(NT ) + 4(L1 + L2N)SNH(T1 +KT − τ1 − 1)

+ (L1 + L2N)H +NH + 4SN2H(T1 +KT − τ1 − 1) + 48SNH
√
NT log(NT )

+HS2 + 4S3NH(T1 +KT − τ1 − 1) + 48HS3
√
NT log(NT )

= 48(L1 + L2N +N + S2)SH
√
NT log(NT ) + (L1 + L2N +N + S2)H

+ 4(L1 + L2N +N2 + S2)SNH(T1 +KT − τ1 − 1).

(43)

B.4 BOUND R4

Lemma 9. R4 satisfies the following bound

R4 ≤ 48(L1 + L2N +N + S2)Srmax
√
NT log(NT ) + (L1 + L2N +N + S2)rmax

+ 4(L1 + L2N +N + S2)SArmax(T1 +KT − τ1 − 1).

Proof. We can rewrite the R4 as follows:

R4 = Eθ∗
[
KT∑
k=1

tk+1−1∑
tk+τ1+1

(∑
s

rk (s, at) b̂t(s)−
∑
s

r∗ (s, at) b
∗
t (s)

)]

≤ Eθ∗
[
T∑
t=1

(∑
s

rk (s, at) b̂t(s)−
∑
s

rk (s, at) b
∗
t (s) +

∑
s

rk (s, at) b
∗
t (s)−

∑
s

r∗ (s, at) b
∗
t (s)

)]
(44)
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where rk (s, at) =
∑
r rR

at
k (r | s) is the expect reward conditioned on the state s of pulled arm

and at, when the reward function is Ratk . And r∗ (s, at) =
∑
r rR

at
∗ (r | s) is the expect reward

conditioned on the state s and at,with the true reward function Rat∗ . The equation 44 is due to the
add the term

∑
s rk (s, at) b

∗
t (s) and subtract it.

Denote

R0
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b̂t(s)−
∑
s

rk (s, at) b
∗
t (s)

)]
,

R1
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b
∗
t (s)−

∑
s

r∗ (s, at) b
∗
t (s)

)]
.

For R0
4,

R0
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b̂t(s)−
∑
s

rk (s, at) b
∗
t (s)

)]

= Eθ∗
[
T∑
t=1

(∑
s

rk (s, at) (b̂t(s)− b∗t (s))

)]

≤ rmaxEθ∗
[
T∑
t=1

(∑
s

∣∣∣b̂t(s)− b∗t (s)∣∣∣
)] (45)

where the last inequality is due to the fact rk (s, at) ≤ rmax.

For R1
4,

R1
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b
∗
t (s)−

∑
s

r∗ (s, at) b
∗
t (s)

)]

= Eθ∗
[
T∑
t=1

(∑
s

[rk (s, at)− r∗ (s, at)] b∗t (s)

)]

≤ Eθ∗
[
T∑
t=1

(∑
s

|rk (s, at)− r∗ (s, at)|

)]

≤ Eθ∗
[
T∑
t=1

(∑
s

∑
r

r |Ratk (r | s)−Rat∗ (r | s)|

)]

≤ SrmaxEθ∗
[
T∑
t=1

(
∥Ratk −R

at
∗ ∥1

)]

(46)

where the first inequality in 46 is due to b∗t (s) ≤ 1, rk (s, at)− r∗ (s, at) ≤ |rk (s, at)− r∗ (s, at)|
and the second inequality is due to

∑
r [R

at
k (r | s)−Rat∗ (r | s)] ≤ ∥Ratk −Rat∗ ∥1.

Based on the equation 41, we can bound the R0
4,

R0
4 ≤ 48(L1 + L2N)Srmax

√
NT log(NT ) + (L1 + L2N)rmax

+ 4(L1 + L2N)SNrmax(T1 +KT − τ1 − 1).

Note that for any reward function R (r | z) in confidence setMk, the reward function satisfies,∑
r∈R

∣∣∣R (r | z)− R̂ik (r | z)
∣∣∣ ≤ βik(z)

Then based on equation 42, we get

R1
4 ≤ 48S2rmax

√
NT log(NT ) + 2S2Nrmax(T1 +KT − τ1 − 1) + Srmax.
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Then we can obtain the final bound:

R4 ≤ 48(L1 + L2N + S)Srmax
√
NT log(NT ) + 4(L1 + L2N + S)SNrmax(T1 +KT − τ1 − 1)

+ (L1 + L2N + S)rmax

≤ 48(L1 + L2N +N + S2)Srmax
√
NT log(NT ) + (L1 + L2N +N + S2)rmax

+ 4(L1 + L2N +N + S2)SNrmax(T1 +KT − τ1 − 1)

where the last inequality is due to S ≤ N + S2.

B.5 THE TOTAL REGRET

Next we bound the episode number.

Lemma 10. (Bound the episode number) With the convention T1 =
⌈√

T+1
2

⌉
and Tk = Tk−1 + 1,

the episode number is bounded by KT = O(
√
T ).

Proof. Note that the total horizon is T . The length of episode k is Tk = T1 + k − 1. Then we can
get,

T = T1 + T2 + ...+ TkT
= T1 + (T1 + 1) + ...+ (T1 +KT − 1)

= KTT1 + (1 + 2 + ...+KT − 1)

= KTT1 +
KT (KT − 1)

2
.

(47)

Therefore,
K2
T + (2T1 − 1)KT − 2T = 0. (48)

With the convention T1 =
⌈√

T+1
2

⌉
, then we can get KT = O(

√
T )

Denote C1 = L1 + L2N +N2 + S2, C2 = H + rmax and C3 = T1 +KT − τ1 − 1, then we can
get the final regret:

RT = Regret(A) +R1 +R2 +R3 +R4

≤ τ1∆RKT +HKT + 48C1SH
√
NT log(NT ) + 4C1C3SAH + C1H

+ 48C1Srmax
√
NT log(NT ) + 4C1C3SArmax + C1rmax

≤ (τ1∆R+H)
√
T + 48C1S(H + rmax)

√
NT log(NT )

+ 4C1SA(rmax +H)
√
T + C1(H + rmax)

= 48C1C2S
√
NT log(NT ) + (τ1∆R+H + 4C1C2SN)

√
T + C1C2.

Thus, we get the final Theorem.

Theorem 2. Suppose Assumptions 1,2 hold and the Oracle returns the optimal policy in each
episode. The Bayesian regret of our algorithm satisfies

RT ≤ 48C1C2S
√
NT log(NT ) + (τ1∆R+H + 4C1C2SN)

√
T + C1C2,

where C1 = L1 + L2N +N2 + S2, C2 = rmax +H are constants independent with time horizon
T , L1 = 4(1−ϵ1)2

Nϵ21ϵ2
, L2 = 4(1−ϵ1)2

ϵ31
, ϵ1 and ϵ2 are the minimum elements of the functions P ∗ and R∗,

respectively. τ1 is the fixed exploration length in each episode, ∆R is the biggest gap of the reward
obtained at each two different time, H is the bounded span, rmax is the maximum reward obtain
each time, N is the number of arms and S is the state size for each arm.
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Remark 3. (Approximation error.) If the oracle returns an ϵk-approximate policy π̃k in each
episode instead of the optimal policy. That is to say, r(b, π̃k(b)) +

∑
r P (r | b, π̃k(b), θ)v (b′, θ) ≤

maxa {r(b, a) +
∑
r P (r | b, a, θ)v (b′, θ)} − ϵk. Then we should consider the extra regret

E
[∑

k:tk≤T (Tk − τ1)ϵk
]

in exploitation phase. If we control the error as ϵk ≤ 1
Tk−τ1 , then we

can bound the extra regret as E
[∑

k:tk≤T (Tk − τ1)ϵk
]
≤ kT = O(

√
T )(Lemma 10). Thus the

approximation error in the computation of optimal policy is only additive to the regret of our algo-
rithm.

C POSTERIOR DISTRIBUTION

Note that we assume the state transition is independent of the action for each arm. Denote the
states visited history from time 0 till t of arm i as si0:t and the reward collected history is ri0:t.
And the action history from time 0 to t is ai0:t. Denote N i

s,s′

(
si0:t
)

as the occurence time of state
evolves from s to s′ for arm i in the state history si0:t. Hence, if the prior g (Pi(s, ·)) is Dirich-
let
(
ϕis,s1 , . . . , ϕ

i
s,Si

)
, then after the observation of history si0:t, the posterior g

(
Pi(s, ·) | si0:t

)
is

Dirichlet
(
ϕis,s1 +N i

s,s1

(
si0:t
)
, . . . , ϕis,Si

+N i
s,Si

(
si0:t
))

(Ross et al., 2011).

Similarly, if the prior g (Ri(s, ·)) is Dirichlet
(
ψis,r1 , . . . , ψ

i
s,rk

)
, then after the ob-

servation of reward history ri0:t and si0:t , the posterior g
(
Ri(s, ·) | ri0:t, si0:t

)
is

Dirichlet
(
ψis,r1 +N i

s,r1

(
si0:t, r

i
0:t

)
, . . . , ψis,rk +N i

s,rk

(
si0:t, r

i
0:t

))
, and N i

s,r is the number
of times the observation (s, r) appears in the history

(
si0:t, r

i
0:t

)
.

Here we drop the arm index and consider a fixed arm. For the unknown transition function, we
assume its prior g0

(
P i
)
= f(P

i−ϵ11
1−ϵ1 | ϕi). We consider this special prior is due to the minimum

elements of the transition matrix is bigger than ϵ1. Next we show the details that how to update the
posterior distribution for unknown P and omit the details of unknown reward function R.

g (P | a0:t−1, r0:t−1) =
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1)∫
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

=

∑
s0:t−1∈St P (r0:t−1, s0:t | P, a0:t−1) g(P )∫
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

=

∑
s0:t−1∈St g (P )

∏t
i=1 P (si | si−1)∫

P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

=

∑
s0:t−1∈St g (P )

[∏
s,s′(

P (s′|s)−ϵ1
1−ϵ1 )Nss′ (s0:t)

]
∫
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

.

,

where the last equality is due to the prior for unknown P i is g0
(
P i
)
= f(P

i−ϵ11
1−ϵ1 | ϕ

i).

Next we show the Bayesian approach to learning unknown P and R with the history (a0:t−1, r0:t).
Since the current state st of the agent at time t is unobserved, we consider a joint posterior
g (st, P,R | a0:t−1, r0:t) over st, P , and R (Ross et al., 2011). The most parts are similar to Ross
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et al. (2011), except for our special priors.

g (st, P,R | a0:t−1, r0:t−1) ∝P (r0:t, st | P,R, a0:t−1) g (P,R, a0:t−1)

∝
∑

s0:t−1∈St

P (r0:t, s0:t | P,R, a0:t−1) g(P,R)

∝
∑

s0:t−1∈St

g (s0, P,R)

t∏
i=1

P (si | si−1)R(ri | si)

∝
∑

s0:t−1∈St

g (s0, P,R)

∏
s,s′

(
P (s′ | s)− ϵ1

1− ϵ1
)Nss′ (s0:t)

×
[∏
s,r

(
R(r | s)− ϵ2

1− ϵ2
)Nsr(s0:t,r0:t−1)

]
where g (s0, P,R) is the joint prior over the initial state s0, transition function P , and reward func-
tion R; Nss′ (s0:t) is the number of times the transition (s, s′) appears in the history of state-action
(s0:t); and Nsr (s0:t, r0:t−1) is the number of times the observation (s, r) appears in the history of
state-rewards (s0:t, r0:t−1).

D TECHNICAL RESULTS

Proposition 1. (Uniform bound on the bias span (Zhou et al., 2021)). If the belief MDP satisfies
Assumption 1,2, then for (J(θ), v(:, θ)) satisfying the Bellman equation (2), we have the span of the
bias function span(v, θ) :=maxθmaxb v(b, θ)−minb,θ∈B v(b, θ) is bounded by H(ϵ), where

H(ϵ) :=
8
(

2
(1−α)2 + (1 + α) logα

1−α
8

)
1− α

, with α =
1− ϵ

1− ϵ/2
∈ (0, 1)

It is easy to check that H(α) is increasing with α. Since α is decreasing with ϵ and we assume the
smallest element in transitions matrix is ϵ1, the span function can be bounded by H(ϵ1).
Proposition 2. (Controlling the belief error (Xiong et al., 2022c)). Suppose Assumption 1,2 hold.
Given (Rk, Pk), an estimator of the true model parameters (R∗, P ∗). For an arbitrary reward-
action sequence r̄t, āt, let b̂t(·, Rk, Pk) and bt(·, R∗, P ∗) be the corresponding beliefs in period t
under (Rk, Pk) and (R∗, P ∗) respectively. Then there exists constants L1, L2 such that∥∥∥bt(·, R∗, P ∗)− b̂t(·, Rk, Pk)

∥∥∥
1
≤ L1∥Rk −R∗∥1 + L2 max

s
∥P ∗(m, :)− Pk(m, :)∥2 ,

where L1 = 4(1−ϵ1)2
Nϵ21ϵ2

, L2 = 4(1−ϵ1)2
ϵ31

, ϵ1 and ϵ2 are the minimum elements of the functions P ∗ and
R∗, respectively.
Lemma 11. (Lemma 13 in Jung et al. (2019)) Suppose ak and bk are probability distributions over
a set [nk] for k ∈ [K]. Then we have∑

x∈⊗K
k=1[nk]

∣∣∣∣∣
K∏
k=1

ak,xk
−

K∏
k=1

bk,xk

∣∣∣∣∣ ≤
K∑
k=1

∥ak − bk∥1 .

Lemma 12. (Lemma 17 in Auer et al. (2008)) For any t ≥ 1, the probability that the true MDP M
is not contained in the set of plausible MDPsM(t) at time t is at most δ

15t6 , that is

P{M /∈M(t)} < δ

15t6
.

Lemma 13. (Posterior Sampling (Ouyang et al., 2017)). In TSEETC, tk is an almost surely finite
σ (Htk)-stopping time. If the prior distribution g0(P ),g0(R) is the distribution of θ∗, then for any
measurable function g,

E [g (θ∗) | Htk ] = E [g (θk) | Htk ] .
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