DiWA: Diffusion Policy Adaptation with World Models

Akshay L Chandra'*, Iman Nematollahi'*, Chenguang Huang?
Tim Welschehold', Wolfram Burgard?, Abhinav Valada'
! University of Freiburg 2 University of Technology Nuremberg

https://diwa.cs.uni-freiburg.de

Abstract: Fine-tuning diffusion policies with reinforcement learning (RL) presents
significant challenges. The long denoising sequence for each action prediction
impedes effective reward propagation. Moreover, standard RL methods require
millions of real-world interactions, posing a major bottleneck for practical fine-
tuning. Although prior work frames the denoising process in diffusion policies
as a Markov Decision Process to enable RL-based updates, its strong dependence
on environment interaction remains highly inefficient. To bridge this gap, we
introduce DiWA, a novel framework that leverages a world model for fine-tuning
diffusion-based robotic skills entirely offline with reinforcement learning. Unlike
model-free approaches that require millions of environment interactions to fine-tune
arepertoire of robot skills, DiWA achieves effective adaptation using a world model
trained once on a few hundred thousand offline play interactions. This results in
dramatically improved sample efficiency, making the approach significantly more
practical and safer for real-world robot learning. On the challenging CALVIN
benchmark, DiWA improves performance across eight tasks using only offline
adaptation, while requiring orders of magnitude fewer physical interactions than
model-free baselines. To our knowledge, this is the first demonstration of fine-
tuning diffusion policies for real-world robotic skills using an offline world model.

Keywords: World Models, Imitation Learning, Reinforcement Learning

1 Introduction

Diffusion models have emerged as a powerful tool for robot policy learning, representing actions
through conditional denoising processes that capture complex multi-modal behaviors [1]. Their
success stems from strong training stability and the ability to model high-dimensional distributions [2].
However, when trained purely through imitation learning on offline demonstrations, diffusion policies
inherit the core limitations of imitation learning [3], often struggle with distribution shifts, and
fail in unseen scenarios due to imperfect or narrowly scoped expert trajectories. Reinforcement
learning (RL) provides a natural path to overcome the limitations of imitation learning by enabling
agents to improve through trial and error and explore beyond the constraints of the demonstration
data. RL offers a general mechanism for fine-tuning pre-trained policies, allowing them to correct
errors [4, 5, 6, 7, 8], adapt to new situations [9, 10, 11], and discover improved strategies [12]. This
pretrain-and-finetune paradigm, widely adopted in foundation models for language [13, 14] and
vision [15, 16], is increasingly relevant in robotics. However, unlike those domains, fine-tuning in
robotics demands physical interaction, making it significantly more challenging due to the sample
inefficiency and safety concerns associated with deploying RL algorithms in the real world.

A recent state-of-the-art method for fine-tuning diffusion policies is Diffusion Policy Policy Opti-
mization (DPPO) [17], which uses Proximal Policy Optimization (PPO) [18] to improve pre-trained
diffusion models through on-policy reinforcement learning. DPPO shows that diffusion policies can
be effectively fine-tuned with policy gradients, achieving strong results in simulation. However, it

* Equal contribution.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://diwa.cs.uni-freiburg.de

Diffusion Policy

DPPO Online Fine-Tuning

Diffusion Policy

O-0++=0

rewards @ @denoised
update action

Environment

DiWA Offline Fine-Tuning
(Ours)

Diffusion Policy

O-0++=0

rewards @ Ddenoised
update action

World Model

‘ ‘
& &Y &Y ﬁ'_ﬁ._ - A2
\ \e = ea e, E> e = camm, ..-E>(§r E> X X
Q . 3 VM) Y
denOIsed Costly Rollout in Verify & Free Rollout in Imagined Verify &
action Physical World Get Rewards i World o] Get
(a) (b) ()

Figure 1: (a) Standard diffusion policies trained via imitation learning are limited by offline data. (b) DPPO [17]
fine-tunes diffusion policies using online interactions, which are expensive and require access to real or
simulated environments. (c) DiWA fine-tunes diffusion policies entirely offline through imagined rollouts in
a learned world model, enabling safe and efficient policy improvement without additional physical interaction.

suffers from poor sample efficiency, requiring millions of interactions, which makes it impractical
for real-world deployment where executing interactions is expensive, slow, and potentially unsafe.
Although DPPO demonstrates zero-shot sim-to-real transfer, it relies on access to ground-truth state
information from a high-fidelity simulator. These requirements make the direct application of DPPO-
style online fine-tuning impractical for adapting robot skills in the real world, as the lack of low-level
observations and the sim-to-real gap [19] hinder reliable transfer from simulation. In contrast, humans
can adapt their behavior with minimal physical trial-and-error by leveraging internal world models
and an intuitive understanding of physics to anticipate outcomes and plan actions [20]. Inspired
by this ability, learned world models [21] have emerged as a powerful alternative to handcrafted
simulators, enabling agents to improve policies through imagined interactions instead of costly
online trials. These models compress high-dimensional observations into latent spaces that capture
environment dynamics, allowing for long-horizon, on-policy rollouts in imagination [22, 23]. Recent
work [24] demonstrates that language-conditioned policies trained purely within a world model can
generalize to the real world without any additional physical fine-tuning, highlighting world models as
a promising direction for safe and sample-efficient robot learning.

To enable sample-efficient and real-world compatible fine-tuning of diffusion policies, we introduce
DiWA, a fully offline framework that leverages a learned world model instead of real or simulated
environment interactions (see Figure 1). DiWA treats the world model as a safe, data-driven simulator,
generating long-horizon imagined rollouts in latent space to fine-tune a pre-trained diffusion policy
using on-policy reinforcement learning. This enables policy improvement through imagined practice
in a learned “dream” of the environment, grounded in real data dynamics. By combining the
expressiveness of diffusion models, the stability of policy gradients, and the imagination capabilities
of learned world models, DiWA offers a practical and scalable approach for adapting robot skills
without costly trial-and-error in the real world.

In summary, our contributions are threefold: 1) Offline Fine-Tuning of Diffusion Policies via World
Models: We introduce DiWA, the first framework that fine-tunes diffusion policies entirely offline
by leveraging a learned world model. By formulating a Dream Diffusion Markov Decision Process
(MDP), DiWA enables policy updates without any real or simulated interaction. 2) Sample-Efficient
Robot Skill Adaptation: DiWA trains on unstructured play data to learn a latent world model
and refines complex behaviors through imagined rollouts. It achieves significantly higher sample
efficiency than baselines on the CALVIN benchmark. 3) Zero-Shot Real-World Deployment: We
show that diffusion skills fine-tuned entirely within a learned world model trained on real-world play
data can be deployed on real robots without requiring any additional physical interaction, enabling
safe and effective real-world adaptation.

2 Related Work

Reinforcement Learning for Robot Policy Adaptation: Imitation learning (IL) provides a sample-
efficient way to train policies but often suffers from covariate shift and compounding errors when
encountering out-of-distribution states. In contrast, Reinforcement Learning (RL) enables policy
improvement through interaction with the environment, using reward signals to guide behavior. Since
the success of deep Q-networks (DQN) on Atari [25], RL has been widely adopted in robotics for
tasks ranging from locomotion to manipulation [26, 27, 28]. A common paradigm combines IL and
RL, first pre-training a base policy from demonstrations and then fine-tuning it using either online
interactions [6, 29, 30, 31, 32, 33] or reward signals extracted from offline data [34, 35]. In this work,
DiWA extends this two-stage framework to diffusion policies, enabling fine-tuning of pre-trained
policies entirely offline via a learned world model.

Reinforcement Learning with World Models: Due to the high cost and complexity of physical
interactions in robotics, world models have emerged as a promising alternative for enabling sample-
efficient reinforcement learning. These models [21] are predictive representations of environment
dynamics that allow agents to plan and learn through imagined trajectories, reducing the need for real-
world interaction. World models have been used for both (i) planning [36, 37, 38, 39] and (ii) model-
based rollouts to train policies [22, 23, 40]. However, most existing approaches operate in a closed-
loop online setting, where the model is continuously updated using data collected by the learning
agent, thereby tightly coupling the world model to the downstream task. An alternative paradigm is to
learn general-purpose, task-agnostic world models from unstructured, unlabeled data such as play [41,
24]. These models can be reused across tasks by providing auxiliary reward signals or simulating
interactions. DiWA follows this paradigm: it learns a general world model once from offline play
data, freezes it, and uses it to fine-tune pre-trained policies entirely offline without any model updates.

Reinforcement Learning for Diffusion-Based Policies: Diffusion-based policies (DPs) have
recently achieved strong performance in robotic imitation learning due to their stable training and
capacity to model multi-modal behaviors [1, 42, 43, 44, 45, 46, 47]. However, their effectiveness is
constrained by the coverage and quality of expert demonstrations. To address this, several approaches
have explored extending DPs with trajectory diffusion [48, 49, 50], offline Q-learning [51, 52, 53], on-
line reinforcement learning [54, 55, 56], and residual learning [57]. Policy gradient methods [58, 59],
which directly optimize the expected return of a policy, have also been applied to fine-tune diffusion
models. This includes recent work on fine-tuning text-to-image diffusion models [60, 61], where
the denoising process is treated as a multi-step MDP [62, 55, 17]. Our work builds directly on
Diffusion Policy Policy Optimization (DPPO) [17], which first demonstrated how to embed the
diffusion denoising process into the environment MDP and apply PPO [18] for fine-tuning in control
settings. While DPPO enables effective fine-tuning, it relies on online interactions and ground-truth
environment signals. DiWA addresses this limitation by replacing the environment MDP with a
learned world model, enabling offline fine-tuning entirely through imagined rollouts.

3 Problem Formulation

We investigate the problem of offline fine-tuning of diffusion policies for robotic skill adaptation.
We assume access to two types of offline datasets: a small set of expert demonstrations Dey,, that
are specific to the target skill, and a larger task-agnostic dataset of unstructured and unlabeled
play Dplay. We model the real environment as a partially observable Markov Decision Process
Meny = (S, A, P,R,~), where S is the state-observation space, .4 the continuous action space,
P(st41 | st,a¢) the transition dynamics, R(s¢, a;) the reward function, and v € (0, 1) the discount
factor. A diffusion policy mg(a; | s;) generates actions by first sampling Gaussian noise @ ~
N (0, I), then progressively denoising it through learned transitions:

ai ' ~m(a; " | se,ap), for k=K K-1,...,1, 6))
where the final output @) is taken as the environment action a;. The diffusion policy 7y is first
pre-trained via behavior cloning on Dey,, imitating expert actions through denoising. However,
behavior cloning is limited by distribution shift and the quality of demonstrations. To address this,

1. World Model Training 2. lefusmn Pollcy Training

& % < H
& | - -
\N ad -} - =P | Decoder |=P Expert Demos Encode State into Latent
2, [N E — [Diffusion Policy

. conditioned on Latent —,
Action State Latent State Transition Model Latent State State @_»

e’\

Robot Play Data a1 St-1 21 Q) Denoised
- — Ny Action
4. Dream Diffusion Markov Decision Process 3. Reward Estimation
@/ 5 @/ # 8/ > > g0 +x
- »—»@—»@—»@—»@—»m B[Syt
Latent State Transitioh Model Latent State Transition Model Latent State é! -> -}E-} ->
State A
State Success Verifier Training
Diffusion MDP Diffusion MDP Diffusion MDP Reward & Update

R0 520 e 20 Gror- QF= %=

Latent State Reward
Vi G=2 Vo logmp(ab=|ak, z)
o log m(a§~"|ak, z0) Vo log m(af " [af, 21) 0108 Ty i

Figure 2: DiWA framework: (1) A world model is trained on unstructured robot play data to learn latent dynamics.
(2) A diffusion policy is pre-trained on expert demonstrations using learned latent representations. (3) A success
classifier is trained on expert rollouts to estimate task rewards. (4) The diffusion policy is fine-tuned entirely of-
fline via imagined rollouts within the Dream Diffusion MDP, using policy gradients and classifier-based rewards.

we fine-tune the pre-trained policy to maximize expected cumulative reward in the real environment:

0* = arg max Err, LE% v R(st, at)] . 2)
Direct fine-tuning in M.y, is impractical due to high sample complexity and real-world safety
concerns. Instead, we train a latent dynamics model on Dy,y and define a world model MDP M, =
(2, A, Py, Ry,7), where Z is the learned latent space. Fine-tuning is then performed entirely within
My, allowing for efficient and safe offline policy adaptation through imagined rollouts.

4 Offline Adaptation of Diffusion Policy with DiWA

In this section, we introduce DiWA. The training process consists of four phases: (1) learning a world
model from an unlabeled play dataset D4y, (2) pretraining a diffusion policy to imitate expert actions
from latent representations of Deyy, (3) training a reward classifier on those latents to equip the world
model with a task-specific reward, and (4) fine-tuning the policy entirely within the latent space of the
world model. At inference time, the fine-tuned policy is deployed in the real environment without any
additional adaptation. Figure 2 provides an overview of the approach. For details on hyperparameters,
architecture choices, and the pseudocode of DiWA please refer to Appendix S.1 and Algorithm S.1.

4.1 World Model Learning

We train a latent dynamics model on the unlabeled play dataset Dy, to enable offline policy
adaptation. The learned world model defines a latent-space MDP My = (Z, A, Py), where Z is
the learned latent space and Py denotes the transition dynamics. Following prior work [23, 24], we
use a recurrent state-space model architecture with an encoder, dynamics model, and decoder. At each
timestep ¢, the model maintains a deterministic recurrent state h; updated by a transition function fy,
and samples a stochastic latent variable z; from a posterior conditioned on the current observation x:

3

Recurrent state: he = fo(8e—1,a¢-1) Representation model: z; ~ gy (2 | he, x1)
Dynamics predictor: 2, ~ pg(Z; | ht) Decoder: &y ~ py (&4 | 5t),
where the model state is §, = (hy, z;). The posterior g, and prior py are modeled as categorical
distributions, optimized using straight-through gradient estimators [63]. The model parameters ¢

are trained by minimizing the negative variational evidence lower bound (ELBO):
T
min By, |3 —logpg (e | s0) + BKL (ag(z0 | ha) | pol2e [b)) |)
t=1
where (8 controls KL regularization. After training, the world model generates imagined trajectories
by rolling out latent states from the learned prior 2, ~ py(2; | h,) without additional observations.

4.2 Pre-training Diffusion Policies

We pre-train the diffusion policy via behavior cloning on expert demonstrations from Deyp.
Observations are encoded into latents using the world model, and the policy learns to iteratively
denoise random noise into expert actions. This maximizes the likelihood of demonstrated behavior
and provides the initialization for offline fine-tuning within the Dream Diffusion MDP.

4.3 Latent Reward Estimation from Expert Demonstrations

The world model, trained on task-agnostic play data, lacks a reward signal aligned with the target
skill. To address this, we train a binary classifier Cy;(2;) on latent states extracted from expert
demonstrations De,,. Each observation x; is encoded into a latent z; using the world model encoder,
and the classifier is trained to predict task success by treating latents from annotated successful frames
as positives. During imagined rollouts in My, rewards are computed as Ry, (z;, a;) := Cy(2141),
where Cy(z41) € [0, 1] reflects the probability of success. This results in an augmented MDP
Mym = (Z, A, Py, Ry,) that supports fully offline fine-tuning in imagined trajectories.

4.4 Dream Diffusion MDP

As observed in prior work [62, 55, 17], a diffusion denoising process can be represented as a
multi-step MDP where the likelihood at each step is accessible. We extend this formalism by
embedding the diffusion denoising process into the world model MDP, forming the Dream Diffusion
MDP Mpp. Lett(t, k) = t K + (K — k) index the denoising steps across world model timesteps ¢ and
denoising steps k, where K is the total number of denoising steps and k decreases lexicographically
from K to 1. Atindex t(t, k), the Dream Diffusion MDP defines the state, action, and reward as

Ry(z,a?), ifk=1,

Siery = (26,aF), Grepy =ay ', Ripp) = {0 &)

otherwise.

Here, af denotes the intermediate action at denoising step k. The transition dynamics are given by

_ o 8(z,arh) ifk>1
P _ 7, a7) = Ut)] ’

(St+1 | St at) {P¢(Zt+1 | mel?) ®N(O,I), ifk=1,
where 4(-) denotes a Dirac distribution. At denoising steps k& > 1, the diffusion policy iteratively
denoises @ into af‘l while remaining at latent state z;. When k = 1, the final action @ is produced,

the world model transitions to z;1, and a new diffusion process begins from fresh noise. Following
Eq. (1), the policy at each inner step of the Dream Diffusion MDP is parameterized as a Gaussian:

mo(ar ™" | z.ap) =N (af ' po(ze,ay, k), o) ©)

where pg is a neural network output. Since each denoising step defines a Gaussian likelihood, the
Dream Diffusion MDP admits a well-defined policy gradient objective. Specifically, we optimize

(6)

Vo (7g) = B77 | " Vglogwg(ag | 5¢) 7(5¢,) | - ®)
>0

where 7(5z, ag) :=) _~77" R(5;,a,) denotes the return. This objective corresponds to the expected
cumulative reward over denoising steps and enables gradient-based fine-tuning of diffusion policies
through rollouts in the imagined latent space.

4.5 Fine-tuning within Dream Diffusion MDP

We fine-tune the diffusion policy in the Dream Diffusion MDP Mpp, using Proximal Policy Opti-
mization (PPO) [18]. Inspired by the two-layer structure of DPPO [17], we adapt PPO to operate
entirely within imagined rollouts, alternating between denoising steps and latent transitions. The
PPO objective is defined as

Loro = E[7% [min (p9(§, a)A(3,a), clip(ps(5,a),1 — e, 1+ €)A(3, a))} :)

where py is the importance sampling ratio between the new and old policies. The clipping threshold e
constrains the policy update to ensure stability. We estimate the advantage at the denoising step k as

A(St(e.1), @i(t.4) = Vionoise (77(557 ag) — V(Zt)) , (10)

where Ygenoise € (0,1) downweights the contribution of earlier, noisier denoising steps, and 1%
estimates the value from the latent state z;.

To enhance stability and ensure reliable transfer to the real environment, we augment the fine-tuning
objective with a behavior cloning (BC) regularization term. Although world models trained on
large play datasets capture environment dynamics well, they may still contain subtle errors that
the RL agent can exploit, resulting in policies that perform well in imagination but fail in the real
environment [64]. To address this, we constrain the updated policy to remain close to the pre-trained
diffusion policy [65]. The resulting objective is

K
Lo = Lepo — apc E™u Zlog Wepm(af_l | ze,a5) | (1)
k=1

where 7, is the frozen pre-trained policy and apc controls the strength of the regularization.

5 Experimental Evaluation

We evaluate DiWA for fine-tuning diffusion policies in both simulation and the real-world. Our goals
are to: (i) assess whether DiWA can effectively fine-tune policies entirely offline and achieve high task
success without additional environment interaction; (ii) analyze the impact of world model fidelity
and reward classifier accuracy on adaptation performance; and (iii) evaluate the approach’s ability to
scale to real-world robotic tasks and transfer zero-shot from imagination to physical execution.

5.1 Simulation Results

We evaluate our method in environment D of the CALVIN simulator [66], which features a 7-DoF
Franka Emika Panda robot performing diverse tabletop manipulation tasks. CALVIN offers a
teleoperated play dataset that is both broad in coverage and easy to collect, making it ideal for
training task-agnostic world models. We train the world model on six hours of play data (~500,000
transitions) and use a small annotated subset (50 demonstrations per skill) to pre-train individual
diffusion policies. Evaluation is conducted on eight tasks from the benchmark (for experiments on
LIBERO benchmark [67], see Appendix S.4.4).

Evaluation Protocol: We compare DiWA to Diffusion Policy Policy Optimization (DPPO) [17],
which fine-tunes diffusion policies via PPO by treating the denoising process as a multi-step MDP.
While DPPO baselines fine-tune policies through direct environment interactions (in simulation or
real-world), DiWA performs fine-tuning entirely offline using imagined rollouts within the latent
space of a learned world model. We evaluate DPPO in two variants. DPPO (Vision), the original
variant introduced by Ren et al., takes raw pixel observations as input using a Vision Transformer
(ViT) encoder [68]. DPPO (Vision WM Encoder) instead replaces the ViT with the same world-model
encoder as DiWA, so that both methods start from identical pre-trained diffusion policies and receive
the same latent state input for each skill. A key difference between the two settings lies in reward
supervision: DPPO uses the ground-truth task completion signal available in the real environment,
whereas DiWA relies on a learned reward classifier trained from a small set of expert demonstrations,
introducing an additional challenge for policy optimization. For DiWA, we report the performance
improvement achieved after 5 million fine-tuning steps conducted entirely in the latent space of the
world model. For DPPO baselines, we measure the number of real environment interactions required
to match the performance of DiWA.

Table 1 reports the average success rates of pre-trained diffusion policies and their fine-tuned
counterparts, averaged over three random seeds. DiWA successfully fine-tunes all evaluated robotic

Table 1: DiWA successfully fine-tunes diffusion policies entirely offline using imagined rollouts in a learned
world model. In contrast, DPPO requires hundreds of thousands of online interactions to achieve comparable
performance. The DPPO (Vision) variant, operating directly on raw RGB observations without world-model
latents, requires far more interactions to reach similar performance. Results are averaged over three random seeds.

. DPPO DPPO
Task Base DiWA (Ours) (Vision WM Encoder) (Vision)
| Diffusion Policy | Offline Fine-Tuning | Online Fine-Tuning
| Success Rate | Success Rate | Env Steps to Match DiWA
open-drawer 57.78 £3.85 74.44 +1.92 117,600 + 23,758 134,400 + 26,508
close-drawer 59.14 £ 5.08 91.95 +1.99 345,600 £ 27,651 1,545,600 + 261,346
move-slider-left 62.15 £ 0.60 83.33 £ 1.80 270,933 £ 28,780 1,377,600 + 251,439
move-slider-right 62.55 £ 3.55 82.76 £+ 3.45 249,600 + 09,050 537,600 +£ 23,758
turn-on-lightbulb 60.61 £+ 3.03 91.92 +1.75 302,933 £ 15,964 588,000 =+ 62,859
turn-off-lightbulb 35.63 £1.99 77.01 + 1.99 327,066 £ 13,546 1,260,000 + 142,552
turn-on-LED 48.43 + 3.67 86.21 + 3.45 494,933 + 45,655 2,251,200 + 33,940
turn-off-LED 55.25 £4.79 82.33 +£6.53 277,333 £ 31,928 184,800 4 23,758
Total Physical Interactions: | 0 | ~2.5M | ~8M

manipulation skills entirely offline, without requiring any additional physical interaction. In contrast,
DPPO baselines typically require several hundred thousand environment interactions to reach a
similar level of performance. Importantly, these interactions involve online exploration, which is
often unsafe or impractical in real-world robotic settings. Overall, these results highlight that DiWA
enables effective skill adaptation using only offline data, offering a safer and more sample-efficient
alternative to model-free approaches. Among DPPO baselines, the world-model latent variant
performs best, indicating that the latents learned by our world model are richer than ViT-based image
encodings. See Appendix S.4.1 for a more detailed comparison of DPPO variants.

To assess the impact of model components on fine-tuning performance, we compare three variants
of our model: (i) DIWA (Vision WM), which uses a world model trained only on visual observations;
(i) DiWA (Hybrid WM + Reward Classifier), which incorporates both visual inputs and privileged
scene state during training but still relies on a learned reward classifier; and (iii) DIWA (Hybrid WM +
Latent Decoder), which also uses scene-state-conditioned latents but infers rewards by decoding them
into scene state and applying a reward function directly. Figure 3 highlights the differences across
these model variants. Comparing the first two variants, we find that hybrid world models enable
faster and more stable fine-tuning, likely due to more accurate latent dynamics learned from scene
state supervision, which improves the quality of imagined rollouts. Next, comparing the two hybrid
variants, we isolate the effect of the reward function: latent decoding leverages scene-aware latents to

open-drawer

move-slider-left move-slider-right

©
=3

@
=3

80

70 -

3
=3

Success Rate %
Success Rate
Success Rate %
Success Rate %
~
=)

60)

50 ! 50

0 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 5
World Model Steps x10° World Model Steps x10° World Model Steps x10° World Model Steps x10°

turn-on-lightbulb turn-off-lightbulb turn-on-LED turn-off-LED
100 |

90
80

70
60 o

Success Rate %
Success Rate %

50

50 40

2 2
World Model Steps x10° World Model Steps x10° World Model Steps x10° World Model Steps x10°
«=@= DiWA (Vision WM) ==@= DiWA (Hybrid WM + Reward Classifier) =~ ==@= DiWA (Hybrid WM + Latent Decoder)

Figure 3: Comparison of three DiWA variants on simulated fine-tuning tasks. Blue uses only visual inputs, while
green and red both incorporate scene state supervision. Red further decodes rewards from latents instead of
relying on a learned classifier. Results demonstrate that more expressive world models and more accurate reward
signals lead to improved offline fine-tuning performance.

7

go SIS SR
= 80 / \.. / — —ry
£70 /s
60
I3 O @ et & Y
Q w—
S 50 £ /
a &£ y —_—

40 P a

o
30

0.0 0.5 1.0 1.5 2.0

25 World Model Steps x10°
open drawer close drawer push slider right =o=open drawer =e= close drawer =e=push slider right
(a) Real-world Manipulation Skills (b) Real-World Fine-Tuning Results

Figure 4: (a) The three real-world manipulation tasks used for evaluation. (b) Success rates before and after
offline fine-tuning with DiWA, averaged over 20 rollouts and three seeds. Values correspond to checkpoints
saved during fine-tuning. While pre-trained diffusion policies show limited initial performance, DiWA enables
significant improvement through imagination-based reinforcement learning without physical interaction.

reconstruct state variables, which enables more reliable reward computation and often yields stronger
fine-tuning performance (see Appendix S.1.3 for a precision—recall analysis of our reward classifier).
While we focus on DiWA (Vision WM) as our main variant because it relies solely on visual inputs
and is thus compatible with real-world robotic setups, these results indicate that more expressive
world models and more accurate reward signals can substantially enhance fine-tuning performance.

5.2 Real-World Results

To evaluate DiWA on real-world robotic skills, we conducted experiments with a Franka Emika Panda
robot operating in a tabletop environment containing a cabinet and drawer. We collected a play dataset
comprising four hours of teleoperated interaction (~450,000 transitions) using a VR controller to
guide the robot. RGB observations were recorded from both a static and a gripper-mounted camera.
We evaluated the model on three representative skills: opening the drawer, closing the drawer, and
pushing the cabinet slider to the right (see Figure 4a). To pre-train the diffusion policies and reward
classifiers, we collected 50 expert demonstrations per skill. We trained a generative world model on
the offline play dataset and found that it was capable of accurate long-horizon predictions in held-out
trajectories. Qualitative rollout examples are provided in the Appendix S.4.6. We then used the trained
world model to encode expert demonstrations into latent representations, which were used to pre-train
separate diffusion policies and reward classifiers for each skill. Finally, we fine-tuned the pre-trained
policies for ~2 million imagination steps entirely within the latent space of the learned world model.

To evaluate performance, we executed 20 rollouts per skill using fixed initial scene configurations and
robot starting positions, both with the pre-trained and fine-tuned policies. Success rates, averaged over
three random seeds, are reported in Figure 4b. We find that although the pre-trained diffusion policies
exhibit limited initial success across all three tasks, DiWA substantially improves their performance
through offline fine-tuning within the learned world model. This demonstrates effective real-world
policy adaptation without requiring any physical interaction.

6 Conclusion

We presented DiWA, a fully offline framework for adapting diffusion policies using learned world
models. By treating the world model as a safe, data-driven simulator, DiWA enables reinforcement
learning entirely in imagination, avoiding the cost and risk of online physical interactions. Our
approach fine-tunes pre-trained diffusion policies through long-horizon rollouts in latent space, lever-
aging a compact and expressive representation of environment dynamics. On the CALVIN benchmark,
DiWA achieves strong adaptation performance while requiring no additional environment interaction,
demonstrating substantial gains in sample efficiency over model-free baselines. Our work provides
the first empirical evidence that diffusion policies fine-tuned entirely offline within a learned world
model trained on real-world unlabeled play data can transfer zero-shot to real-world robotic systems.

7 Limitations

While DiWA enables fully offline fine-tuning of diffusion policies and achieves strong results in
both simulated and real-world settings, it has several limitations that point to promising directions
for future research. First, the framework relies on a world model trained once on offline play data,
which is then frozen during fine-tuning. While this eliminates the cost and risk associated with online
interactions, it also means that modeling errors or artifacts in the learned dynamics persist throughout
training. These imperfections can be exploited by the policy, leading to overfitting to flaws in the
model. Future work could explore hybrid approaches that combine offline training with limited online
interaction, allowing the world model to be incrementally updated and corrected using real-world
feedback. Second, since fine-tuning is conducted entirely in imagination, there may be a mismatch
between training performance and actual real-world behavior. Improvements observed within the
world model do not always guarantee successful execution on the physical robot. Consequently,
intermediate checkpoints must be evaluated on the real system to assess true performance.

Acknowledgments

This work was partly supported by the BrainWorlds initiative of the BrainLinks-BrainTools center at
the University of Freiburg and ELSA — European Lighthouse on Secure and Safe Al funded by the
European Union under Grant Agreement No. 101070617.

References

[1] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[2] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[3] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661-668, 2010.

[4] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[5] F. Schmalstieg, D. Honerkamp, T. Welschehold, and A. Valada. Learning long-horizon robot
exploration strategies for multi-object search in continuous action spaces. In The International
Symposium of Robotics Research, pages 52-66, 2022.

[6] I. Nematollahi, E. Rosete-Beas, A. Rofer, T. Welschehold, A. Valada, and W. Burgard. Robot
skill adaptation via soft actor-critic gaussian mixture models. In International Conference on
Robotics and Automation (ICRA), pages 8651-8657, 2022.

[7] M. S. Mark, T. Gao, G. G. Sampaio, M. K. Srirama, A. Sharma, C. Finn, and A. Kumar. Policy
agnostic rl: Offline rl and online 1l fine-tuning of any class and backbone. arXiv preprint
arXiv:2412.06685, 2024.

[8] D. Honerkamp, T. Welschehold, and A. Valada. N2 m?: Learning navigation for arbitrary
mobile manipulation motions in unseen and dynamic environments. IEEE Transactions on
Robotics, 39(5):3601-3619, 2023.

[9] J. Hu, R. Hendrix, A. Farhadi, A. Kembhavi, R. Martin-Martin, P. Stone, K.-H. Zeng, and
K. Ehsani. Flare: Achieving masterful and adaptive robot policies with large-scale reinforcement
learning fine-tuning. arXiv preprint arXiv:2409.16578, 2024.

[10] I. Nematollahi, K. Yankov, W. Burgard, and T. Welschehold. Robot skill generalization via
keypoint integrated soft actor-critic gaussian mixture models. In International Symposium on
Experimental Robotics, pages 168—180, 2023.

[11] J. Luo, C. Xu, J. Wu, and S. Levine. Precise and dexterous robotic manipulation via human-in-
the-loop reinforcement learning. arXiv preprint arXiv:2410.21845, 2024.

[12] J. Yang, M. S. Mark, B. Vu, A. Sharma, J. Bohg, and C. Finn. Robot fine-tuning made easy:
Pre-training rewards and policies for autonomous real-world reinforcement learning. In 2024
IEEFE International Conference on Robotics and Automation (ICRA), pages 4804-4811, 2024.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

[14] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730-27744, 2022.

[15] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748-8763, 2021.

[16] N.Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine tuning
text-to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 22500-22510, 2023.

[17] A.Z.Ren,J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal, A. Majumdar, B. Burchfiel, H. Dai,
and M. Simchowitz. Diffusion policy policy optimization. arXiv preprint arXiv:2409.00588,
2024.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[19] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. In
International Conference on Robotics and Automation (ICRA), pages 8973-8979, 2019.

[20] Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M. Sugiyama, E. Uchibe, and J. Mo-
rimoto. Deep learning, reinforcement learning, and world models. Neural Networks, 152:
267-275, 2022.

[21] D. Ha and J. Schmidhuber. World models. Neural Information Processing Systems, 2018.

[22] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019.

[23] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
International Conference on Learning Representations, 2021.

[24] 1. Nematollahi, B. DeMoss, A. L. Chandra, N. Hawes, W. Burgard, and 1. Posner. Lumos:
Language-conditioned imitation learning with world models. In IEEE International Conference
on Robotics and Automation, 2025.

[25] V. Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[26] V. Talpaert, I. Sobh, B. R. Kiran, P. Mannion, S. Yogamani, A. El-Sallab, and P. Perez. Exploring
applications of deep reinforcement learning for real-world autonomous driving systems. arXiv
preprint arXiv:1901.01536, 2019.

[27] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning
agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

10

[28] L. Tai, G. Paolo, and M. Liu. Virtual-to-real deep reinforcement learning: Continuous control
of mobile robots for mapless navigation. In IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 31-36, 2017.

[29] J. Booher, K. Rohanimanesh, J. Xu, V. Isenbaev, A. Balakrishna, I. Gupta, W. Liu, and
A. Petiushko. Cimrl: Combining imitation and reinforcement learning for safe autonomous
driving. arXiv preprint arXiv:2406.08878, 2024.

[30] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs, B. Sapp, B. White, A. Faust,
S. Whiteson, et al. Imitation is not enough: Robustifying imitation with reinforcement learning
for challenging driving scenarios. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 7553-7560. IEEE, 2023.

[31] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087, 2017.

[32] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow, and
S. Levine. Residual reinforcement learning for robot control. In International Conference on
Robotics and Automation (ICRA), pages 6023-6029, 2019.

[33] Y. Chen, S. Tian, S. Liu, Y. Zhou, H. Li, and D. Zhao. Conrft: A reinforced fine-tuning method
for vla models via consistency policy. arXiv preprint arXiv:2502.05450, 2025.

[34] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothorl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[35] A.Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative g-learning for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

[36] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, 2019.

[37] D. Hafner, T. Lillicrap, 1. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555-2565, 2019.

[38] N. Hansen, X. Wang, and H. Su. Temporal difference learning for model predictive control. In
International Conference on Machine Learning, 2022.

[39] I. Nematollahi, E. Rosete-Beas, S. M. B. Azad, R. Rajan, F. Hutter, and W. Burgard. T3vip:
Transformation-based 3d video prediction. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022.

[40] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[41] B. DeMoss, P. Duckworth, N. Hawes, and I. Posner. Ditto: Offline imitation learning with
world models. arXiv preprint arXiv:2302.03086, 2023.

[42] C.Chi, Z. Xu, C. Pan, E. A. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. Robotics: Science
and Systems, 2024.

[43] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer for
3d object manipulation. In Conference on Robot Learning, pages 694-710, 2023.

11

[44] A. Sridhar, D. Shah, C. Glossop, and S. Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. In IEEE International Conference on Robotics and Automation
(ICRA), pages 63-70, 2024.

[45] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki. Chaineddiffuser: Unifying
trajectory diffusion and keypose prediction for robotic manipulation. In Conference on Robot
Learning, volume 229, pages 2323-2339, 2023.

[46] Z. Hou, T. Zhang, Y. Xiong, H. Pu, C. Zhao, R. Tong, Y. Qiao, J. Dai, and Y. Chen. Diffusion
transformer policy. arXiv preprint arXiv:2410.15959, 2024.

[47] O.M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. Robotics: Science and Systems,
2024.

[48] B. Chen, D. M. Monso, Y. Du, M. Simchowitz, R. Tedrake, and V. Sitzmann. Diffusion
forcing: Next-token prediction meets full-sequence diffusion. Advances in Neural Information
Processing Systems, 2024.

[49] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional gen-
erative modeling all you need for decision-making? International Conference on Learning
Representations, 2023.

[50] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. International Conference on Machine Learning, 2022.

[51] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. Offline reinforcement learning via high-fidelity
generative behavior modeling. International Conference on Learning Representations, 2023.

[52] Z. Ding and C. Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. International Conference on Learning Representations, 2024.

[53] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. International Conference on Learning Representations, 2023.

[54] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idgl: Implicit g-learning
as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.

[55] M. Psenka, A. Escontrela, P. Abbeel, and Y. Ma. Learning a diffusion model policy from
rewards via g-score matching. International Conference on Machine Learning, 2024.

[56] L. Yang, Z. Huang, F. Lei, Y. Zhong, Y. Yang, C. Fang, S. Wen, B. Zhou, and Z. Lin. Policy
representation via diffusion probability model for reinforcement learning. arXiv preprint
arXiv:2305.13122, 2023.

[57] X. Yuan, T. Mu, S. Tao, Y. Fang, M. Zhang, and H. Su. Policy decorator: Model-agnostic online
refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

[58] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018.

[59] R. S. Sutton, D. A. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Neural Information Processing Systems,
1999.

[60] Y. Fan, O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee,
and K. Lee. Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems, volume 36, pages 79858-79885, 2023.

12

[61] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,
S. Joty, and N. Naik. Diffusion model alignment using direct preference optimization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8228-8238, 2024.

[62] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine. Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

[63] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[64] R. Schiewer, A. Subramoney, and L. Wiskott. Exploring the limits of hierarchical world models
in reinforcement learning. Scientific Reports, 14(1):26856, 2024.

[65] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta, and P. Agrawal. Reconciling reality
through simulation: A real-to-sim-to-real approach for robust manipulation. arXiv preprint
arXiv:2403.03949, 2024.

[66] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters (RA-L), 7(3):7327-7334, 2022.

[67] B.Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge
transfer for lifelong robot learning. Advances in Neural Information Processing Systems, 36:
44776-44791, 2023.

[68] H. Hu, S. Mirchandani, and D. Sadigh. Imitation bootstrapped reinforcement learning. arXiv
preprint arXiv:2311.02198, 2023.

[69] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[70] D. Morales-Brotons, T. Vogels, and H. Hendrikx. Exponential moving average of weights in
deep learning: Dynamics and benefits. arXiv preprint arXiv:2411.18704, 2024.

[71] K. Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

[72] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[73] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations in
neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5745-5753, 2019.

13

Supplementary Material

S.1 Hyperparameters and Training Details

S.1.1 World Model

Following the design introduced in LUMOS [24], we adopt a DreamerV2-style latent dynamics
model as the backbone of our world model. While DreamerV2 was originally proposed for Atari
game environments [23], our setting focuses on robotic manipulation using raw teleoperated play
data. To accommodate this domain shift, we integrate two separate visual encoders for the static
and wrist-mounted gripper cameras. Their encoded features are concatenated and fused via a fully-
connected layer before being passed to the recurrent state-space model (RSSM). This fusion allows
the model to jointly reason over both ego-centric and third-person viewpoints during prediction and
imagination. Our world model is trained by minimizing the negative variational Evidence Lower
Bound (ELBO):

T
m(gn Eq, | Y —logpe(we | st) + BKL (go(21 | hes o) | po(ze | b)) | (12)

t=1

where s; = (h, 2¢), and 3 controls the strength of KL regularization. To stabilize learning, we apply
KL balancing to modulate gradient flow between the prior and posterior distributions, following the
formulation from Hafner et al. [23]:

KL(q || p) = 6KL(q || sg(p)) +(1 — 6) KL(sg(q) || p), (13)
— ——
posterior regularizer prior regularizer

where sg(-) denotes the stop-gradient operator. We found KL balancing to be crucial for improving
the sharpness and consistency of imagined rollouts, as it accelerates the prior’s convergence toward
the richer posterior distribution.

The stochastic latent code z; is modeled using a discrete representation composed of 32 categorical
variables with 32 possible classes each. This leads to a sparse 1024-dimensional one-hot vector,
which we concatenate with the deterministic hidden state h; of size 1024, yielding a total latent
dimensionality of k£ = 2048. We train all components of the world model jointly using sequences of
50 steps sampled from diverse points in long-horizon play episodes. Due to the scarcity of resets in
such data, we reset the recurrent state of the RSSM with a small probability to encourage robustness
to initialization and better exploitation of temporal context. All hyperparameters are kept identical
across simulation and real-world experiments, except for the KL loss scale 3, which is set to 0.3 in
simulation and 1.0 in real-world training. To maximize coverage of different scene transitions, we

Table S.1: Hyperparameters used for training the world model. All values are shared across simulation and
real-world experiments, except KL loss scale 3, which is 0.3 for simulation and 1.0 for real-world settings.

Name Symbol Value
Batch size B 50
Sequence length L 50
Deterministic latent state dimensions — 1024
Discrete latent state dimensions — 32
Discrete latent state classes — 32
Latent dimensions k 2048
KL loss scale I3 0.3
KL balancing coefficient 0 0.8
RSSM reset probability ¢ 0.01
World model learning rate — 3x1074
Gradient clipping — 100
Adam epsilon € 107°
Weight decay (decoupled) — 5x 1072

14

sample training subsequences by selecting random start indices within each episode, ensuring the
sampled subsequence remains within episode bounds. This configuration is used consistently across
both simulated and real-world settings unless otherwise noted (See Table S.1).

S.1.2 Diffusion Policy

We adopt a denoising diffusion probabilistic model (DDPM) [69] to parameterize our base policy.
The diffusion policy is trained to imitate expert trajectories using features produced by our frozen
world model encoder. Specifically, we featurize each raw observation with the world model to obtain
2048-dimensional latent vectors, which serve as the input to the policy 7y (- | 2;). This featurization
ensures compatibility between the policy’s training and inference regimes, as the fine-tuned policy
will later be conditioned on imagined future latent states.

For each skill, we use N = 50 expert demonstration trajectories, randomly selected from task-
annotated episodes in the CALVIN simulation [66] and manually collected in the real-world environ-
ment. The diffusion model is trained with K = 20 denoising steps, and follows a chunked prediction
strategy: given an observation horizon of 1 step, it predicts a sequence of 7}, = 4 future actions, of
which the first T, = 4 are executed in the environment. The policy is optimized using a behavior
cloning objective over the full denoising trajectory:

T K
Lpc(0) =Ep,, | > > —logmg(a; " | z,af)] (14)
t=1 k=1

where 7y predicts denoised actions conditioned on the current latent state z; and noisy action af.

The policy model is a multi-layer perceptron (MLP) with three hidden layers of size 512, and we
apply exponential moving average (EMA) to the policy weights during training, starting from epoch
20, to enhance stability [70]. All policies are trained for 5000 epochs using the Adam optimizer. We
use an initial learning rate of 1 x 10™%, decayed to 1 x 10~° using a cosine schedule. We apply a
weight decay of 1 x 107° and use a batch size of 256. These hyperparameters are kept identical
across all CALVIN tasks and our real-world skill evaluations (See Table S.2).

When evaluating the DPPO baseline in the CALVIN simulation environment, we also include a
variant that has access to ground-truth state information, which has an observation dimensionality
of 51. For the vision-based variant, the input consists of RGB images from both the static and gripper
cameras, stacked along the channel dimension, resulting in an input shape of 64 x 64 x 6.

Table S.2: Training and model hyperparameters for diffusion policy across all CALVIN and real-world tasks.

Parameter Symbol Value
Common Training Parameters (All Skills)

Observation Horizon — 1
Number of Demonstrations N 50
Planning Horizon T 4
Action Horizon T, 4
Training Epochs — 5000
Diffusion Denoising Steps K 20
Initial Learning Rate — 1x107*
Final Learning Rate — 1x107°
Weight Decay — 1x107°
MLP Dimensions — [512, 512, 512]
EMA Decay — 0.995
EMA Start Epoch — 20
EMA Update Frequency — 10
Batch Size — 256
Observation Dimensions

DiWA — 2048
DPPO (Vision WM Encoder) — 2048
DPPO (Vision) — 64 X 64 X 6
DPPO (State) — 51

15

S.1.3 Latent Reward Estimator

To learn a task-aligned reward signal, we train a latent reward classifier C'y, using expert demonstration
data Dexp. Each observation x; is encoded into a latent state z; via the frozen world model encoder.
The classifier comprises two components: a two-layer MLP £, that maps latents to an embedding
space, and a subsequent two-layer MLP g, that predicts success or failure based on the embedding.

We jointly optimize the model using a combination of contrastive and classification losses. For the
contrastive component, we employ the NT-Xent loss [71], which encourages embeddings of positive
pairs to be closer than those of negative pairs. Given a batch of N samples, the NT-Xent loss for a
positive pair (i, 7) is defined as:

‘CNT—Xent = — IOg N eXp(Sim(fw(Zi)? fw (27))/7') (15)

o (g exp(sim(£y (22), fu(2x))/T)

where sim(-, -) denotes the cosine similarity, 7 is a temperature parameter, and #;.;) is an indicator
function excluding the anchor sample from the denominator.

In parallel, the classification MLP g, operates on the embeddings to predict success labels, trained
using standard cross-entropy loss. The overall training objective combines both terms:

[freward = LNT—Xenl + »CCE~ (16)

The resulting reward function is defined as Ry (z¢, a;) := softmax(gy (fy(2¢))), which outputs the
predicted probability of success given a latent observation. Both MLPs use ReLLU activations, and
the model is trained with the Adam optimizer for 100 epochs. See Table S.3 for the full set of
hyperparameters.

In practice, leveraging the world model’s structured latent states allows the reward classifier to
achieve high accuracy with as few as 50 demonstrations per task: we treat successful states as
positives and randomly sample 15% of the remaining frames as negatives, yielding an average of
0.89 precision and 0.98 recall across eight CALVIN skills. A vision-based ResNet-18 trained on
the same data matches recall but achieves only 0.41 precision, underscoring that robustness primarily
stems from the temporally structured latent space of the world model (see Table S.4 for details).

Table S.3: Hyperparameters used for train- Table S.4: Validation precision and recall for our latent-based

ing the latent reward classifier. and vision-based reward classifiers.
Parameter Value Task Latents Vision
Embedding MLP [512.512] Prec. Rec. | Prec. Rec.
Classification MLP [512,512] open-drawer 092 0.99| 041 0.99
Activation ReLU close-drawer 0.89 099|052 0.99
Output Softmax move-slider-left | 0.87 0.96| 0.33 0.97
Epochs 100 move-slider-right| 0.83 0.98 | 041 0.99
Batch Size 32 turn-on-lightbulb| 0.89 0.96 | 0.45 0.99
Learning Rate 1x107° turn-off-lightbulb 0.88 099 | 0.36 1.00
Temperature 0.5 turn-on-LED 0.94 1.00| 0.36 0.92
Loss Contrastive+CE turn-off-LED 0.88 0.99 | 0.41 0.99
Positives Success frames
Negatives 15% other frames Avg. | 089 098] 041 098

S.1.4 Fine-tuning with DiWA

The full pseudocode for DiWA is shown in Algorithm S.1. DiWA fine-tunes a pre-trained diffusion
policy 7y using imagined rollouts from a learned world model M and reward classifier C'y,, forming
trajectories in the Dream Diffusion MDP Mpp. At each iteration, imagined transitions are stored
in a buffer Dj,, advantages are estimated using Generalized Advantage Estimation (GAE) [72], and
PPO-style updates [18] are applied to the policy and value function. GAE is computed at the final

16

Algorithm S.1 DiWA: Diffusion Policy Adaptation with World Models

1: Train world model M on play data D,y using the ELBO objective (Eq. (12)), then freeze M.

2: Encode expert demonstrations into latents z; ~ qg4(z¢ | b, ;) using the frozen world model.

3: Pre-train diffusion policy 7y on latent expert demonstrations via behavior cloning (Eq. (14));
freeze copy as my

pre *

4: Train reward classifier Cy, on latent expert demonstrations via reward loss (Eq. (16)).
5: Initialize value function V.

6: for iteration=1,2, ... do

7 Initialize imagined rollout buffer Dj.

8

: Setﬂ'gold = Tg.

9: for imagination episode = 1, 2, ..., N in parallel do
10: Sample initial observation x(and encode to latent z.
11: Initialize state 570,) = (20,a¢) in Mpp.
12: for imagined stept = 0,...,7T — 1, denoising step k = K,...,1do
13: Sample intermediate action @' ~ g, (- | z;,al)

14: if £ = 1 then

15: Run final action @} in the world model M

16: Update recurrent state: hyy1 = fy(he, ay)

17: Sample next latent state: z;41 ~ pg(2zi+1 | hit1)

18: Predict reward: Ry 1) = Ry (2, af)

19: Sample new noisy action: a{il ~ N(0,1)
20: Set next state: Sg(s41,x) = (zt41, Eij_l)
21: else B
22: Set reward: Ry =0
23: Set next state: 5, 1—1) = (2¢, &f‘l)
24: end if ~
25: Add (k, 554,k Qi (e, k)5 Ricek)) 10 Digr.
26: end for
27: end for
28: Compute advantage estimates A% (57, 1y, Gg(¢,1)) using GAE (Eq. (17))
29: for update = 1, ..., num_updates do
30: for minibatch=1,..., Bdo _
31 Sample (k, Sg(z k> Qr(e,k)» Re(e,k)) and AT (851 1y, Qge k) from Dig.
32: Compute denoising-discounted advantage Agm k) = 7§enoiseATr9°“’ (5%(¢,0)5 GE(£,0))-
33: Update my using regularized PPO loss (Eq. (18)).
34: Update V), using value loss (Eq. (19)).
35: end for
36: end for
37: end for

38: return fine-tuned policy my.

denoising step (k = 1) for each world model timestep:
A;T\(m) = Z(WWM)\)lgt’(t-s-l,l)a where Sf(t,l) = Rf(t,l) +ywmVe (8541,1)) — Vo (Bre,1y). (17)
1=0
To propagate this signal to earlier denoising steps, we apply a denoising discount to obtain step-
specific advantages as Az 1) = 7§enoiseAf(t,1)~ The policy is fine-tuned using a behavior-regularized
PPO objective that augments the clipped PPO loss with a behavior cloning (BC) regularization

term. This regularization encourages proximity to the pre-trained diffusion policy 7y, , mitigating
overfitting to model errors during imagination [64, 65]. The full objective is:
K
Lo = Lppo — cpc BT Z log mo, (@ " | z,ap) | (18)
k=1

where apc controls the regularization strength and 7y, remains frozen during fine-tuning. To restrict
updates to the last K’ denoising steps, we subsample Dy, to include only entries with k¥ < K’,

17

Table S.5: Fine-tuning hyperparameters shared across all skills for DiWA and baseline methods.

Parameter Symbol Value
Planning Horizon (Environment) T, 4

Planning Horizon (Actor) T, 4

Denoising Steps K 20

Fine-tuned Denoising Steps K’ 10

Actor Learning Rate — 1x107°
Critic Learning Rate — 1x1073
Actor MLP Dimensions — [512,512,512]

Critic MLP Dimensions — [256, 256, 256]
Discount Factor (Env /World Model) Yenv / ywm - 0.999

Discount Factor (Diffusion Policy) YpP 0.99
GAE Smoothing Parameter A 0.95
Behavior Cloning Coefficient (default) agc 0.05
Batch Size — 7500

keeping the base policy 7y, frozen for the initial K — K steps. The value function V), is trained to
regress the future discounted sum of latent rewards:

Tt 2
L, =Ep, (Z %«MRE(HM) - Vu(Zt)) , (19)

=0

where V), takes as input only the latent state z; from the Mpp. Table S.5 lists the fine-tuning
hyperparameters shared across all skills and experiments for both DiWA and the baseline methods.
We set the behavior cloning regularization coefficient agc = 0.05 for all tasks by default, except
for open-drawer, close-drawer, and turn-on-LED, where we observed better performance with
values of 0.10, 0.025, and 0.025, respectively.

S.2 Experimental Setup Details

S.2.1 7-DoF Action Framework
All experiments, both in simulation and in the real world, use a 7-dimensional action space defined as:
[0, dy, 02,00, 00, 6, gripperAction)

The first six dimensions control the end-effector, with (dx, dy,dz) specifying position changes
and (d¢, 36, 01) specifying orientation changes via Euler angles. Each takes continuous values
in the range [—1, 1]. The final dimension, gripperAction, controls the gripper state. Although the
environment expects discrete inputs (1.0 to close, —1.0 to open), DiWA outputs a continuous value in
[—1.0, 1.0], which is thresholded before execution: values greater than or equal to O trigger opening,
and values less than O trigger closing.

S.2.2 Real-World Data Collection

We collected four hours of real-world teleoperation data using a Franka Emika Panda robot controlled
via an HTC VIVE Pro headset in a 3D tabletop setting (see Figure S.1a). The tabletop environment
included a cabinet with a drawer and a manipulable red cube to support diverse interaction scenarios.
During teleoperation, we recorded robot sensor data, including proprioceptive signals (joint states
and end-effector pose), as well as multimodal visual observations. RGB images of the full scene were
captured at a resolution of 200 x 200 using an Azure Kinect camera, while close-up RGB views of the
manipulated objects were obtained from a wrist-mounted Realsense D415 camera (Figure S.1b). We
also logged the absolute control commands sent to the robot. For model training, we computed relative
actions as differences between consecutive absolute commands. To reduce redundancy caused by low
inter-frame variation, the original 30 Hz recording rate was downsampled by a factor of 4 to 7.5 Hz.

18

Static Cam |-

p*"'

Gl T

) ‘ Gripper Cam

- 5

Figure S.1: (a) Real-world setup showing the Franka Panda robot, VR teleoperation interface (HTC VIVE
controller and tracking system), and camera placements (static Kinect and wrist-mounted Realsense). (b)
Example observations from the static and gripper-mounted RGB cameras used during data collection.

(a) Real-World Setup (b) Real-World Observations

S.3 Data Preprocessing

In both simulation and real-world experiments, we use visual observations from two sources: a static
camera and a wrist-mounted gripper camera. All images are first resized to a resolution of 64 x 64
pixels. We then convert the image tensors from integer values in [0, 255] to floating-point values in
[0.0,1.0], and subsequently normalize them. These transformations are applied to both static and
gripper observations. In addition to visual observations, we preprocess the robot state, which includes
the end-effector’s position and orientation. Since the orientation is originally represented in Euler
angles, we convert it to a continuous 6D rotation representation [73] to avoid discontinuities and
singularities associated with Euler angles.

S.4 Additional Experiments

S.4.1 Comparing DPPO Input Modalities

Figure S.2 compares three DPPO configurations against our offline method. DPPO (State) (gray)
uses raw simulator state as input, DPPO (Vision) (red) operates directly on pixel observations using a
Vision Transformer (ViT) based encoder [68], and DPPO (Vision WM Encoder) (green) uses visual
inputs processed through the same frozen encoder employed in our world model. Among these, the
world model latent variant, where DPPO operates on representations produced by our recurrent state
space model, often achieves the highest performance, surpassing both raw vision and state-based
inputs. These latents combine a history-aware deterministic hidden state with a stochastic component
that captures residual uncertainty, providing a compact and dynamics-aligned representation. In
contrast to all online variants, DiWA (blue) fine-tunes the policy entirely offline using imagined
rollouts in the learned latent space. Its performance is shown as a horizontal band, as no physical
interaction is required during fine-tuning. While DPPO can eventually match or exceed our results
by leveraging ground truth dynamics and rewards, it requires hundreds of thousands of real-world
interactions per skill. These interactions are costly, time-consuming, and can pose safety risks. In
comparison, DiWA achieves competitive results using only a few hours of play data, offering a safer
and more sample-efficient approach to real-world skill adaptation.

19

open-drawer close-drawer move-slider-left move-slider-right
7 5 100 ;

90

80

70

Success Rate %
Success Rate %
Success Rate %
Success Rate %

60

40 40

50 ¢ a0l 30
0.0 0.5 1.0 15 20 0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 20
Environment Steps x10° Environment Steps x10° Environment Steps x10° Environment Steps x10°

turn-on-lightbulb turn-off-lightbulb turn-on-LED turn-off-LED
| | 100

90

= 80
80

70 60 ¢

Success Rate %
Success Rate %
Success Rate %

60

Success Rate

50

. !
“© W
]

i g
¢ 40 I 40 - : ! 20 .I
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 20
Environment Steps x10° Environment Steps x10° Environment Steps x10° Environment Steps x10°

e DiWA FT Policy (Mean+Std) e=e= DPPO (Vision WM Encoder) = ==@= DPPO (Vision) e=@= DPPO (State)

Figure S.2: Comparison of DiWA with three DPPO variants using different input modalities. DiWA (blue) fine
tunes policies entirely offline using a learned world model, requiring no physical interaction during adaptation.
In contrast, DPPO (gray, red, green) performs online reinforcement learning with access to environment rewards
and dynamics. The DPPO variant using latents from the world model encoder (green) achieves the highest
performance among the three, but all require hundreds of thousands of real world interactions per skill.

S.4.2 Impact of Behavior Cloning Regularization

To investigate the role of behavior cloning regularization in fine-tuning, we ablate the BC loss
coefficient agc in DIWA and evaluate performance across different settings. As shown in Figure S.3,
the choice of agc has a significant impact on performance.

When agc = 0.0, meaning no regularization is applied, the agent achieves high success rates during
offline evaluation within the imagined environment. However, this performance does not transfer
to the real environment, where success rates drop considerably. This discrepancy suggests that the
agent overfits to inaccuracies in the world model by exploiting artifacts that yield high imagined
rewards but do not correspond to meaningful success in reality [64]. On the other hand, setting
agc too high, such as 0.5, leads to minimal improvement over the pre-trained policy. In this case,
strong regularization prevents the policy from effectively adapting to new task-specific feedback,
resulting in stagnated learning. Moderate values of apc provide a better trade-off, enabling the policy
to adapt while still maintaining alignment with the pre-trained behavior. These results emphasize the
importance of tuning BC regularization to balance adaptation and stability when fine-tuning policies
with learned world models.

open-drawer close-drawer

Online Evaluation Offline Evaluation
100 ; i L 100 ‘::3.:;’.:;,:‘:‘&?'{33\““5

Online Evaluation

@
=3

90 -

~
=)

80 -l

=3
S

a
3

70 -

Success Rate %
Success Rate %
Success Rate %
Success Rate %

a
=3

60

@
S

0 1 2 3 4 5 2 2
World Model Steps x10° World Model Steps x10° World Model Steps x10°

=@= (0000 <=@= (0025 <==o= (0100 ==eo= 0.500

Figure S.3: Ablation of behavior cloning regularization strength (agc) during fine-tuning. Without regularization
(asc = 0.0), the agent performs well in imagination but fails in the real environment, indicating exploitation
of world model inaccuracies. Excessively high values (e.g., 0.5) prevent meaningful adaptation. Intermediate
values strike a balance, yielding robust transfer.

20

This issue is further compounded by the fact that the world model is trained once on offline play data
and remains fixed during fine-tuning. While this avoids the cost and risk of real-world interactions, any
modeling errors or artifacts in the learned dynamics persist and may be exploited by the policy. Future
work could explore hybrid approaches that incorporate limited online interaction, allowing the world
model to be gradually refined with real-world feedback and reducing the impact of such artifacts.

S.4.3 Fine-tuning a Unimodal Gaussian Policy

While the primary focus of this work is on fine-tuning diffusion policies, which involve long
denoising sequences that make reward propagation particularly difficult, our method is not limited to
this specific policy class. To demonstrate the generality of our formulation, we replace the diffusion
policy in DiWA with a unimodal Gaussian policy parameterized by a mean and a diagonal covariance.
Unlike diffusion policies, this architecture yields a much shorter Markov chain, allowing reward
signals and policy gradients from PPO to propagate more directly. As shown in Table S.6, our
fine-tuning procedure leads to consistent improvements across all tasks. This supports the claim
that the underlying world model MDP, including the reward estimation mechanism, is independent
of the policy architecture.

Table S.6: Offline fine-tuning improves a unimodal Gaussian policy across all tasks. Success rates increase
substantially without any additional real-world interaction.

Task | Gaussian Policy
| Pre-Trained Offline Fine-Tuned
open-drawer 50.00 £0.09 71.67 £+ 2.36
close-drawer 55.17 +0.18 98.28 + 2.44
move-slider-left 54.86 + 4.70 82.64 + 1.59
move-slider-right | 55.52£0.78 87.93 £7.31
turn-on-lightbulb | 54.55 + 3.03 95.96 + 1.75
turn-off-lightbulb | 62.07 +4.88 77.59 + 2.44
turn-on-LED 44.83 + 0.50 77.59 +7.31
turn-off-LED 40.94 + 3.98 79.69 + 2.21
Total Physical Interactions: 0

S.4.4 Results on LIBERO-90

To evaluate DiWA on the LIBERO simulation benchmark [67], we train a world model on the
LIBERO-90 split, which is a curated subset of LIBERO-100 containing expert demonstrations for
90 short-horizon tasks spanning 10 kitchen scenes, 6 living rooms, and 4 study tables (see Sec. 4.2
in [67]). Unlike CALVIN’s environment D with a fixed tabletop layout, LIBERO-90 provides far
fewer interactions per scene, making world model learning significantly more challenging.

We focus on four kitchen skills across four scenes: open the top drawer (open-top-drawer, scene
1), turn on the stove (turn-on-stove, scene 3), close the bottom drawer (close-bottom-drawer,
scene 4), and close the top drawer (close-top-drawer, scene 5). Table S.7 reports the average
success rates over three seeds. Despite the sparse data and suboptimal world model training conditions,

Table S.7: DiWA improves performance on four LIBERO-90 kitchen tasks, with results averaged over three
random seeds.

DiWA (Ours)
| Diffusion Policy | Offline Fine-Tuning

| Base |

Task

| Success Rate

open-top-drawer 40.67 + 3.06 77.33 £ 3.06
turn-on-stove 54.00 £ 7.21 91.33 + 3.08
close-bottom-drawer 27.33 £3.12 78.00 + 8.72
close-top-drawer 75.33 £2.31 100.00 £ 0.00
Total Physical Interactions: 0

21

DiWA successfully fine-tunes all four skills entirely offline, without additional physical interactions.
We observed that different tasks required varying fine-tuning horizons to achieve stable improvement
without model exploitation: open-top-drawer and close-top-drawer were fine-tuned for 3M
steps, turn-on-stove for 2M, and close-bottom-drawer for IM.

S.4.5 Offline RL Limitations in Our Setting

Standard offline RL methods are fundamentally ill-suited to our setting. They assume (i) fully labeled,
task-specific reward signals and (ii) sufficient coverage of high-value state-action regions in a fixed
dataset. In contrast, DiWA operates on task-agnostic play data with sparse expert demonstrations and
estimated rewards, violating both assumptions.

To include an offline RL baseline, we experimented with CQL [35] on play data labeled using a
ResNet-18 reward classifier trained from expert demonstrations. This heuristic produced a noisy
reward signal (high recall of 0.98 but low precision of 0.41; see Table S.4), and we segmented the
continuous play streams into pseudo-episodes to enable critic training. Despite these adjustments,
all offline RL runs diverged rapidly due to: (i) reward mislabeling, which caused the Q-function
to propagate spurious positive values; (ii) sparse coverage of successful behaviors, preventing the
critic from generalizing; and (iii) value extrapolation errors, leading to policy collapse. These results
highlight the inherent incompatibility of critic-based offline RL with our setting. Consequently, we
view a direct comparison as unfair to offline RL. methods, whereas DiWA’s on-policy imagination
with latent rewards naturally avoids these failure modes and consistently improves skills without any
additional interaction.

S.4.6 World Model Rollouts in the Real World

We evaluate the predictive capabilities of our learned world model on real-world hold-out trajectories.
As illustrated in Figure S.4, the model generates visually coherent and temporally consistent rollouts
over extended horizons. To initiate the prediction, we encode the first two frames of an unseen
trajectory to establish the initial context. The model then predicts forward for 80 steps in latent space
using its recurrent dynamics, despite being trained with sequences of only 50 steps. The decoded
reconstructions from the predicted latents reveal that the world model can accurately track key scene
elements, such as the robot arm and manipulated objects, even over long horizons. This highlights
the model’s ability to learn meaningful dynamics from play data and maintain structured predictions
beyond its training horizon.

22

open drawer

close drawer

push slider right

Figure S.4: Real-world rollout predictions from the learned world model. Each block shows a segment of a
held-out trajectory for a specific skill, with static and gripper camera views decoded from imagined latent states.
The model produces accurate long-horizon predictions in real-world settings.

23

	Introduction
	Related Work
	Problem Formulation
	Offline Adaptation of Diffusion Policy with DiWA
	World Model Learning
	Pre-training Diffusion Policies
	Latent Reward Estimation from Expert Demonstrations
	Dream Diffusion MDP
	Fine-tuning within Dream Diffusion MDP

	Experimental Evaluation
	Simulation Results
	Real-World Results

	Conclusion
	Limitations
	Hyperparameters and Training Details
	World Model
	Diffusion Policy
	Latent Reward Estimator
	Fine-tuning with DiWA

	Experimental Setup Details
	7-DoF Action Framework
	Real-World Data Collection

	Data Preprocessing
	Additional Experiments
	Comparing DPPO Input Modalities
	Impact of Behavior Cloning Regularization
	Fine-tuning a Unimodal Gaussian Policy
	Results on LIBERO-90
	Offline RL Limitations in Our Setting
	World Model Rollouts in the Real World

