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Abstract

Sign language translation (SLT) is usually seen001
as a two-step process of continuous sign lan-002
guage recognition (CSLR) and gloss-to-text003
translation. We propose a novel, Transformer-004
based (Vaswani et al., 2017) architecture to005
jointly perform CSLR and sign-translation in006
an end-to-end fashion. We extend the ordi-007
nary Transformer decoder with two channels008
to support multitasking, where each channel009
is devoted to solve a particular problem. To010
control the memory footprint of our model,011
channels are designed to share most of their012
parameters among each other. However, each013
channel still has a dedicated set of parame-014
ters which is fine-tuned with respect to the015
channel’s task. In order to evaluate the pro-016
posed architecture, we focus on translating017
German signs into English sequences and018
use the RWTH-PHOENIX-Weather 2014019
T corpus in our experiments. Evaluation results020
indicate that the mixture of information pro-021
vided by the multitask decoder was successful022
and enabled us to achieve superior performance023
in comparison to other SLT models.024

1 Introduction025

Sign languages (SLs) are the main medium of com-026

munication for people with hearing problems. In027

such languages, linguistic phenomena are in con-028

junction with other factors such as body move-029

ments, poses, and facial expressions. Accordingly,030

existing tools designed to process spoken languages031

are not directly applicable to SLs. It involves trans-032

lating sign videos to a target language and this033

makes this task relatively harder compared to tra-034

ditional Neural Machine Translation (NMT) task.035

In this paper, we particularly focus on translating036

these languages and propose a tailored solution037

to interpret signs from video frames and translate038

them into text sequences in a target language.039

One approach to SLT is to view the process as040

a combination of three tasks, viz. sign segmenta-041

tion, sign language recognition (SLR), and gloss- 042

to-word translation. In text sequences, punctuation 043

marks and white spaces help segment them into 044

fundamental units. Silent regions, namely pauses, 045

between phonemes play the same role in speech 046

processing tasks (van Hemert, 1991). However, the 047

task of segmentation is not very straightforward 048

when working with SLs and a SL processing task 049

may require some sort of segmentation (Santemiz 050

et al., 2009; Khan et al., 2014). The purpose of sign 051

segmentation is to be clear about the input units, 052

their boundaries, and see how to feed the model. 053

Once segmentation is completed, a next step would 054

be understanding/recognizing information carried 055

out by signs, which is referred to as SLR in the liter- 056

ature. What SLR generates is a sequence of special 057

tokens known as sign language glosses. The final 058

step, translation, takes glosses and transforms them 059

into words in the target language. 060

Performing each of these tasks separately re- 061

quires dedicated models and datasets, which could 062

be quite challenging. Camgoz et al. (2020) pro- 063

posed a much simpler but more effective solution. 064

They treated the aforementioned three-step pipeline 065

as an end-to-end process of transforming video 066

frames into target-language words and show that 067

their approach can in-fact outperform other conven- 068

tional methods. In their model, SLT is carried out 069

via a single neural network and there is no clear 070

step defined for segmentation or SLR. The network, 071

itself, decides how to set boundaries and use infor- 072

mation stored in video frames to accomplish the 073

task. 074

Our approach to SLT is also to develop an 075

end-to-end model. We propose a Transformer 076

(Vaswani et al., 2017) model which relies on 077

multitasking. Similar to Camgoz et al. (2020), 078

we do not feed our model with segmented units 079

and let the network decide how to process the 080

video frames. However, on the target side (i.e, on 081

the decoder side), we explicitly force the model 082
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to generate sign glosses and transcribe source083

signs into a target language. This form of training084

defines a better objective for the network, and085

it clearly learns what input video frames are086

processed for and how internal representations087

should be generated in order to serve the target088

tasks. Camgoz et al. (2020) and other similar089

models only provide the network with one generic090

task/objective (to perform SLT), whereas we091

decompose it into more tangible and detailed goals,092

and this is the main distinctive feature about our093

model.094

095

Our aim for using multi-task learning is based096

upon exploiting the representation bias in the097

dataset, which helps the model to learn better098

internal representations that related tasks might099

prefer. Specifically, our proposed method is100

based on the hard parameter sharing paradigm101

for multi-tasking (Caruana, 1993), where tasks102

specific layers are placed after the hidden shared103

layers. For fair comparison with our proposed hard104

parameter sharing based model, we also train a105

baseline model (DSEP + +), which implements106

the soft parameter sharing paradigm of multi-task107

learning framework.108

109

Our main contribution in this work can be sum-110

marized as follows:111

• Exploiting available gloss sequence at both112

encoder and decoder side effectively, which113

performs better than the prior state-of-the-art114

(Camgoz et al., 2020). In the unavailability115

of gloss sequence, We use a multitasking ob-116

jective, where beside decoding source sign117

into fixed target language (i.e, German); we118

also translate source sign into a different target119

language (i.e, English). To train our decoder,120

we translate target side German sentence into121

English via an NMT model. This auxiliary122

multitasking objective outperforms baseline123

transformer.124

• Our proposed approach is task agnostic and125

similar multitasking objectives can be applied126

for the other tasks too.127

2 Related Work128

The SLT systems were introduced in the early129

2000s (Bungeroth and Ney, 2004) where language130

models were used to construct sentences by recog- 131

nizing the isolated signs(Chai et al., 2013). How- 132

ever, there was no sign of directly converting videos 133

into sentences i.e., end-to-end SLT system until 134

recently. For the SLT system, a large annotated 135

dataset is required but creation and annotation of 136

sign videos is a laborious task. A few datasets from 137

linguistic sources (Hanke et al., 2010; Schembri 138

et al., 2013) and broadcast interpretation (Cooper 139

and Bowden, 2009) were available which are either 140

weak (subtitles) or very few to build models which 141

would work on a large domain of discourse. 142

The CSLR methods (Koller et al., 2017, 2016) 143

(designed to learn from weakly annotated data) 144

were infeasible, as researchers assumed that sign 145

videos and their annotations share the same tempo- 146

ral order. With the creation of SL datasets such 147

as RWTH-PHOENIX-Weather 2012 (Forster 148

et al., 2012), RWTH-PHOENIX-Weather 2014 149

(Forster et al., 2014), or KETI (Ko et al., 2019) 150

made it possible for the researchers to directly work 151

on video frames and invent models to interpret 152

signs/meanings residing in them. 153

SLR models utilized convolutional modules to 154

encode the video frames and recurrent mechanisms 155

to capture temporal structures and dependencies in 156

between frames (Koller et al., 2017; Camgoz et al., 157

2017). SLT models also benefited from similar 158

technologies for translating information into actual 159

sentences (Gehring et al., 2017; Glorot and Bengio, 160

2010). Researchers customized this pipeline based 161

on their own needs, e.g. Ko et al. (2019) augmented 162

network inputs with keypoints extracted from hu- 163

man faces, hands, and body parts. Graves et al. 164

(2006) proposed the connectionist temporal classi- 165

fication (CTC) loss which is useful when working 166

with weakly annotated datasets. Due to its success, 167

CTC quickly turned into a mainstream loss func- 168

tion in sequence-to-sequence applications. Camgoz 169

et al. (2020) embedded the CTC loss into Trans- 170

formers (Vaswani et al., 2017) to learn the continu- 171

ous sign language recognition and translation. 172

3 Methodology 173

Current state-of-the-art for SLT (Camgoz et al., 174

2020) relies on a Transformer-based architecture 1 175

in which the encoder is fed with sign video frames 176

and the decoder produces translations conditioned 177

on encoder’s representations. In this framework, 178

1We assume that the reader is familiar with Transformers
so we skip related details.
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the encoder is trained to act as a gloss generator179

and this makes it possible to perform SLR and SLT180

simultaneously. Our model also follows a similar181

process but via a different and better architecture.182

While our best performing model implements183

the same encoding process as in Camgoz et al.184

(2020), our decoder is equipped with a multitasking185

strategy where SLT is decomposed into two tasks186

of i) sign-to-spoken language conversion where187

source (German in our case) signs are converted to188

the source tokens. Then we have ii) gloss sequence189

prediction that provides additional annotations to190

facilitate the SLT process. In case of the unavail-191

ability of gloss annotations a complementary sec-192

ond task is proposed, where we translate source193

signs into a target language. Figure 1 illustrates the194

high-level design of our architecture.195

As the figure shows, the decoder has three chan-196

nels, namely Dts, Dg and Dtr for transcribing in-197

put frames and generating gloss tokens and transla-198

tion, respectively. All these channels share param-199

eters of their first n blocks with each other. This200

feature helps us control the memory footprint of201

our model. Moreover, exchanging information in202

between channels yields richer internal representa-203

tions. In addition to those n blocks, each of Dg and204

Dtr has one additional block whose parameters are205

not shared. Therefore, both Dg and Dtr have n+1206

and Dts has n blocks. Dedicated blocks are de-207

signed to reach better performance and mitigate the208

complexity of multitasking. It is to be noted that209

the best performing architecture does not train Dg210

and Dtr simultaneously. Also, we only train Dtr211

to facilitate our complementary translation task,212

when we can not train Dg due to the unavailability213

of gloss sequences.214

The following sections describe the encoding and215

decoding process of our proposed model.216

3.1 Encoding Sign Videos217

The encoder takes a sign-video V as its input. We218

segment V into frames [f1, f2,...,fF ], then each219

frame is spatially embedded using a particular In-220

ception network (Szegedy et al., 2016) which is221

pre-trained and fine-tuned convolutional model for222

the SLR purposes (Koller et al., 2019). Interme-223

diate embeddings generated by the convolutional224

module are then passed through batch normaliza-225

tion and rectified linear units (Nair and Hinton,226

2010) in order to enrich internal representations.227

Impact of these units and how they boost the test-228

time performance are comprehensively discussed 229

in Camgoz et al. (2020). 230

Transformers are non-recurrent networks, so in 231

order to maintain the temporal order of frames we 232

augment embeddings with position information, as 233

shown in Equation 1: 234

It = CNN(ft)

Ît = It + PosEmb(t)
(1) 235

where CNN(.) refers to the convolutional model 236

and PosEmb(t) is the embedding correlates with 237

the t-th time step. This process is identical to posi- 238

tional encoding proposed by Vaswani et al. (2017). 239

Ît is an intermediate representation that consists of 240

intra-frame spacial and inter-frame positional infor- 241

mation. Each processed frame Ît is passed through 242

multiple encoder blocks and is transformed into an 243

output vector zt, as shown in Equation 2: 244

zt = Encoder(Ît) (2) 245

3.1.1 Enriching Encoder Representations 246

Our Encoder serves a strong, multi-channel de- 247

coder so it is supposed to provide as rich infor- 248

mation as possible. In our experiments we real- 249

ized that only encoding sign videos is not suffi- 250

cient enough and we need a more explicit way of 251

teaching the encoder about its role and form of 252

representations it should deliver. To this end we 253

tried to inject gloss-level information by forcing 254

the encoder to generate gloss labels in addition 255

to its main task. In other words, we treat the en- 256

coder as a sequence labeler to solve the P (G|V ) 257

problem, with G being a sequence of glosses. The 258

encoder consumes video frames and it generates 259

which glosses are related to those frames. This is 260

an ordinary sequence-to-sequence problem which 261

can be solved via an ordinary loss function such as 262

cross-entropy. However, framing the problem that 263

way requires an accurately-labeled dataset, which 264

is not practical in our setting. Instead, we used the 265

CTC loss which provides weaker supervision but 266

satisfies our needs. 267

The log-likelihood of a gloss sequence given the 268

input frames can be computed as shown in Equation 269

3: 270

log pθ(G|V ) = log
∑

a∈β−1(G)

pθ(a|V ) (3) 271

where θ is a set of all encoder parameters and β(G) 272

returns all the possible alignments. For more details 273
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Figure 1: Left: The architecture of an ordinary transformer decoder. Right: The architecture of the proposed
model that relies on a triple-channel decoder. Dtr and Dg denote two dedicated decoder blocks for translating input
sequences into the target language (English) and gloss sequences, respectively. Aside from these two channels there
is a third one, namely Dts, which transcribes the input and generates real German words. The backbone of Dtr and
Dg channels are shared and they only differ in the last block, i.e. the first n blocks but the last dedicated ones are
shared in between channels. Therefore, each of Dtr and Dg have n shared and 1 dedicated blocks. Dts has only n
blocks with no additional, dedicated block and all its n blocks share parameters with other channels.

about the fundamentals of CTC and gloss-frame274

alignments, see Graves et al. (2006) and Camgoz275

et al. (2020), respectively. Computing pθ(G|V ) is276

intractable, and so the summation in the equation277

can be simplified as in Equation 4:278

pθ(a|V ) =
∏
i

p(ai|V ; θ) (4)279

where frame-level gloss probabilities are directly280

obtained from the encoder which is connected to a281

Softmax function through a projection layer in our282

architecture.283

3.2 Multi-Channel Decoding284

Our decoder is essentially a Transformer-based285

sequence generator and follows the same struc-286

ture as other ordinary decoders (Vaswani et al.,287

2017). Therefore, it is a stack of Transformer288

blocks with all the positional encoding, masking,289

self-attention, encoder-decoder attention, position-290

wise feed-forward, and layer-norm components.291

We are also faithful to the original configuration of292

these components.293

Although the main skeleton of our decoder relies294

on Transformers, ours has multiple output channels295

instead of one. The first channel Dts transforms296

the video information to source-side words and297

can be used as a transcriber. Essentially, Dts is298

used to generate German sentences corresponding299

to source sign videos. Finally, the second chan- 300

nel denoted by Dg decodes the gloss sequences. 301

These channels exchange information among each 302

other through shared parameters and this helps the 303

decoder be aware of the target language, source 304

language, and auxiliary annotations about the input 305

frames at the same time, and we show empirically 306

this is the main origin of our model’s superiority. 307

A natural question arises if the gloss sequences are 308

unavailable, our proposed model is essentially a 309

transformer architecture which cannot exploit gloss 310

sequences both on encoder and decoder sides. In 311

that case, the second channel of the decoder, Dg is 312

useless. To alleviate this issue, we use a separate 313

channel Dtr in place of Dg which is to be used for 314

generation of target tokens corresponding to the 315

input video frames in another language other than 316

the language in which Dts is trained on. (for our 317

dataset, we generate sentences in English via Dtr, 318

which are machine translated from the available 319

German sentences). 320

We follow the structure as shown in Figure 1 321

to implement our decoder. Each channel of the 322

decoder is trained by computing the cross-entropy 323

loss of its generated tokens, as shown in Equation 324
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5:325

LCH = 1−
T∏
t=1

LCH∑
l=1

p(ŵl
t)p(w

l
t|st)

CH = {Dtr, Dts, Dg}

(5)326

where wl
t denotes the probability distribution of the327

l-th target token at time step t whose ground-truth328

label is provided by ŵl
t. Each channel generates a329

different token, e.g. w is a target-language token330

for Dtr, whereas Dg works with glosses. LCH331

shows the length of the vocabulary side that each332

channel works with. st is the internal state of the333

decoder which is computed as shown in Equation334

6:335

st = Decoder(wt−1|w1:t−1, z1:F ) (6)336

As the equation shows, generation of each token337

at a particular time step is conditioned on all the338

previously generated target words (w1:t−1 ) as well339

as encoder’s outputs (z1:F ) for the input video seg-340

ment.341

According to Equation 5, each channel has a342

dedicated loss. We also define an auxiliary loss for343

the encoder (Lenc). Therefore, the final loss for344

training our model is a composition of four loss345

terms, as shown in Equation 7:346

L = λtrLDtr + λtsLDts + λgLDg + λencLenc

(7)347

λ assigned to each loss is a weight to control the348

contribution of each loss to the translation process.349

3.3 Motivation of modeling choice350

Motivation for the individual decision are as fol-351

lows:352

• According to the prior state-of-the-art work353

Camgoz et al. (2020), exploiting gloss annota-354

tions via forcing the encoder of the model to355

generate gloss sequences serves the decoder356

to perform better in SLT. Based on this line of357

thought, we utilize gloss annotation by using358

a separate channel in the decoder (Dg) which359

decodes gloss sequence. Empirical results360

suggest that this choice improved the perfor-361

mance of the prior state of the art performance362

from 21.32 to 22.59 BLEU-4 score. Please363

refer to 1.364

• Annotating gloss sequence is costly and labo-365

rious and our model is reduced to a baseline366

transformer architecture in the unavailability367

of gloss sequence. To counter this problem, 368

we design a relatively easy (proxy) task which 369

can boost the accuracy of baseline transformer. 370

To this end, we propose a third channel of the 371

decoder (Dtr) which decodes the sign videos 372

into an additional language (here we choose 373

English) rather than corresponding gloss se- 374

quence. 375

4 Experimental Study 376

4.1 Datasets 377

To train our models and in the inter- 378

est of fair comparisons we selected the 379

RWTH-PHOENIX-Weather 2014 T dataset2 380

(Camgoz et al., 2018). It contains the sign language 381

videos along with their gloss annotations and 382

translations in German. 383

To train our proposed model in the unavailability 384

of the gloss sequences, we extend their train set by 385

translating German spoken language sentences into 386

English. For translation, we make use of the NMT 387

system developed as a WMT-19 submission by Ng 388

et al. (2019)3. We provide an example from our 389

training set in Table 1. 390

Firstly, we normalize punctuation & tokenize our 391

target side of the dataset. Following tokenization, 392

we use Byte Pair Encoding Scheme (BPE) (Sen- 393

nrich et al., 2016), as currently used by almost all 394

state-of-the-art NMT systems, to pre-process the 395

target side of our dataset. This solves the problem 396

of out-of-vocabulary (OOV) words in the test set 397

as BPE encodes unknown words as a sequence of 398

sub-words. 399

4.2 Hyper-parameter optimization 400

We employ Grid Search based hyper-parameter op- 401

timization. A set of initial estimates of the follow- 402

ing hyper-parameters are chosen: 403

batch_size ∈ {16, 32, 64, 128}
num_attention_heads ∈ {4, 8}

λg ∈ {0.2, 0.5, 0.7, 1.0}
λenc ∈ {1.0, 2.0, 5.0, 10.0}

num_enc, num_dec ∈ {3, 4, 5, 6}

(8) 404

For all the experiments, we set λts = 1.0. With a 405

specific set of hyper-parameter our model is set to 406

run. 407

After the hyper-parameter search is complete, we 408

2Link : RWTH-PHOENIX-Weather 2014 T
3WMT19 Fairseq

5

https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/
https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md


Gloss NORDWEST HEUTE NACHT TROCKEN BLEIBEN SUEDWEST KOENNEN REGEN ORT GEWITTER DAZU
Text im nordwesten bleibt es heute nacht meist trocken sonst muss mit teilweise kräftigen schauern gerechnet werden örtlich mit blitz und donner

Signer Signer08
Name train/11August_2010_Wednesday_tagesschau-5

Sign Video . . . .

English Translation In the northwest, it will remain mostly dry tonight, with some heavy showers expected with thunder and lightning

Table 1: An example from the RWTH-PHOENIX-Weather 2014 T dataset used for training.

Tasks DEV TEST
Sign to Text w/o gloss supervision BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4
Sign2Text (Camgoz et al., 2020) 45.54 32.60 25.30 20.69 45.34 32.31 24.83 20.17

Our Sign2Text 1 45.43 32.67 25.38 20.74 45.45 32.68 25.24 20.52
DSEP 44.52 31.96 25.00 20.58 45.17 32.82 25.45 20.90

DSEP ++ 2 46.55 34.08 26.50 21.63 46.56 34.04 26.39 21.59

Table 2: Comparison between baseline models. For more about our baseline models, see section 4.3
1 We replicated their experiment but with employing label smoothing parameter of 0.2
2 Separate decoder network (DSEP ) with extra gloss level supervision on the encoder side (see section 3.1.1)

use best hyper-parameter choices (batch_size =409

32, num_enc = 3, num_dec = 3, λenc = 5.0,410

λg = 0.7 and num_attention_heads = 8) out-411

put by the hyper-parameter optimizer to train and412

test our models. Note that the best performing413

model setup assigns λtr = 0 in the availability414

of gloss sequence (ref. Table 3). Adam (Kingma415

and Ba, 2014) is used as our preferred optimizer416

to train the models with an initial learning rate417

of 10−3 (β1=0.9, β2=0.998) and a weight decay418

of 10−3. We use plateau learning rate scheduler419

which tracks the development set performance. We420

evaluate our model on the development set after421

every 200 iterations of training steps and if the422

BLEU-4 score (Papineni et al. (2002)) does not423

increase for 15 evaluation steps, learning rate is424

reduced by a factor of 0.7 until it reaches 10−7,425

after which the training is stopped. While testing426

our proposed model, we use beam search to decode427

the target tokens with beam-length varying from 1428

to 10.429

We tune hyper-parameters of the baselines as well430

as our proposed method to compare their perfor-431

mance on an equal footing. Without hyper parame-432

ter tuning, our method has a performance score of433

22.4±0.2 BLEU-4 over a range of hyper parameter434

choices (with fixed no of encoder and decoder lay-435

ers of 3, λenc = 5.0, λtr = 0, λts = 1.0). Though436

we report only the best performance score of 22.59437

BLEU-4 score, the lowest performance of 22.2 is438

still better than the state-of-the-art score proposed439

in Camgoz et al. (2020), which is 21.32 .440

4.3 Baseline Models 441

We design two baseline models for our experiments. 442

The design decision is based on the premise that 443

we cannot use any gloss-level supervision while 444

training the baseline models. This entails having 445

a fair comparison with our proposed architecture 446

which uses internal gloss-level annotations. 447

4.3.1 Ordinary Transformer Network 448

We train an ordinary transformer model by set- 449

ting hyper-parameters associated with the joint 450

loss term (see equation 7) λenc, λg, λtr to zero. 451

It alleviates any gloss-level supervision and our 452

triple-channel decoder works as a single decoder 453

which directly decodes German spoken language 454

sentences from the sign language videos. This 455

model has the poorest performance of 20.52 BLEU- 456

4 score. 457

4.3.2 Separate Decoder Network (DSEP ) 458

Instead of our proposed model, which is equipped 459

with multitasking by exploiting a shared decoder 460

representation via Dg, baseline model DSEP has 461

2 separate decoders which do not share any infor- 462

mation with each other. In Figure 2, DecT and 463

DecG refer to two separate decoders which use 464

the same encoder representation to predict the tar- 465

get sequence and gloss sequence from the input 466

sequence, respectively. DecT and DecG are re- 467

spectively complementary to that of Dts and Dg 468

in our proposed model. As the decoders in this 469

architecture (DSEP ) do not share any previous 470

decoder layers as our proposed architecture does, 471

this baseline model suffers from weak supervision 472
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Tasks DEV TEST
Sign to Gloss to Text BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Sign2Gloss2Text (Camgoz et al., 2020) 47.73 34.82 27.11 22.11 48.47 35.35 27.57 22.45
Sign2Gloss → Gloss2Text (Camgoz et al., 2020) 47.84 34.65 26.88 21.84 47.74 34.37 26.55 21.59

End-to-End Sign to (Gloss+Text) BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4
Recog. Sign2(Gloss+Text) (Camgoz et al., 2020) 46.56 34.03 26.83 22.12 47.20 34.46 26.75 21.80
Trans. Sign2(Gloss+Text) (Camgoz et al., 2020) 47.26 34.40 27.05 22.38 46.61 33.73 26.19 21.32

T 5.0
0.0,0.0 45.03 32.31 24.92 20.26 46.66 33.20 25.81 21.07

Our T 0.0
0.7,0.0 44.85 33.17 26.16 21.61 44.66 32.78 25.62 21.08

Our T 5.0
0.7,0.2 47.42 35.21 27.77 22.90 47.07 34.57 26.96 22.05

Our T 5.0
0.7,0.0 48.01 35.46 27.94 23.05 47.59 35.16 27.60 22.59

Table 3: Comparison between state-of-the-art and our model. Here, Tλenc

λg,λtr
denotes our proposed architecture. For

different values of λenc, λg and λtr, we tabulate their effects on test BLEU-4 score. We show three of our best
results and tabulate them accordingly. For all experiments, we set λts = 1.0. T 5.0

0.0,0.0 refers to our re-implementation
of state-of-the-art architecture(Camgoz et al., 2020) with the same training setting described in Camgoz et al. (2020)

of gloss annotations and thus perform somewhat473

poorly (BLEU-4 score of 20.90) compared to our474

proposed model with λenc = 0 (BLEU-4 score of475

21.08).476

When equipped with encoder side gloss sequence477

decoding, by setting λenc = 5.0, performance of478

DSEP is increased to 21.59. We call this enhanced479

DSEP as DSEP++480

4.4 Results & Comparisons481

Sign to Text tasks with gloss supervision can be482

divided into two parts, namely Sign2Gloss2Text483

and Sign2(Gloss+Text). We discuss these in briefly484

and compare with our proposed method.485

4.4.1 Models with mid-level gloss supervision486

Sign2Gloss2Text uses intermediate gloss level rep-487

resentation. It is a two-step process. The first step488

uses a CSLR (Continuous sign language recogni-489

tion) model to generate the gloss sequences corre-490

sponding to a sign video. In the second step, the491

generated glosses are fed to train an NMT model492

which acts as a Gloss2Text translator, translating493

gloss sequences into a sequence of spoken language494

words. A variation of Sign2Gloss2Text is known495

as Sign2Gloss → Gloss2Text. This is similar to496

Sign2Gloss2Text, but instead uses best performing497

Gloss2Text network instead of training it from the498

scratch. For both of these architectures, we list the499

state-of-the-art scores in Table 3.500

4.4.2 End-to-End models501

The second category of tasks (Sign2(Gloss+Text))502

essentially refers to learning both the gloss se-503

quences and textual representations jointly, as done504

in Camgoz et al. (2020). Our model is an ex-505

tension over the approach used in Camgoz et al.506

(2020). Table 3 shows that our model with best507

performing setup obtains a BLEU-4 score of 22.59,508

which is 0.79 absolute increase from the score 509

of 21.80 obtained by Camgoz et al. (2020) for 510

Sign2(Gloss+Text) tasks. The improvement was 511

found to be statistically significant over the prior 512

state-of-the-arts using bootstrap hypothesis testing 513
4 to test the Null Hypothesis (H0) that the same 514

system generated the two hypothesis translations, 515

using the technique utilized in Camgoz et al. (2020) 516

and our proposed method. At 95% confidence level, 517

P-Value comes out to be 0.029. This entails that 518

H0 can be rejected, subsequently firming the claim 519

that our method is better than the existing state-of- 520

the-arts. 521

Figure 2: Architecture of our baseline model with one
encoder and two separate decoders. Here, f1, f2,......,fn
are the spatial representation of the video frames ob-
tained from the pre-trained CNN. DecT and DecG de-
note two separate decoders for decoding text and gloss
sequence, respectively. For Sign2Text experiments, we
drop DecG.

522

4.5 Ablation experiments 523

Performance of our proposed architecture depends 524

on the choice of the weights (λenc, λtr, λg) associ- 525

ated with the loss term (7) used to train our model. 526

We perform a ablation study to show the effect of 527

4Bootstrap Hypothesis Testing
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hyper-parameter variations. Firstly, we consider528

our baseline models and consider how their perfor-529

mance changes if the gloss-level supervision at the530

encoder side (c.f 3.1.1 ) is added. Secondly, we531

consider our proposed model and compare it with532

their baseline counterparts.533

Models METRICS
Models for Sign2(Gloss+Text) BLEU-4 ROUGE

T 0.0
0.0,0.0 20.52 45.92

T 0.0
0.0,0.5 20.79 47.03
DSEP 20.90 46.41
T 5.0
0.0,0.0

† 21.07 46.00
T 0.0
0.7,0.0 21.08 46.06

DSEP ++ 21.59 47.69
T 5.0
0.7,0.2 22.05 48.25

T 5.0
0.7,0.0 22.59 48.82

Table 4: Comparison between proposed models with
different loss weights. Tλenc

λg,λtr
denotes our proposed

architecture. For different values of λenc, λg and λtr,
we tabulate their effects on test BLEU-4 score.

† T 5.0
0.0,0.0 is the re-implementation of the architecture

from Camgoz et al. (2020) using their choice of hyper-
parameters.

We can conclude the following based on the534

Table 4. The model without any gloss-level su-535

pervision (T 0.0
0.0,0.0) has the lowest BLEU-4 score536

of 20.52. Gloss-level supervision using separate537

decoder network (DSEP ) boosts the baseline ac-538

curacy from 20.52 to 20.90. Training DSEP + +539

which uses the architecture from DSEP along with540

an added objective of enriching encoder represen-541

tation (refer to Section 3.1.1) could subsequently542

increase the performance of DSEP from 20.90 to543

21.59. Following this increasing trend of perfor-544

mance we hypothesize that adding gloss level su-545

pervision, both at the encoder and decoder side, is546

the most useful multitasking approach to follow.547

We follow the previous experiments using our pro-548

posed model. Our baseline DSEP uses extra super-549

vision from gloss sequences employing two sepa-550

rate decoders, implementing a soft parameter shar-551

ing paradigm for multi-tasking. For fair compari-552

son with DSEP , we run our proposed model which553

implements a hard parameter sharing paradigm of554

multi-tasking (T 0.0
0.7,0.0). This uses a shared back-555

bone of n layers of decoder and 2 task-specific556

decoder layers. It boosts up the performance of557

DSEP from 20.90 to 21.08, subsequently showing558

that using representation from shared layers could559

boost multitasking performance when compared560

to separately obtained representations. T 5.0
0.7,0.0 de-561

notes our proposed model with an added objective562

of training the encoder with an auxiliary loss Lenc, 563

thereby setting λenc = 5.0. It gives a huge boost 564

in terms of BLEU-4 score. This achieves the new 565

state-of-the-art score of 22.59, with an impressive 566

ROUGE score of 48.82. 567

Note that our re-implementation of the state-of- 568

the-art (Camgoz et al., 2020) (T 5.0
0.0,0.0) and our 569

proposed model with decoder only multi-tasking 570

(T 0.0
0.7,0.0) have the similar performance, thereby 571

firming our belief that exploiting gloss sequence in 572

the target side is as useful as it is for the source side. 573

Though our dual channel decoder has a dedicated 574

channel (Dtr) for German to English translation, 575

training it with Dg and Dts harms the overall per- 576

formance (by setting λtr = 0.2)5. When gloss 577

annotations are unavailable, we can use German 578

to English translation as a proxy task to improve 579

the baseline performance. It is facilitated by only 580

training two channels, Dtr and Dts. T 0.0
0.0,0.5 sur- 581

passes the performance of the baseline Sign2Text 582

model slightly (from 20.52 to 20.79 absolute im- 583

provement in BLEU-4 score). 584

We hypothesize that the marginal improvement is 585

due to the fact that data used to train Dtr is ob- 586

tained from an NMT model and performance could 587

be improved more if we obtain gold standard hu- 588

man translation. 589

5 Conclusion 590

In this paper, we have proposed a transformer based 591

novel architecture to perform the task of CSLR and 592

SLT in an end-to-end fashion. Findings of this 593

research can be summarized below: 594

• Exploiting intermediate sequences in an end- 595

to-end fashion (e.g. gloss sequences) can be 596

an effective approach to train the SLT models. 597

• If the gloss sequences are available, we can 598

use some other task as a proxy for improving 599

the performance of baseline model and we 600

hypothesize that the task design is important. 601

As our approach is both model and task agnostic, 602

extending our approach to other language under- 603

standing (NLU) tasks using various deep learning 604

architectures is a promising research direction and 605

in future we would like to explore that direction. 606

5For comparison, see BLEU-4 score of T 5.0
0.7,0.2 and

T 5.0
0.7,0.0 in Table 4
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