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Abstract

Sign language translation (SLT) is usually seen
as a two-step process of continuous sign lan-
guage recognition (CSLR) and gloss-to-text
translation. We propose a novel, Transformer-
based (Vaswani et al., 2017) architecture to
jointly perform CSLR and sign-translation in
an end-to-end fashion. We extend the ordi-
nary Transformer decoder with two channels
to support multitasking, where each channel
is devoted to solve a particular problem. To
control the memory footprint of our model,
channels are designed to share most of their
parameters among each other. However, each
channel still has a dedicated set of parame-
ters which is fine-tuned with respect to the
channel’s task. In order to evaluate the pro-
posed architecture, we focus on translating
German signs into English sequences and
use the RWTH-PHOENIX-Weather 2014
T corpus in our experiments. Evaluation results
indicate that the mixture of information pro-
vided by the multitask decoder was successful
and enabled us to achieve superior performance
in comparison to other SLT models.

1 Introduction

Sign languages (SLs) are the main medium of com-
munication for people with hearing problems. In
such languages, linguistic phenomena are in con-
junction with other factors such as body move-
ments, poses, and facial expressions. Accordingly,
existing tools designed to process spoken languages
are not directly applicable to SLs. It involves trans-
lating sign videos to a target language and this
makes this task relatively harder compared to tra-
ditional Neural Machine Translation (NMT) task.
In this paper, we particularly focus on translating
these languages and propose a tailored solution
to interpret signs from video frames and translate
them into text sequences in a target language.

One approach to SLT is to view the process as
a combination of three tasks, viz. sign segmenta-

tion, sign language recognition (SLR), and gloss-
to-word translation. In text sequences, punctuation
marks and white spaces help segment them into
fundamental units. Silent regions, namely pauses,
between phonemes play the same role in speech
processing tasks (van Hemert, 1991). However, the
task of segmentation is not very straightforward
when working with SLs and a SL processing task
may require some sort of segmentation (Santemiz
et al., 2009; Khan et al., 2014). The purpose of sign
segmentation is to be clear about the input units,
their boundaries, and see how to feed the model.
Once segmentation is completed, a next step would
be understanding/recognizing information carried
out by signs, which is referred to as SLR in the liter-
ature. What SLR generates is a sequence of special
tokens known as sign language glosses. The final
step, translation, takes glosses and transforms them
into words in the target language.

Performing each of these tasks separately re-
quires dedicated models and datasets, which could
be quite challenging. Camgoz et al. (2020) pro-
posed a much simpler but more effective solution.
They treated the aforementioned three-step pipeline
as an end-to-end process of transforming video
frames into target-language words and show that
their approach can in-fact outperform other conven-
tional methods. In their model, SLT is carried out
via a single neural network and there is no clear
step defined for segmentation or SLR. The network,
itself, decides how to set boundaries and use infor-
mation stored in video frames to accomplish the
task.

Our approach to SLT is also to develop an
end-to-end model. We propose a Transformer
(Vaswani et al., 2017) model which relies on
multitasking. Similar to Camgoz et al. (2020),
we do not feed our model with segmented units
and let the network decide how to process the
video frames. However, on the target side (i.e, on
the decoder side), we explicitly force the model



to generate sign glosses and transcribe source
signs into a target language. This form of training
defines a better objective for the network, and
it clearly learns what input video frames are
processed for and how internal representations
should be generated in order to serve the target
tasks. Camgoz et al. (2020) and other similar
models only provide the network with one generic
task/objective (to perform SLT), whereas we
decompose it into more tangible and detailed goals,
and this is the main distinctive feature about our
model.

Our aim for using multi-task learning is based
upon exploiting the representation bias in the
dataset, which helps the model to learn better
internal representations that related tasks might
prefer.  Specifically, our proposed method is
based on the hard parameter sharing paradigm
for multi-tasking (Caruana, 1993), where tasks
specific layers are placed after the hidden shared
layers. For fair comparison with our proposed hard
parameter sharing based model, we also train a
baseline model (Dgsgp + +), which implements
the soft parameter sharing paradigm of multi-task
learning framework.

Our main contribution in this work can be sum-
marized as follows:

» Exploiting available gloss sequence at both
encoder and decoder side effectively, which
performs better than the prior state-of-the-art
(Camgoz et al., 2020). In the unavailability
of gloss sequence, We use a multitasking ob-
jective, where beside decoding source sign
into fixed target language (i.e, German); we
also translate source sign into a different target
language (i.e, English). To train our decoder,
we translate target side German sentence into
English via an NMT model. This auxiliary
multitasking objective outperforms baseline
transformer.

Our proposed approach is task agnostic and
similar multitasking objectives can be applied
for the other tasks too.

2 Related Work

The SLT systems were introduced in the early
2000s (Bungeroth and Ney, 2004) where language

models were used to construct sentences by recog-
nizing the isolated signs(Chai et al., 2013). How-
ever, there was no sign of directly converting videos
into sentences i.e., end-to-end SLT system until
recently. For the SLT system, a large annotated
dataset is required but creation and annotation of
sign videos is a laborious task. A few datasets from
linguistic sources (Hanke et al., 2010; Schembri
et al., 2013) and broadcast interpretation (Cooper
and Bowden, 2009) were available which are either
weak (subtitles) or very few to build models which
would work on a large domain of discourse.

The CSLR methods (Koller et al., 2017, 2016)
(designed to learn from weakly annotated data)
were infeasible, as researchers assumed that sign
videos and their annotations share the same tempo-
ral order. With the creation of SL datasets such
as RWTH-PHOENIX-Weather 2012 (Forster
etal.,2012), RWTH-PHOENIX-Weather 2014
(Forster et al., 2014), or KETI (Ko et al., 2019)
made it possible for the researchers to directly work
on video frames and invent models to interpret
signs/meanings residing in them.

SLR models utilized convolutional modules to
encode the video frames and recurrent mechanisms
to capture temporal structures and dependencies in
between frames (Koller et al., 2017; Camgoz et al.,
2017). SLT models also benefited from similar
technologies for translating information into actual
sentences (Gehring et al., 2017; Glorot and Bengio,
2010). Researchers customized this pipeline based
on their own needs, e.g. Ko et al. (2019) augmented
network inputs with keypoints extracted from hu-
man faces, hands, and body parts. Graves et al.
(2006) proposed the connectionist temporal classi-
fication (CTC) loss which is useful when working
with weakly annotated datasets. Due to its success,
CTC quickly turned into a mainstream loss func-
tion in sequence-to-sequence applications. Camgoz
et al. (2020) embedded the CTC loss into Trans-
formers (Vaswani et al., 2017) to learn the continu-
ous sign language recognition and translation.

3 Methodology

Current state-of-the-art for SLT (Camgoz et al.,
2020) relies on a Transformer-based architecture !
in which the encoder is fed with sign video frames
and the decoder produces translations conditioned
on encoder’s representations. In this framework,

"We assume that the reader is familiar with Transformers
so we skip related details.



the encoder is trained to act as a gloss generator
and this makes it possible to perform SLR and SLT
simultaneously. Our model also follows a similar
process but via a different and better architecture.

While our best performing model implements
the same encoding process as in Camgoz et al.
(2020), our decoder is equipped with a multitasking
strategy where SLT is decomposed into two tasks
of i) sign-to-spoken language conversion where
source (German in our case) signs are converted to
the source tokens. Then we have ii) gloss sequence
prediction that provides additional annotations to
facilitate the SLT process. In case of the unavail-
ability of gloss annotations a complementary sec-
ond task is proposed, where we translate source
signs into a target language. Figure 1 illustrates the
high-level design of our architecture.

As the figure shows, the decoder has three chan-
nels, namely Dy, Dy and Dy, for transcribing in-
put frames and generating gloss tokens and transla-
tion, respectively. All these channels share param-
eters of their first n blocks with each other. This
feature helps us control the memory footprint of
our model. Moreover, exchanging information in
between channels yields richer internal representa-
tions. In addition to those n blocks, each of D, and
Dy, has one additional block whose parameters are
not shared. Therefore, both D, and Dy, have n + 1
and D;s has n blocks. Dedicated blocks are de-
signed to reach better performance and mitigate the
complexity of multitasking. It is to be noted that
the best performing architecture does not train D,
and Dy, simultaneously. Also, we only train Dy,
to facilitate our complementary translation task,
when we can not train D, due to the unavailability
of gloss sequences.

The following sections describe the encoding and
decoding process of our proposed model.

3.1 Encoding Sign Videos

The encoder takes a sign-video V as its input. We
segment V into frames [fi, fo,...,fr], then each
frame is spatially embedded using a particular In-
ception network (Szegedy et al., 2016) which is
pre-trained and fine-tuned convolutional model for
the SLR purposes (Koller et al., 2019). Interme-
diate embeddings generated by the convolutional
module are then passed through batch normaliza-
tion and rectified linear units (Nair and Hinton,
2010) in order to enrich internal representations.
Impact of these units and how they boost the test-

time performance are comprehensively discussed
in Camgoz et al. (2020).

Transformers are non-recurrent networks, so in
order to maintain the temporal order of frames we
augment embeddings with position information, as
shown in Equation 1:

Iy = CNN(f;)

. ey
I; = I; + PosEmb(t)

where CNN(.) refers to the convolutional model
and PosEmb(t) is the embedding correlates with
the #-th time step. This process is identical to posi-
tional encoding proposed by Vaswani et al. (2017).
I, is an intermediate representation that consists of
intra-frame spacial and inter-frame positional infor-
mation. Each processed frame I is passed through
multiple encoder blocks and is transformed into an
output vector 2y, as shown in Equation 2:

2 = Encoder(ft) 2)

3.1.1 Enriching Encoder Representations

Our Encoder serves a strong, multi-channel de-
coder so it is supposed to provide as rich infor-
mation as possible. In our experiments we real-
ized that only encoding sign videos is not suffi-
cient enough and we need a more explicit way of
teaching the encoder about its role and form of
representations it should deliver. To this end we
tried to inject gloss-level information by forcing
the encoder to generate gloss labels in addition
to its main task. In other words, we treat the en-
coder as a sequence labeler to solve the P(G|V)
problem, with G being a sequence of glosses. The
encoder consumes video frames and it generates
which glosses are related to those frames. This is
an ordinary sequence-to-sequence problem which
can be solved via an ordinary loss function such as
cross-entropy. However, framing the problem that
way requires an accurately-labeled dataset, which
is not practical in our setting. Instead, we used the
CTC loss which provides weaker supervision but
satisfies our needs.

The log-likelihood of a gloss sequence given the
input frames can be computed as shown in Equation
3:

log po(G|V) = log Z po(alV) 3)
acf~1(G)

where 6 is a set of all encoder parameters and 3(G)
returns all the possible alignments. For more details
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Figure 1: Left: The architecture of an ordinary transformer decoder. Right: The architecture of the proposed
model that relies on a triple-channel decoder. Dy, and D, denote two dedicated decoder blocks for translating input
sequences into the target language (English) and gloss sequences, respectively. Aside from these two channels there
is a third one, namely D, which transcribes the input and generates real German words. The backbone of D, and
D, channels are shared and they only differ in the last block, i.e. the first n blocks but the last dedicated ones are
shared in between channels. Therefore, each of Dy, and D, have n shared and 1 dedicated blocks. Dy, has only n
blocks with no additional, dedicated block and all its n blocks share parameters with other channels.

about the fundamentals of CTC and gloss-frame
alignments, see Graves et al. (2006) and Camgoz
et al. (2020), respectively. Computing pg(G|V) is
intractable, and so the summation in the equation
can be simplified as in Equation 4:

po(alV) = Hp(ai\V; 0) (4)

where frame-level gloss probabilities are directly
obtained from the encoder which is connected to a
Softmax function through a projection layer in our
architecture.

3.2 Multi-Channel Decoding

Our decoder is essentially a Transformer-based
sequence generator and follows the same struc-
ture as other ordinary decoders (Vaswani et al.,
2017). Therefore, it is a stack of Transformer
blocks with all the positional encoding, masking,
self-attention, encoder-decoder attention, position-
wise feed-forward, and layer-norm components.
We are also faithful to the original configuration of
these components.

Although the main skeleton of our decoder relies
on Transformers, ours has multiple output channels
instead of one. The first channel D; transforms
the video information to source-side words and
can be used as a transcriber. Essentially, Dy, is
used to generate German sentences corresponding

to source sign videos. Finally, the second chan-
nel denoted by D, decodes the gloss sequences.
These channels exchange information among each
other through shared parameters and this helps the
decoder be aware of the target language, source
language, and auxiliary annotations about the input
frames at the same time, and we show empirically
this is the main origin of our model’s superiority.
A natural question arises if the gloss sequences are
unavailable, our proposed model is essentially a
transformer architecture which cannot exploit gloss
sequences both on encoder and decoder sides. In
that case, the second channel of the decoder, D, is
useless. To alleviate this issue, we use a separate
channel Dy, in place of D, which is to be used for
generation of target tokens corresponding to the
input video frames in another language other than
the language in which Dy, is trained on. (for our
dataset, we generate sentences in English via Dy,.,
which are machine translated from the available
German sentences).

We follow the structure as shown in Figure 1
to implement our decoder. Each channel of the
decoder is trained by computing the cross-entropy
loss of its generated tokens, as shown in Equation
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where w! denotes the probability distribution of the
[-th target token at time step ¢ whose ground-truth
label is provided by w}. Each channel generates a
different token, e.g. w is a target-language token
for Dy, whereas D, works with glosses. Loy
shows the length of the vocabulary side that each
channel works with. s; is the internal state of the
decoder which is computed as shown in Equation
6:

s¢ = Decoder(w;—1|wi4—1, 21:.F) 6)

As the equation shows, generation of each token
at a particular time step is conditioned on all the
previously generated target words (wy.;—1 ) as well
as encoder’s outputs (z1.r) for the input video seg-
ment.

According to Equation 5, each channel has a
dedicated loss. We also define an auxiliary loss for
the encoder (L.,.). Therefore, the final loss for
training our model is a composition of four loss
terms, as shown in Equation 7:

L= )\trﬁDtT + >\ts['Dt5 + )\g['Dg + )\encﬁenc
(7
A assigned to each loss is a weight to control the
contribution of each loss to the translation process.

3.3 Motivation of modeling choice

Motivation for the individual decision are as fol-
lows:

* According to the prior state-of-the-art work
Camgoz et al. (2020), exploiting gloss annota-
tions via forcing the encoder of the model to
generate gloss sequences serves the decoder
to perform better in SLT. Based on this line of
thought, we utilize gloss annotation by using
a separate channel in the decoder (D) which
decodes gloss sequence. Empirical results
suggest that this choice improved the perfor-
mance of the prior state of the art performance
from 21.32 to 22.59 BLEU-4 score. Please
refer to 1.

* Annotating gloss sequence is costly and labo-
rious and our model is reduced to a baseline
transformer architecture in the unavailability

of gloss sequence. To counter this problem,
we design a relatively easy (proxy) task which
can boost the accuracy of baseline transformer.
To this end, we propose a third channel of the
decoder (Dy,-) which decodes the sign videos
into an additional language (here we choose
English) rather than corresponding gloss se-
quence.

4 Experimental Study
4.1 Datasets

To train our models and in the inter-
est of fair comparisons we selected the
RWTH-PHOENIX-Weather 2014 T dataset?
(Camgoz et al., 2018). It contains the sign language
videos along with their gloss annotations and
translations in German.

To train our proposed model in the unavailability

of the gloss sequences, we extend their train set by
translating German spoken language sentences into
English. For translation, we make use of the NMT
system developed as a WMT-19 submission by Ng
et al. (2019)3. We provide an example from our
training set in Table 1.
Firstly, we normalize punctuation & tokenize our
target side of the dataset. Following tokenization,
we use Byte Pair Encoding Scheme (BPE) (Sen-
nrich et al., 2016), as currently used by almost all
state-of-the-art NMT systems, to pre-process the
target side of our dataset. This solves the problem
of out-of-vocabulary (OOV) words in the test set
as BPE encodes unknown words as a sequence of
sub-words.

4.2 Hyper-parameter optimization

We employ Grid Search based hyper-parameter op-
timization. A set of initial estimates of the follow-
ing hyper-parameters are chosen:

batch_size € {16,32,64,128}

num_attention_heads € {4, 8}
A, €{0.2,0.5,0.7,1.0}  (8)

Aenc € {1.0,2.0,5.0,10.0}

num_enc, num_dec € {3,4,5,6}

For all the experiments, we set A;s = 1.0. With a
specific set of hyper-parameter our model is set to
run.

After the hyper-parameter search is complete, we

’Link : RWTH-PHOENIX-Weather 2014 T
SWMT19 Fairseq


https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/
https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md

Gloss NORDWEST HEUTE NACHT TROCKEN BLEIBEN SUEDWEST KOENNEN REGEN ORT GEWITTER DAZU

Text im nordwesten bleibt es heute nacht meist trocken sonst muss mit teilweise kriftigen schauern gerechnet werden ortlich mit blitz und donner
Signer Signer08
Name train/1 1 August_2010_Wednesday_tagesschau-5

Sign Video

TILITE

English Translation

In the northwest, it will remain mostly dry tonight, with some heavy showers expected with thunder and lightning

Table 1: An example from the RWATH-PHOENIX-Weather 2014 T dataset used for training.

Tasks DEV TEST
Sign to Text w/o gloss supervision | BLEU-1 BLEU-2 BLEU-3 BLEU-4 | BLEU-1 BLEU-2 BLEU-3 BLEU-4
Sign2Text (Camgoz et al., 2020) 45.54 32.60 25.30 20.69 45.34 32.31 24.83 20.17
Our Sign2Text ! 45.43 32.67 25.38 20.74 45.45 32.68 25.24 20.52
Dsgp 44.52 31.96 25.00 20.58 45.17 32.82 25.45 20.90
Dsgp ++? 46.55 34.08 26.50 21.63 46.56 34.04 26.39 21.59

Table 2: Comparison between baseline models. For more about our baseline models, see section 4.3

! We replicated their experiment but with employing label smoothing parameter of 0.2
2 Separate decoder network (Ds g p) with extra gloss level supervision on the encoder side (see section 3.1.1)

use best hyper-parameter choices (batch_size =
32, num_enc = 3, num_dec = 3, Aepe = 5.0,
Ag = 0.7 and num_attention_heads = 8) out-
put by the hyper-parameter optimizer to train and
test our models. Note that the best performing
model setup assigns Ay = 0 in the availability
of gloss sequence (ref. Table 3). Adam (Kingma
and Ba, 2014) is used as our preferred optimizer
to train the models with an initial learning rate
of 1073 (B1=0.9, $2=0.998) and a weight decay
of 1073, We use plateau learning rate scheduler
which tracks the development set performance. We
evaluate our model on the development set after
every 200 iterations of training steps and if the
BLEU-4 score (Papineni et al. (2002)) does not
increase for 15 evaluation steps, learning rate is
reduced by a factor of 0.7 until it reaches 1077,
after which the training is stopped. While testing
our proposed model, we use beam search to decode
the target tokens with beam-length varying from 1
to 10.

We tune hyper-parameters of the baselines as well
as our proposed method to compare their perfor-
mance on an equal footing. Without hyper parame-
ter tuning, our method has a performance score of
22.440.2 BLEU-4 over a range of hyper parameter
choices (with fixed no of encoder and decoder lay-
ers of 3, Aepe = 5.0, Ay = 0, A\gs = 1.0). Though
we report only the best performance score of 22.59
BLEU-4 score, the lowest performance of 22.2 is
still better than the state-of-the-art score proposed
in Camgoz et al. (2020), which is 21.32.

4.3 Baseline Models

We design two baseline models for our experiments.
The design decision is based on the premise that
we cannot use any gloss-level supervision while
training the baseline models. This entails having
a fair comparison with our proposed architecture
which uses internal gloss-level annotations.

4.3.1 Ordinary Transformer Network

We train an ordinary transformer model by set-
ting hyper-parameters associated with the joint
loss term (see equation 7) Acpe, Ag, Ay tO Zero.
It alleviates any gloss-level supervision and our
triple-channel decoder works as a single decoder
which directly decodes German spoken language
sentences from the sign language videos. This
model has the poorest performance of 20.52 BLEU-
4 score.

4.3.2 Separate Decoder Network (Dggp)

Instead of our proposed model, which is equipped
with multitasking by exploiting a shared decoder
representation via D, baseline model Dgpp has
2 separate decoders which do not share any infor-
mation with each other. In Figure 2, Decy and
Decg refer to two separate decoders which use
the same encoder representation to predict the tar-
get sequence and gloss sequence from the input
sequence, respectively. Decr and Decg are re-
spectively complementary to that of D;s and D,
in our proposed model. As the decoders in this
architecture (Dggp) do not share any previous
decoder layers as our proposed architecture does,
this baseline model suffers from weak supervision



Tasks DEV TEST
Sign to Gloss to Text BLEU-1 BLEU-2 BLEU-3 BLEU-4 | BLEU-1 BLEU-2 BLEU-3 BLEU-4
Sign2Gloss2Text (Camgoz et al., 2020) 47.73 34.82 27.11 22.11 48.47 35.35 27.57 22.45
Sign2Gloss — Gloss2Text (Camgoz et al., 2020) 47.84 34.65 26.88 21.84 47.74 34.37 26.55 21.59
End-to-End Sign to (Gloss+Text) BLEU-1 BLEU-2 BLEU-3 BLEU-4 | BLEU-1 BLEU-2 BLEU-3 BLEU-4
Recog. Sign2(Gloss+Text) (Camgoz et al., 2020) 46.56 34.03 26.83 22.12 47.20 34.46 26.75 21.80
Trans. Sign2(Gloss+Text) (Camgoz et al., 2020) 47.26 34.40 27.05 22.38 46.61 33.73 26.19 21.32
TS'&O.O 45.03 32.31 24.92 20.26 46.66 33.20 25.81 21.07
Our T(?_'RO_O 44.85 33.17 26.16 21.61 44.66 32.78 25.62 21.08
Our 757 5 47.42 35.21 27.77 22.90 47.07 34.57 26.96 22.05
Our T} 3'70,0,0 48.01 35.46 27.94 23.05 47.59 35.16 27.60 22.59

Table 3: Comparison between state-of-the-art and our model. Here, ngﬂfftr denotes our proposed architecture. For
different values of Ac,c, Ay and )¢, we tabulate their effects on test BLEU-4 score. We show three of our best
results and tabulate them accordingly. For all experiments, we set \ys = 1.0. T¢) 6’70'0 refers to our re-implementation
of state-of-the-art architecture(Camgoz et al., 2020) with the same training setting described in Camgoz et al. (2020)

of gloss annotations and thus perform somewhat
poorly (BLEU-4 score of 20.90) compared to our
proposed model with ., = 0 (BLEU-4 score of
21.08).

When equipped with encoder side gloss sequence
decoding, by setting A, = 5.0, performance of
Dggp is increased to 21.59. We call this enhanced
Dsgp as Dsppyy

4.4 Results & Comparisons

Sign to Text tasks with gloss supervision can be
divided into two parts, namely Sign2Gloss2Text
and Sign2(Gloss+Text). We discuss these in briefly
and compare with our proposed method.

4.4.1 Models with mid-level gloss supervision

Sign2Gloss2Text uses intermediate gloss level rep-
resentation. It is a two-step process. The first step
uses a CSLR (Continuous sign language recogni-
tion) model to generate the gloss sequences corre-
sponding to a sign video. In the second step, the
generated glosses are fed to train an NMT model
which acts as a Gloss2Text translator, translating
gloss sequences into a sequence of spoken language
words. A variation of Sign2Gloss2Text is known
as Sign2Gloss — Gloss2Text. This is similar to
Sign2Gloss2Text, but instead uses best performing
Gloss2Text network instead of training it from the
scratch. For both of these architectures, we list the
state-of-the-art scores in Table 3.

4.4.2 End-to-End models

The second category of tasks (Sign2(Gloss+Text))
essentially refers to learning both the gloss se-
quences and textual representations jointly, as done
in Camgoz et al. (2020). Our model is an ex-
tension over the approach used in Camgoz et al.
(2020). Table 3 shows that our model with best
performing setup obtains a BLEU-4 score of 22.59,

which is 0.79 absolute increase from the score
of 21.80 obtained by Camgoz et al. (2020) for
Sign2(Gloss+Text) tasks. The improvement was
found to be statistically significant over the prior
state-of-the-arts using bootstrap hypothesis testing
4 to test the Null Hypothesis (Hj) that the same
system generated the two hypothesis translations,
using the technique utilized in Camgoz et al. (2020)
and our proposed method. At 95% confidence level,
P-Value comes out to be 0.029. This entails that
Hj can be rejected, subsequently firming the claim
that our method is better than the existing state-of-
the-arts.
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Figure 2: Architecture of our baseline model with one
encoder and two separate decoders. Here, f1, fo,......,fn
are the spatial representation of the video frames ob-
tained from the pre-trained CNN. Decr and Decg de-
note two separate decoders for decoding text and gloss
sequence, respectively. For Sign2Text experiments, we
drop Decg.

4.5 Ablation experiments

Performance of our proposed architecture depends
on the choice of the weights (Acpe, Atr, Ag) associ-
ated with the loss term (7) used to train our model.
We perform a ablation study to show the effect of

*Bootstrap Hypothesis Testing


https://github.com/moses-smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-hypothesis-difference-significance.pl

hyper-parameter variations. Firstly, we consider
our baseline models and consider how their perfor-
mance changes if the gloss-level supervision at the
encoder side (c.f 3.1.1 ) is added. Secondly, we
consider our proposed model and compare it with
their baseline counterparts.

Models METRICS
Models for Sign2(Gloss+Text) | BLEU-4 | ROUGE
T5.:0.0.0 20.52 45.92
To0.0.5 20.79 47.03
Dsep 20.90 46.41
To:0.0.0 21.07 46.00
T670.0 21.08 46.06
Dsgp + + 21.59 47.69
To70.2 22.05 4825
T5.7.0.0 22.59 48.82

Table 4: Comparison between proposed models with
different loss weights. Ti‘;f/\cﬁ denotes our proposed
architecture. For different values of \.p,c, Ay and A¢;.,
we tabulate their effects on test BLEU-4 score.

T ‘&0,0 is the re-implementation of the architecture
from Camgoz et al. (2020) using their choice of hyper-
parameters.

We can conclude the following based on the
Table 4. The model without any gloss-level su-
pervision (Ttg).'([)),o.o) has the lowest BLEU-4 score
of 20.52. Gloss-level supervision using separate
decoder network (Dggp) boosts the baseline ac-
curacy from 20.52 to 20.90. Training Dsgp + +
which uses the architecture from Dggp along with
an added objective of enriching encoder represen-
tation (refer to Section 3.1.1) could subsequently
increase the performance of Dggp from 20.90 to
21.59. Following this increasing trend of perfor-
mance we hypothesize that adding gloss level su-
pervision, both at the encoder and decoder side, is
the most useful multitasking approach to follow.
We follow the previous experiments using our pro-
posed model. Our baseline Dggp uses extra super-
vision from gloss sequences employing two sepa-
rate decoders, implementing a soft parameter shar-
ing paradigm for multi-tasking. For fair compari-
son with Dggp, we run our proposed model which
implements a hard parameter sharing paradigm of
multi-tasking (T§7 ). This uses a shared back-
bone of n layers of decoder and 2 task-specific
decoder layers. It boosts up the performance of
Dggp from 20.90 to 21.08, subsequently showing
that using representation from shared layers could
boost multitasking performance when compared
to separately obtained representations. T(jr’_'% 0.0 de-
notes our proposed model with an added objective

of training the encoder with an auxiliary loss Ly,
thereby setting A, = 5.0. It gives a huge boost
in terms of BLEU-4 score. This achieves the new
state-of-the-art score of 22.59, with an impressive
ROUGE score of 48.82.

Note that our re-implementation of the state-of-
the-art (Camgoz et al., 2020) (T05.'007 0.0) and our
proposed model with decoder only multi-tasking
(T(?.'%o.o) have the similar performance, thereby
firming our belief that exploiting gloss sequence in
the target side is as useful as it is for the source side.
Though our dual channel decoder has a dedicated
channel (Dy,) for German to English translation,
training it with D4 and Dy harms the overall per-
formance (by setting A, = 0.2)°. When gloss
annotations are unavailable, we can use German
to English translation as a proxy task to improve
the baseline performance. It is facilitated by only
training two channels, Dy, and Dys. Tgg5 sur-
passes the performance of the baseline Sign2Text
model slightly (from 20.52 to 20.79 absolute im-
provement in BLEU-4 score).

We hypothesize that the marginal improvement is
due to the fact that data used to train Dy, is ob-
tained from an NMT model and performance could
be improved more if we obtain gold standard hu-
man translation.

5 Conclusion

In this paper, we have proposed a transformer based
novel architecture to perform the task of CSLR and
SLT in an end-to-end fashion. Findings of this
research can be summarized below:

* Exploiting intermediate sequences in an end-
to-end fashion (e.g. gloss sequences) can be
an effective approach to train the SLT models.

* If the gloss sequences are available, we can
use some other task as a proxy for improving
the performance of baseline model and we
hypothesize that the task design is important.

As our approach is both model and task agnostic,
extending our approach to other language under-
standing (NLU) tasks using various deep learning
architectures is a promising research direction and
in future we would like to explore that direction.

For comparison, see BLEU-4 score of T;+ o and
T570.0 in Table 4
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