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Abstract

The pursuit of universal black-box optimization
(BBO) algorithms is a longstanding goal. How-
ever, unlike domains such as language or vision,
where scaling structured data has driven gener-
alization, progress in offline BBO remains hin-
dered by the lack of unified representations for
heterogeneous numerical spaces. Thus, exist-
ing offline BBO approaches are constrained to
single-task and fixed-dimensional settings, failing
to achieve cross-domain universal optimization.
Recent advances in language models (LMs) of-
fer a promising path forward: their embeddings
capture latent relationships in a unifying way, en-
abling universal optimization across different data
types possible. In this paper, we discuss multi-
ple potential approaches, including an end-to-end
learning framework in the form of next-token pre-
diction, as well as prioritizing the learning of la-
tent spaces with strong representational capabili-
ties. To validate the effectiveness of these meth-
ods, we collect offline BBO tasks and data from
open-source academic works for training. Ex-
periments demonstrate the universality and effec-
tiveness of our proposed methods. Our findings
suggest that unifying language model priors and
learning string embedding space can overcome
traditional barriers in universal BBO, paving the
way for general-purpose BBO algorithms. The
code is provided at https://github.com/
lamda-bbo/universal-offline-bbo.
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1. Introduction
The pursuit of universal black-box optimization (BBO) al-
gorithms, i.e., capable of adapting to diverse problems, has
been a long-standing challenge (Wolpert & Macready, 1997;
Chen et al., 2022b; Lehre & Lin, 2024). Traditional BBO
methods, including Bayesian optimization (Garnett, 2023)
and evolutionary algorithms (Bäck, 1996; Zhou et al., 2019),
excel in many tasks (Turner et al., 2021). However, these
traditional BBO methods are not only confined to single-
type and fixed-dimensional settings (Chen et al., 2022b;
Song et al., 2025) but also struggle to leverage large-scale
offline data (Song et al., 2024c; Wei et al., 2024), heavily
relying on online evaluations, which is a severe limitation
that becomes particularly challenging in many real-world
expensive scenarios.

Offline black-box optimization (Trabucco et al., 2022; Kim
et al., 2025) aims to identify optimal designs for an unknown
objective function using only a fixed and pre-collected
dataset, which attempts to mitigate the issue mentioned
above. Existing offline BBO approaches have shown im-
pressive performance, such as in real-world engineering
design (Tanabe & Ishibuchi, 2020; Kumar et al., 2022), pro-
tein design (Khan et al., 2023; Chen et al., 2023b; Kim et al.,
2023), and molecule design (Gaulton et al., 2012; Stanton
et al., 2022; Dara et al., 2022; Xue et al., 2024). Their suc-
cess relies on two assumptions: (1) the training and test
tasks share identical input dimensions and variable types,
and (2) sufficient historical data exists for each task.

While real-world optimization problems often exhibit in-
herent correlations across domains (Bai et al., 2023; Wang
et al., 2024a), existing offline BBO methods face two chal-
lenges: (1) insufficient training data for model develop-
ment (Nguyen et al., 2023), and (2) fundamental inability to
exploit cross-task relationships. The critical barrier lies in
the heterogeneity of search spaces (Fan et al., 2024). This
limitation forces practitioners to collect large datasets for
every new problem, due to their inability to unify parametric
representations across domains, which is unsustainable in
practical scenarios characterized by sparse data availability
and diverse task requirements. Thus, there is an urgent need
for universal offline BBO.
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Fortunately, recent advances have demonstrated the feasibil-
ity of universal optimization in string-based search spaces
using language models (LMs) (Song et al., 2024a;b; Nguyen
et al., 2024; Tang et al., 2025). By tokenizing numerical
parameters into string sequences, LM-based optimizers out-
perform traditional regression models in cross-task gener-
alization, particularly when trained on multi-task datasets
spanning diverse domains. However, there are still several
critical gaps in universal offline BBO. First, prior work does
not discuss distinct paradigms in detail, failing to clarify
their relative strengths or compatibility. Second, these works
neglect the unique requirements of offline BBO, where algo-
rithms must avoid overfitting to limited historical data (Tra-
bucco et al., 2021; Fu & Levine, 2021; Yu et al., 2021; Chen
et al., 2022a; Qi et al., 2022; Dao et al., 2024b; Hoang et al.,
2024). Besides, the geometric properties of learned latent
spaces remain under-explored, despite their direct impact
on optimization stability and sample efficiency.

In this paper, we propose a universal string-based offline
BBO framework, UniSO. We first introduce several com-
ponents for UniSO, including string-based data representa-
tion, and metadata formulation. Then, we use two model
architectures for universal offline BBO, including token-
targeted regressor (Song et al., 2024a) and numeric-targeted
regressor (Nguyen et al., 2024), formulating two Vanilla
UniSO variants, i.e., UniSO-T and UniSO-N, respectively.
However, several issues exist when directly applying these
Vanilla UniSO variants to offline BBO tasks, as shown in
Fig. 3. To address these issues, we propose two improve-
ments, i.e., embedding distribution alignment via metadata
guidance and local embedding smoothness enhancement.
Experiments demonstrate the universality and effectiveness
of our proposed methods, particularly showing that UniSO-
T achieves superior cross-task generalization through multi-
task training on heterogeneous search spaces.

Our findings reveal three key insights: (1) a unified rep-
resentation through string-based space enables universal
offline BBO possible, (2) geometric regularization of em-
bedding spaces significantly enhances optimization stability,
and (3) metadata-guided learning effectively bridges the
domain gap between training and unseen test tasks. These
advancements collectively overcome traditional barriers in
universal offline BBO, paving the way for general-purpose
optimization across various types and dimensions.

2. Preliminaries
2.1. Offline BBO

Given the design space X , where X could be
be CONTINUOUS, INTEGER, CATEGORICAL, or
PERMUTATION, and a fixed offline dataset D, offline
BBO (Trabucco et al., 2022; Kim et al., 2025) aims to seek
an optimal design x∗ that maximizes a black-box objective

function f : X → R, i.e., x∗ = argmaxx∈X f(x). This
optimization process relies solely on the available dataset,
with no online evaluations permitted during optimization.
Specifically, an algorithm operates exclusively on a
fixed dataset D = {(xi, yi)}Ni=1, where each instance
xi represents a design (e.g., the composition of a DNA
sequence), and its corresponding scalar value yi = f(xi)
denotes the objective score (e.g., a specific property score
of the designed DNA sequence). Besides, for an offline
BBO task, there usually exists task-level metadata m,
which can distinguish it from other tasks and potentially
hint the information of the unknown objective function
f . Thus, similar to the multi-task regression case (Song
et al., 2024a), an offline BBO task can be formulated as
T = (X , f,D,m).

A prevalent approach for offline BBO is the forward ap-
proach, which first trains a surrogate model, typically a
deep neural network f̂θ : X → R parameterized by θ, to
learn a scoring function for the designs where the output
corresponds to the predicting score; then searches for the
final design by maximizing the model’s output. The scoring
function can be learned by regression (Trabucco et al., 2021;
Chen et al., 2023a) or ranking (Tan et al., 2025). We provide
a comprehensive related work in Appendix A, including the
detailed forward and backward approaches of offline BBO,
and LLM for BBO.

2.2. Universal Offline BBO

Recent advances in foundational models for black-box opti-
mization research (Song et al., 2024a;b; Nguyen et al., 2024;
Tang et al., 2025; Song & Bahri, 2025) have shown the po-
tential of universal optimization in string-based space. Thus,
we first extend conventional offline BBO to the universal
setting. The goal of universal offline BBO is to simulta-
neously address multiple tasks through a universal foun-
dational model. Consider nT optimization tasks {Ti}nT

i=1

with three key characteristics: (1) Heterogeneous design
spaces: Mixed-type parameters and varying dimensionality
across tasks; (2) Divergent objectives: Unique optimization
functions for each task; and (3) Task-specific metadata:
Distinct auxiliary information accompanying each task.

While more challenging than traditional single-task BBO,
the universal approach offers two key advantages. First,
it enables knowledge transfer between related tasks (e.g.,
morphology optimization in Ant (Brockman et al., 2016)
and D’Kitty (Ahn et al., 2020)), overcoming the isolation
assumption of conventional methods that process tasks inde-
pendently. Second, it addresses the data scarcity challenge
common in real-world applications (Nguyen et al., 2023).
Traditional methods fail with limited historical data, while
the universal offline BBO model can leverage cross-task
patterns to guide optimization.
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Name: Ant Morphology
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Figure 1. Framework of universal string-based offline BBO.

3. Method
In this section, we introduce potential methods to solve
universal offline BBO. We begin by outlining the general
framework of universal string-based offline BBO in Sec-
tion 3.1, where we will present two variants based on mod-
eling. Then, we discuss the issues of these variants in Sec-
tion 3.2, which motivate us to improve the framework via
metadata guidance and smoothness enhancement in Sec-
tion 3.3 and Section 3.4, respectively. In Section 3.5, we
discuss how to balance multiple losses and apply the im-
provement to the variants.

3.1. UniSO: Universal String-based Offline BBO

In this subsection, we present the general framework for
universal offline BBO, which is illustrated in Fig. 1. The
framework comprises four main components. Firstly, we
convert the design-score offline data into string represen-
tations due to the heterogeneity of different search spaces
from different tasks. Next, we discuss the importance and
formulation for metadata, which facilitates the subsequent
universal multi-task regressor training intended for down-
stream optimization. We propose two modeling variants for
universal regressor instantiation based on different ways of
handling objective scores, which are derived from recent
advancements of string-based LLM for BBO (Song et al.,
2024a; Nguyen et al., 2024; Tang et al., 2025). Finally,
we elaborate on our string-based search strategy within the
model. This pipeline aligns with the forward approach in
traditional offline BBO, which typically encompasses train-
ing a scoring model followed by model-inner optimization,
as discussed in Section 2.1.

3.1.1. STRING-BASED DATA REPRESENTATION

To solve multiple offline BBO problems with heterogeneous
design spaces simultaneously, traditional methods that re-
strict the algorithm inside a fixed search scope are inapplica-
ble, which calls for a more flexible representation for design-
score pair data. Recently, Song et al. (2024a); Nguyen et al.
(2024) have shown that string representation over x using

LLM is efficient and beneficial for BBO, enabling optimiza-
tion in dynamic design spaces. Following (Nguyen et al.,
2024), we represent each design x by a JSON dictionary-
like format, e.g., a design x = (0, 1)⊤ can be represented
as {"x0":0,"x1":1}.

As for the score y, details of handling y encompass token-
based method and numeric-based method, which are deter-
mined by modeling methods of the regressor, which we will
introduce in Section 3.1.3.

3.1.2. FORMULATION OF METADATA

While the mentioned string-based data representation ex-
hibits flexibility, it alone is insufficient for effectively dis-
tinguishing between tasks and performing optimization in
a multi-task suite. The integration of metadata into algo-
rithms is quite essential for universal offline BBO, due to
the following reasons: (1) from the NFL theorem (Wolpert
& Macready, 1997), an algorithm tends to treat all possi-
ble tasks uniformly equal given only (x, y) data without
any priors, which cannot perform well over all tasks. Thus,
expert priors (Hvarfner et al., 2022; 2024) or user-defined
task-specific metadata should be considered for optimiza-
tion (Song et al., 2024b; Lindauer et al., 2024); (2) meta-
data enables training acceleration (Gao et al., 2025) and
is crucial for task distinguishment when expert priors are
limited (Chen et al., 2022b).

Thus, we extend each string x by inserting its associated
metadata m in the beginning. In order to maintain concision
and preserve key information for optimization, we formulate
the expressions of metadata m, consisting of three text-
based task specifications: (1) task name to distinguish from
other tasks; (2) brief description of the task with a concise
natural language summary; and (3) detailed specification of
the optimization objective. We provide all the metadata
we used in our experiments in Appendix D. We tokenize
the (m,x) data using SentencePiece tokenizer (Kudo &
Richardson, 2018) by default.

3.1.3. MULTI-TASK REGRESSOR TRAINING FOR
UNIVERSAL OFFLINE BBO

The scoring model for offline BBO can be modeled by
regression or ranking model. Here, we initiate the scoring
model by a universal multi-task regressor for simplification.
As shown in Fig. 2, we consider two variants of universal
end-to-end regressors, UniSO-T and UniSO-N, which differ
from how to deal with the objective score y.

UniSO-T: Token-targeted regressor. UniSO-T is a regres-
sor with the objective of predicting the y tokens. Specifi-
cally, it encodes the score y into a list of tokens, trains a
sequence-to-sequence auto-regressive model to predict the
objective sequence, and then maps the sequence back to
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Language Model Tokenizer

Language Model
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(a) UniSO-T: Token-targeted
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(b) UniSO-N: Numeric-targeted

Language Model Embedder
(e.g., T5 Embedder)

1-dim 
Regressor

Cross-Entropy
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Figure 2. Model structure of UniSO-T (left) and UniSO-N (right).

numerical values. A typical modeling of UniSO-T is Om-
niPred (Song et al., 2024a) , which tokenizes y by digits
using P10 encoding 1 from (Charton, 2022) and trains a
universal regressor based on next token prediction. Inspired
by OmniPred, we tokenize y using P10 encoding and im-
plement a lightweight variant of the T5 model (Raffel et al.,
2020). The model architecture incorporates Prefix-LM train-
ing (Liu et al., 2018) and is trained using cross-entropy loss
on our custom dataset, as the training data of OmniPred
follows a distinct organizational structure and remains un-
available.

UniSO-N: Numeric-targeted regressor. UniSO-N is an-
other type of universal multi-task regressor, which first em-
beds the inputs into a unified latent space, and then trains
a downstream regressor to map from embeddings to nu-
merical objective scores. Inspired by (Nguyen et al., 2024),
which uses a pre-trained T5 encoder (Raffel et al., 2020) and
trains an in-context regressor for Bayesian optimization, we
also employ a pre-trained T5-Small embedder 2, and train a
MLP regressor mapping from embeddings to y with mean
squared error (MSE). We also normalize y from different
tasks using the same strategy in (Nguyen et al., 2024), which
incorporates three steps: 1) utilize z-score normalization
to shift the score of a single task; 2) implement a normal
distribution fitting procedure on the subset of observations
falling below the median value, utilizing a percentile-to-z-
score transformation, to reduce sensitivity to bad outliers;
3) transform the scoring distribution through sequential ap-
plication of min-max scaling y ← y−ymin

ymax−ymin
and logarithmic

transformation for re-scaling. Besides, although regressor
training in offline BBO utilizes global z-score normalization,
global statistics like mean value or standard variation of the
embeddings are inaccessible, and thus batch normalization
is applied to the embeddings before objective regression.

1For example, y = 1.31 = 131 × 10−2 is encoded into
<+><1><3><1><E-2>

2https://huggingface.co/google-t5/
t5-small
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Figure 3. t-SNE plots comparing embedding distributions of
vanilla UniSO-T and improved UniSO-T on five Design-
Bench (Trabucco et al., 2022) tasks. The embedding distribu-
tions of vanilla UniSO-T show mixed and overlapping embeddings
with a circular pattern, lacking clear task boundaries. Our im-
proved method (right) achieves three improvements: (1) separating
embeddings into distinct clusters for better task discrimination,
(2) maintaining proximity between similar tasks (e.g., Ant and
D’Kitty) to enable knowledge sharing between related domains,
and (3) generating compact and smooth intra-task embedding dis-
tributions for stable representations.

3.1.4. STRING-BASED MODEL-INNER SEARCH

Upon completion of model training, the final designs are ob-
tained through output maximization via model-inner search.
Given the inherent challenges of computing exact gradi-
ents in discrete string space compared to continuous nu-
merical space, we adopt black-box optimization strategies
for this search process. Our implementation primarily em-
ploys Bayesian optimization (Garnett, 2023), which have
demonstrated superior performance in gradient-free opti-
mization scenarios. The technical specifications of our BO
implementation, including acquisition function and code
dependencies, can be found in Appendix B.2.

3.2. Issues of the Vanilla UniSO

Although the typical methods for UniSO-T and UniSO-N
have demonstrated success in online BBO (Nguyen et al.,
2024), there still exist limitations for offline BBO. Firstly,
both the regressors in UniSO-T and UniSO-N cannot effec-
tively distinguish different tasks without billions of data. To
understand this, we visualize the t-SNE (Maaten & Hinton,
2008) plots of the embeddings of vanilla UniSO-T in the left
sub-figure of Fig. 3, where the latent embeddings of vanilla
UniSO-T show overlapping and circular pattern, lacking
clear boundaries to distinguish tasks.

Besides, the embedding latent spaces for both UniSO-T
and UniSO-N are not particularly designed for BBO, while
properties of the latent spaces, like smoothness (Lee et al.,
2023) or invariance (Qi et al., 2022), are usually important
for downstream optimization.

Aiming at addressing these limitations, we introduce our
proposed improvements in the following two subsections,
which can be applied to both the modelings, and regulate
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the embedding space based on two different perspectives,
metadata guidance and smoothness enhancement.

3.3. Embedding Distribution Alignment via Metadata
Guidance

As discussed above, the embeddings exhibit strange shape
and cannot distinguish different tasks. Thus, we adopt a
novel approach to align the distribution of input embed-
dings with their corresponding metadata embeddings via
contrastive learning. The core idea is to guide the learning
process by encouraging input embeddings to exhibit sim-
ilarity patterns that mirror those observed in the metadata
space.

Specifically, we first encode the input strings through the
encoder to derive their embeddings (T5 encoder outputs for
UniSO-T and embedder outputs for UniSO-N), while simul-
taneously employing a pre-trained expert language model
embedder (T5-Small by default) to generate embeddings
for metadata. After implementing mean pooling on both
embeddings, we transform these intermediate representa-
tions through their respective nonlinear projection heads
into a shared embedding space, yielding the final latent rep-
resentations zx ∈ Rn×d and zm ∈ Rn×d, where n denotes
the batch size and d represents the dimension of the shared
embedding space. Such a nonlinear projection is widely
used in contrastive learning (Chen et al., 2020).

These projected representations are then utilized to com-
pute the contrastive loss to align the distribution of input
embeddings with their corresponding metadata embeddings:

Lcon=− 1

N(N − 1)

∑
1≤i<j≤N

ŝmij log

(
exp(

sxij
τ )∑

k ̸=iexp(
sxik
τ )

)
,

where: sxij =
zx
i
⊤zx

j

∥zx
i ∥·∥zx

j ∥
represents the cosine similarity

between input embeddings, and similarly, smij is defined
as the cosine similarity of the metadata embedding; ŝmij =

smij−mini,j(s
m
ij )

maxi,j(smij )−mini,j(smij )
is the normalized metadata similarity;

τ is the temperature parameter; and N is the data size.

The contrastive loss function enforces a dual objective by
minimizing the KL divergence between the input embedding
similarity distribution and the metadata-derived target distri-
bution. An illustrative understanding of this loss function is
that embeddings of the inputs with similar metadata remain
proximate while dissimilar ones maintain distinct bound-
aries. As shown in the right sub-figure in Fig. 3, compared
to the vanilla UniSO-T case, our proposed improvement is
capable of distinguishing dissimilar tasks with the clearer
clusters, while similar tasks like Ant and D’Kitty remain
close, enabling structured information sharing for similar
tasks.

However, this contrastive loss would raise non-smoothness 3

inside a task. The input embeddings from a same task (i.e.,
with the same metadata) can occupy arbitrary positions
within a localized region of the high-dimensional space,
forming either distinct clusters or non-uniform distributions,
as long as they maintain adequate contrast (i.e., cosine simi-
larity in the loss function) with respect to embeddings with
dissimilar metadata. In Section 3.4, we further enhance the
local smoothness of embeddings from a single task.

3.4. Local Embedding Smoothness Enhancement

Smoothness is crucial for neural network generaliza-
tion (Nakkiran et al., 2019) and robustness (Weng et al.,
2018), and smoothness of latent representation is also im-
portant for BBO (Zhang et al., 2020; Lee et al., 2023). For
a given task T , to enhance the local smoothness of embed-
ding from T , inspired by (Lee et al., 2023), we regulate the
embedding space via the Lipschitz loss:

LlipT =
∑

1≤i<j≤NT

max

(
0,
|yi − yj |
∥zi − zj∥2

− L

)
,

where NT is the dataset size of task T and L represents the
local Lipschitz constant. We set L as the median value of the
Lipschitz matrix, i.e., L = median1≤i<j≤nT (

yi−yj

∥zi−zj∥2
),

by default following (Lee et al., 2023). The Lipschitz loss
increases the correlation between the Euclidean distance of
latent embeddings and the differences in their corresponding
objective scores, enforcing the local embeddings to remain a
local smoothness similar to the corresponding scores. Then,
we compute the weighted sum of Lipschitz losses across all
tasks, where the weights are designed to balance the impact
of varying dataset sizes of different tasks:

Llip =

nT∑
i=1

∑nT
j=1 NTj

NTi

LlipTi
,

where nT denotes the number of tasks, and
∑nT

j=1 NTj

NTi
rep-

resents the weighting coefficient for task Ti to compensate
for the disparity in dataset sizes across tasks. In our im-
plementation, due to insufficient task-specific samples in
individual batches of the shuffled training dataset, we utilize
an unshuffled dataset that presents tasks sequentially for
computing the Lipschitz loss.

3.5. Loss Balancing and Application to UniSO

With the main lossLmain to train the universal regressor (i.e.,
cross-entropy for UniSO-T or MSE for UniSO-N) and the
mentioned regularization losses in hand, a naı̈ve approach
to handle these losses is to sum them up directly. However,

3In this work, smoothness refers to continuity in the embedding
space.
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simply summing them up would be effected by the scales
of the losses, which focuses mainly on the loss with the
largest scale during gradient backpropagation (Chen et al.,
2018). Thus, a crucial problem is how to balance the effects
of these losses for training?

To solve this, inspired by MetaBalance (He et al., 2022)
which normalizes the gradients of different losses based on
the gradient norm, we employ a similar yet simple technique
to automatically balance the gradient of different losses
based on the loss values. Specifically, for the main loss
Lmain and regularization losses Lcon,Llip, we calculate the
gradient as:

∂Ltotal

∂θ
=

∂Lmain

∂θ
+
Lmain

Lcon + δ
· ∂Lcon

∂θ

+
Lmain

Llip + δ
· ∂Llip

∂θ
, (1)

where θ represents the parameters of the model and δ =
10−10 is a small constant added for numerical stability. This
loss propagation mechanism adjusts the relative contribu-
tions of auxiliary losses by scaling them with respect to the
main loss, maintaining task balance while preserving the
principal optimization direction.

The balanced loss function is incorporated into both model-
ing frameworks as follows. For UniSO-T modeling, since
an end-to-end universal regressor is trained from scratch,
we update the parameters θ with respect to Eq. (1) during
training where we view the last hidden state of the encoder
model as embeddings. For UniSO-N modeling, since the
vanilla approach employs a pre-trained embedder without
parameter updates during downstream numerical regressor
training, we propose a two-stage approach: first fine-tuning
the embedder via ∂Ltotal

∂θ = ∂Lcon

∂θ + Lcon

Llip+δ ·
∂Llip

∂θ similar
to Eq. (1), and then training the regressor while keeping the
embedder parameters frozen.

4. Experiment
In this section, we empirically study our proposed frame-
work of universal string-based offline BBO on various tasks.
We first introduce the experimental settings and the tasks
in Section 4.1, and then show the performance of UniSO
and answer several important research questions (RQs) in
Section 4.2.

4.1. Experimental Settings and Tasks

Detailed settings. Following recent works in string-based
LLM for BBO (Song et al., 2024a; Nguyen et al., 2024),
we use a lightweight version of encoder-decoder T5 mod-
els (Raffel et al., 2020) for both the UniSO-T and UniSO-N
variants. For UniSO-N series, we instantiate the downstream
regressor as a MLP with two hidden layers of 2048 units

and train the model using AdamW optimizer (Loshchilov
& Hutter, 2019) for 200 epochs with a batch size of 128.
After the UniSO regressor is trained, we use BO as the
default optimizer to search inside the model for 200 iter-
ations, maintaining a population size that corresponds to
the desired number of final solutions, which is set as 128
following prior works in offline BBO (Trabucco et al., 2022;
Qian et al., 2025).

Tasks. We consider unconstrained tasks from two bench-
marks for offline BBO, the popular Design-Bench (Tra-
bucco et al., 2022) and the recently proposed benchmark
SOO-Bench (Qian et al., 2025). Specifically, we select
Ant Morphology (Brockman et al., 2016), D’Kitty Mor-
phology (Ahn et al., 2020), Superconductor (Hamidieh,
2018), TF Bind 8 and TF Bind 10 (Barrera et al., 2016) from
Design-Bench 4, and GTOPX 2,3,4,6 (Schlueter et al., 2021)
from SOO-Bench. These tasks cover the CONTINUOUS and
CATEGORICAL search spaces, and vary from low to high
dimensional cases. Detailed description and properties of
these tasks can be found in Appendix C.

4.2. Experimental Results

In this section, we present our experimental findings, aiming
to answer the following RQs.

RQ1: Is the string-based representation for designs
versatile to offline BBO in the single task cases? Pre-
vious works have demonstrated the potential of utilizing
string-based representation for universal regression (Song
et al., 2024a; Tang et al., 2025) and traditional BBO algo-
rithms (Nguyen et al., 2024). However, its versatility to
offline BBO is still unexplored. Thus, for a sanity check,
we compare the vanilla variants of UniSO-T and UniSO-N
to the expert model trained with numerical inputs within a
single offline BBO task in this RQ. For a fair comparison,
the experts are instantiated as the same structure of the ob-
jective regressor in UniSO-N, and we normalize the input
designs using batch normalization, followed by model-inner
search by both EAs and gradient ascent. Training details of
the expert models can be found in Appendix B.1.

As shown in Table 1, we find that UniSO methods which
utilize string representation inputs: (1) are capable of solv-
ing offline BBO, with most of the final scores exceeding
the best score in offline dataset D(best), except for Ant and
D’Kitty in UniSO-N; (2) show competitive results against
the numeric-input experts, where UniSO-T achieves the an
average rank of 2.000 among the four methods, performing
the best on 3 of the 10 tasks and being the runner-up on 4
of 10 tasks, while the best expert, BN + BO (i.e., batch nor-

4Following recent works in offline BBO (Tan et al., 2025; Yun
et al., 2024), we exclude three tasks from Design-Bench, and
provide detailed explanation in Appendix C.1.
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Table 1. Un-normalized scores in unconstrained tasks from Design-Bench and SOO-Bench, where the best and runner-up results on each
task are Blue and Violet, respectively. D(best) denotes the best score in the offline dataset and BN represents batch normalization for
numerical input designs. Both numeric-input experts and string-input UniSO methods are trained within a single task.

Numeric-input Experts String-input UniSO
Task D(best) BN + BO BN + Grad UniSO-T UniSO-N

Ant 165.326 241.350 ± 288.922 229.462 ± 165.869 385.945 ± 95.402 103.669 ± 263.572
D’Kitty 199.363 102.972 ± 130.192 183.263 ± 62.436 243.428 ± 20.137 -4.674 ± 9.298

Superconductor 74.000 83.884 ± 4.099 97.137 ± 6.113 79.783 ± 0.507 80.129 ± 3.320
TF Bind 8 0.439 0.898 ± 0.088 0.959 ± 0.023 0.919 ± 0.033 0.502 ± 0.064

TF Bind 10 0.005 0.454 ± 0.091 0.888 ± 0.229 0.776 ± 0.101 0.390 ± 0.227
GTOPX 2 -195.586 -74.763 ± 8.577 -128.310 ± 15.616 -73.484 ± 8.081 -72.981 ± 20.446
GTOPX 3 -151.190 -40.104 ± 2.748 -151.190 ± 0.000 -41.952 ± 8.451 -58.933 ± 14.143
GTOPX 4 -215.716 -87.976 ± 3.497 -215.710 ± 0.000 -75.022 ± 12.215 -113.715 ± 15.528
GTOPX 6 -112.599 -49.660 ± 6.170 -112.599 ± 0.000 -50.391 ± 4.048 -48.771 ± 3.725

Avg. Rank / 2.333 ± 0.667 2.667 ± 1.333 2.000 ± 0.943 3.000 ± 1.155

malization for numerical input designs and using BO as the
model-inner optimization algorithm), only ranks 2.333 on
average. However, UniSO-N demonstrates inferior results
compared to numeric-input experts. This may be because
learning from LM embeddings to numerical objective space
is relatively challenging. We also provide results of UniSO
using evolutionary algorithms as the model-inner optimizer
in Table 18 in Appendix E.6. Under the batch normalization
setting, the experimental results demonstrate that employing
evolutionary algorithms for search within expert models
with numerical input outperforms gradient ascent.

RQ2: How do the universal string-based offline BBO
methods perform across a wide range of offline BBO
tasks? In Table 2, we report the results of our main ex-
periments, where UniSO-T and UniSO-N are compared
to D(best) and single-task experts (numeric-input MLP),
which are trained after batch normalization. The term “Im-
proved” represents our improvements to regularize the latent
space as introduced in Section 3. Among all the considered
tasks, we find that: (1) most offline BBO tasks could benefit
from UniSO methods, since the results of both the vanilla
and improved versions of UniSO-T and UniSO-N exceed
D(best), except for three cases; (2) UniSO methods are com-
petitive to single-task experts, and the improved UniSO-T
achieves better empirical results than the experts; (3) the im-
proved components (i.e., embedding distribution alignment
and local smoothness enhancement) contribute a lot to both
UniSO-T and UniSO-N, with generally better results and
average ranks. Besides, we show the t-SNE results of im-
proved UniSO-T in the right sub-figure of Fig. 3. Compared
to the vanilla one, our improved method exhibits better dis-
tribution for task distinguishment while similar tasks remain
close for information sharing, and shows smoother local
cluster embeddings in the latent space.

RQ3: Can UniSO generalize to unseen tasks? As string-
based universal online BBO methods show impressive gen-
eralization ability (Nguyen et al., 2024), we also examine the

zero-shot and few-shot generalization ability (Nguyen et al.,
2023) of improved UniSO-T and UniSO-N on tasks that are
unseen in the training data. Specifically, we choose three
tasks RobotPush, Rover (Wang et al., 2018), and LunarLan-
der (Brockman et al., 2016). Details of these tasks can be
found in Appendix C. For zero-shot setting, we directly
concatenate the metadata and the string designs suggested
by model-inner optimizer and maximize the model’s out-
put. For few-shot setting, we first use the few-shot data to
fine-tune the universal regressor using the main loss (i.e.,
cross-entropy for UniSO-T and MSE for UniSO-N) and
SGD optimizer with a learning rate of 2×10−5 for 5 epochs,
and then search for final designs. We use the data provided
by (Wang et al., 2024a) and the poorest 100 pairs of data to
construct the few-shot dataset.

As shown in Fig. 4, both improved UniSO-T and improved
UniSO-N show good generalization ability. The zero-shot
results significantly exceed D(best) and the few-shot results
are even better than that of the single-task expert based on
z-score normalization, which is a stronger expert than that
based on batch normalization.
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Figure 4. Normalized performance comparison between zero-shot
inference and few-shot finetuning of UniSO-T (left) and UniSO-N
(right) across three tasks (RobotPush, Rover, and LunarLander).
The light blue bars represent zero-shot performance, the dark blue
bars show the improved performance after few-shot finetuning.
The red dashed line denotes the best score D(best) in the few-shot
offline dataset.
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Table 2. Un-normalized scores in unconstrained tasks from Design-Bench and SOO-Bench, where the best and runner-up results on each
task are Blue and Violet, respectively. D(best) denotes the best score in the offline dataset and BN represents batch normalization for
numerical input designs. Single-task experts are trained within one task, while UniSO-T and UniSO-N are done in a multi-task manner.

Single-task Numeric-input Experts UniSO-T UniSO-N
Task D(best) BN + BO BN + Grad Vanilla Improved Vanilla Improved

Ant 165.326 241.350 ± 288.922 229.462 ± 165.869 446.283 ± 20.635 455.658 ± 39.188 260.058 ± 280.526 381.787 ± 88.907
D’Kitty 199.363 102.972 ± 130.192 183.263 ± 62.436 168.263 ± 104.068 222.007 ± 33.677 4.872 ± 13.718 42.215 ± 71.095

Superconductor 74.000 83.884 ± 4.099 97.137 ± 6.113 81.047 ± 6.476 82.642 ± 3.467 78.791 ± 2.981 82.033 ± 3.412
TF Bind 8 0.439 0.898 ± 0.088 0.959 ± 0.023 0.870 ± 0.085 0.857 ± 0.069 0.739 ± 0.101 0.856 ± 0.043

TF Bind 10 0.005 0.454 ± 0.091 0.888 ± 0.229 0.929 ± 0.802 0.944 ± 0.794 0.471 ± 0.150 0.528 ± 0.156
GTOPX 2 -195.586 -74.763 ± 8.577 -128.310 ± 15.616 -68.526 ± 14.058 -90.106 ± 8.223 -94.656 ± 25.608 -88.063 ± 29.409
GTOPX 3 -151.190 -40.104 ± 2.748 -151.190 ± 0.000 -47.440 ± 6.249 -44.427 ± 13.456 -63.007 ± 12.559 -48.848 ± 14.797
GTOPX 4 -215.716 -87.976 ± 3.497 -215.710 ± 0.000 -74.070 ± 13.131 -74.779 ± 11.032 -111.437 ± 28.417 -94.579 ± 11.591
GTOPX 6 -112.599 -49.660 ± 6.170 -112.599 ± 0.000 -50.314 ± 6.481 -48.244 ± 5.766 -46.056 ± 11.547 -52.672 ± 9.042

Avg. Rank / 3.111 ± 1.523 4.111 ± 2.183 2.667 ± 1.247 2.222 ± 1.133 4.778 ± 1.474 4.111 ± 0.737

RQ4: Is it necessary to train from pre-trained LM for
UniSO-N? As pre-trained language models are widely used
in recent string-based optimization or regression (Nguyen
et al., 2024; Tang et al., 2025), we investigate whether pre-
trained initialization is necessary for UniSO-N by compar-
ing UniSO-N trained from scratch with that from a pre-
trained checkpoint. The results in the left subfigure of Fig. 5
show that UniSO-N trained from scratch consistently out-
performs the pre-trained model. The OOD rank correlation
denotes the rank correlation between between predicted and
ground-truth objective scores in OOD regions, which is a
crucial metric to evaluate the effectiveness of the surrogate
model for offline BBO (Tan et al., 2025). Higher rank cor-
relation indicates better surrogate model for offline BBO.
The comparison in the right subfigure of Fig. 5 shows that
UniSO-N trained from scratch consistently performs better
than that from a pre-trained checkpoint. The pre-trained
models initially demonstrate poor performance, and there
is only little improvement later on. This may be due to
pre-trained LMs’ harmful biases for numerical optimization.
We will elaborate on this in the next RQ.
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Figure 5. Left: Normalized performance comparison between
UniSO-N trained from scratch (blue) and UniSO-N with pre-
trained embedder (yellow) across four tasks in SOO-Bench. The
red dashed line denotes the best score D(best) in the offline dataset.
Right: Comparison of OOD Spearman rank correlation on the Su-
perconductor task between UniSO-N from pre-trained embedder
(blue) and from-scratch (red). The OOD dataset is constructed
following (Chen et al., 2023a). Higher correlation indicates better
surrogate model for offline BBO (Tan et al., 2025).

RQ5: Do LM priors indeed do harm to numeric opti-
mization? To better understand LMs’ harmful priors for
numerical optimization, we visualize the attention weight
distribution (Allen-Zhu & Li, 2023) across input tokens. On
the top two subfigures in Fig. 6, we visualize pre-trained
T5 embedder’s attention weight distribution on the TF Bind
10 task (detailed results of more tasks can be found in Ap-
pendix F). We can observe that pre-trained T5 embedder
exhibits strong bias towards language grammar structural
tokens (especially EOS tokens), while numerical tokens that
are crucial for optimization are assigned with limited at-
tention. In contrast, embedder trained from scratch shows
a more balanced attention distribution with stronger focus
on numerical tokens. This difference in attention assign-
ment provides strong evidence for LMs’ harmful biases for
numeric optimization. To better understand how different
LMs perform, in the next RQ, we will discuss the attention
mechanisms of different LMs in detail.

RQ6: How do different LMs assign attentions? We fur-
ther investigate whether the attention mechanism in T5 still
exists in other pre-trained LMs. Specifically, we implement
Qwen2.5-1.5B (Qwen Team et al., 2024) 5 and DeepSeek-
R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025) 6 on TF
Bind 10 and GTOPX 6 tasks, which are shown in the bottom
two subfigures of Fig. 6 and Appendix F, respectively.

The results reveal two key findings. Firstly, different
from the T5 cases, Qwen2.5-1.5B and DeepSeek-R1-Distill-
Qwen-1.5B demonstrate more balanced attention patterns
on different input components. Specifically, these two mod-
els show higher attention weights on both the metadata and
numerical tokens, capturing more useful information rather
than mainly focusing on grammar tokens. Besides, com-
pared to the Qwen base model, DeepSeek-R1 assigns more
attention on numeric-related tokens, showing greater capa-

5https://huggingface.co/Qwen/Qwen2.5-1.5B
6https://huggingface.co/deepseek-ai/

DeepSeek-R1-Distill-Qwen-1.5B
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Figure 6. Attention weight distribution comparison of different models on the TF Bind 10 (Barrera et al., 2016) task: pre-trained T5-Small
embedder (top left), T5-Small embedder trained from scratch (top right), pre-trained Qwen2.5-1.5B (bottom left), and pre-trained
DeepSeek-R1-Distill-Qwen-1.5B (bottom right). More visualization results on other tasks are provided in Appendix F.

bility on optimization. This may come from the training
data of DeepSeek-R1, which contains mathematical content
aiming to enhance model’s reasoning ability. The result
suggests that LMs with stronger mathematical capabilities
may be better for numerical optimization.

RQ7: Is the best-performing UniSO variant comparable
to the well-studied expert single-task offline BBO meth-
ods? In Table 1 and Table 2, we use batch normalization
for numerical inputs on single-task expert methods for a fair
comparison. However, a more widely-used practice in the
field of offline BBO is to employ a global z-score normaliza-
tion for inputs. Thus, to better understand the performance
of UniSO methods, in Table 8 in Appendix E.1, we compare
improved UniSO-T, the best-performing universal offline
BBO approach in Table 2, to a wide range of single-task
expert offline BBO methods on Design-Bench. These meth-
ods are mainly based on z-score normalization for input
solutions. Here the improved UniSO-T method is trained
solely using Design-Bench tasks, and the detailed results
of compared methods are referred from (Tan et al., 2025).
According to the results in Table 8, UniSO-T achieves an
average rank of 9.8 across 21 expert single-task offline BBO
methods, outperforming some recently proposed methods,
which are specifically designed for single-task offline BBO,
and even achieving the best results on TF-Bind-10. Overall,
there is still improvement room for UniSO methods, com-
pared to state-of-the-art single-task offline BBO methods.
Thus, how to propose better techniques and improve per-

formance for universal offline BBO is a crucially important
future work.

Additional analysis and ablation studies. We provide ad-
ditional results in Appendix E. Specifically, we provide the
computational cost of UniSO in Appendix E.2, and explore
the integration of in-context regressors, e.g., UniSO-N with
Transformer neural processes (TNPs; Nguyen & Grover,
2022; Nguyen et al., 2023; 2024) in Appendix E.3. Fur-
thermore, we discuss the influence of different model sizes
in Appendix E.4. To further understand the contribution
of each component of UniSO, in Appendix E.5, we con-
duct ablation studies on metadata quality, loss components,
loss balancing strategies and model-inner search algorithms.
Note that recently LLM-based automatic heuristics design
shows impressive performance in many fields (Romera-
Paredes et al., 2024; Novikov et al., 2025; Zheng et al.,
2025). In Appendix E.7, we investigate the usage of LLM-
based heuristics (Liu et al., 2024a;b;c) to further improve
performance via metadata and appending auxiliary loss.

5. Conclusion
In this paper, we propose UniSO to overcome barriers in uni-
versal offline BBO by unifying string-based representation,
latent space regularization, and metadata-guided learning.
Extensive experimental results show the universality and
effectiveness of UniSO. Future works can include training
on more data and exploring in-context learning for enhanced
performance in diverse real-world scenarios.
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A. Related Work
A.1. Online BBO

An important setup for BBO tasks is online BBO, which obtains optimal solutions via iteratively querying the unknown
black-box objective. Traditional online BBO algorithms are population-based search algorithms, e.g., evolutionary algo-
rithm (EA; Bäck, 1996; Zhou et al., 2019), evolution strategies (ES; Hansen et al., 2015; Hansen, 2016), and particle swarm
optimization (PSO; Kennedy & Eberhart, 1995; Gong et al., 2015). However, they find solutions via population-level
evaluations and updates, which is unsuitable for expensive real-world BBO tasks. Bayesian optimization (BO; Garnett,
2023) is is a widely used sample-efficient method for expensive BBO problems. BO first fits a surrogate model, typically
Gaussian processes (GP; Rasmussen & Williams, 2006), to approximate the objective function at each iteration, and then
optimize a pre-defined acquisition function to sample the next candidate (Shahriari et al., 2016; Frazier, 2018). However, the
limited efficiency of GP hinders the scalability to a large-scale scenario. Thus, recently deep learning techniques are well
adopted to BO for surrogate modeling (Garnett et al., 2014; Wistuba & Grabocka, 2021; Wang et al., 2024b; Garnelo et al.,
2018; Nguyen & Grover, 2022) or acquisition instantiation (Maraval et al., 2023). However, in many scientific and industrial
scenarios, online evaluation is prohibited or cannot be used anymore (Gaulton et al., 2012; Kumar et al., 2022), showing an
urgent need for offline BBO, which we will introduce in the next subsection.

A.2. Offline BBO

Offline BBO (Trabucco et al., 2022; Kim et al., 2025) methods can be generally categorized into the following two types:

Forward approach. This category usually trains a scoring surrogate and maximizes the output to obtain the final design.
However, these methods suffer from OOD issue such that errors made by the surrogate in OOD region would mislead
the search procedure. To mitigate it, NEMO (Fu & Levine, 2021), COMs (Trabucco et al., 2021), IOM (Qi et al., 2022),
RoMA (Yu et al., 2021), BOSS (Dao et al., 2024b) and IGNITE (Dao et al., 2024a) regulate the model from different
perspectives, while Tri-Mentoring (Chen et al., 2023a) and ICT (Yuan et al., 2023) ensemble surrogates to enhance robustness.
Besides, BDI (Chen et al., 2022a), MATCH-OPT (Hoang et al., 2024), and Cliqueformer (Kuba et al., 2024b;a) incorporate
more information distilled from offline dataset, and ARCOO (Lu et al., 2023), PGS (Chemingui et al., 2024), GABO (Yao
et al., 2024), and DEMO (Yuan et al., 2025) employ different techniques to guide the model-inner search. Recently, Tan
et al. (2025) point out that regression is not suitable for offline BBO and call for a paradigm shift to rank the designs.

Backward approach typically fits a probabilistic model p(x|y), and samples promising designs from the model, which
can be instantiated by prevalent generative models. For example, MINs (Kumar & Levine, 2020) uses GAN (Goodfellow
et al., 2014), while DDOM (Krishnamoorthy et al., 2023), RGD (Chen et al., 2024), and DiffOPT (Kong et al., 2024) utilize
diffusion model (Ho et al., 2020). Recent works also focus on learning from trajectories (Mashkaria et al., 2023; Yun et al.,
2024), synthetic priors (Nguyen et al., 2023), or sampling-free latent variables (Yu et al., 2024).

A.3. LLM for BBO

Recent progress in LLM has demonstrated the potential applicability of LLM to solve BBO problems (Song et al., 2024b).
Works in this field can be generally categorized into two major branches: (1) leveraging general intelligence of LLM to
design algorithms or heuristics via natural language (Romera-Paredes et al., 2024; Liu et al., 2024c; Novikov et al., 2025),
and (2) utilizing the representation ability of LLM to improve learned BBO algorithms via tokens or embeddings.

For the first branch, works leverage LLM to design algorithm code. FunSearch (Romera-Paredes et al., 2024) proposes
an iterative generation procedure for better code, which has been proven successful in many domains, e.g., symbolic
regression (Shojaee et al., 2025) and scientific domains (Novikov et al., 2025). EoH (Liu et al., 2024a; Yao et al., 2025)
incorporates crossover and mutation operators from evolutionary algorithms for better algorithm design, which also shows
great potential in BBO (Liu et al., 2024c;b; Zheng et al., 2025). In Appendix E.7, we also discuss the potential of such
methods to further improve the performance of UniSO. Besides, LLaMoCo (Ma et al., 2024) and LLMOPT (Jiang et al.,
2025) train an optimization code generator via fine-tuning pre-trained LLM and training from scratch, respectively. Many of
other works also employ LLM as components of BBO optimizers, e.g., LLAMBO (Liu et al., 2024d) simulates components
of Bayesian optimization, such as regressor and acquisition function, with LLM. The success of this branch lies in whitening
the problem nature via intelligence and prior knowledge conveyed by natural language. However, it is still limited by the
training corpus (when it meets up with an unseen domain) and lacks interpretability.
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For the second branch, various approaches have been proposed to leverage the representation power of LLM structure.
The well-studied provable properties of these structure for sequential modeling enable its application for BBO, where
optimization trajectory can also be viewed as a sequence. Given that attention-based Transformers (Vaswani et al., 2017)
has superior scalability (Brown et al., 2020) and can learn in-context well (Garg et al., 2022), TNPs (Nguyen & Grover,
2022; Maraval et al., 2023) employs raw Transformers as in-context regressor for BBO. Note that Transformers trained with
synthetic priors performs well on tabluar data (Hollmann et al., 2025) and Bayesian inference (Müller et al., 2022), works
like PFNs4BO (Müller et al., 2023), LICO (Nguyen & Grover, 2025) and ExPT (Nguyen et al., 2023) utilize such priors for
in-context optimization on both online and offline scenarios. Attention-based methods exhibit superior performance in BBO
field, but they usually optimize in a fixed search space. Token-based methods offer another perspective by representing
designs or parameters as tokens and learning from historical trajectories. For example, OptFormer (Chen et al., 2022b)
views a parameter value as a token for hyper-parameter optimization and employs Transformer structure, combined with
metadata, to represent an optimization trajectory, while Dery et al. (2022) consider a multi-step improvement for OptFormer
and Song et al. (2025) plug a regret-to-go token into the algorithm history to solve BBO problems. Recently, string-based
approaches have emerged as a promising direction. OmniPred (Song et al., 2024a) regresses in multi-task suite based on
string-based representation for arbitrary designs, metadata and scores, while Nguyen et al. (2024); Tang et al. (2025) use
LLM embeddings to pre-train an in-context regressor for BBO. Motivated by the superior performance of these methods, in
this work, we use string-based representation to solve universal offline BBO, as discussed in Section 3.

B. Experimental Settings
We adopted the T5X architecture (Raffel et al., 2020) as our base model. For embedder in UniSO-N and metadata embedder
in UniSO-T, we directly leverage the pre-trained T5-small model. Details according to other components of the model and
search algorithms can be found in the following subsections.

B.1. Model Architecture Hyperparameters and Optimizer Configurations

For UniSO-T, we use the T5-based architecture. Pre-training details are listed in Table 3. We adopt T5’s default tokenizer,
i.e., SentenPiece (Kudo & Richardson, 2018), as the input tokenizer and P10 tokenizer (Charton, 2022) as the output
tokenizer. The model is trained for 200 epochs with a batch size of 128. For few-shot fine-tuning, we fine-tune the model for
5 epochs using SGD. During inference, we set temperature to 0.7, apply top-k sampling with k = 20 and nucleus sampling
with p = 0.95 to balance output quality and diversity.

For UniSO-N, we use pre-trained T5-Small embedder to embed input strings, and then apply a 1-dimensional output MLP
regressor for model instantiation. Model configurations are shown in Table 4. For pretraining, the regressor is trained for
200 epochs with a batch size of 128 before evaluation. For few-shot fine-tuning, we fine-tune the regressor for 5 epochs
using SGD.

Table 3. Hyper-parameters and optimizer configuration for UniSO-T.

Module Hyper-parameters Values

Encoder Vocab size 32128
Num layers 6

Head dimension 32
Embedding dimension 384

MLP dimension 512

Decoder Num layers 6
Head dimension 32

Embedding dimension 384
MLP dimension 512

Optimizer Name AdamW
Learning rate 1× 10−4

Weight decay 0.01
(β1, β2) (0.9, 0.99)

LR scheduler Name CosineAnnealing
Warmup steps 1000
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Table 4. Hyper-parameters and optimizer configuration for UniSO-N.

Module Hyper-parameters Values

Regressor Hidden layers 2
Hidden dimension 2048
Output dimension 1

Activation ReLU

Optimizer Name AdamW
Learning rate 1× 10−4

Weight decay 1× 10−5

(β1, β2) (0.9, 0.99)

LR Scheduler Name CosineAnnealing
Warmup Steps 1000

B.2. Model-Inner Search Algorithms Details

For model-inner search algorithms, we consider three types of representative black-box optimizers, Bayesian optimiza-
tion (BO; Garnett, 2023), evolutionary algorithms (EAs; Bäck, 1996; Zhou et al., 2019), and evolutionary strategies (ES;
Hansen et al., 2015). Experimental comparison of these model-inner optimizers can be found in Appendix E.3. Here we
present detailed hyper-parameter settings and other configurations of these optimizers.

For BO, we adopt BO-qEI for CONTINUOUS problems, which is implemented with BoTorch (Balandat et al., 2020)7. The
hyper-parameters of BO-qEI implementation are shown in Table 5. For CATEGORICAL problems, we use a transformed
overlap kernel from (Khan et al., 2023) as the Gaussian process (GP) kernel function, then maximize the upper confidence
bound (UCB) acquisition of GP outputs using EAs to sample candidates in each iteration.

Table 5. Hyper-parameters of BO model-inner optimizer.

Search space Hyper-parameters Value

CONTINUOUS

GP noise variance 0.01
Initial training samples 500

Batch size 10
Number of restarts 10

Initial random candidates 128
Batch limit 5

Max optimization iterations 200
BO iterations 100
MC samples 128

CATEGORICAL

GP noise variance 0.01
EA population size 32

EA generations 200
UCB β 0.2

For EAs, we use pymoo (Blank & Deb, 2020)8 for implementation. We initialize the population as the top-k scoring designs
in the dataset, where k = 10 is the population size. For continuous tasks, we use simulated binary crossover (SBX) and
polynomial mutation (PM), which are the default genetic operators in pymoo, and we use the default hyper-parameters.
For categorical tasks, we use uniform crossover and random replacement mutation, which are the default operators for
CATEGORICAL search spaces in (Xue et al., 2024). We iterate 100 generations to search for the final solutions.

7https://botorch.org/docs/tutorials/closed_loop_botorch_only/
8https://pymoo.org/

19

https://botorch.org/docs/tutorials/closed_loop_botorch_only/
https://pymoo.org/


Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings

For ES, we use CMA-ES (Hansen, 2016) implemented with evosax (Lange, 2023)9. We set the initial α = 0.5, and search
for 100 iterations.

C. Details of Tasks and Datasets
In this section, we introduce details of different tasks and datasets we use in our experiments. We use the datasets and tasks
from Design-Bench (Trabucco et al., 2022) and SOO-Bench (Qian et al., 2025), with 9 tasks and a dataset size of 90K in
total. Detailed properties can be found in Table 6.

Table 6. Properties of tasks and datasets in Design-Bench and SOO-Bench.

Benchmark Suite Task Dataset size Variable type # dimensions

Design-Bench

Ant 10004 CONTINUOUS 56
D’Kitty 10004 CONTINUOUS 60

Superconductor 17010 CONTINUOUS 86
TF Bind 8 32898 CATEGORICAL 8 (3 categories)
TF Bind 10 10000 CATEGORICAL 10 (3 categories)

SOO-Bench

GTOPX 2 22000 CONTINUOUS 22
GTOPX 3 18000 CONTINUOUS 18
GTOPX 4 26000 CONTINUOUS 26
GTOPX 6 22000 CONTINUOUS 22

C.1. Design-Bench Tasks

Design-Bench (Trabucco et al., 2022)10 is a famous benchmark suite for offline BBO. It includes various realistic tasks
from real-world optimization problems, and each task corresponds to an oracle function for evaluation and a large static
offline dataset. In this paper, we mainly consider 6 tasks in Design-Bench, and we directly use the open-sourced dataset of
Design-Bench11 as a part of the training data. Details of these tasks are as follows.

Ant and D’Kitty Morphology. These two tasks are both robot morphology optimization problems, and the goal is to
optimize the morphological structure of two simulated robots: Ant from OpenAI Gym (Brockman et al., 2016) and D’Kitty
from ROBEL (Ahn et al., 2020). Specifically, the objective of Ant Morphology is to make the Ant robot run quickly and that
of D’Kitty Morphology is to let the D’Kitty robot move exactly to the predefined location. Both these tasks use a task-specific
pre-trained Soft Actor Critic (Haarnoja et al., 2018) policy as controller, and simulate in the MuJoCo (Todorov et al., 2012)
simulator with a timestep of 100. The design dimension of Ant Morphology is 56 and that of D’Kitty Morphology is 60,
both of which include size, orientation, and location of the limbs. The dataset sizes of these two tasks are both 10004 with
CONTINUOUS design spaces.

Superconductor. The objective of the Superconductor task (Hamidieh, 2018) is to maximize the critical temperature which
derived from the chemical formula for a superconducting material. Although the actual critical temperature of a decoded
material is inaccessible, which needs physical experiments, the evaluation is conducted using a pre-trained random forest
regressor from (Fannjiang & Listgarten, 2020) as oracle function, which achieves a Spearman rank-correlation coefficient of
0.9210 on a held-out validation set. The design space consists of 86 CONTINUOUS variables, and the dataset size is 17010.

TF Bind 8 and TF Bind 10. The objective of TF Bind 8 and TF Bind 10 (Barrera et al., 2016) is to maximize the
binding affinity score of the designed length 8 and length 10 DNA sequence with a prevalent human transcription factor
SIX6 REF R1. Scores are obtained via direct lookup from the exhaustive evaluation database established by (Barrera et al.,
2016). The design dimension is 8 for TF Bind 8 and 10 for TF Bind 10, and the design spaces are both CATEGORICAL
where the number of categories of all dimensions are 4. The TF Bind 8 dataset contains 32898 design-score pairs. Although
the TF Bind 10 dataset in Design-Bench includes 4161482 design-score pairs, which is too large and beyond our computation
budget, we sample a subset with size of 10000 following recent work in the field of offline BBO (Tan et al., 2025).

9https://github.com/RobertTLange/evosax
10https://github.com/brandontrabucco/design-bench
11https://huggingface.co/datasets/beckhamc/design_bench_data
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We exclude two tasks in Design-Bench, following (Yu et al., 2024; Yun et al., 2024; Tan et al., 2025). Specifically,
we exclude ChEMBL (Gaulton et al., 2012) because almost all methods produce the same oracle prediction results, as
shown in (Krishnamoorthy et al., 2023; Mashkaria et al., 2023), which is not appropriate for comparison. We exclude
synthetic NAS on CIFAR10 (Hinton et al., 2012) due to its high computation cost for exact evaluation over multiple
seeds, which exceeds our computation resources. We also excluder Hopper Controller (Brockman et al., 2016) in Design-
Bench since it has a normalization and de-normalization issue due to the stochastic policy (see https://github.com/
brandontrabucco/design-bench/issues/8#issuecomment-1086758113 for details) and recent works
in offline BBO (Yu et al., 2024; Yun et al., 2024; Tan et al., 2025) do not benchmark on this task as well.

C.2. SOO-Bench Tasks

SOO-Bench (Qian et al., 2025) is a recent benchmark for offline BBO, which not only provides more test problems but also
proposes a novel method to evaluate the stability of the forward methods for offline BBO. We select the unconstraint tasks in
SOO-Bench, GTOPX 2, GTOPX 3, GTOPX 4, and GTOPX 6 from GTOPX benchmark (Schlueter et al., 2021), except for
hybrid 1 due to environment conflicts during installation. We use the open-source code of SOO-Bench12 and generate task
data following the default settings in the SOO-Bench paper. Specifically, for a given task, the dataset size is 1000 times the
variable dimension and the data is uniformly drawn from the middle 50% of the overall distribution with respect to the score
values. We set the random seed of the data generation procedure as 1 by default. Both these tasks are under CONTINUOUS
design spaces and their evaluations are done through simulation library modules provided by (Schlueter et al., 2021)13.
Detailed description of our selected tasks are as follows.

GTOPX encompasses a comprehensive suite of real-world space trajectory optimization problems (Izzo & Manuel López-
Ibáñez, 2022; Izzo, 2010). Specifically, GTOPX 2 encompasses the optimization of an intricate interplanetary trajectory for
a Saturn rendezvous mission, featuring 22 decision variables with the objective of minimizing the total velocity increment
(∆V ) required throughout the mission. GTOPX 3 and GTOPX 4 both address trajectory optimization for Mercury missions,
where the primary objective is to minimize the total mission ∆V . These problems are distinguished by their treatment
of resonant flybys: GTOPX 3 explicitly excludes such maneuvers and operates in an 18-dimensional design space, while
GTOPX 4 incorporates them within a 26-dimensional space. GTOPX 6 focuses on the optimization of multi-gravity-assist
trajectories targeting Comet 67P/Churyumov-Gerasimenko, employing 22 design variables to minimize the total ∆V
requirements.

C.3. Real-World Tasks

Following (Wang et al., 2024a), we evaluate our method on three real-world tasks, LunarLander, RobotPush, and Rover, and
use the open-sourced dataset by (Wang et al., 2024a)14. Detailed information of these tasks are as follows.

LunarLander. LunarLander is a 12-dimensional CONTINUOUS task implemented in OpenAI Gym (Brockman et al.,
2016)15 that aims to learn the parameters of a controller for a lunar lander. The objective is to maximize the expected average
return over 50 randomly generated environments.

RobotPush. RobotPush aims to minimize the distance between a designated target location and a pair of robotically-
controlled objects, where there are 14 CONTINUOUS controllable variables, e.g., orientation and speed. The function is
implemented in (Wang et al., 2018)16 with a physics engine Box2D (Parberry, 2017).

Rover. Rover is a 2D trajectory optimization task that simulates a rover navigation task, which is defined by (Wang et al.,
2018)17. The trajectory is optimized within a 60-dimensional CONTINUOUS unit hypercube. A cost function c(·) is defined
in the hypercube to measure the trajectory quality, and the objective is to minimize the total cost.

12https://github.com/zhuyiyi-123/SOO-Bench
13https://www.midaco-solver.com/index.php/about/benchmarks/gtopx
14https://drive.google.com/drive/folders/1hbxXdNM_CoON3EcfjcBGfUL21eKQdkiD?usp=sharing
15https://www.gymlibrary.dev/environments/box2d/lunar_lander
16https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/test_functions/push_

function.py
17https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/test_functions/

rover_function.py

21

https://github.com/brandontrabucco/design-bench/issues/8#issuecomment-1086758113
https://github.com/brandontrabucco/design-bench/issues/8#issuecomment-1086758113
https://github.com/zhuyiyi-123/SOO-Bench
https://www.midaco-solver.com/index.php/about/benchmarks/gtopx
https://drive.google.com/drive/folders/1hbxXdNM_CoON3EcfjcBGfUL21eKQdkiD?usp=sharing
https://www.gymlibrary.dev/environments/box2d/lunar_lander
https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/test_functions/push_function.py
https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/test_functions/push_function.py
https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/test_functions/rover_function.py
https://github.com/zi-w/Ensemble-Bayesian-Optimization/blob/master/test_functions/rover_function.py


Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings

To generate diverse task trials, Wang et al. (2024a) employ a transformation from RIBBO (Song et al., 2025)18 that introduces
a scaling factor s and a translation vector t, where the transformed objective is computed as y = s · f(x− t). These factors
are deterministically generated based on random seeds, allowing different seeds to map to distinct task. We randomly choose
one seed for one task for evaluation (100 for LunarLander, 100 for RobotPush, and 150 for Rover).

D. Metadata in the Experiments
In Table 7, we deliver all the metadata we used in our experiments.

Table 7. Metadata illustration we used in the experiments.

Task Name Description Objective

Ant Ant Morphology a quadruped robot morphology optimization to run as fast as possible

D’Kitty D’Kitty Morphology D’Kitty robot morphology optimization to navigate the robot to a fixed location

Superconductor Superconductor critical temperature maximization
to design the chemical formula for a superconducting

material that has a high critical temperature

TF Bind 8 TF Bind 8 DNA sequence optimization
to find the length-8 DNA sequence with maximum

binding affinity with SIX6 REF R1 transcription factor

TF Bind 10 TF Bind 10 DNA sequence optimization
to find the length-10 DNA sequence with maximum

binding affinity with SIX6 REF R1 transcription factor

GTOPX 2 Cassini 2 Complex interplanetary missions to Saturn
to achieve a rendezvous with Saturn,

aiming to minimize the total velocity change

GTOPX 3 Messenger (reduced) Simulation of interplanetary missions to Mercury
to minimize the total velocity change

over the course of the mission

GTOPX 4 Messenger (full)
Interplanetary missions to Mercury,
with resonant flybys of the planet

to minimize the total velocity
change incurred throughout the mission

GTOPX 6 Rosetta
Simulation of multi-gravity-assisted space missions

to Comet 67P/Churyumov-Gerasimenko
to minimize the total velocity change

required throughout the mission

LunarLander LunarLander Learn the parameters of a controller for a lunar lander to maximize the mean terminal reward across
a consistent batch of 50 randomly generated landscape

RobotPush RobotPush Control the robot to push items to a designated location to minimize he distance between a predefined
target location and two objects

Rover Rover 2D trajectories optimization for a rover to design a reasonable trajectory to minimize the cost

E. Additional Experimental Results
In this section, we conduct additional experiments to further discover the effectiveness of UniSO. In this section, unless
explicitly specified, we use EA as the default model-inner optimizer.

E.1. Comparison to State-of-the-Art Single-Task Offline BBO Methods

To better understand the performance of UniSO methods, in this subsection, we compare improved UniSO-T, the best-
performing universal offline BBO approach in Table 2, to a wide range of single-task offline BBO methods on Design-
Bench (Trabucco et al., 2022). These methods are mainly based on z-score normalization for input solutions. Here the
improved UniSO-T method is trained only on Design-Bench datasets and tasks, and the detailed results of compared methods
are referred from (Tan et al., 2025). The objective score y are normalized via global min-max normalization y ← y−ymin

ymax−ymin
,

where ymin and ymax denote the lowest and highest scores in the full unobserved dataset from Design-Bench, respectively.
Such a evaluation protocol under normalization is commonly adopted in offline BBO (Kumar & Levine, 2020; Trabucco
et al., 2022). In Table 8, UniSO-T achieved an average rank of 9.8 across 21 expert single-task offline BBO methods,
outperforming some recently proposed methods that are specifically designed for single-task offline BBO, and achieving the
best results on TF-Bind-10. However, there is still improvement room for UniSO methods. Thus, how to propose better
techniques and improve performance (e.g., training with more data) for universal offline BBO is a crucially important future
work.

18https://github.com/songlei00/RIBBO/blob/dcfbed5326a411e8c285d226a6899d922317c7d6/
problems/real_world_problem.py#L139
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Table 8. Normalized scores in Design-Bench, where the best and runner-up results on each task are Blue and Violet. D(best) denotes the
best score in the offline dataset. All methods are trained within on task, while UniSO-T are done in a multi-task manner. Results of all
compared methods are referred from (Tan et al., 2025).

Method Venue Ant D’Kitty Superconductor TF-Bind-8 TF-Bind-10 Avg. Rank

D(best) / 0.565 0.884 0.400 0.439 0.467 /

BO-qEI 0.812 ± 0.000 0.896 ± 0.000 0.382 ± 0.013 0.802 ± 0.081 0.628 ± 0.036 17.8 / 22
CMA-ES 1.712 ± 0.754 0.725 ± 0.002 0.463 ± 0.042 0.944 ± 0.017 0.641 ± 0.036 11.4 / 22

REINFORCE 0.248 ± 0.039 0.541 ± 0.196 0.478 ± 0.017 0.935 ± 0.049 0.673 ± 0.074 13.8 / 22
Grad. Ascent 0.273 ± 0.023 0.853 ± 0.018 0.510 ± 0.028 0.969 ± 0.021 0.646 ± 0.037 11.2 / 22

Grad. Ascent Mean 0.306 ± 0.053 0.875 ± 0.024 0.508 ± 0.019 0.985 ± 0.008 0.633 ± 0.030 10.6 / 22
Grad. Ascent Min

Baselines

0.282 ± 0.033 0.884 ± 0.018 0.514 ± 0.020 0.979 ± 0.014 0.632 ± 0.027 11.2 / 22

CbAS ICML’19 0.846 ± 0.032 0.896 ± 0.009 0.421 ± 0.049 0.921 ± 0.046 0.630 ± 0.039 15.6 / 22
MINs ICML’19 0.906 ± 0.024 0.939 ± 0.007 0.464 ± 0.023 0.910 ± 0.051 0.633 ± 0.034 12.6 / 22

DDOM ICML’23 0.908 ± 0.024 0.930 ± 0.005 0.452 ± 0.028 0.913 ± 0.047 0.616 ± 0.018 14.2 / 22
BONET ICML’23 0.921 ± 0.031 0.949 ± 0.016 0.390 ± 0.022 0.798 ± 0.123 0.575 ± 0.039 14.6 / 22

GTG NeurIPS’24 0.855 ± 0.044 0.942 ± 0.017 0.480 ± 0.055 0.910 ± 0.040 0.619 ± 0.029 13.6 / 22

COMs ICML’21 0.916 ± 0.026 0.949 ± 0.016 0.460 ± 0.040 0.953 ± 0.038 0.644 ± 0.052 9.0 / 22
RoMA ICML’21 0.430 ± 0.048 0.767 ± 0.031 0.494 ± 0.025 0.665 ± 0.000 0.553 ± 0.000 18.0 / 22
IOM NeurIPS’22 0.889 ± 0.034 0.928 ± 0.008 0.491 ± 0.034 0.925 ± 0.054 0.628 ± 0.036 12.6 / 22
BDI NeurIPS’22 0.963 ± 0.000 0.941 ± 0.000 0.508 ± 0.013 0.973 ± 0.000 0.658 ± 0.000 5.4 / 22
ICT NeurIPS’23 0.915 ± 0.024 0.947 ± 0.009 0.494 ± 0.026 0.897 ± 0.050 0.659 ± 0.024 8.8 / 22

Tri-Mentoring NeurIPS’23 0.891 ± 0.011 0.947 ± 0.005 0.503 ± 0.013 0.956 ± 0.000 0.662 ± 0.012 7.0 / 22
PGS AAAI’24 0.715 ± 0.046 0.954 ± 0.022 0.444 ± 0.020 0.889 ± 0.061 0.634 ± 0.040 13.4 / 22
FGM AISTATS’24 0.923 ± 0.023 0.944 ± 0.014 0.481 ± 0.024 0.811 ± 0.079 0.611 ± 0.008 12.8 / 22

MATCH-OPT ICML’24 0.933 ± 0.016 0.952 ± 0.008 0.504 ± 0.021 0.824 ± 0.067 0.655 ± 0.050 7.6 / 22
RaM-ListNet ICLR’25 0.949 ± 0.025 0.962 ± 0.015 0.517 ± 0.029 0.981 ± 0.012 0.670 ± 0.035 2.0 / 22

UniSO-T (Ours) / 0.850 ± 0.062 0.915 ± 0.015 0.489 ± 0.062 0.947 ± 0.036 0.673 ± 0.136 9.8 / 22

E.2. Computational Cost

In this subsection, we provide the computational resource and time for individual tasks. We conduct all our experiments a
system with 4 GPUs (total computing power ∼188 TFLOPS) and a 128-core CPU. Detailed computational resources are
listed in Table 9. Time distribution over all tasks is provided in Fig. 7, and detailed computational time budgets can be found
in Table 10.

Table 9. Computational resources comparison between improved UniSO-N and UniSO-T. All measurements are conducted on a system
with 4 GPUs (total computing power ∼188 TFLOPS) and a 128-core CPU.

Training GPU memory

UniSO-N 22530s 21G
UniSO-T 71225s 89G
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Figure 7. Time distribution comparison between algorithm time and model inference time for different UniSO models (UniSO-N, UniSO-
T) and optimization methods (BO-qEI, EA). The pie charts show the percentage breakdown between algorithm time (purple) and inference
time (orange) for each model. The distribution is computed over all tasks.

Table 10. Computational budgets of improved UniSO-N and UniSO-T with different black-box optimizers (BO-qEI, EA) on unconstrained
tasks from Design-Bench and SOO-Bench. Each cell shows algorithm time / model inference time (in seconds). Here, BO-qEI and EA are
allowed for an evaluation budget of 1000 (i.e., the optimizer can access the model’s outputs for upmost 1000 times). EA-25600 denotes
the EA with an extended evaluation budget of 25600, implemented with a population size of 128 over 200 generations, which is our
default optimizer setting in the submitted version.

Model UniSO-N UniSO-T

Search method BO-qEI EA EA-25600 BO-qEI EA EA-25600

Ant 74.44±0.26 / 1.87±0.00 0.25±0.00 / 1.94±0.00 2.75±0.02 / 38.16±0.00 74.06±0.27 / 14.81±0.00 0.26±0.00 / 14.55±0.00 2.62±0.00 / 202.05±0.06
D’Kitty 78.22±1.03 / 1.72±0.00 0.23±0.00 / 2.00±0.00 2.59±0.00 / 37.75±0.00 77.14±0.98 / 13.75±0.01 0.26±0.00 / 13.94±0.01 2.59±0.00 / 196.90±0.02

Superconductor 73.48±0.00 / 1.89±0.00 0.23±0.00 / 1.92±0.00 2.68±0.00 / 40.60±0.03 73.78±0.00 / 14.86±0.01 0.27±0.00 / 14.74±0.01 2.80±0.01 / 214.94±0.01
TF Bind 8 59.67±0.00 / 1.58±0.00 0.27±0.00 / 1.77±0.00 3.08±0.01 / 35.02±0.00 60.47±0.00 / 13.02±0.06 0.26±0.00 / 13.17±0.07 2.46±0.01 / 170.63±0.00

TF Bind 10 62.57±0.02 / 1.59±0.00 0.21±0.00 / 1.76±0.00 2.76±0.01 / 35.28±0.05 62.08±0.02 / 13.03±0.03 0.25±0.00 / 13.01±0.03 2.33±0.00 / 170.98±0.15
GTOPX 2 181.67±8.44 / 1.71±0.00 0.21±0.00 / 1.94±0.00 2.34±0.00 / 35.20±0.01 182.48±8.26 / 13.46±0.00 0.25±0.00 / 13.66±0.00 2.49±0.02 / 182.35±0.48
GTOPX 3 179.39±6.39 / 1.58±0.00 0.22±0.00 / 1.79±0.00 2.53±0.00 / 34.82±0.00 179.07±6.20 / 13.23±0.00 0.24±0.00 / 13.08±0.00 2.45±0.02 / 178.54±0.07
GTOPX 4 189.18±39.94 / 1.62±0.00 0.21±0.00 / 1.84±0.00 2.37±0.00 / 35.75±0.01 189.88±40.37 / 13.04±0.00 0.25±0.00 / 13.28±0.00 2.49±0.01 / 184.38±0.00
GTOPX 6 180.05±17.91 / 1.60±0.00 0.22±0.00 / 1.92±0.00 2.37±0.00 / 35.98±0.00 176.91±18.75 / 13.50±0.00 0.25±0.00 / 13.26±0.00 2.56±0.00 / 182.37±0.10

24



Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings

E.3. UniSO-N with In-Context Transformer Neural Processes

In this subsection, we investigate integration with in-context regressors based on Transformer neural processes (TNP;
Nguyen & Grover, 2022) with UniSO-N. We treat offline BBO as a single-epoch online optimization process, where
top-scoring solutions in the offline dataset serve as contexts. We implement two TNP variants: (1) UniSO-N + TNP-UCB
that maximizes the UCB acquisition function for one-epoch, following (Nguyen et al., 2024); (2) UniSO-N + TNP-ED
that directly regresses objective scores using a single-layer MLP on TNP’s hidden state outputs, following the architecture
design from Section 3.2.2 of ExPT (Nguyen et al., 2023).

Table 11 demonstrates that TNP-ED outperforms TNP-UCB on 6 out of 9 tasks from Design-Bench and SOO-Bench. This
shows that direct regression and score maximization is more effective than modeling the distribution and maximizing the
acquisition function. We also conduct few-shot learning experiments on unseen tasks (RobotPush, Rover, and LunarLander).
Table 12 shows that both TNP variants successfully exceed the best scores in the offline datasets, showing great generalization
potential.

However, UniSO-N with MLP consistently achieves better performance than both TNP variants. This performance
gap between MLP and TNP variants can be attributed primarily to optimization constraints in our string-based setting.
While previous TNP applications leverage gradient-based optimization on model outputs or acquisition functions, the
non-differentiable nature of tokenization in string-based optimization necessitates usage of black-box optimizers (Nguyen
et al., 2024). This limits the optimization efficiency and the reduce the effectiveness of TNP in our paper, compared to
its success in other scenarios. Future work includes exploring incorporating gradient information through techniques e.g.,
soft-prompt methods (Lester et al., 2021), for gradient approximation, or developing encoder-decoder architectures for legal
solution string reconstruction.

Table 11. Comparison of improved UniSO-N with MLP and with in-context TNP (Nguyen & Grover, 2022) on unconstrained tasks from
Design-Bench and SOO-Bench, where the best and runner-up results on each task are Blue and Violet. D(best) denotes the best score in
the offline dataset. Here, UniSO-N + TNP-UCB maximizes the UCB acquisition function for one epoch on trained TNP to obtain final
candidates, following (Nguyen et al., 2024), and UniSO-N + TNP-ED directly regresses the score values and maximizes the model output,
following Section 3.2.2 in (Nguyen et al., 2023).

Task D(best) UniSO-N + MLP UniSO-N + TNP-UCB UniSO-N + TNP-ED

Ant 165.326 269.691 ± 77.425 110.143 ± 229.571 292.098 ± 229.171
D’Kitty 199.363 173.911 ± 46.662 -226.316 ± 317.276 129.005 ± 41.107

Superconductor 74.000 67.333 ± 10.838 58.653 ± 20.171 64.544 ± 2.888
TF Bind 8 0.439 0.833 ± 0.005 0.638 ± 0.000 0.713 ± 0.000
TF Bind 10 0.005 0.959 ± 0.115 0.674 ± 0.000 0.397 ± 0.000
GTOPX 2 -195.586 -124.995 ± 56.170 -183.413 ± 81.862 -181.144 ± 11.685
GTOPX 3 -151.190 -62.622 ± 22.261 -180.053 ± 93.678 -99.735 ± 2.637
GTOPX 4 -215.716 -110.284 ± 17.559 -130.988 ± 38.336 -178.791 ± 79.623
GTOPX 6 -112.599 -57.435 ± 18.832 -108.859 ± 25.493 -195.184 ± 40.626

Avg. Rank N/A 1.111 ± 0.314 2.667 ± 0.471 2.222 ± 0.629

Table 12. Few-shot experimental results of improved UniSO-N with MLP and with in-context TNP (Nguyen & Grover, 2022) on
RobotPush, Rover, and LunarLander, where the best and runner-up results on each task are Blue and Violet. D(best) denotes the best
score in the offline dataset. Here, UniSO-N + TNP-UCB maximizes the UCB acquisition function for one epoch on trained TNP to
obtain final candidates, following (Nguyen et al., 2024), and UniSO-N + TNP-ED directly regresses the score values and maximizes the
model output, following Section 3.2.2 in (Nguyen et al., 2023). UniSO-N + MLP utilizes few-shot data to fine-tune MLP regressor, while
UniSO-N + TNP-UCB and UniSO-N + TNP-ED directly view the few-shot data as context points.

Task D(best) UniSO-N + MLP UniSO-N + TNP-UCB UniSO-N + TNP-ED

RobotPush 0.102 7.014 ± 0.000 3.769 ± 1.969 0.877 ± 1.041
Rover -16.148 -8.488 ± 0.003 -12.593 ± 1.891 -12.038 ± 1.142

LunarLander 7.038 287.038 ± 0.000 -113.493 ± 129.223 -79.885 ± 91.442

Avg. Rank N/A 1.000 ± 0.000 2.667 ± 0.471 2.333 ± 0.471
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E.4. Affects of Different Model Size

In this subsection, we compare UniSO-N with pre-trained embedders of different sizes. In Table 13, we find that UniSO-N
with bigger pre-trained embedder (T5-Base) performs even worse than that with T5-Small across most tasks. Such inferior
results are also reflected in training loss curve in Fig. 8, where T5-Base not only starts with higher loss but also drops
limitedly throughout training, while T5-Small demonstrates consistent optimization progress.

This performance difference aligns with our observation discussed in Section 4.2 that LMs’ priors may do harm to numerical
optimization. Since a larger pre-trained LM embedder incorporates more prior, there may introduce more unfavourable
biases for numerical optimization. Thus, how to mitigate this gap and align different modalities of natural language and
numerical representation well is critical future work (Song et al., 2024b; Van Breugel & Van Der Schaar, 2024).

Table 13. Comparison of UniSO-N equipped with embedders of different scales (e.g., T5-Small and T5-Base) on unconstrained tasks
from Design-Bench and SOO-Bench, where the better one is Bold. D(best) denotes the best score in the offline dataset.

Task D(best) UniSO-N + T5-Small UniSO-N + T5-Base

Ant 165.326 269.691 ± 77.425 255.336 ± 209.169
D’Kitty 199.363 173.911 ± 46.662 199.186 ± 0.000

Superconductor 74.000 67.333 ± 10.838 93.816 ± 11.763
TF Bind 8 0.439 0.833 ± 0.005 0.597 ± 0.081

TF Bind 10 0.005 0.959 ± 0.115 0.394 ± 0.140
GTOPX 2 -195.586 -124.995 ± 56.170 -163.866 ± 74.375
GTOPX 3 -151.190 -62.622 ± 22.261 -71.990 ± 11.158
GTOPX 4 -215.716 -110.284 ± 17.559 -96.400 ± 39.728
GTOPX 6 -112.599 -57.435 ± 18.832 -88.123 ± 20.223

Avg. Rank / 1.333 ± 0.471 1.667 ± 0.471
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Figure 8. Training loss curves comparing UniSO-N with T5-Small versus T5-Base embedders during training.

E.5. Ablation Studies on Each Component

To thoroughly evaluate the effectiveness of each component our method, we conduct ablation studies on metadata quality,
loss components, loss balancing strategies, and model-inner optimizers.

For metadata quality, we examine the effectiveness different metadata components (name, description, and objective) by
removing each component. As shown in Table 14, experiments across in-distribution tasks and both zero-shot and few-shot
scenarios on unseen tasks demonstrate the contribution of each metadata component to overall performance. This shows the
importance of metadata quality.

For loss components, we study them by removing each loss term individually. The results in Table 15 show that both loss
components contribute significantly to UniSO-T’s performance, with the complete loss achieving superior results compared
to variants with individual losses removed.
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Table 14. Ablation studies on different metadata components (name, description, and objective) on various tasks. All experiments are
conducted based on improved UniSO-T. The first part includes tasks appear in training dataset, i.e., unconstrained tasks from Design-Bench
and SOO-Bench. The remaining two parts contain unseen tasks during training, where we compare them under both zero-shot and
few-shot settings. The best and runner-up results on each task are Blue and Violet. D(best) denotes the best score in the offline dataset.

Task D(best) UniSO-T w/o name w/o desc. w/o obj. w/o metadata

Ant 165.326 374.665 ± 56.057 345.369 ± 40.675 362.842 ± 33.008 363.812 ± 59.380 358.379 ± 64.211
D’Kitty 199.363 225.752 ± 8.521 235.715 ± 11.617 226.479 ± 15.311 245.135 ± 15.571 227.169 ± 12.278

Superconductor 74.000 92.200 ± 15.209 85.207 ± 6.261 99.113 ± 12.742 97.610 ± 10.297 90.871 ± 10.611
TF Bind 8 0.439 0.903 ± 0.041 0.954 ± 0.025 0.935 ± 0.041 0.937 ± 0.012 0.950 ± 0.025

TF Bind 10 0.005 0.823 ± 0.542 0.696 ± 0.126 0.664 ± 0.141 0.596 ± 0.148 0.651 ± 0.121
GTOPX 2 -195.586 -72.848 ± 9.576 -97.806 ± 40.646 -63.670 ± 20.381 -80.789 ± 8.908 -79.864 ± 13.338
GTOPX 3 -151.190 -45.602 ± 8.433 -50.788 ± 8.706 -45.981 ± 4.211 -50.660 ± 10.713 -48.178 ± 12.638
GTOPX 4 -215.716 -84.271 ± 8.307 -84.962 ± 11.300 -92.163 ± 9.529 -75.233 ± 5.734 -79.887 ± 14.729
GTOPX 6 -112.599 -47.794 ± 11.943 -42.181 ± 11.671 -45.591 ± 12.310 -48.050 ± 13.901 -45.764 ± 7.685

RobotPush (zero-shot) 0.102 3.171 ± 0.984 2.747 ± 1.455 3.416 ± 1.455 2.634 ± 0.953 2.517 ± 1.640
Rover (zero-shot) -16.148 -8.888 ± 2.119 -11.009 ± 0.598 -10.854 ± 0.859 -9.099 ± 2.202 -9.089 ± 3.070

LunarLander (zero-shot) 7.038 31.186 ± 27.971 30.105 ± 57.577 30.892 ± 54.657 52.108 ± 47.941 6.251 ± 53.042

RobotPush (few-shot) 0.102 7.067 ± 0.169 7.026 ± 0.219 7.129 ± 0.486 6.310 ± 1.677 6.155 ± 1.495
Rover (few-shot) -16.148 -8.239 ± 1.270 -8.850 ± 0.703 -8.084 ± 0.569 -8.342 ± 1.573 -10.511 ± 2.070

LunarLander (few-shot) 7.038 248.573 ± 45.386 226.726 ± 65.244 244.252 ± 38.329 233.169 ± 51.037 233.919 ± 60.467

Avg. Rank / 2.333 ± 1.350 3.600 ± 1.451 2.467 ± 1.310 3.067 ± 1.340 3.533 ± 1.087

Table 15. Ablation studies of each component of the improved losses in UniSO-T few-shot performance on RobotPush, Rover, and
LunarLander.

Task D(best) UniSO-T UniSO-T w/o Llip UniSO-T w/o Lcon UniSO-T w/o {Llip,Lcon}
Ant 165.326 374.665 ± 56.057 292.644 ± 65.145 232.399 ± 66.642 275.216 ± 90.820

D’Kitty 199.363 225.752 ± 8.521 175.796 ± 64.079 224.668 ± 23.942 216.070 ± 23.209
Superconductor 74.000 92.200 ± 15.209 90.910 ± 6.538 80.910 ± 14.995 86.795 ± 13.466

TF Bind 8 0.439 0.903 ± 0.041 0.916 ± 0.044 0.945 ± 0.049 0.940 ± 0.027
TF Bind 10 0.005 0.823 ± 0.542 0.623 ± 0.062 0.823 ± 0.542 0.830 ± 0.539
GTOPX 2 -195.586 -72.848 ± 9.576 -112.357 ± 39.361 -87.305 ± 24.428 -132.023 ± 63.084
GTOPX 3 -151.190 -45.602 ± 8.433 -50.294 ± 6.184 -56.067 ± 11.332 -60.941 ± 17.235
GTOPX 4 -215.716 -84.271 ± 8.307 -96.550 ± 12.745 -84.152 ± 15.571 -100.943 ± 15.044
GTOPX 6 -112.599 -47.794 ± 11.943 -67.276 ± 24.305 -43.334 ± 8.402 -71.749 ± 28.497

Avg. Rank / 1.667 ± 0.943 2.889 ± 0.737 2.333 ± 1.155 3.111 ± 0.994

27



Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings

Additionally, we study the loss balancing strategy by comparing it with algorithm that remove this strategy. The comparative
results in Table 16 validates the importance of loss balancing strategy over static weight assignments.

Table 16. Ablation studies of loss balancing strategy in improved UniSO-T on unconstrained tasks from Design-Bench and SOO-Bench,
where the better one is Bold. D(best) denotes the best score in the offline dataset.

Task D(best) UniSO-T w/ balance UniSO-T w/o balance

Ant 165.326 374.665 ± 56.057 185.597 ± 165.661
D’Kitty 199.363 225.752 ± 8.521 203.553 ± 32.507

Superconductor 74.000 92.200 ± 15.209 79.635 ± 5.777
TF Bind 8 0.439 0.903 ± 0.041 0.929 ± 0.049

TF Bind 10 0.005 0.823 ± 0.542 0.696 ± 0.126
GTOPX 2 -195.586 -72.848 ± 9.576 -175.327 ± 73.053
GTOPX 3 -151.190 -45.602 ± 8.433 -56.221 ± 18.342
GTOPX 4 -215.716 -84.271 ± 8.307 -122.291 ± 54.913
GTOPX 6 -112.599 -47.794 ± 11.943 -70.352 ± 25.870

Avg. Rank / 1.111 ± 0.314 1.889 ± 0.314

In offline BBO, gradient-based model-inner optimizers are commonly used. However, they are challenging to apply in
string spaces. Therefore, we explore several alternative black-box search algorithms, including EAs (Bäck, 1996; Zhou
et al., 2019), BO-qEI (Garnett, 2023), and CMA-ES (Hansen, 2016). Implementation details are provided in Appendix B.2.
We fix the evaluation budget as 1000. Since CMA-ES cannot operate in CATEGORICAL search space, we compare these
optimizers on SOO-Bench tasks. As shown in Table 17, BO-qEI achieves the best performance, while EA is the runner-up.

Table 17. Comparison of different model-inner BBO optimizers (BO-qEI, CMA-ES, and EA) in improved UniSO-T. As CMA-ES cannot
operate in categorical space, we conduct experimental comparison on continuous tasks from SOO-Bench, where the best and runner-up
results on each task are Blue and Violet. D(best) denotes the best score in the offline dataset. Here all optimizers are allowed for a
evaluation budget of 1000 (i.e., the optimizer can access the model’s outputs for upmost 1000 times) for fair comparison.

Task D(best) BO-qEI CMA-ES EA

GTOPX 2 -195.586 -80.220 ± 11.852 -138.716 ± 45.523 -99.778 ± 18.512
GTOPX 3 -151.190 -48.493 ± 3.745 -81.524 ± 19.054 -69.278 ± 20.009
GTOPX 4 -215.716 -80.232 ± 13.582 -177.559 ± 29.664 -132.543 ± 38.303
GTOPX 6 -112.599 -73.306 ± 12.892 -101.525 ± 16.986 -62.024 ± 23.828

Avg. Rank / 1.250 ± 0.433 3.000 ± 0.000 1.750 ± 0.433

To better understand the search behaviors of BO and EA, we visualize the optimization trajectories of both BO and EA in
Fig. 9. BO demonstrates focused exploration guided by the Gaussian Process model (which captures the spectral cluster
property of embeddings), while EA shows more random search behavior. The convergence curves (Fig. 10) further validates
BO’s superior optimization efficiency compared to EA’s tendency toward local optima.
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Figure 9. t-SNE plots of UniSO-N embedder comparing BO-qEI (left) and EA (right) search trajectories. Each part represents data from a
single task, and small scatters represent the search trajectories of these two optimizers. Different colors represent different tasks, with
darker colors indicating later stages of the search.

0 200 400 600 800 1000

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Be
st

 v
al

ue

UniSO-N predictions on GTOPX 2

BO
EA

0 200 400 600 800 1000

0.1

0.0

0.1

0.2

0.3

0.4

0.5
UniSO-N predictions on GTOPX 3

BO
EA

0 200 400 600 800 1000
# evaluations

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Be
st

 v
al

ue

UniSO-N predictions on GTOPX 4

BO
EA

0 200 400 600 800 1000
# evaluations

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

UniSO-N predictions on GTOPX 6

BO
EA

Figure 10. The historical best change prediction value curves of UniSO-N, with BO-qEI and EA as optimizers.
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E.6. UniSO + EA Results

In this subsection, we provide detailed experimental results of UniSO + EA in Tables 18 and 19.

Table 18. Un-normalized scores in unconstrained tasks from Design-Bench and SOO-Bench, where the best and runner-up results on each
task are Blue and Violet, respectively. D(best) denotes the best score in the offline dataset and BN represents batch normalization for
numerical input designs. Both numeric-input experts and string-input UniSO methods are trained within a single task.

Numeric-input Experts String-input UniSO
Task D(best) BN + EAs BN + Grad UniSO-T UniSO-N

Ant 165.326 118.877 ± 127.688 229.462 ± 165.869 245.212 ± 165.083 254.720 ± 102.151
D’Kitty 199.363 111.205 ± 66.986 183.263 ± 62.436 229.114 ± 25.766 188.642 ± 26.306

Superconductor 74.000 93.951 ± 7.039 97.137 ± 6.113 88.720 ± 9.884 63.930 ± 6.748
TF Bind 8 0.439 0.984 ± 0.007 0.959 ± 0.023 0.948 ± 0.028 0.949 ± 0.000

TF Bind 10 0.005 0.905 ± 0.326 0.888 ± 0.229 0.623 ± 0.115 0.600 ± 0.006
GTOPX 2 -195.586 -88.054 ± 20.878 -128.310 ± 15.616 -76.479 ± 4.815 -117.022 ± 51.671
GTOPX 3 -151.190 -64.028 ± 22.678 -151.190 ± 0.000 -46.526 ± 13.434 -71.784 ± 16.665
GTOPX 4 -215.716 -96.432 ± 10.868 -215.716 ± 0.000 -87.714 ± 8.795 -101.304 ± 18.492
GTOPX 6 -112.599 -64.217 ± 14.602 -112.599 ± 0.000 -48.186 ± 9.486 -80.391 ± 12.469

Avg. Rank / 2.222 ± 1.030 3.000 ± 1.054 1.889 ± 1.100 2.889 ± 0.875

Table 19. Un-normalized scores in unconstrained tasks from Design-Bench and SOO-Bench, where the best and runner-up results on each
task are Blue and Violet, respectively. D(best) denotes the best score in the offline dataset and BN represents batch normalization for
numerical input designs. Single-task experts are trained within one task, while UniSO-T and UniSO-N are done in a multi-task manner.

Single-task Experts UniSO-T + EA UniSO-N + EA
Task D(best) BN + EAs BN + Grad Vanilla Improved Vanilla Improved

Ant 165.326 118.877 ± 127.688 229.462 ± 165.869 275.216 ± 90.820 374.665 ± 56.057 268.399 ± 82.858 269.691 ± 77.425
D’Kitty 199.363 111.205 ± 66.986 183.263 ± 62.436 216.070 ± 23.209 225.752 ± 8.521 130.655 ± 83.106 173.911 ± 46.662

Superconductor 74.000 93.951 ± 7.039 97.137 ± 6.113 86.795 ± 13.466 92.200 ± 15.209 81.266 ± 16.073 67.333 ± 16.838
TF Bind 8 0.439 0.984 ± 0.007 0.959 ± 0.023 0.940 ± 0.027 0.903 ± 0.041 0.944 ± 0.016 0.833 ± 0.005

TF Bind 10 0.005 0.905 ± 0.326 0.888 ± 0.229 0.830 ± 0.539 0.823 ± 0.542 0.603 ± 0.005 0.959 ± 0.115
GTOPX 2 -195.586 -88.054 ± 20.878 -128.310 ± 15.616 -132.023 ± 63.084 -72.848 ± 9.576 -117.022 ± 51.671 -124.995 ± 56.170
GTOPX 3 -151.190 -64.028 ± 22.678 -151.190 ± 0.000 -60.941 ± 17.235 -45.602 ± 8.433 -88.601 ± 31.865 -62.622 ± 22.261
GTOPX 4 -215.716 -96.432 ± 10.868 -215.716 ± 0.000 -100.943 ± 15.044 -84.271 ± 8.307 -99.834 ± 20.837 -110.284 ± 17.559
GTOPX 6 -112.599 -64.217 ± 14.602 -112.599 ± 0.000 -71.749 ± 28.497 -47.794 ± 11.943 -71.174 ± 12.932 -57.435 ± 18.832

Avg. Rank / 3.111 ± 1.728 4.111 ± 1.792 3.667 ± 1.333 2.111 ± 1.663 4.222 ± 1.030 3.778 ± 1.618
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E.7. Integration of LLM-based Heuristics

Note that recently LLM-based automatic heuristics design shows impressive performance in many fields (Romera-Paredes
et al., 2024; Novikov et al., 2025; Zheng et al., 2025), in Appendix E.7, we investigate the integration of LLM-based
heuristics (Liu et al., 2024a;b;c) on UniSO-N to further improve performance. We adopt the approach in EoH (Liu et al.,
2024a). Our implementation incorporates EoH from three key perspectives: (1): EoH-M: Summarizing better metadata; (2):
EoH-R: Designing regularization trick to fine-tune the pre-trained LM embedder; (3): EoH-A: Implementing auxiliary loss
based our improvement techniques to further enhance the model’s performance.

Using Claude-3.5-Sonnet (Anthropic, 2024) as the backbone LLM, we design prompt templates following the EoH
methodology. Results are provided in Fig. 11 and Table 20. The prompts are shown in Figures 16 to 24. The best individual
solutions found by EoH-M, EoH-R, EoH-A are provided in Figures 25 to 27, respectively.

The experimental results show that EoH-M captures more comprehensive metadata, leading to improved overall performance.
Although EoH-R underperforms, EoH-A further enhances UniSO-N’s capabilities, showing the potential of LLM-based
heuristics on improving the performance optimization algorithms.
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Figure 11. Performance comparison of improved UniSO-N combined with different EoH (Liu et al., 2024a) strategies. The bar plot shows
the normalized performance of the baseline UniSO-N model and three EoH-enhanced variants (EoH-M: metadata summarization, EoH-R:
regularization-based fine-tuning, EoH-A: auxiliary loss implementation) across nine optimization tasks. The red dashed lines indicate the
best score D(best) in offline dataset for each task. Error bars represent standard deviations. The data is normalized by scaling UniSO-N’s
performance to 1 for each task.

Table 20. Un-normalized scores of improved UniSO-N and its variants with different EoH (Liu et al., 2024a) strategies (EoH-M:
metadata summarization, EoH-R: regularization-based fine-tuning, EoH-A: auxiliary loss implementation) in unconstrained tasks from
Design-Bench and SOO-Bench, where the best and runner-up results on each task are Blue and Violet, respectively. D(best) denotes the
best score in the offline dataset.

Task D(best) UniSO-N UniSO-N + EoH-M UniSO-N + EoH-R UniSO-N + EoH-A

Ant 165.326 269.691 ± 77.425 316.515 ± 19.141 306.577 ± 42.614 339.697 ± 52.210
D’Kitty 199.363 173.911 ± 46.662 127.644 ± 13.676 197.777 ± 0.000 218.026 ± 4.858

Superconductor 74.000 67.333 ± 10.838 67.894 ± 5.964 84.215 ± 4.306 85.186 ± 11.518
TF Bind 8 0.439 0.833 ± 0.005 0.859 ± 0.167 0.739 ± 0.075 0.971 ± 0.000

TF Bind 10 0.005 0.959 ± 0.115 0.626 ± 0.032 1.256 ± 0.000 0.778 ± 0.074
GTOPX 2 -195.586 -124.995 ± 56.170 -66.611 ± 32.466 -181.919 ± 15.818 -119.284 ± 14.325
GTOPX 3 -151.190 -62.622 ± 22.261 -54.032 ± 13.158 -74.310 ± 11.999 -67.640 ± 2.542
GTOPX 4 -215.716 -110.284 ± 17.559 -84.778 ± 2.349 -136.679 ± 21.707 -157.717 ± 83.337
GTOPX 6 -112.599 -57.435 ± 18.832 -74.435 ± 1.096 -78.385 ± 38.336 -63.365 ± 1.828

Avg. Rank / 2.667 ± 0.943 2.333 ± 1.155 3.000 ± 1.054 2.000 ± 1.054
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F. Attention Weights Distribution Visualization
In this section, we provide the average attention weights distribution on all tasks that we use in this paper. Fig. 12 and
Fig. 13 show attention distribution of T5-Small from pre-trained and from scratch, respectively, which further validate our
observation of LM’s harmful priors.

In Fig. 14 and Fig. 15, we compare different pre-trained LMs (T5-Small, T5-Base, Qwen2.5-1.5B, and DeepSeek-R1-
Distill-Qwen-1.5B) on GTOPX 6 and TF Bind 10 task, respectively. We find from the results that LMs that perform well on
mathematical tasks shown great potential on numerical optimization tasks.
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Figure 12. Average attention distribution of pre-trained T5-small embedder on data from different tasks. The plots present attention
patterns for 12 distinct tasks: Ant, D’Kitty, Superconductor, TF Bind 8, TF Bind 10, GTOPX 2, GTOPX 3 , GTOPX 4 , GTOPX 6,
RobotPush, Rover, and LunarLander, which consistently show that the pre-trained model exhibits strong attention bias towards the EOS
token across all tasks, demonstrating the model’s focus on structural elements rather than numeric-solution-relevant components.

32



Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

enx0 x2
0

x4
0

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of Ant (#dim = 60)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

enx0 x1
9

x3
8

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of D'Kitty (#dim = 56)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

enx0 x2
8

x5
6

x8
4

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of Superconductor (#dim = 86)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x3 x6

En
d t

oke
n

Components

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of TF Bind 8 (#dim = 8)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x3 x6 x9

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of TF Bind 10 (#dim = 10)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x7 x1
4

x2
1

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of GTOPX 2 (#dim = 22)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x6 x1
2

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of GTOPX 3 (#dim = 18)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x8 x1
6

x2
4

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of GTOPX 4 (#dim = 26)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x7 x1
4

x2
1

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of GTOPX 6 (#dim = 22)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x4 x8 x1
2

En
d t

oke
n

Components

0.00

0.05

0.10

0.15

0.20

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of RobotPush (#dim = 14)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

enx0 x2
0

x4
0

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of Rover (#dim = 60)

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x4 x8 x1
2

En
d t

oke
n

Components

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of LunarLander (#dim = 12)

Figure 13. Average attention distribution of T5-small embedder trained from scratch on different tasks. The plots show attention patterns
across various components for 12 different tasks: Ant, D’Kitty, Superconductor, TF Bind 8, TF Bind 10, GTOPX 2, GTOPX 3, GTOPX
4, GTOPX 6, RobotPush, Rover, and LunarLander. The consistent pattern across tasks shows more balanced attention distribution on
numeric-solution-relevant components, contrasting with pre-trained models’ biases towards language-based structural tokens.
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Figure 14. Different language models’ average attention distribution on GTOPX 6 task. The bar plots compare the normalized attention
scores across different components for four models: T5-Small (top left), Qwen2.5-1.5B (top right), T5-Base (bottom left), and DeepSeek-
R1-Distil-Qwen-1.5B (bottom right). Here, pre-trained T5 models exhibit strong attention bias towards the EOS token, while the
DeepSeek-R1-Distill-Qwen-1.5B shows a more balanced attention distribution across numeric-solution-relevant components compared to
Qwen2.5-1.5B, demonstrating the effectiveness of knowledge transfer in optimization tasks.

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x3 x6 x9

En
d t

oke
n

Components

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of T5-Small on TF Bind 10

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x3 x6 x9

En
d t

oke
n

Components

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of Qwen2.5-1.5B on TF Bind 10

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x3 x6 x9

En
d t

oke
n

Components

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of T5-Base on TF Bind 10

na
me

de
scr

ipt
ion

ob
jec

tiv
e

'x' 
tok

en x0 x3 x6 x9

En
d t

oke
n

Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

No
rm

al
ize

d 
At

te
nt

io
n 

Sc
or

e

Average Attention Distribution of DeepSeek-R1-Distill-Qwen-1.5B on TF Bind 10

Figure 15. Different language models’ average attention distribution on GTOPX 6 task. The bar plots compare the normalized attention
scores across different components for four models: T5-Small (top left), Qwen2.5-1.5B (top right), T5-Base (bottom left), and DeepSeek-
R1-Distil-Qwen-1.5B (bottom right). Similar to that in GTOPX 6, pre-trained T5 models exhibit strong attention bias towards the
EOS token, while the DeepSeek-R1-Distill-Qwen-1.5B shows a more balanced attention distribution across numeric-solution-relevant
components compared to Qwen2.5-1.5B, demonstrating the effectiveness of knowledge transfer in optimization tasks.
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G. EoH Prompts and Solutions
In this section, we provide prompts and best individual solutions for EoH (Liu et al., 2024a) integration experiments in
Appendix E.7.

Prompt for Initialization

I am solving universal offline black-box optimization (BBO)
problem, i.e., solving multiple offline BBO task simultaneously.
My approach is based on string-based representation of x by
“{x1:**,x2:**,...}”. I use LM embedder to map the input string to
an embedding space, and then apply an MLP head for regressing
the objective. I need help generating metadata for 9 optimization
tasks involving: robot morphology (Ant Morphology and D’Kitty
Morphology), material science (Superconductor), DNA sequence
optimization (TF Bind 8 and 10), and space mission trajectory
optimization (GTOPX 2 3 4 6).

tasks information:
Ant Morphology and D’Kitty Morphology: robot morphology
optimization. We created these two tasks to optimize the morpho-
logical structure of two simulated robots: Ant from OpenAI Gym
and D’Kitty from ROBEL. For Ant Morphology, the goal is to
optimize the morphology of an ant-shaped robot, to run as fast as
possible, with a pre-trained neural network controller. For DKitty
Morphology, the goal is to optimize the morphology of D’Kitty,
a quadrupedal robot, such that a pre-trained neural network con-
troller can navigate the robot to a fixed location. In this fashion,
the goal for both tasks is to recover a morphology with which
the pre-trained controller is compatible. The variable morphology
parameters of both robots include size, orientation, and location
of the limbs, giving us 60 continuous values in total for Ant and
56 for D’Kitty. To evaluate the ground-truth value for a given
design, we run robotic simulation in MuJoCo for 100 timesteps,
averaging 16 independent trials. These parameters are chosen to
reduce stochasticity and allow the simulator to run in a minimal
amount of time.
...

For each task, you need to generate 3 versions of metadata, where
each metadata must be preceded by the task name. Do not generate
additional explanations.

Prompt for E2

I am solving universal offline black-box optimization
(BBO) problem, i.e., solving multiple offline BBO
task simultaneously. My approach is based on string-
based representation of x by “{x1:**,x2:**,...}”. I use
LM embedder to map the input string to an embedding
space, and then apply an MLP head for regressing
the objective. I need help generating metadata for
9 optimization tasks involving: robot morphology
(AntMorphology-v0 and DKittyMorphology-v0),
material science (Superconductor-v0), DNA sequence
optimization (TF Bind 8 and 10), and space mission
trajectory optimization (GTOPX 2 3 4 6).

tasks information:
...

I have five existing metadatas as follows:
No.1 :
Code:
...
No.3 :
Code:

Please help me design a new algorithm that is
different from the given ones but can be motivated by
them.
Firstly, identify the common backbone idea in the
provided metadatas.
Secondly, based on the backbone idea create your
new metadatas.
You need to generate 9 metadata for the 9 tasks
above respectively, each metadata must be preceded
by the task name, and do not generate additional
explanations.

Figure 16. Two examples of prompt engineering used in initialization and E2 strategy for EoH-M.
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Prompt for E1

I am solving universal offline black-box
optimization (BBO) problem, i.e., solving
multiple offline BBO task simultaneously.
My approach is based on string-based repre-
sentation of x by “{x1:**,x2:**,...}”. I use
LM embedder to map the input string to an
embedding space, and then apply an MLP
head for regressing the objective. I need
help generating metadata for 9 optimization
tasks involving: robot morphology (Ant
Morphology and D’Kitty Morphology),
material science (Superconductor), DNA
sequence optimization (TF Bind 8 and 10),
and space mission trajectory optimization
(GTOPX 2 3 4 6).

tasks information:
...
I have 3 existing metadatas as follows:
...

Please help me create new metadatas that
has a totally different form from the given
ones. You need to generate 9 metadata for
the 9 tasks above respectively, each metadata
must be preceded by the task name, and do
not generate additional explanations.

Prompt for M1

I am solving universal offline black-box optimization (BBO) problem, i.e.,
solving multiple offline BBO task simultaneously. My approach is based
on string-based representation of x by “{x1:**,x2:**,... }”. I use LM
embedder to map the input string to an embedding space, and then apply an
MLP head for regressing the objective. I need help generating metadata for
9 optimization tasks involving: robot morphology (Ant Morphology and
D’Kitty Morphology), material science (Superconductor), DNA sequence
optimization (TF Bind 8 and 10), and space mission trajectory optimization
(GTOPX 2 3 4 6).

tasks information:
...

I have metadatas as follows:
No.1 :
Code:
...
No.3 :
Code:

Please assist me in creating new metadatas that has a different form but can
be a modified version of the metadatas provided.
You need to generate 9 metadata for the 9 tasks above respectively, each
metadata must be preceded by the task name, and do not generate additional
explanations.

Figure 17. Two examples of prompt engineering used in E1 and M1 strategy for EoH-M.
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Prompt for M3

I am solving universal offline black-box optimization (BBO) problem, i.e.,
solving multiple offline BBO task simultaneously. My approach is based on
string-based representation of x by “{x1:**,x2:**,...}”. I use LM embedder
to map the input string to an embedding space, and then apply an MLP
head for regressing the objective. I need help generating metadata for 9
optimization tasks involving: robot morphology (Ant Morphology and
D’Kitty Morphology), material science (Superconductor), DNA sequence
optimization (TF Bind 8 and 10), and space mission trajectory optimization
(GTOPX 2 3 4 6).

tasks information:
...

First, you need to identify the main components in the metadatas below:
No.1 :
Code:
...
No.3 :
Code:

Next, analyze whether any of these components can be overfit to the
in-distribution instances.
Then, based on your analysis, simplify the components to enhance the
generalization to potential out-of-distribution instances.
Finally, provide the revised metadata,, you need to generate 9 metadata for
the 9 tasks above respectively, each metadata must be preceded by the task
name, and do not generate additional explanations.

Figure 18. Two examples of prompt engineering used in M3 strategy for EoH-M. Note that we do not have an M2 strategy, since M2 in
EoH (Liu et al., 2024a) represents hyper-parameter adaptation while metadata do not have any hyper-parameters.
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Prompt for Initialization

I am solving universal offline black-box optimization
(BBO) problem, i.e., solving multiple offline BBO
task simultaneously. My approach is based on string-
based representation of x by “{x1:**,x2:**,...}”. I
use a language model embedder to map the input
string to an embedding space, and then apply an MLP
head for regressing the objective. However, the LM
embedder contains improper bias for regression. I
need to design a novel loss function to optimize the
embedding representations of different tasks in the
language model’s latent space. The goal is to form
a clear distributional structure of embeddings in the
latent space while maintaining distinguishability
between tasks.

I need to design a novel loss function to optimize
the embedding representations of different tasks in
the language model’s latent space. The goal is to
form a clear distributional structure of embeddings in
the latent space while maintaining distinguishability
between tasks.
Firstly, describe your new algorithm and main steps
in one sentence. The description must be inside a
brace.
Next, implement it in Python as a function named
latent loss. This function should accept two input(s):
’x embedding’, ’meta embedding’. The function
should return one output(s): loss. ’x embedding’
represents a batch of embeddings to be optimized
with shape B*D (batch size * embedding dimension).
’meta embedding’ represents metadata information
also provided in a batch embedding format with shape
B*D. The output ’loss’ is the designed loss value.
Note that both ’x embedding’ and ’meta embedding’
are torch tensors with matching batch sizes. The
novel loss function should be sufficiently complex
to achieve effective embedding optimization while
maintaining computational stability. It is important to
ensure the loss computation is mathematically sound
and properly scaled.

All inputs and outputs are torch.Tensor. Do not give
additional explanations.

Prompt for E2

I am solving universal offline black-box optimization (BBO)
problem, i.e., solving multiple offline BBO task simultaneously.
My approach is based on string-based representation of x by
“{x1:**,x2:**,...}”. I use a language model embedder to map the
input string to an embedding space, and then apply an MLP head
for regressing the objective. However, the LM embedder contains
improper bias for regression. I need to design a novel loss function
to optimize the embedding representations of different tasks in
the language model’s latent space. The goal is to form a clear
distributional structure of embeddings in the latent space while
maintaining distinguishability between tasks.

I have five existing algorithms with their codes as follows:
No.1 algorithms description:
Code:
...
No.3 algorithms description:
Code:

Please help me design a new algorithm that is different from the
given ones but can be motivated by them.
Firstly, identify the common backbone idea in the provided
algorithms.
Secondly, based on the backbone idea describe your new
algorithm in one sentence.
Thirdly, implement it in Python as a function named ’la-
tent loss’. This function should accept two inputs: ’x embedding’,
’meta embedding . The function should return one output:
’loss’. ’x embedding’ represents a batch of embeddings to be
optimized with shape B*D (batch size * embedding dimension).
’meta embedding’ represents metadata information also provided
in a batch embedding format with shape B*D.The output ’loss’
is the designed loss value. Note that both ’x embedding’ and
’meta embedding’ are torch tensors with matching batch sizes.
The novel loss function should be sufficiently complex to achieve
effective embedding optimization while maintaining computa-
tional stability. It is important to ensure the loss computation is
mathematically sound and properly scaled.

All inputs and outputs are torch.Tensor. Do not give additional
explanations.

Figure 19. Two examples of prompt engineering used in initialization and E2 strategy for EoH-R.

38



Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings

Prompt for E1

I am solving universal offline black-box optimization
(BBO) problem, i.e., solving multiple offline BBO task
simultaneously. My approach is based on string-based
representation of x by “{x1:**,x2:**,...}”. I use a language
model embedder to map the input string to an embedding
space, and then apply an MLP head for regressing the
objective. However, the LM embedder contains improper
bias for regression. I need to design a novel loss function to
optimize the embedding representations of different tasks
in the language model’s latent space. The goal is to form a
clear distributional structure of embeddings in the latent
space while maintaining distinguishability between tasks.

I need to design an additional loss function to further
fine-tune the embedder checkpoint. The goal is to obtain
better performances of the final solutions over all tasks.

Please help me create a new algorithm that has a totally
different form from the given ones.

Firstly, describe your new algorithm and main steps in one
sentence. The description must be inside a brace.
Next, implement it in Python as a function named
additional loss. This function should accept two input(s):
’x embedding’, ’meta embedding’. The function should
return one output(s): loss. ’x embedding’ represents a
batch of embeddings to be optimized with shape B*D
(batch size * embedding dimension). ’meta embedding’
represents metadata information also provided in a batch
embedding format with shape B*D. The output ’loss’ is
the designed loss value. Note that both ’x embedding’
and ’meta embedding’ are torch tensors with matching
batch sizes. The novel loss function should be sufficiently
complex to achieve effective embedding optimization
while maintaining computational stability. It is important
to ensure the loss computation is mathematically sound and
properly scaled.

All inputs and outputs are torch.Tensor. Do not give addi-
tional explanations.

Prompt for M1

I am solving universal offline black-box optimization
(BBO) problem, i.e., solving multiple offline BBO task
simultaneously. My approach is based on string-based
representation of x by “{x1:**,x2:**,...}”. I use a language
model embedder to map the input string to an embedding
space, and then apply an MLP head for regressing the
objective. However, the LM embedder contains improper
bias for regression. I need to design a novel loss function to
optimize the embedding representations of different tasks
in the language model’s latent space. The goal is to form a
clear distributional structure of embeddings in the latent
space while maintaining distinguishability between tasks.

I have one algorithm with its code as follows.
algorithms description:
Code:

Please assist me in creating a new algorithm that has
a different form but can be a modified version of the
algorithm provided.
Firstly, describe your new algorithm and main steps in one
sentence. The description must be inside a brace.
Next, implement it in Python as a function named
additionalloss. This function should accept two input(s):
’x embedding’, ’meta embedding’. The function should
return one output(s): loss. ’x embedding’ represents a
batch of embeddings to be optimized with shape B*D
(batch size * embedding dimension). ’meta embedding’
represents metadata information also provided in a batch
embedding format with shape B*D. The output ’loss’ is
the designed loss value. Note that both ’x embedding’
and ’meta embedding’ are torch tensors with matching
batch sizes. The novel loss function should be sufficiently
complex to achieve effective embedding optimization
while maintaining computational stability. It is important
to ensure the loss computation is mathematically sound and
properly scaled.

All inputs and outputs are torch.Tensor. Do not give addi-
tional explanations.

Figure 20. Two examples of prompt engineering used in E1 and M1 strategy for EoH-R.
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Prompt for M2

I am solving universal offline black-box optimization (BBO)
problem, i.e., solving multiple offline BBO task simultaneously.
My approach is based on string-based representation of x by
“{x1:**,x2:**,...}”. I use a language model embedder to map the
input string to an embedding space, and then apply an MLP head
for regressing the objective. However, the LM embedder contains
improper bias for regression. I need to design a novel loss function
to optimize the embedding representations of different tasks in
the language model’s latent space. The goal is to form a clear
distributional structure of embeddings in the latent space while
maintaining distinguishability between tasks.

I need to design an additional loss function to further fine-tune the
embedder checkpoint. The goal is to obtain better performances of
the final solutions over all tasks.

Please identify the main algorithm parameters and assist me in
creating a new algorithm that has a different parameter settings of
the score function provided.

Firstly, describe your new algorithm and main steps in one
sentence. The description must be inside a brace.
Next, implement it in Python as a function named latent loss.
This function should accept two input(s): ’x embedding’,
’meta embedding’. The function should return one output(s):
loss. ’x embedding’ represents a batch of embeddings to be
optimized with shape B*D (batch size * embedding dimension).
’meta embedding’ represents metadata information also provided
in a batch embedding format with shape B*D. The output ’loss’
is the designed loss value. Note that both ’x embedding’ and
’meta embedding’ are torch tensors with matching batch sizes.
The novel loss function should be sufficiently complex to achieve
effective embedding optimization while maintaining computational
stability. It is important to ensure the loss computation is
mathematically sound and properly scaled.

All inputs and outputs are torch.Tensor. Do not give additional
explanations.

Prompt for M3

I am solving universal offline black-box opti-
mization (BBO) problem, i.e., solving multiple
offline BBO task simultaneously. My approach
is based on string-based representation of x by
“{x1:**,x2:**,...}”. I use a language model
embedder to map the input string to an embedding
space, and then apply an MLP head for regressing
the objective. However, the LM embedder contains
improper bias for regression. I need to design a
novel loss function to optimize the embedding
representations of different tasks in the language
model’s latent space. The goal is to form a clear
distributional structure of embeddings in the latent
space while maintaining distinguishability between
tasks.

First, you need to identify the main components in
the algorithm below:
algorithms description:
Code:

Next, analyze whether any of these components can
be overfit to the in-distribution instances. Then,
based on your analysis, simplify the components
to enhance the generalization to potential out-of-
distribution instances. Finally, provide the revised
code, keeping the function name, inputs, and outputs
unchanged.
Note that both ’x embedding’ and ’meta embedding’
are torch tensors with matching batch sizes. The
novel loss function should be sufficiently complex
to achieve effective embedding optimization while
maintaining computational stability. It is important
to ensure the loss computation is mathematically
sound and properly scaled.

All inputs and outputs are torch.Tensor. Do not give
additional explanations.

Figure 21. Two examples of prompt engineering used in M2 and M3 strategy for EoH-R.
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Prompt for Initialization

I am solving universal offline black-box opti-
mization (BBO) problem, i.e., solving multiple
offline BBO task simultaneously. My approach
is based on string-based representation of
x by “{x1:**,x2:**,...}”. I use a language
model embedder to map the input string to an
embedding space, and then apply an MLP head
for regressing the objective. However, the LM
embedder contains improper bias for regression. I
have fine-tuned a T5-small embedder checkpoint
that forms a clear distributional structure of
embeddings in the latent space while maintaining
distinguishability between tasks via the following
implementation:

Loss code in our implementation...

I need to design an additional loss function to
further fine-tune the embedder checkpoint. The
goal is to obtain better performances of the final
solutions over all tasks.
Firstly, describe your new algorithm and main
steps in one sentence. The description must be
inside a brace.
Next, implement it in Python as a function named
additional loss. This function should accept
two input(s): ’x embedding’, ’meta embedding’.
The function should return one output(s): loss.
’x embedding’ represents a batch of embeddings
to be optimized with shape B*D (batch size
* embedding dimension). ’meta embedding’
represents metadata information also provided
in a batch embedding format with shape B*D.
The output ’loss’ is the designed loss value. Note
that both ’x embedding’ and ’meta embedding’
are torch tensors with matching batch sizes. The
novel loss function should be sufficiently complex
to achieve effective embedding optimization
while maintaining computational stability. It
is important to ensure the loss computation is
mathematically sound and properly scaled.

All inputs and outputs are torch.Tensor. Do not
give additional explanations.

Prompt for E2

I am solving universal offline black-box optimization (BBO) problem,
i.e., solving multiple offline BBO task simultaneously. My approach
is based on string-based representation of x by “{x1:**,x2:**,...}”.
I use a language model embedder to map the input string to an
embedding space, and then apply an MLP head for regressing the
objective. However, the LM embedder contains improper bias for
regression. I have fine-tuned a T5-small embedder checkpoint that
forms a clear distributional structure of embeddings in the latent space
while maintaining distinguishability between tasks via the following
implementation:

Loss code in our implementation...

I have five existing algorithms with their codes as follows:
No.1 algorithms description:
Code:
...
No.3 algorithms description:
Code:

Please help me design a new algorithm that is different from the given
ones but can be motivated by them.
Firstly, identify the common backbone idea in the provided algo-
rithms.
Secondly, based on the backbone idea describe your new algorithm in
one sentence.
Thirdly, implement it in Python as a function named ’addi-
tional loss’. This function should accept two inputs: ’x embedding’,
’meta embedding . The function should return one output: ’loss’.
’x embedding’ represents a batch of embeddings to be optimized with
shape B*D (batch size * embedding dimension). ’meta embedding’
represents metadata information also provided in a batch embedding
format with shape B*D.The output ’loss’ is the designed loss value.
Note that both ’x embedding’ and ’meta embedding’ are torch
tensors with matching batch sizes. The novel loss function should
be sufficiently complex to achieve effective embedding optimization
while maintaining computational stability. It is important to en-
sure the loss computation is mathematically sound and properly scaled.

All inputs and outputs are torch.Tensor. Do not give additional expla-
nations.

Figure 22. Two examples of prompt engineering used in initialization and E2 strategy for EoH-A.
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Prompt for E1

I am solving universal offline black-box optimization
(BBO) problem, i.e., solving multiple offline BBO task
simultaneously. My approach is based on string-based
representation of x by ”{x1:**,x2:**,...}”. I use a language
model embedder to map the input string to an embedding
space, and then apply an MLP head for regressing the
objective. However, the LM embedder contains improper
bias for regression. I have fine-tuned a T5-small embedder
checkpoint that forms a clear distributional structure
of embeddings in the latent space while maintaining
distinguishability between tasks via the following imple-
mentation:

Loss code in our implementation...

I need to design an additional loss function to further
fine-tune the embedder checkpoint. The goal is to obtain
better performances of the final solutions over all tasks.

Please help me create a new algorithm that has a totally
different form from the given ones.

Firstly, describe your new algorithm and main steps in one
sentence. The description must be inside a brace.
Next, implement it in Python as a function named
additional loss. This function should accept two input(s):
’x embedding’, ’meta embedding’. The function should
return one output(s): loss. ’x embedding’ represents a
batch of embeddings to be optimized with shape B*D
(batch size * embedding dimension). ’meta embedding’
represents metadata information also provided in a batch
embedding format with shape B*D. The output ’loss’ is
the designed loss value. Note that both ’x embedding’
and ’meta embedding’ are torch tensors with matching
batch sizes. The novel loss function should be sufficiently
complex to achieve effective embedding optimization
while maintaining computational stability. It is important
to ensure the loss computation is mathematically sound and
properly scaled.

All inputs and outputs are torch.Tensor. Do not give addi-
tional explanations.

Prompt for M1

I am solving universal offline black-box optimization
(BBO) problem, i.e., solving multiple offline BBO task
simultaneously. My approach is based on string-based
representation of x by “{x1:**,x2:**,...}”. I use a language
model embedder to map the input string to an embedding
space, and then apply an MLP head for regressing the
objective. However, the LM embedder contains improper
bias for regression. I have fine-tuned a T5-small embedder
checkpoint that forms a clear distributional structure
of embeddings in the latent space while maintaining
distinguishability between tasks via the following imple-
mentation:

Loss code in our implementation...

I have one algorithm with its code as follows.
algorithms description:
Code:

Please assist me in creating a new algorithm that has
a different form but can be a modified version of the
algorithm provided.
Firstly, describe your new algorithm and main steps in one
sentence. The description must be inside a brace.
Next, implement it in Python as a function named
additional loss. This function should accept two input(s):
’x embedding’, ’meta embedding’. The function should
return one output(s): loss. ’x embedding’ represents a
batch of embeddings to be optimized with shape B*D
(batch size * embedding dimension). ’meta embedding’
represents metadata information also provided in a batch
embedding format with shape B*D. The output ’loss’ is
the designed loss value. Note that both ’x embedding’
and ’meta embedding’ are torch tensors with matching
batch sizes. The novel loss function should be sufficiently
complex to achieve effective embedding optimization
while maintaining computational stability. It is important
to ensure the loss computation is mathematically sound and
properly scaled.

All inputs and outputs are torch.Tensor. Do not give addi-
tional explanations.

Figure 23. Two examples of prompt engineering used in E1 and M1 strategy for EoH-A.
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Prompt for M2

I am solving universal offline black-box optimization (BBO)
problem, i.e., solving multiple offline BBO task simultaneously.
My approach is based on string-based representation of x by
“{x1:**,x2:**,...}”. I use a language model embedder to map
the input string to an embedding space, and then apply an MLP
head for regressing the objective. However, the LM embedder
contains improper bias for regression. I have fine-tuned a T5-small
embedder checkpoint that forms a clear distributional structure of
embeddings in the latent space while maintaining distinguishability
between tasks via the following implementation:

Loss code in our implementation...

I need to design an additional loss function to further fine-tune the
embedder checkpoint. The goal is to obtain better performances of
the final solutions over all tasks.

Please identify the main algorithm parameters and assist me in
creating a new algorithm that has a different parameter settings of
the score function provided.

Firstly, describe your new algorithm and main steps in one
sentence. The description must be inside a brace.
Next, implement it in Python as a function named additional loss.
This function should accept two input(s): ’x embedding’,
’meta embedding’. The function should return one output(s):
loss. ’x embedding’ represents a batch of embeddings to be
optimized with shape B*D (batch size * embedding dimension).
’meta embedding’ represents metadata information also provided
in a batch embedding format with shape B*D. The output ’loss’
is the designed loss value. Note that both ’x embedding’ and
’meta embedding’ are torch tensors with matching batch sizes.
The novel loss function should be sufficiently complex to achieve
effective embedding optimization while maintaining computational
stability. It is important to ensure the loss computation is
mathematically sound and properly scaled.

All inputs and outputs are torch.Tensor. Do not give additional
explanations.

Prompt for M3

I am solving universal offline black-box opti-
mization (BBO) problem, i.e., solving multiple
offline BBO task simultaneously. My approach
is based on string-based representation of x by
“{x1:**,x2:**,...}”. I use a language model
embedder to map the input string to an embedding
space, and then apply an MLP head for regressing
the objective. However, the LM embedder contains
improper bias for regression. I have fine-tuned a
T5-small embedder checkpoint that forms a clear
distributional structure of embeddings in the latent
space while maintaining distinguishability between
tasks via the following implementation:

Loss code in our implementation...

First, you need to identify the main components in
the algorithm below:
algorithms description:
Code:

Next, analyze whether any of these components can
be overfit to the in-distribution instances. Then,
based on your analysis, simplify the components
to enhance the generalization to potential out-of-
distribution instances. Finally, provide the revised
code, keeping the function name, inputs, and outputs
unchanged.
Note that both ’x embedding’ and ’meta embedding’
are torch tensors with matching batch sizes. The
novel loss function should be sufficiently complex
to achieve effective embedding optimization while
maintaining computational stability. It is important
to ensure the loss computation is mathematically
sound and properly scaled.

All inputs and outputs are torch.Tensor. Do not give
additional explanations.

Figure 24. Two examples of prompt engineering used in M2 and M3 strategy for EoH-A.
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# Ant Morphology
{"type": "robot_design", "dimensions": 60, "input_range": [-1.0, 1.0], "output_range":

[0, inf], "optimization_target": "running_speed", "simulation_engine": "MuJoCo", "
evaluation_trials": 16, "simulation_length": 100}

# D’Kitty Morphology
{"type": "robot_design", "dimensions": 56, "input_range": [-1.0, 1.0], "output_range":

[0, inf], "optimization_target": "target_reaching", "simulation_engine": "MuJoCo", "
evaluation_trials": 16, "simulation_length": 100}

# Superconductor
{"type": "materials_science", "dimensions": 81, "input_range": [0.0, 1.0], "output_range"

: [0, inf], "optimization_target": "critical_temperature", "model_type": "
random_forest", "dataset_examples": 21263}

# TF Bind 8
{"type": "dna_design", "sequence_length": 8, "alphabet": ["A", "C", "G", "T"], "

output_range": [0, 1], "optimization_target": "binding_affinity", "search_space":
65792, "training_examples": 32898}

# TF Bind 10
{"type": "dna_design", "sequence_length": 10, "alphabet": ["A", "C", "G", "T"], "

output_range": [0, 1], "optimization_target": "binding_affinity", "search_space":
1048576, "training_examples": 50000}

# GTOPX 2
{"type": "spacecraft_trajectory", "dimensions": 22, "input_range": [-1.0, 1.0], "

output_range": [0, inf], "optimization_target": "delta_v", "mission_type": "
saturn_rendezvous", "maneuver": "dsm"}

# GTOPX 3
{"type": "spacecraft_trajectory", "dimensions": 18, "input_range": [-1.0, 1.0], "

output_range": [0, inf], "optimization_target": "delta_v", "mission_type": "
mercury_transfer", "flyby_type": "non_resonant"}

# GTOPX 4
{"type": "spacecraft_trajectory", "dimensions": 26, "input_range": [-1.0, 1.0], "

output_range": [0, inf], "optimization_target": "delta_v", "mission_type": "
mercury_transfer", "flyby_type": "resonant"}

# GTOPX 6
{"type": "spacecraft_trajectory", "dimensions": 22, "input_range": [-1.0, 1.0], "

output_range": [0, inf], "optimization_target": "delta_v", "mission_type": "
comet_rendezvous", "maneuver": "multi_gravity_assist"}

Figure 25. Best metadata found by EoH-M.
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1 import torch
2 import torch.nn.functional as F
3

4 def latent_loss(x_embedding: torch.Tensor, meta_embedding: torch.Tensor) -> torch.Tensor:
5 batch_size = x_embedding.shape[0]
6 # Multi-scale kernel density estimation
7 scales = torch.tensor([0.1, 0.5, 1.0], device=x_embedding.device)
8 dist_matrix = torch.cdist(x_embedding, x_embedding)
9

10 density_loss = 0
11 for scale in scales:
12 kernel = torch.exp(-dist_matrix / (2 * scale * scale))
13 density = kernel.sum(dim=1) / batch_size
14 density_loss += -torch.log(density + 1e-6).mean()
15

16 # Diffusion distance mapping
17 transition = kernel / kernel.sum(dim=1, keepdim=True)
18 diffused_x = torch.matmul(transition, x_embedding)
19 diffusion_loss = torch.norm(diffused_x - x_embedding, dim=1).mean()
20

21 # Task-specific repulsion
22 x_norm = F.normalize(x_embedding, dim=1)
23 meta_norm = F.normalize(meta_embedding, dim=1)
24 task_sim = torch.matmul(x_norm, meta_norm.t())
25 task_probs = F.softmax(task_sim / 0.1, dim=1)
26

27 task_repulsion = torch.matmul(task_probs, task_probs.t())
28 repulsion_loss = torch.mean(task_repulsion * torch.exp(-dist_matrix))
29

30 # Smooth boundary transitions
31 boundary_kernel = torch.exp(-task_sim)
32 boundary_density = torch.matmul(boundary_kernel, task_probs)
33 smoothness_loss = torch.mean((boundary_density - task_probs)**2)
34

35 # Combined loss with balanced weights
36 loss = (0.3 * density_loss +
37 0.3 * diffusion_loss +
38 0.2 * repulsion_loss +
39 0.2 * smoothness_loss)
40

41 return loss

Figure 26. Best code found by EoH-R. Description by the model: the algorithm extends the local structure preservation concept by
incorporating adaptive kernel-based density estimation with multi-scale diffusion distances, while utilizing task-specific repulsion forces
and smooth boundary transitions through probabilistic assignment matrices.
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1 import torch
2

3 def additional_loss(x_embedding: torch.Tensor, meta_embedding: torch.Tensor) -> torch.
Tensor:

4 x_dist = torch.cdist(x_embedding, x_embedding)
5 m_dist = torch.cdist(meta_embedding, meta_embedding)
6

7 x_rank = torch.argsort(torch.argsort(x_dist, dim=1), dim=1).float()
8 m_rank = torch.argsort(torch.argsort(m_dist, dim=1), dim=1).float()
9

10 rank_corr = torch.mean((x_rank - m_rank)**2)
11

12 dist_ratio = x_dist / (m_dist + 1e-8)
13 consistency = torch.mean(torch.abs(dist_ratio - torch.median(dist_ratio)))
14

15 return rank_corr + 0.2 * consistency

Figure 27. Best code of EoH-A. Description by the model: balance pairwise distances in both embedding and metadata spaces while
enforcing consistency through rank correlation.
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