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ABSTRACT

The electrocardiogram (ECG) is an essential non-invasive diagnostic tool for as-
sessing cardiac conditions. Existing automatic interpretation methods suffer from
limited generalizability, focusing on a narrow range of cardiac conditions, and
typically depend on raw physiological signals, which may not be readily available
in resource-limited settings where only printed or digital ECG images are accessi-
ble. Recent advancements in multimodal large language models (MLLMs) present
promising opportunities for addressing these challenges. However, the application
of MLLMs to ECG image interpretation remains challenging due to the lack of in-
struction tuning datasets and well-established ECG image benchmarks for quan-
titative evaluation. To address these challenges, we introduce ECGInstruct, a
comprehensive ECG image instruction tuning dataset of over 1 million samples,
covering a wide range of ECG-related tasks from diverse data sources. Using
ECGInstruct, we develop PULSE, a fine-tuned MLLM tailored for ECG im-
age interpretation. In addition, we curate ECGBench, a new evaluation bench-
mark covering four key ECG image interpretation tasks. Our experiments show
that PULSE sets a new state-of-the-art, outperforming general MLLMs with an
average accuracy improvement of 15% to 30%. This work highlights the potential
of PULSE to enhance ECG interpretation in clinical practice.1

Question:
Determine the abnormality of the given ECG
image: Normal ECG, Atrial fibrillation, First
degree atrioventricular block, Left bundle
branch block, Right bundle branch block,
Premature atrial contraction, Premature
ventricular contraction, ST segment
depression, ST segment elevated
Ground Truth: Right bundle branch block;
Premature atrial contraction

Abnormality Detection GPT 4o Response: Based on the provided ECG image, here’s a breakdown
to help determine its abnormalities: 1. Rate & Rhythm: The rhythm
appears irregular, which suggests it may not be normal sinus rhythm. This
irregularity, combined with the lack of clearly identifiable P waves,
suggests atrial fibrillation. 2. PR Interval: The PR interval is difficult to
identify due to the absence of well formed P waves, which again leans
toward atrial fibrillation. 3. QRS Complex: The QRS duration does not
appear to be widened, so and right bundle branch block are unlikely. 4.
ST Segment: No clear ST elevation or depression is visible, ruling out STE
and STD. 5. Other abnormalities: There are no obvious premature atrial
contractions or premature ventricular contractions. Therefore, this ECG
most likely represents Atrial Fibrillation.

Overall Model Performance on ECGBench

MMMU ECG
Out-of-domain Evaluation

ECG Arena
Out-of-domain Evaluation

Abnormality Detection
Out-of-domain Evaluation

Report Generation
In-domain Evaluation

Figure 1: The proposed PULSE demonstrates superior performance across multiple in-domain
and out-of-domain datasets on our constructed ECGBench compared with advanced proprietary
MLLMs (e.g., GPT-4o). Notably, these proprietary MLLMs often fail to accurately interpret ECG
images, generating well-structured and contextually relevant responses but ultimately incorrect (with
errors highlighted in red) compared to the ground truth diagnosis.

1All code, data and models are available at anonymous.4open.science/r/PULSE-4ECD
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1 INTRODUCTION

The electrocardiogram (ECG) is an essential tool in diagnosing cardiovascular diseases due to its
non-invasive, cost-effective, and widely accessible nature for assessing cardiac function. While
some approaches have been proposed for automatic ECG diagnosis (Hannun et al., 2019; Ribeiro
et al., 2020; Hughes et al., 2021), their application in real-world clinical settings encounters several
challenges. First, these models are primarily designed for classification tasks with limited cardiac
conditions (Ribeiro et al., 2020), often lacking generalizability to rare or unseen abnormalities. Sec-
ond, they typically treat ECG data as time-series physiological signals, which may not always be
available, particularly in resource-constrained or remote settings (Siontis et al., 2021). In such set-
tings, ECG data are often stored exclusively as printed or digital images (Sangha et al., 2022; 2023),
limiting the utility of signal-based models. Third, variations in data formats and architectures across
different device vendors (Cuevas-González et al., 2022) further complicate the interoperability and
applicability of traditional ECG models in diverse healthcare environments (Chung et al., 2022).

Recent advancements in multimodal large language models (MLLMs) have shown impressive suc-
cess across vision-language tasks, offering new possibilities for addressing the aforementioned lim-
itations of traditional ECG models. They enable model inference directly from ECG images, which
are the primary formats used by clinicians (Cuevas-González et al., 2022), and accommodating rural
or remote clinic settings. However, applying MLLMs to ECG interpretation is not straightforward.
As illustrated in Fig. 1, current MLLMs, such as GPT-4o (OpenAI, 2024), often provide responses
that appear correct and contextually relevant but are ultimately inaccurate in interpreting ECG im-
ages. This highlights the need for specialized MLLMs for ECG image interpretation.

Developing MLLMs for ECG images faces several challenges. First, no large-scale ECG image
datasets are currently available as most ECG datasets contain only raw signal data, which needs to
be synthesized into digital images. Second, there is a lack of instruction tuning datasets for ECG
images. Large high-quality instruction tuning datasets, which are crucial for MLLM development,
need to be curated from scratch for ECG-related tasks. Finally, evaluation is just as critical as model
development, yet no established benchmark exists for assessing MLLM performance in ECG image
interpretation. A well-defined benchmark is essential for both quantifying model performance and
identifying areas for future improvement.

In this paper, we tackle these challenges by introducing ECGInstruct, the first large-scale
ECG image instruction tuning dataset containing over one million ECG image-text samples.
ECGInstruct is characterized by: 1) realistic image synthesis that replicates artifacts commonly
seen in paper-based ECGs, 2) a diverse range of ECG-related tasks with clinical experts’ insights for
refinement, and 3) data sourced from distinct geographic regions. We use ECGInstruct to fine-
tune LLaVA (Liu et al., 2024b), resulting in our model, PULSE. To address the evaluation challenge,
we present ECGBench, a comprehensive evaluation benchmark covering four major ECG image
analysis tasks. ECGBench includes repurposed diagnosis and clinical report generation tasks from
existing datasets, as well as newly created, complex ECG analysis using real-world images.

Evaluated on ECGBench, PULSE sets a new state-of-the-art, significantly outperforming propri-
etary MLLMs across all benchmarks with an average accuracy gain of 15% to 30% compared to
GPT-4o on out-of-domain datasets (Fig. 1). Ablation experiments demonstrate the importance of
incorporating diverse data sources and ECG instruction tasks into the training data. A case study
and discussion further illustrate the model’s effectiveness in ECG image interpretation.

To summarize, our main contributions are as follows,

• Problem. We investigate the capabilities of MLLMs in ECG image interpretation and evaluate
their performance across various downstream tasks. To the best of our knowledge, this is the first
study focused on assessing MLLMs in image-based ECG interpretation.

• Dataset. We construct ECGInstruct, a large-scale ECG image instruction tuning dataset con-
sisting of various ECG-related tasks, serving as a valuable resource for fine-tuning MLLMs.

• Model. We develop PULSE, a new MLLM tailored for ECG image interpretation. The model
achieves state-of-the-art performance, outperforming both proprietary and open-source MLLMs.

• Evaluation. We establish ECGBench, a comprehensive benchmark for evaluating ECG image
interpretation, which includes diverse evaluation tasks, both real-world and synthesized images.
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Task 
Description

Clinical 
Experts

(1) ECG Image Synthesis with Various Distortions 

ECG Datasets ECG Signals

Extraction

Image Synthesis

Filtering

Standard Rotation Noises

…

Various Distortions

Prompt: You are tasked with creating
an ECG interpretation task based on
the guidelines. You are given the
original clinical reports, diagnoses, and
ECG tasks defined by clinical experts.
Guidelines for task creation:
1. Design a concise yet challenging
graduate level task that requires
comprehensive interpretation of ECG.
2. Frame the task as interacting with an
actual ECG image…
Original clinical report: Sinus
bradycardia, abnormal QRS(T), inferior
infarctioin, probably old…
Task Description: Describe the
morphology and significance of the P
wave in this ECG image…

Instruction: Please describe the P wave of
the given ECG image.
Response: The suspected condition based
on the P wave morphology in this ECG
image is p sinistrocardiale, which suggests
a possible left atrial enlargement. This
condition can be identified by specific
changes in the P wave morphology, such
as a broad and notched P wave in lead II

ECG Tasks 

Layout

Original 
Diagnosis 

and Reports

Prompt 
Refining

(2) Diverse Task Construction with Clinical Experts’ Insights

• Basic Feature Recognition 
§ basic waveforms; intervals; rate; etc.

• Heart Rhythm Analysis 
§ Arrhythmias, pacing patterns, etc.

• Morphology and Pathology
§ ischemia, infarction, pericarditis, etc.

• Clinical Report Generation
§ report generation

Wrinkles

MCQ
Close 

ended QA
Fill-in-the 

blank
Open 

ended QA

Diverse Task Types

Task Type

ECGInstructInstruction Curation

Llama 3

Llama 3

Quality Checking
Given an ECG report and corresponding QA 
pairs, score the quality of the answer from 0 
to 5 based on the guidelines provided…

Figure 2: ECGInstruct: a list of diverse and large-scale instruction tuning datasets for ECG
image interpretation. (1) ECG images are synthesized from raw signal recordings with various
distortions that mimic real-world printed ECG images. (2) ECGInstruct is curated based on
clinician-defined ECG-related tasks, original diagnosis and clinical reports, and diverse task types.
Additional quality checking is applied to filter lower-scored instructions.

Source Dataset Task Type # Samples

PTB-XL (Wagner et al., 2020) Feature Close/Open/Fill/MCQ 30K
Rhythm Close/Open/Fill/MCQ 36K
Morphology Close/Open/Fill/MCQ 67K
Report Open 16K

ECG-QA (Oh et al., 2024) Feature Close 40K
Rhythm Close 9K
Morphology Close 90K

MIMIC-IV-ECG (Gow et al., 2023) Feature Close/Open/Fill/MCQ 29K
Rhythm Close/Open/Fill/MCQ 115K
Morphology Close/Open/Fill/MCQ 169K
Report Open 487K

CODE-15% (Ribeiro et al., 2021) Feature Close 22K
Rhythm Close 14K
Morphology Close 31K

Total (ECGInstruct) 1.2M

Table 1: Summary of ECGInstruct. Feature: basic feature recognition, Rhythm: heart rhythm
analysis, Morphology: morphology and pathology identification, Report: clinical report generation.
Close: close-ended QA, Open: open-ended QA, Fill: fill-in-the-blank, MCQ: multi-choice QA. The
full table of data statistics is provided in Appendix Table A1.

2 ECGINSTRUCT: TEACH MLLMS TO COMPREHEND ECG IMAGES

We aim to curate a list of multifaceted instruction tuning datasets for ECG analysis that are featured
by 1) realistic image synthesis resembling the artifacts in paper ECGs, 2) diverse types of ECG-
related tasks with clinical experts’ insights, and 3) different data sources from distinct geographical
regions. We show the construction of ECGInstruct in Fig. 2 and data summary in Table 1.

ECG Image Synthesis with Real Distortions. To enhance the robustness and real-world applica-
bility of our model, we synthesize ECG images mimicking common artifacts found in paper ECGs.
We adopt an ECG image synthesis tool (Shivashankara et al., 2024) that provides various imper-

3
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fections such as grid line interference, creases, wrinkles, paper rotations, etc. By including these
synthesized artifacts, we aim to train models that can effectively interpret ECGs in less-than-ideal
conditions, as often encountered in clinical settings. More details are provided in Appendix C.

ECG-related Tasks with Clinical Experts’ Insights. To construct a comprehensive set of ECG-
related tasks, we consulted domain experts to curate diverse and clinically relevant tasks covering
four different categories. Each category is designed to address specific aspects of ECG interpretation
and analysis, including (1) basic feature recognition (see examples in Appendix Fig. A1), (2) heart
rhythm analysis (see examples in Appendix Fig. A2), (3) morphology and pathology identification
(see examples in Appendix Fig. A3) and (4) clinical report generation (see examples in Appendix
Fig. A4). Basic feature recognition (e.g., interval or segment, etc.) forms the foundation of ECG in-
terpretation, enabling the model to grasp essential cardiac parameters. Heart rhythm analysis (e.g.,
arrhythmias, conduction abnormalities, etc.) and morphology and pathology identification (e.g.,
wave shape, pathological conditions, etc.) are more advanced and critical aspects of ECG analysis,
ensuring that the model can detect and classify complex conditions accurately. Lastly, clinical report
generation mirrors the process of healthcare professionals synthesizing a comprehensive interpre-
tation of an ECG. By incorporating clinical experts’ insights, we encourage the model to learn the
practical skills required in a clinical context.

Diverse Types of Tasks. Based on the original diagnoses and clinical reports from the existing
ECG datasets, we curate diverse types of tasks including multi-choice questions, fill-in-the-blank,
close-ended QA, and open-ended QA. This variety of task types not only enhances the model’s
versatility but also mimics the diverse cognitive processes involved in real-world ECG interpretation.
By incorporating these varied task types, we aim to develop a more robust and adaptable model
capable of handling a wide spectrum of ECG-related queries and analyses.

Diverse Data Sources from Distinct Regions. To ensure broad applicability and generalizabil-
ity, we collect ECG data from four different sources across geographically distinct regions: 1)
PTB-XL (Wagner et al., 2020): a Germany-based, publicly available repository; (2) MIMIC-IV-
ECG (Gow et al., 2023): a large set of ECGs for patients who appear in the MIMIC-IV Clinical
Database from Beth Israel Deaconess Medical Center in Boston (Johnson et al., 2023); 3) CODE-
15% (Ribeiro et al., 2021): an ECG dataset from a central ECG repository from Minas Gerais,
Brazil under the clinical outcomes in digital electrocardiology (CODE) study (Ribeiro et al., 2019);
4) ECG-QA (Oh et al., 2024), a question answering dataset for ECGs that is constructed based
on PTB-XL (Wagner et al., 2020). This diverse geographical representation enhances the model’s
ability to generalize across different populations and healthcare systems, accounting for potential
variations in ECG patterns and interpretations across regions.

Data Synthesizing at Scale. Since large-scale annotation of ECG features is extremely expen-
sive and time-consuming, we develop an automatic data synthesizing pipeline to address this data
scarcity issue. We utilized diagnostic reports from PTB-XL and MIMIC-IV-ECG as initial seed data
and leveraged an advanced large language model (i.e., Llama-3-70B-Instruct) for data synthesis.
Building upon the expert-in-the-loop process and diverse data resources described in the previous
sections, we synthesized a substantial volume of ECG-related instructions and corresponding re-
sponses. These were based on expert-provided examples and real-world scenarios, with the specific
prompts used in this process detailed in the Appendix E. For datasets lacking comprehensive reports,
such as CODE-15%, we manually constructed diverse templates to transform the existing data into
an instruction-response format.

Quality Control. To guarantee the quality of generated instructions and corresponding responses,
we apply an independent LLM as a judge to evaluate and score the content. This process involves
several steps: 1) initial generation: instructions and responses are first generated using our primary
model; 2) evaluation criteria: we establish a set of evaluation criteria including the instruction rele-
vance, clarity, answerability of the responses, etc; 3) LLM judge and scoring: an independent LLM
(Llama 3 (Meta, 2024)) is used as a judge to assess each instruction-response pair against estab-
lished criteria and assign scores (see prompt in Appendix Fig. A8); 4) feedback loop: low-scoring
items are flagged for human expert review and potential revision or removal; 5) iterative refinement:
based on the scoring patterns and human expert input, we continually refine our instruction gener-
ation process. By combining automated LLM evaluation with human expert oversight, we create a
robust system for maintaining and improving the quality of our instruction-response pairs.

4
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Repurposed Tasks from Diagnosis and Reports 

Sythesized 
ECG Images

Diagnosis 
and Reports

Query: Please determine the appropriate diagnosis for the
ECG image: right bundle branch block, ST depression,
ventricular ectopics, 1st degree av block, ST elevation, left
bundle branch block, atrial fibrillation, premature atrial
contraction, normal ECG.

Query: Please write a clinical report based on this ECG image.

Question: What is the rhythm shown in this ECG?

Question type: Diagnosis Classification; Close-ended
Image type: 12*1 layout; Rotation; Wrinkles; Colored image
Source: CPSC (out-of-domain)

Abnormality Detection

Answer: atrial fibrillation; right
bundle branch block

Report Generation

Answer: Premature ventricular
contractions are present. There is a
rapid, regular supraventricular
tachycardia. The rhythm is likely
atrial flutter with a 2:1 atrioventricular
block. There is left ventricular
hypertrophy. Non-specific ST-T wave
changes are noted.

Question type: Report generation; Open-ended
Image type: 4*3 layout; w/o Distortions
Source: PTB-XL (in-domain)

MMMU ECG

Question type: Multi-choice; Close-ended
Image type: 6*2 layout; Rea-world ECG Image
Source: Online Quiz

ECG Arena
Question: Can you describe the features observed in this
ECG, including the rhythm, waveforms, intervals, and any
other notable findings?
Follow-up Question: Given the
findings you've mentioned,
especially the ST-segment
changes and dual-chamber
pacing, what is the diagnosis?

Question type: Multi-turn; Open-ended
Image type: 4*3 layout; Rea-world ECG Image
Source: Textbook

Resource Selection

Question 
Creation

Quality 
Control

Created Tasks from External ECG-related Resources

Answer: The ECG shows a dual-chamber paced rhythm at
60 bpm. There is ST-segment elevation (STE) in leads II…

Option:
(A) Sinus tachycardia with
ventricular tachycardia
(B) Atrial fibrillation with
right bundle branch aberrancy
(C) Atrial tachycardia with right bundle branch aberrancy
(D) Polymorphic ventricular tachycardia
Answer: (D)

ECG 
Datasets

ECG-related 
Tasks

Repurposing

Figure 3: The data curation process for ECGBench. There are four key tasks involved: 1) two
repurposed tasks (abnormality detection and report generation) derived from existing ECG datasets,
where ECG images are synthesized from raw signals, and queries/answers are extracted based on
diagnostic and clinical reports; 2) Two newly developed tasks using external resources, where ECG
images and associated questions and answers are collected and generated from real-world sources.

Training. Our model architecture closely follows that of LLaVA (Liu et al., 2024b;c), adapting it for
ECG image analysis. We use a vision encoder to process ECG images and a large language model as
the text decoder, connected via a projection layer. We organize the data into three components: the
image, the instructions, and the outputs. The instruction is query or task related to the ECG image
and the output is the expected response or prediction base on the image and instruction. We place the
image at the beginning of each conversation, serving as the visual grounding for the entire dialogue.
During training, we freeze the parameters of the vision encoder while updating the parameters of the
projection layer and the language model using an autoregressive training objective, where we mask
all the tokens belonging to the image and the instruction.

3 ECGBENCH

In this section, we present ECG-Bench (Fig. 3), a comprehensive benchmark for evaluating MLLMs
on ECG image interpretation. Our benchmark contains both repurposed tasks from six existing
datasets and newly created tasks from external resources. Table 2 shows the details of each evalua-
tion dataset. We introduce the detailed evaluation task curation process below.

3.1 EVALUATION TASK CURATION

Abnormality Detection. This task focuses on detecting cardiac abnormalities using ECG images.
We curate this task by repurposing six existing ECG datasets: three in-domain datasets: PTB-
XL (Super) (Wagner et al., 2020), CODE-15% (Ribeiro et al., 2021), ECG-QA (Oh et al., 2024),
and three out-of-domain datasets: CPSC 2018 (Liu et al., 2018), CSN (Zheng et al., 2020a;b) and
G12EC (Liu et al., 2018). For all datasets, we first synthesize images using raw signals and then
curate queries based on the original diagnosis and reports. For datasets with fewer than 10 diagnos-
tic labels, we curate close-ended questions. For those with more labels, we construct multi-choice
questions with 8 options, including the original diagnosis and randomly sampled negative labels.

Report Generation. This task involves generating detailed reports for given ECG images. We
benchmark using 500 randomly selected reports from the test set of PTB-XL, which contains high-
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Evaluation Dataset Task Type # Samples In-Domain?

PTB-XL Super Abnormality Detection Close-ended 2,082 YES
PTB-XL Report Report Generation Open-ended 500 YES
CODE-15% Abnormality Detection Close-ended 1,400 YES
ECG-QA Abnormality Detection Close-ended 1,317 YES

CPSC 2018 Abnormality Detection Close-ended 2,061 NO
CSN Abnormality Detection MCQ (8-option) 1,611 NO
G12EC Abnormality Detection MCQ (8-option) 2,026 NO
MMMU ECG Multimodal Understanding MCQ (4-option) 200 NO
ECG Arena Multi-turn Conversation Open-ended 50 NO

Table 2: Overview of evaluation datasets in ECGBench. This collection contains both in-domain
and out-of-domain problems across four key tasks with diverse answer types.

quality ECG reports written and validated by cardiologists. Similarly, the ECG images are syn-
thesized from the raw signals. For the ground truth reports written in non-English (PTB-XL is a
Germany-based dataset), we translate the reports into English before the evaluation.

MMMU ECG. Inspired by MMMU (Yue et al., 2024), a widely adopted evaluation benchmark for
MLLMs, we manually curated an ECG version with 200 multi-choice questions with the help of
medical school students. The curation process involved three key steps: (1) Resource Selection:
We gathered ECG materials from diverse and reliable sources such as ECG textbooks, clinical case
reports from medical journals, and widely used online ECG learning materials. This ensures the
comprehensiveness and quality of collected ECG examples and interpretations. (2) Question Cre-
ation and Collection: Five medical school students with basic knowledge of ECG were recruited for
this task. They extracted existing questions from the collected resources. For ECG images accompa-
nied only by clinical interpretations, the annotators created questions based on these interpretations.
Additionally, they formulated new questions drawing from their expertise, ensuring a balance be-
tween various ECG interpretation aspects (e.g., rhythm analysis, morphology assessment, clinical
interpretation). (3) Quality Control: To maintain high standards, we implemented a quality control
process. In particular, Each question underwent review by at least two other annotators, checking
for accuracy and clarity. An independent reviewer cross-checked the final images, questions, and
corresponding answers against the original sources to ensure fidelity to the source material. Any
discrepancies or ambiguities were resolved during this process.

ECG Arena. To assess the model’s instruction-following ability in ECG comprehension, we devel-
oped ECG Arena, inspired by MT-Bench (Zheng et al., 2024) and Arena-hard (Chiang et al., 2024)
used in general LLM chat evaluations. We manually curated 50 multi-turn ECG-related questions,
focusing on open-ended interactions. The data curation process for ECG Arena, like MMMU ECG,
involves three main steps: resource selection, question creation, and quality control. The key dis-
tinction is that MMMU ECG focuses on multiple-choice questions, whereas ECG Arena involves
more complex, flexible multi-turn, open-ended questions. Each follow-up question is contingent
on the initial question and its response, making the process more challenging and reflective of real-
world applications. Since multi-turn conversations are rare in existing sources, this posed significant
challenges during data curation. To address this, annotators created such conversations by referenc-
ing original clinical interpretations and ECG images. The questions are designed to feel natural and
simulate a real clinical setting (e.g., the first question may ask about basic findings from the image,
followed by a question about potential clinical causes or diagnoses based on those findings).

3.2 EVALUATION METRICS.

Abnormality Detection: We use macro AUC, macro F1, and hamming loss (HL) for multi-label
datasets, and accuracy for others. Report Generation: We employ GPT-4o as a judge, evaluat-
ing reports based on rhythms, waveform, and diagnosis, with a maximum score of 100 points (see
evaluation prompt in Appendix Fig. A9). MMMU ECG: We use accuracy as the primary metric,
with systematic, rule-based evaluation pipelines to ensure consistent scoring. ECG Arena: GPT-4o
assesses model performance by comparing generated responses with ground truth answers, consid-
ering accuracy, completeness, and instruction adherence, with a maximum score of 100 points (see

6
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evaluation prompt in Appendix Fig. A10). More evaluation details are provided in the Appendix
F.1.

4 EXPERIMENTS

4.1 METHODS FOR COMPARISON

In order to evaluate the performance of our proposed model, we compare it against a set of estab-
lished methods including domain-specific methods and state-of-the-art MLLMs.

• Domain-specific Methods: We consider four domain-specific methods for ECG including three
signal-based methods: METS (Li et al., 2024c), MERL (Liu et al., 2024a), ST-MEM (Na et al.,
2023), and one image-based method: ECG-GPT (Khunte et al., 2024).

• Proprietary MLLMs: We consider three proprietary MLLMs: GPT-4o, GPT-4o mini (OpenAI,
2024), Gemini 1.5 Pro (Reid et al., 2024) and Claude 3.5 Sonnet (Anthropic, 2024).

• Open-source MLLMs: We select a range of open-source models to ensure comprehensive cov-
erage across different model sizes and visual components, including the general models LLaVA-
1.5 (Liu et al., 2024d;b), LLaVA-1.6 (Liu et al., 2024c), Phi-3-Vision Abdin et al. (2024), Idefics2-
8B (Laurençon et al., 2024), DeepSeek-Vl-7B (Lu et al., 2024a), Mantis-8B-siglip-Llama3 (Jiang
et al., 2024), MiniCPM-V-2.6 (Yao et al., 2024), InternVL2 (Chen et al., 2023; 2024) and state-of-
the-art multimodal models LLaVA-OneVision (Li et al., 2024a), Qwen2-VL (Wang et al., 2024),
as well as the domain-specific models LLaVA-Med (Li et al., 2024b).

4.2 IMPLEMENTATION DETAILS

We follow the architecture of LLaVA-v1.6-Vicuna-7B, which includes three core components: a vi-
sion encoder, a large language model, and a projector to align image and text modalities. We format
all datasets into a chatbot-style multi-turn dialogue format and use the special token “<image>”
to represent image features within the text data. Detailed implementation details are provided in
Appendix F.2.

4.3 MAIN RESULTS

We show in-domain the out-of-domain results in Table 3 and Table 4 respectively. Overall, we
observe that PULSE achieves state-of-the-art performance on different datasets and tasks.

Results on In-domain datasets. As shown in Table 3, PULSE demonstrates significant improve-
ments over both proprietary and open-source MLLMs across all in-domain datasets. Specifically,
PULSE surpasses the best proprietary model (GPT-4o) with a 27% improvement in AUC, an 11-
point gain in report score, and a 39% increase in accuracy on the PTB-XL Super, PTB-XL Report,
and ECG-QA tasks, respectively. Moreover, PULSE achieves notable gains over the best open-
source model, with a 28% improvement in AUC, a 12-point gain in report score, and a 44% increase
in accuracy on the same tasks.

These results highlight the complexity of ECG image interpretation, a task where even the best pro-
prietary models perform near randomly. By fine-tuning on ECGInstruct, PULSE achieves sub-
stantial performance improvements, demonstrating the importance of high-quality and task-related
instruction tuning. Moreover, while certain domain-specific methods (e.g., MERL) achieve compa-
rable performance on specific datasets, their specialized designs limit their generalization to other
diverse tasks, restricting their broader applicability in real-world, complex healthcare scenarios.

Results on Out-of-domain datasets. Table 4 presents the comparison results on out-of-domain
datasets, where PULSE consistently delivers outstanding performance. Notably, it achieves a sig-
nificant 15% improvement in accuracy on the MMMU ECG benchmark compared to GPT-4o. This
substantial improvement indicates the PULSE’s robustness and ability to generalize to unseen data.

The ECG Arena benchmark presents a significantly more challenging task for all models. This
benchmark is characterized by its multi-turn, open-ended question-answering format, which closely
simulates real clinical scenarios. Despite these challenges, PULSE still surpasses the best propri-
etary model by 2 points and outperforms the leading open-source model by an impressive 11 points

7
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Datasets PTB-XL Super PTB-XL Report CODE-15% ECG-QA

Metric AUC F1 HL Report Score AUC F1 HL Accuracy

Random 50.3 33.2 50.1 0 48.8 15.0 32.1 16.2

Domain-specific Methods

METS - 65.7† - N/A - - - N/A
MERL 74.2† - - N/A - - - N/A
ST-MEM 71.4† - - N/A - - - N/A
ECG-GPT 69.5∗ 53.9∗ 20.1∗ 47.8∗ 68.9∗ 40.1∗ 17.4∗ N/A

Proprietary MLLMs

GPT-4o 55.6 28.3 26.2 50.2 59.9 24.9 15.7 35.2
GPT-4o mini 52.0 20.4 31.7 37.1 57.5 22.0 15.1 14.9
Gemini 1.5 Pro 50.7 15.3 27.9 35.9 56.7 20.0 15.9 33.2
Claude 3.5 Sonnet 54.0 27.5 29.6 43.7 58.3 20.3 17.8 34.2

Open-source MLLMs

LLaVA-Med 50.0 12.3 28.1 24.3 69.2 27.0 33.4 29.5
LLaVA-1.5-7B 50.0 12.3 28.1 27.2 63.9 19.2 25.3 25.2
LLaVA-1.5-13B 50.0 35.2 48.4 20.7 53.9 13.1 13.6 21.2
LLaVA-1.6-Vicuna-7B 50.0 15.8 29.4 16.5 50.1 1.0 13.6 13.3
LLaVA-1.6-Vicuna-13B 50.0 20.1 38.3 5.9 53.0 3.6 16.6 22.0
LLaVA-1.6-34B 50.2 19.9 36.0 17.0 57.2 12.8 16.6 22.4
LLaVA-OneVision-7B 49.8 11.4 34.5 30.0 58.7 17.0 20.6 20.4
LLaVA-OneVision-72B 50.6 29.6 50.4 40.6 52.3 7.0 13.1 25.0
Deepseek-VL-Chat-7B 50.9 15.7 27.9 15.6 63.7 27.5 22.4 21.1
Idefics2-8B 50.7 21.9 31.2 10.6 49.0 17.9 47.9 26.1
Mantis-8B-siglip-Llama3 50.6 20.4 30.0 16.0 57.5 17.9 15.7 23.8
MiniCPM-V-2.6 49.0 37.7 63.8 15.4 56.6 25.3 22.0 20.8
Phi-3-Vision-128k-Instruct 50.0 29.6 48.4 20.2 69.6 22.6 38.8 28.4
Qwen2-VL-7B 51.3 22.4 30.8 43.0 60.7 24.8 20.5 20.4
Qwen2-VL-72B 54.0 28.3 30.2 48.9 60.6 23.6 16.1 23.7
InternVL2-8B 50.6 14.3 27.8 38.1 55.8 16.1 17.7 22.3
InternVL2-40B 51.2 18.7 34.6 41.8 56.7 16.2 17.4 18.2
InternVL2-Llama3-76B 50.4 9.4 35.6 41.4 59.0 20.2 20.5 21.8

PULSE-7B (Ours) 82.4 74.8 11.0 61.3 90.7 85.4 5.0 73.8
∆ over best proprietary MLLM +27 +47 +15 +11 +30 +61 +10 +39
∆ over best open-source MLLM +28 +37 +17 +12 +21 +58 +8 +44

Table 3: In-domain evaluation results. Results marked as † are copied from other papers. Results
marked as ∗ are obtained using the provided online software to collect prediction results. N/A:
methods are not applicable or not designed for certain tasks. -: scores are not reported in the original
papers. Note that the experimental setup of some domain-specific methods is not exactly the same
as ours, thus the results listed are for reference purposes.

in terms of arena score. These results highlight PULSE’s relative strength in handling complex,
clinically-oriented ECG interpretation and analysis. Additionally, the performance gap across mod-
els on this challenging benchmark indicates considerable room for future improvements in this task.

4.4 ABLATION STUDY

Effect of Training Data Source. Given that ECGInstruct is compiled from diverse datasets,
it is crucial to examine how each dataset contributes to the model’s overall performance. Table
5 presents a comparative analysis of models trained on various dataset combinations. The model
trained exclusively on PTB-XL (P) exhibits the lowest performance across all datasets, indicating
the limitations of relying on a single data source for effective generalization. As we progressively
incorporate additional datasets into the training set, the model’s performance consistently improves.
These results highlight the importance of curating diverse training data, as expanding beyond a
single source enhances the model’s capacity to generalize across datasets and tasks.

Effect of Instruction Task. To understand the individual contribution of each ECG-related task to
model performance, we analyze combinations of four instruction tasks. As shown in Table 6, adding
more tasks progressively improves performance across multiple benchmarks. Models trained solely

8
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Datasets CPSC 2018 CSN G12EC MMMU ECG ECG Arena

Metric AUC F1 HL Accuracy Accuracy Accuracy Arena Score

Random 51.2 15.1 28.8 11.6 12.1 24.2 0

Domain-specific Methods

METS - - - N/A N/A N/A N/A
MERL 82.8† - - N/A N/A N/A N/A
ST-MEM 70.4† - - N/A N/A N/A N/A
ECG-GPT 69.3∗ 44.0∗ 9.9∗ N/A N/A N/A N/A

Proprietary MLLMs

GPT-4o 50.9 10.6 18.2 57.5 49.2 43.5 33.5
GPT-4o mini 49.2 11.0 25.5 32.1 33.2 39.5 30.1
Gemini-1.5-Pro 50.1 7.4 20.5 50.5 36.0 40.0 31.2
Claude 3.5 Sonnet 52.8 11.5 18.9 51.5 51.4 42.0 37.1

Open-source MLLMs

LLaVA-Med 50.0 2.5 20.2 13.8 14.1 27.0 15.9
LLaVA-1.5-7B 50.0 2.5 20.0 32.1 25.4 33.0 12.7
LLaVA-1.5-13B 50.4 13.3 30.1 30.7 30.7 35.0 13.1
LLaVA-1.6-Vicuna-7B 50.5 19.7 66.0 23.7 23.3 28.0 16.0
LLaVA-1.6-Vicuna-13B 50.0 19.3 62.8 31.4 35.0 38.0 17.9
LLaVA-1.6-34B 49.6 19.3 62.8 44.3 45.9 31.0 17.5
LLaVA-OneVision-7B 49.6 8.0 28.3 23.3 25.7 26.0 22.5
LLaVA-OneVision-72B 51.5 12.8 29.4 44.0 42.6 35.0 15.5
Deepseek-VL-Chat-7B 50.7 6.0 20.0 35.7 32.9 34.5 15.3
Idefics2-8B 49.0 17.9 47.9 22.8 26.2 36.0 4.9
Mantis-8B-siglip-Llama3 51.3 19.1 48.5 17.6 22.6 38.5 13.6
MiniCPM-2.6 50.0 18.0 48.4 12.7 19.6 34.5 20.4
Phi-3-Vision-128k-Instruct 50.6 19.0 70.2 14.8 18.4 31.0 11.3
Qwen2-VL-7B 49.4 17.5 46.3 25.5 32.9 31.5 8.5
Qwen2-VL-72B 50.7 9.8 18.9 35.5 42.9 35.0 10.3
InternVL2-8B 52.1 8.2 22.2 47.7 37.5 30.0 22.9
InternVL2-40B 52.4 8.2 21.4 41.0 45.0 30.5 28.0
InternVL2-Llama3-76B 51.3 6.5 20.4 26.6 34.7 38.0 22.5

PULSE (Ours) 76.9 57.6 8.6 85.2 78.2 58.0 38.9
∆ over best proprietary MLLM +24 +46 +10 +28 +27 +15 +2
∆ over best open-source MLLM +25 +38 +10 +38 +33 +20 +11

Table 4: Out-of-domain evaluation results. Results marked as † are copied from original papers.
Results marked as ∗ are obtained using the provided online software to collect prediction results.
N/A: methods are not applicable or not designed for certain tasks. -: scores are not reported in the
original papers.

Training Data PTB-XL
Super

PTB-XL
Report CSN CODE-15 ECQ-QA CPSC G12 MMMU

ECG
ECG
Arena AVG

P 68.2 56.7 82.8 31.5 31.8 23.4 65.4 40.0 28.4 -20.6
P + M 74.1 62.4 88.7 48.5 35.8 52.4 78.8 58.5 37.0 -8.6
P + M + C 74.1 63.8 87.5 85.8 43.4 51.0 75.5 55.5 39.4 -4.1
P + M + C + E 74.8 61.3 85.2 85.4 73.8 57.6 78.2 58.0 38.9 68.1

Table 5: Performance of different training dataset combinations. P: PTB-XL, M: MIMIC-IV-ECG,
C: CODE-15%, E: ECG-QA. For PTB-XL Super, CODE-15% and CPSC, F1 scores are reported.
For CSN, ECQ-QA, G12 and MMMU ECG, accuracy is reported. For PTB-XL Report, report
scores are reported. For ECG Arena, arena scores are reported. AVG denotes the average across all
metrics.

on basic feature recognition (F) performed poorly across all metrics, highlighting the limitations of
a single-task approach. In contrast, the sequential addition of tasks led to substantial performance
gains across multiple benchmarks. The model incorporating all four tasks achieved the highest
performance, indicating a more comprehensive understanding of ECG images.
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Instruction Task PTB-XL
Super

PTB-XL
Report CSN CODE-15 ECQ-QA CPSC G12 MMMU

ECG
ECG
Arena AVG

F 12.3 36.0 56.6 11.2 54.8 2.5 11.2 34.0 12.4 -42.5
F + R 26.9 54.0 83.8 73.3 61.4 31.0 67.3 47.5 25.3 -15.9
F + R + M 70.4 57.6 85.2 82.7 68.6 43.8 71.0 52.5 30.4 -5.7
F + R + M + C 74.8 61.3 85.2 85.4 73.8 57.6 78.2 58.0 38.9 68.1

Table 6: Performance of different ECG-related instruction task combinations. F: basic feature recog-
nition, R: heart rhythm analysis, M: morphology and pathology identification, C: clinical report gen-
eration. For PTB-XL Super, CODE-15% and CPSC, F1 scores are reported. For CSN, ECQ-QA,
G12, and MMMU ECG, accuracy is reported. For PTB-XL Report, report scores are reported. For
ECG Arena, arena scores are reported. AVG denotes the average across all metrics.

4.5 CASE STUDY

We further present some examples from our benchmark, comparing the outputs of our model with
GPT-4o for ECG report generation (Appendix Figs. A11-A13) and ECG Arena (Appendix Fig.
A14). While GPT-4o is capable of generating reports and answering questions by following instruc-
tions, it often produces responses that, although well-structured and seemingly relevant, contain
significant inaccuracies in interpretation. In contrast, PULSE consistently provides more accurate
responses that align closely with the ground truths. Additionally, we observed that GPT-4o tends to
over-rely on its OCR capabilities when textual information is present in images, leading to super-
ficial reasoning based on text rather than a deep analysis of visual data. For instance, in Appendix
Fig. A13, GPT-4o identifies a left axis deviation based on the printed QRS axis degree in the image,
without analyzing the visual waveform patterns. If such axis information were absent, the model
would likely fail to identify the deviation.

4.6 DISCUSSION

Diagnosis Waveform Rhythm Overall
0

20

40

60

80

100

Sc
or

e 47.7 50.4

85.7

61.3

Report Generation
(Score Breakdown)

Figure 4: Score breakdown of report
generation performance.

While the model demonstrates superior performance
across various evaluation datasets, it faces notable chal-
lenges with more complex and open-ended tasks, such as
report generation and multi-turn conversations. To further
investigate the model’s performance in report generation,
we present the score breakdown in Fig. 4. The model ex-
cels in rhythm interpretation but struggles with waveform
and diagnosis identification. These results suggest that fu-
ture efforts should prioritize increasing the dataset’s cov-
erage of waveform and diagnosis-related cases to enhance
the model’s ability to detect these abnormalities. Ad-
ditionally, as diagnosis identification may require more
advanced multi-step reasoning, future research could fo-
cus on incorporating step-wise instruction tuning data to
strengthen the model’s reasoning capabilities. More dis-
cussion is provided in Appendix I.

5 CONCLUSION

In this paper, we study the problem of ECG image interpretation, which is a crucial task in as-
sessing cardiac conditions. We develop a new MLLM, PULSE, fine-tuned on the newly created
ECGInstruct dataset with over 1 million samples across a diverse range of ECG-related tasks.
Evaluated on the proposed benchmark, ECGBench, our model shows state-of-the-art performance,
surpassing both proprietary and open-source MLLMs across multiple in-domain and out-of-domain
evaluation datasets. This work demonstrates the potential of using MLLMs for enhancing ECG
image analysis and interpretation in clinical applications.
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Gomes, Jéssica A Canazart, Milton PS Ferreira, Carl R Andersson, Peter W Macfarlane, Wagner
Meira Jr, et al. Automatic diagnosis of the 12-lead ecg using a deep neural network. Nature
communications, 11(1):1760, 2020.
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Antônio H Ribeiro, Evgeniya Banina, Oluwaseun Adeola, Nadish Garg, Cynthia A Brandt, et al.
Detection of left ventricular systolic dysfunction from electrocardiographic images. Circulation,
148(9):765–777, 2023.

Kshama Kodthalu Shivashankara, Deepanshi, Afagh Mehri Shervedani, Gari D Clifford, Matthew A
Reyna, and Reza Sameni. Ecg-image-kit: a synthetic image generation toolbox to facilitate deep
learning-based electrocardiogram digitization. Physiological Measurement, 2024.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172–180, 2023a.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al. Towards expert-level medical question answering
with large language models. arXiv preprint arXiv:2305.09617, 2023b.

Konstantinos C Siontis, Peter A Noseworthy, Zachi I Attia, and Paul A Friedman. Artificial
intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Re-
views Cardiology, 18(7):465–478, 2021.

Michael Q Stearns, Colin Price, Kent A Spackman, and Amy Y Wang. Snomed clinical terms:
overview of the development process and project status. In Proceedings of the AMIA Symposium,
pp. 662. American Medical Informatics Association, 2001.

Nils Strodthoff, Temesgen Mehari, Claudia Nagel, Philip J Aston, Ashish Sundar, Claus Graff,
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A RELATED WORK

Domain-specific Models for ECG. Many domain-specific models have been proposed to enhance
automatic ECG diagnosis (Hannun et al., 2019; Ribeiro et al., 2020; Hughes et al., 2021). For ex-
ample, Ribeiro et al. (2020) applied convolutional neural networks (CNNs) to encode ECG signals
for diagnosing 6 types of abnormalities. To reduce dependence on high-quality labeled data, re-
cent studies (Li et al., 2024c; Liu et al., 2024a; Na et al., 2023) have further explored self-supervised
learning approaches using unlabeled ECG training data. For example, Liu et al. (2024a) proposed an
ECG representation learning framework by integrating the ECG signals and clinical reports, show-
ing improved performance in zero-shot ECG classification tasks. Despite these successes, most
approaches treat ECG data as temporal physiological signals, which could be limiting in certain
resource-constrained or remote settings where only printed or digital images are available. Re-
cently, a few methods (Sangha et al., 2022; 2023; Khunte et al., 2024) have been proposed for ECG
diagnosis using ECG images. For example, Khunte et al. (2024) developed a diagnostic report gen-
eration framework for ECG images, which is built upon a BEiT (Bao et al., 2021) vision transformer
encoder and a GPT-2 (Radford et al., 2019) decoder. However, their model is only capable of the
clinical report generation task, without generalizability to other diverse tasks. In contrast, our study
investigates the capabilities of MLLMs for ECG image interpretation. We curate a diverse range of
instruction tuning datasets to fine-tune the model, thus improving model generalizability.

MLLMs in Healthcare Recent advancements in MLLMs have shown promising results in vari-
ous healthcare domains. General medical multimodal models such as LLaVA-Med (Li et al., 2024a),
MedPaLM (Singhal et al., 2023a;b), and Med-Gemini (Saab et al., 2024) have demonstrated capa-
bilities in processing diverse medical data types. Additionally, domain-specific multimodal models
have been developed for specialized fields like pathology (Lu et al., 2024b; Xu et al., 2024) and
radiology (Wu et al., 2023). These models have shown potential in integrating visual and textual
information to support clinical decision-making and medical education. However, despite the im-
portance of ECG data in cardiac diagnosis and monitoring, current MLLMs often struggle to process
ECG images effectively. This limitation highlights a significant gap in the application of MLLMs to
cardiology, where the ability to interpret both visual ECG representations and accompanying clinical
information is crucial.

Multimodal Instruction Tuning. Instruction tuning has proven effective in the multimodal do-
main, particularly in vision-language models like LLaVA (Liu et al., 2024d), MiniGPT-4 (Zhu et al.,
2023) and InstructBLIP (Dai et al., 2023). These models demonstrate impressive generalizability
across various visual understanding and reasoning tasks. While multimodal instruction tuning has
been applied to general medical imaging tasks (Li et al., 2024b; Singhal et al., 2023a), its application
to ECG images remains largely unexplored. A recent work (Wan et al., 2024) introduced a targeted
instruction tuning framework and fine-tuned existing open-source LLMs for ECG report generation.
However, their approach is limited by a single-task instruction dataset focused solely on report gen-
eration, potentially constraining its adaptability to other ECG-related tasks. Moreover, their work
also treats ECG data as temporal signals, whereas our paper focuses on encoding ECG images with
MLLMs, which is more applicable to real scenarios where only printed or digital ECG images are
available.

B PRELIMINARY ON 12-LEAD ECG

ECG is a vital diagnostic tool that measures the electrical activity of the heart over time, providing
insights into both spatial and temporal aspects of cardiac function. Typically, an ECG recording is
presented as a 12-lead multivariate time series, where each lead offers a unique perspective on heart
activity. The six limb leads (I, II, III, aVR, aVL, and aVF) assess the electrical movements across
the arms and legs, giving views from the frontal plane. Simultaneously, the six precordial leads (V1,
V2, V3, V4, V5, and V6) monitor the chest, offering horizontal plane views. In this paper, we focus
on ECG images that are synthesized from raw signals.
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C DETAILS OF ECG IMAGE SYNTHESIS

We employ the ECG-image-kit (Shivashankara et al., 2024) framework to synthesize diverse ECG
images from raw signal data. This toolkit allows for the generation of ECG images under various
conditions by introducing a range of distortions and noises to better simulate real-world clinical data.

Specifically, in addition to generating standard 12-lead ECG images—characterized by black wave-
forms on a white background, red grid lines, and a 4x3 layout—we introduce a variety of perturba-
tions to the images. These modifications include the addition of wrinkles and creases, simulating
the physical wear and tear commonly observed in paper-printed ECGs. Our image synthesis process
includes various augmentation methods to simulate physical distortions, image quality variations,
and layout alterations. We introduce wrinkles and creases to mimic wear and tear commonly ob-
served in paper-printed ECGs, and apply random rotations at varying angles to simulate misaligned
scans or prints. To account for different acquisition systems and scanning qualities, we vary image
resolutions and introduce random background colors, such as slight yellowing to represent aging or
poor scanning quality. We also add noise to the images to simulate imperfections in the scanning or
printing process. Furthermore, we experiment with different aspect ratios, overall image sizes, and
ECG plot positions within the image to reflect the heterogeneity of ECG printouts across different
systems and formats. In some cases (with a 0.02 probability), we randomly remove grid lines to
account for variations in ECG presentation.

To further enrich the synthetic images, we randomly insert meta-information into the image header to
simulate the annotations typically seen in clinical ECG reports. For the PTB-XL dataset, we extract
patient demographics (e.g., age, gender) and basic ECG features (e.g., heart rate, axis deviations)
from the associated PTB-XL feature annotation dataset, PTB-XL+ (Strodthoff et al., 2023). This
extracted data is used to impute realistic meta-information, which is then randomly printed on the
synthesized image. This random insertion of meta-data not only increases the visual variety of the
images but also provides additional context, simulating real-world ECG prints that include patient
and diagnostic information. To further increase diversity, we adopt alternative lead configurations
beyond the standard 4x3 layout, such as 12x1 (single row of leads), 6x2 (two rows of six leads), and
other commonly used clinical formats. These variations ensure that our model is exposed to a wide
range of ECG presentation styles.

The augmentation process is designed to balance the dataset, with an approximate ratio of 1:1 be-
tween augmented and standard ECG images. This balance ensures that the model is exposed to both
clean and distorted images, aiding in its generalization to real-world clinical scenarios.
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D DETAILS OF INSTRUCTION TUNING DATASETS

Source Dataset Task Type # Samples

PTB-XL

Basic Feature Recognition Close-ended QA 22,759
Open-ended QA 906
Fill-in-blank 449
Multi-choice QA 5,716

Heart Rhythm Analysis Close-ended QA 19,550
Open-ended QA 201
Fill-in-blank 436
Multi-choice QA 16,179

Morphology and Pathology Identification Close-ended QA 50,166
Open-ended QA 2,649
Fill-in-blank 680
Multi-choice QA 13,432

Clinical Report Open-ended QA 16,302

PTB-XL Total 149,425

ECG-QA
Basic Feature Recognition Close-ended QA 40,154
Heart Rhythm Analysis Close-ended QA 8,993
Morphology and Pathology Identification Close-ended QA 90,211

ECG-QA Total 139,358

MIMIC-ECG

Basic Feature Recognition Close-ended QA 759
Open-ended QA 4,759
Fill-in-blank 6,470
Multi-choice QA 17,186

Heart Rhythm Analysis Close-ended QA 48,625
Open-ended QA 5,262
Fill-in-blank 11,487
Multi-choice QA 49,352

Morphology and Pathology Identification Close-ended QA 8,241
Open-ended QA 81,080
Fill-in-blank 18,264
Multi-choice QA 61,456

Clinical Open-ended QA 486,746

MIMIC-ECG Total 799,687

CODE-15%
Basic Feature Recognition Close-ended QA 22,177
Heart Rhythm Analysis Close-ended QA 13,893
Morphology and Pathology Identification Close-ended QA 31,570

CODE-15% Total 67,640

ECGInstruct Total 1,156,110

Table A1: Detailed data statistics of ECGInstruct.
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Training Data Examples: Basic Feature Recognition

Instruction:
What are the main ECG features I'm seeing here?
Response:
Let's break it down. We have a rhythm that appears to be irregular, with varying P-P
intervals. The heart rate is not explicitly stated, but based on the ECG tracing, it seems to
be within the normal range. The cardiac axis appears to be normal as well. One notable
feature is the presence of an rSr' pattern in lead V1, which is likely a normal variant.
Additionally, we can see some nonspecific T wave changes in the septal leads.

Sub-task:  Basic Waveform Understanding; Question type: Open-ended; Source dataset: MIMIC-IV-ECG

Instruction:
What can be inferred about the heart's electrical conduction system based on this ECG?
Options:
A. There is a block in the electrical conduction pathway
B. There is an abnormality in the heart's electrical conduction system
C. The heart's electrical conduction system is functioning normally
D. There is a rhythm disturbance
Response:
This image indicates that the heart's electrical conduction system is functioning normally, as there are no apparent
abnormalities or disturbances in the electrical activity. The presence of a sinus rhythm and a normal axis suggests
that the heart's electrical conduction system is operating within normal limits, without any significant defects or
anomalies. This ECG image is consistent with a normal heart, and there is no evidence of any conduction system
abnormalities.
We can conclude that the answer is C. The heart's electrical conduction system is functioning normally

Sub-task: Conduction System Interpretation; Question type: Multi-choice QA; Source dataset: PTB-XL

Instruction:
You are reviewing an ECG tracing in a clinical setting. Based on the ECG morphology, fill 
in the blanks: 
This ECG tracing is most consistent with a rhythm of _______________________, with a 
cardiac axis of _______________________, and a bundle branch block of the ___________ 
bundle.
Response:
This ECG tracing is most consistent with a rhythm of atrial fibrillation, with a cardiac 
axis of left axis deviation, and a bundle branch block of the left bundle.

Sub-task: Axis and Rhythm Determination; Question type: Fill-in-the-blank; Source dataset: MIMIC-IV-ECG

Instruction:
Given this ECG image, please answer the following question. From the provided options, 
select all that apply. List your selections, separated by slashes.
Question: 
Which ECG leads are affected by baseline drift?
Options: 
llead III, lead V2, none, lead V4, lead aVL, lead V5, lead V6, lead aVF, lead V3, lead aVR, 
lead V1, lead I, lead II. Provide the accurate response without additional details.
Response:
lead aVF/lead V3

Sub-task: Lead Placement Determination; Question type: Close-ended QA; Source dataset: ECG-QA

Follow-up Instruction:
Can you explain the significance of the rSr' pattern in lead V1? Is it a cause for concern?
Response:
The rSr' pattern in lead V1 is often seen in healthy individuals, especially in younger people. It's considered a normal
variant because it doesn't necessarily indicate any underlying cardiac pathology. The "r" represents a small initial
positive deflection, followed by a larger negative deflection (the "S" wave), and then a secondary positive deflection
(the "r'"). This pattern is thought to be related to the normal activation sequence of the right ventricle. Since it's
isolated to lead V1 and doesn't appear to be associated with any other abnormalities, it's unlikely to be a cause for
concern in this case.

Figure A1: The Examples of basic feature recognition instructions for finetuning PULSE.
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Training Data Examples: Heart Rhythm Analysis

Instruction:
Analyze the ECG image and identify the combination of cardiac rhythm abnormalities
that can be diagnosed simultaneously in this patient. Rank the abnormalities in order
of their potential impact on the patient's hemodynamic stability, with 1 being the
most critical. Use a semicolon-separated list with the rhythm abnormality followed by
its severity ranking
Response:
Sinus tachycardia; 1; Right bundle branch block; 3; Premature atrial contraction; 2;
Premature ventricular contraction; 2.
Justification: Sinus tachycardia is ranked as the most critical abnormality since it can lead to decreased cardiac
output, increased myocardial oxygen demand, and potentially exacerbate underlying cardiac conditions. Premature
atrial contractions and premature ventricular contractions are ranked equally as they can both disrupt normal
cardiac function, although their individual impact might be less severe than sinus tachycardia. Right bundle branch
block, while still a significant abnormality, is ranked last as it may not have an immediate impact on hemodynamic
stability, but rather serves as an indicator of underlying cardiac pathology.

Sub-task: Rhythm Analysis; Question Type: Open-ended; Source Dataset: PTB-XL

Instruction:
Imagine you're an ER doctor reviewing this ECG, what would be your primary concern 
regarding the patient’s heart rhythm? Directly output one of the following options without 
explanation:
Options:
A) Tachycardia; B) Ventricular Fibrillation; C) Atrial Fibrillation; D) Bradycardia; 
E) Long QT Syndrome; F) First-Degree AV Block; G) Second-Degree AV Block; 
H) Normal Sinus Rhythm
Response:
D) Bradycardia

Sub-task: Arrhythmia Identification; Question Type: Multi-choice QA; Source Dataset: MIMIC-IV-ECG

Instruction:
If you were to categorize the ECG rhythm of this patient into one of the following options: 
Normal Sinus Rhythm, Atrial Fibrillation, Ventricular Tachycardia, or Sinus Rhythm with 
Premature Atrial Contractions, 
which one would you choose? _______________
Response:
Sinus Rhythm with Premature Atrial Contractions

Sub-task: Rhythm Classification; Question Type: Fill-in-the-blank; Source Dataset: PTB-XL

Instruction:
As part of a heart health assessment, your task is to examine the ECG, 
identify all fitting options from the 
provided list, and enumerate them using semicolon: 
1dAVb(1st degree av block), RBBB(right bundle branch block), 
LBBB(left bundle branch block), SB(sinus bradycardia), ST(sinus tachycardia), 
AF(atrial fibrillation). 
Only answer based on the given options without any explanation.
Response:
RBBB(right bundle branch block)

Sub-task: Conduction Abnormality Detection; Question Type: Close-ended QA; Source Dataset: CODE-15%

Figure A2: The Examples of heart rhythm analysis instructions for finetuning PULSE.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Training Data Examples: Morphology and Pathological Condition Identification

Instruction:
What specific features of the ECG tracing suggest the presence of a right bundle branch
block, and how do these features relate to the overall cardiac conduction pattern,
considering the morphology of the QRS complexes in leads V1 and V2? Provide a
detailed explanation in 2-3 sentences.

Sub-task: Wave Morphology Analysis; Question Type: Open-ended; Source Dataset: PTB-XL

Instruction:
Answer the following multiple choice question. Think step by step before answering.
What is the likely location of a previous myocardial infarction (MI) based on this ECG?
Options:
A. Anterior wall B. Lateral wall C. Inferior wall D. Septal wall
Response:
The ECG shows a pattern consistent with a previous MI, as evidenced by the abnormal
Q-waves and ST-segment changes. The location of the MI can be inferred by the leads
involved. We can observe that the inferior leads (II, III, and aVF) show the most
prominent changes, indicating that the MI likely occurred in the inferior wall. Based on
this, we select C. Inferior wall

Sub-task: Interpretation of Ischemia or Infarction; Question Type: Multi-choice QA; Source Dataset: MIMIC-IV-ECG

Instruction:
Compare the QRS complex morphology in leads V1-V4 to that of a normal sinus rhythm 
ECG. Explain the significance of the observed differences, considering the context of 
intraventricular conduction disorder and delayed R progression. 
Then, fill in the blanks: The QRS complex morphology in leads V1-V4 is most indicative 
of _________. (Provide a detailed explanation in 2-3 sentences before filling in the blank.)
Response:
The QRS complex morphology in leads V1-V4 exhibits a notable difference from that of
a normal sinus rhythm ECG. Specifically, the delayed R progression and intraventricular
conduction disorder in V4 suggest a disruption in the normal ventricular depolarization sequence, resulting in
altered QRS complex morphology. This deviation is significant because it indicates a pathological EKG pattern,
which may be associated with underlying cardiac conditions such as left ventricular hypertrophy.
The QRS complex morphology in leads V1-V4 is most indicative of pathological left ventricular conduction.

Sub-task: Pathological Conduction Identification; Question Type: Fill-in-the-blank; Source Dataset: PTB-XL

Instruction:
Imagine you are an expert cardiologist reviewing this ECG image. Considering the 
patient's history and this ECG, what could have contributed to the development of the 
prolonged QT interval? 
Rank your top three possibilities in order of likelihood, using a semicolon-separated list.
Response:
Hypokalemia; certain medications or drugs; genetic mutations or channelopathies.

Sub-task: Electrolyte imbalances Interpretation; Question Type: Open-ended QA; Source Dataset: PTB-XL

Response:
The ECG tracing exhibits a right bundle branch block (RBBB) due to the characteristic 
wide S waves in leads I and V6, accompanied by QS complexes in leads V2, indicative 
of delayed right ventricular depolarization. The QRS complexes in lead V1 display a prolonged duration, exceeding 
140 ms, with a characteristic "M" or "W" shape, further supporting the diagnosis of RBBB. This conduction pattern is 
a result of a block in the right bundle branch, leading to an altered sequence of ventricular activation, causing the 
delayed and abnormal depolarization of the right ventricle.

Figure A3: The Examples of morphology and pathological condition identification instructions for
finetuning PULSE.
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Training Data Examples: Clinical Reporting

Instruction:
Review this electrocardiogram image and provide your expert diagnosis.

Question Type: Open-ended; Source Dataset: PTB-XL

Instruction:
Examine the ECG signal image and produce a thorough report based on your findings, 
ending with the final diagnosis.

Response:
The electrocardiogram (ECG) reveals atrial fibrillation with a rapid ventricular
response, indicating a chaotic and rapid heart rhythm originating from the atria.
Additionally, there are signs of a possible anterior myocardial infarction, although the
age of the infarct cannot be determined from this ECG. Furthermore, ST-T changes

Question Type: Open-ended; Source Dataset: MIMIC-ECG

Response:
The electrocardiogram (ECG) reveals a sinus tachycardia, characterized by a heart rate
exceeding 100 beats per minute, indicating an abnormal acceleration of the heart
rhythm. This is further accentuated by the presence of an exaggerated left type,
suggesting an increased electrical activity in the left ventricle.
Additionally, peripheral hypotension is noted, indicating lower-than-normal blood
pressure in the peripheral arteries, which may be a concern as it can lead to inadequate
perfusion of vital organs.The ECG also demonstrates an incomplete right bundle branch block (RBBB), which
suggests a delay or obstruction in the electrical conduction pathway of the right ventricle.
Furthermore, the QRS complex is abnormal, with an altered morphology and duration, indicating a disruption in
the ventricular depolarization process. The presence of an old inferior infarct is likely, suggesting a previous
myocardial infarction (MI) in the inferior wall of the heart.
Moreover, the ECG shows signs of old ST and T wave abnormalities, indicating possible previous episodes of
ischemia or injury to the myocardium. The ECG also suggests likely anterior ischemia or left ventricular strain,
which may indicate ongoing or previous damage to the anterior wall of the heart.

in the inferior and lateral leads suggest myocardial ischemia, which may be partly attributed to the rapid heart rate
and rhythm, but also raises concerns for underlying coronary artery disease.
Final Diagnosis: Atrial fibrillation with rapid ventricular response, possible anterior myocardial infarction, and
signs of myocardial ischemia.

Figure A4: The Examples of clinical reporting instructions for finetuning PULSE.
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E PROMPTS

Your task: Create a complex ECG visual task based on the given report and target task type:

Guidelines for task creation:
1. Design a concise yet challenging graduate-level task that requires deep reasoning.
2. Frame the task as interacting with an actual ECG image, without mentioning the report. Make the task
visually centric, assuming direct ECG image analysis.
3. Strictly base all information on the given ECG report only. Avoid tasks and answers that are
inconsistent with the report.
4. Avoid restating the report or using phrases like "As described in the report."
5. Generate one task from a diverse range of task types, including but not limited to:
Direct questions (e.g. "What is the heart rhythm?")
Hypothetical scenarios (e.g. "Imagine you're an ER doctor reviewing this ECG...")
Comparative tasks (e.g. "How does this ECG differ from a normal sinus rhythm?")
Explanation requests (e.g. "Explain the significance of the QS complexes seen in V2.")
Problem-solving scenarios (e.g. "Given these ECG findings, what further tests might you order?")
Educational prompts (e.g. "Teach a medical student about the key features of this ECG.")
Role-playing scenarios (e.g. "You're consulting with a cardiologist about this ECG. What do you tell

them?")
Decision-making tasks (e.g. "Based on this ECG, would you clear this patient for surgery? Why or

why not?")
6. Specify a clear, appropriate output format within the task instructions(free-form, "think-step-by-step",
direct output the short answer(in one phrase or one sentence), JSON format, table, list, different
delimiters(such as commas, semicolons, numeric order), etc.). Do not limited to the given task type and
format, you have the freedom to design any type of task you deem appropriate.
7. Focus the task on one or more of the following ECG analysis aspects:
a. Basic ECG feature interpretation (e.g. heart rate, rhythm, cardiac axis)
b. Diagnosis and classification (e.g. diagnosis identification, waveform classification, rhythm

classification)
c. Waveform and interval analysis (e.g. P wave morphology, PR interval, QT interval, QRS complexes,

T wave morphology)
8. Ensure the task complexity aligns with the given report's information.

After creating the task:
1. Provide a detailed, accurate answer to your own task.
2. Ensure your answer is comprehensive and strictly based on the report.
3. Strictly follow the output format and requirements specified in your task instructions.

ECG Report:
{report}

Target Task Type:
{target}

Present your work in this format:
Task: [Concise content of the ECG tasks, including required output format. Do not include phrases like
"Output format:..." or like "[Insert image here]", but in more natural expression. ]

Response: [Comprehensive response following the task's requirements, strictly based on the report]

Do not include any content outside of the Task and Response sections.

Prompt: Multi-task Data Synthesizing

Figure A5: The prompt used to synthesize ECG instruction tasks based on clinical reports.
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Your task: Create a 2-4 turn dialogue between a medical professional and an AI assistant analyzing an ECG, based
on the given report:

Guidelines for dialogue creation:
1. Design a series of questions and answers that progressively explore the ECG findings in depth, suitable for
graduate-level medical professionals.
2. Frame the dialogue as if the medical professional is directly analyzing an actual ECG image, without mentioning
the report. Make the conversation visually centric, assuming direct ECG image analysis.
3. Strictly base all information on the given ECG report only. Avoid including details inconsistent with the report.
4. Do not use phrases like "As described in the report," "The report mentions," or "The term..." The dialogue should
not appear to reference an external report.
5. Begin with direct questions about basic ECG features, then progress to more complex interpretations and clinical
implications.
6. Include a mix of question types, with an emphasis on direct questions:
- Direct questions (e.g., "What are the main ECG features?", "What is the heart rhythm?")
- Requests for explanations (e.g., "Can you explain the significance of the QS complexes?", "What the cause of these
features?")
- Clinical reasoning questions (e.g., "Given these findings, what's your diagnosis?")
- Hypothetical scenarios (e.g., "How would you manage a patient presenting with this ECG?")
7. Focus the dialogue on one or more of the following ECG analysis aspects:
a. Basic ECG feature interpretation (e.g., heart rate, rhythm, cardiac axis)
b. Diagnosis and classification (e.g. diagnosis identification, waveform classification, rhythm classification)
c. Waveform and interval analysis (e.g. P wave morphology, PR interval, QT interval, QRS complexes, T wave
morphology)
d. Clinical implications and management
8. Ensure the dialogue complexity aligns with the given report's information.

After creating the dialogue:
1. Provide extremely comprehensive and detailed answers from the AI assistant's perspective. Each response should
thoroughly cover all relevant aspects of the question asked.
2. Ensure all answers are comprehensive and strictly based on the report, without explicitly referencing it.
3. Make the dialogue flow naturally, as if a real user is progressively exploring the ECG findings.
4. Structure the AI assistant's responses to be highly readable:
- Break down complex information into digestible parts.
- Use bullet points or numbered lists to organize information
- Include brief explanations of medical terms or concepts when necessary
- Provide context for why certain findings are significant
Aim for a balance between depth of information and clarity of presentation in each response.

ECG Report:
{report}

Present your work in this format:
Human: [First question about the ECG]

Assistant: [Comprehensive response based strictly on the report]

Human: [Follow-up question delving deeper into the ECG analysis]

Assistant: [Detailed answer providing further insights]

[Continue the dialogue for up to 2 more turns if necessary, ensuring a natural progression of inquiry]

Do not include any content outside of the dialogue format. Ensure that the entire conversation appears to be about
analyzing an actual ECG image, without any indication that the information comes from a written report.

Prompt: Multi-turn Dialogue Synthesizing

Figure A6: The prompt used to synthesize ECG multi-turn dialogue as instruction tuning data.
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I will provide you with an ECG report. Please expand the report into a comprehensive and
detailed version, considering all aspects mentioned in the original report. The expanded
version should be at least 4 sentences long. Ensure that you elaborate on each point from the
original report, providing more context and explanation where possible. Do not add any new
content, interpretations, or conclusions beyond what is explicitly stated in the original report.
Avoid using phrases like "Here is the revised report" or similar introductions. Simply begin
with the expanded content.

Original Report:
{report}
Expanded Report:

Prompt: Report Revision

Figure A7: The prompt used to revise (and translate) original reports.

Task: Given an ECG report and a corresponding question-answer pair, score the quality of the
answer based on the guidelines provided. The score should range from 0 to 5, where 0
represents poor quality and 5 represents excellent quality. You should be strict when giving
the final assessment if some of the criteria are not satisfied. Please consider the following
criteria for scoring:

1. Relevance: Does the answer directly address the question asked?
2. Accuracy: Is the information in the answer accurate and consistent with the ECG report?
3. Usefulness: Does the answer provide helpful information that would aid understanding or
decision-making based on the ECG report?
4. Constructed Information: Does the answer invent details not present in the ECG report?
5. Presence of Direct Report Quotation: A good answer does not simply quote or directly
replicate phrases from the ECG report. It should assume that the questioner does not know the
report’s specific content. The presence of direct report quotations is not allowed in the answer,
otherwise, the overall scores should be at most 2.

Output format:
Please first output a single line containing a comprehensive explanation of your evaluation,
avoiding any potential bias. In the subsequent line, please provide the value indicating the
scores in the format: "Score: [your rating score]"

Please apply the above scoring guide to the following ECG report and question-answer pair:

ECG Report: {report}
Question: {question}
Answer: {answer}

Prompt: Instruction Data Scoring

Figure A8: The prompt used to score and filter generated instruction data.
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Evaluate the alignment and quality of a generated ECG report by comparing it to a ground
truth clinician’s report. The evaluation will focus on three key aspects: Diagnosis, Waveform,
and Rhythm. Use specific criteria for each aspect and be precise in comparing medical
terminologies. Only focus on information present in the ground truth report, identifying any
mistakes. Remain objective and do not let the response length affect your evaluation.

Evaluation Criteria:
1. Diagnosis (0-10):
Assess how well the generated ECG report matches the clinical diagnoses in the ground truth
report. Focus on conditions like conduction disturbances, ischemia, hypertrophy, and other
abnormalities as presented in the ground truth report.
- 10: All key diagnoses are correctly identified with no errors or omissions.
- 5: Partially accurate, with some diagnoses identified correctly but key conditions missing or
incorrect.
- 0: Fails to identify key diagnoses, with multiple critical errors.

2. Waveform (0-10):
Evaluate the accuracy and quality of the ECG waveform morphology in the generated report
compared to the ground truth. Focus on abnormalities in P-wave, QRS complex, ST changes,
T-wave, and intervals (PR, QT), ensuring waveform morphology is consistent with the ground
truth.
- 10: All waveform abnormalities are correctly identified without errors.
- 5: Some waveform abnormalities are identified, but key issues are missed or misinterpreted.
- 0: Fails to identify key waveform abnormalities, with multiple critical errors.

3. Rhythm (0-10):
Assess the accuracy and clarity of rhythm interpretation in the generated report. Focus on
identifying and describing normal and abnormal rhythms (e.g., sinus rhythm, atrial
fibrillation, ventricular tachycardia) as presented in the ground truth report.
- 10: Rhythm interpretation is fully accurate and clearly described.
- 5: Rhythm interpretation is partially accurate but contains notable errors or omissions.
- 0: Rhythm interpretation is largely incorrect, with critical errors.

Please organize your output in a JSON format of diagnosis, form and rhythm, with a brief
explanation of each aspect. For example: {Diagnosis: {Score: $SCORE$, Explanation:
$EXPLANATION$}}

[The Start of Ground Truth Report]
{ground_truth_report}
[The End of Ground Truth Report]
[The Start of Generated Report]
{generated_report}
[The End of Generated Report]

Prompt: Evaluation of Report Generation

Figure A9: The prompt used to evaluate the generated report.
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Evaluate the quality of a model's response to an ECG-related question by comparing it with a
given ground truth answer. Focus on three aspects: accuracy, completeness, and instruction
adherence. Be precise and objective, especially when identifying errors in medical
terminology. Do not let the response length affect your evaluation.

Evaluation Criteria:
1. Accuracy (0-10):
How well does the model's response match the ground truth, particularly in ECG
interpretation and diagnosis? This score emphasizes whether the key information is correct,
such as the correct identification of waveforms, intervals, and clinical diagnoses.
- 10: Fully accurate, with correct ECG interpretation, terminology, and diagnosis.
- 5: Partially accurate, with some correct information but notable errors or omissions.
- 0: Largely inaccurate or misleading.

2. Completeness (0-10):
Does the response cover essential aspects of ECG interpretation (e.g., rhythm, axis, waveforms,
clinical causes) mentioned in the ground truth? This score focuses on whether the answer is
comprehensive and includes as much essential information as possible.
- 10: Comprehensive, covering all key details.
- 5: Partially complete, with important points missing.
- 0: Incomplete, lacking critical information.

3. Instruction Adherence (0-10):
Does the model follow the specific instructions in the question (e.g., listing features, suggesting
a diagnosis)? This score focuses on how well the model follows the task instructions,
regardless of the correctness of the answer.
- 10: Fully follows instructions.
- 5: Partially follows instructions, with some deviations.
- 0: Fails to follow instructions or provides an irrelevant response.

Please organize your output in a JSON format of accuracy, completeness, and instruction
adherence, with a brief explanation of each aspect. For example: {Accuracy: {Score: $SCORE$,
Explanation: $EXPLANATION$}}

[The Start of Ground Truth Answer]
{ground_truth_answer}
[The End of Ground Truth Answer]

[The Start of Model's Response]
{model_response}
[The End of Model's Response

Prompt: Evaluation of ECG Arena

Figure A10: The prompt used to evaluate the ECG Arena.
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F EXPERIMENTAL SETUP

F.1 DETAILS OF EVALUATION METRICS

Abnormality Detection. we utilize multi-label classification metrics, including Macro AUC, Macro
F1, and Hamming Loss, to evaluate the datasets PTB-XL Super, CODE-15%, and CPSC 2018,
where multiple correct labels may exist. For the ECG-QA, CSN, and G12EC datasets, we adopt
accuracy as the evaluation metric.

Report Generation. Rather than relying on traditional text generation metrics, we leverage strong
LLMs as evaluators, following the approach of Zheng et al. (2024). This method provides a more
nuanced evaluation by focusing on key aspects of the reports. Specifically, we use GPT-4o to com-
pare the model-generated reports against those written by cardiologists. We introduce a “Report
Perfect Score”, which is based on three critical components of a generated report: (1) Rhythms (0 to
10 points), (2) Waveform Morphology (0 to 10 points), and (3) Diagnosis (0 to 10 points). The final
score is the average of these three components, scaled to a maximum of 100 points. The prompt
used to query GPT-4o for evaluating the report score is provided in Appendix Fig. A9.

MMMU ECG. We adopt accuracy as the primary metric. We have designed systematic, rule-based
evaluation pipelines to ensure robust and consistent scoring. To mitigate the potential influence of
any intermediate generations (e.g., reasoning steps) in long responses, we employ robust regular
expressions and develop response-processing workflows. These are used to extract answer options
from the long responses for accurate answer matching. In cases where no valid answer can be
extracted from the model’s response, we perform random selection to assign a score.

ECG Arena. We also employ a strong judge model, GPT-4o, to assess model performance by com-
paring generated responses with ground truth answers. The evaluation considers three perspectives,
each scored on a scale of 0-10: Accuracy (how closely the model’s response matches the ground
truth), Completeness (whether the model provides a comprehensive answer covering all aspects of
ECG interpretation), and Instruction Adherence (how well the model follows the specific instruc-
tions in the question). We calculate the final score by averaging these three aspects and scaling to
a maximum of 100 points. The specific prompt used for GPT-4 evaluation is provided in Appendix
Fig. A10.

F.2 IMPLEMENTATION DETAILS

We follow the model architecture of LLaVA, which includes three core components: a vision en-
coder, a large language model, and a projector to align image and text modalities. Table A2 summa-
rizes all the model parameters. Specifically, for the LLM, we utilize Vicuna-1.5-7B, while the vision
encoder is based on CLIP-ViT-Large-Patch14-336. We employ a 2-layer MLP as a projector to map
the visual features from the CLIP encoder onto the tokens used by the LLM. These features are
mapped onto predefined image tokens, which encapsulate the features of ECG images. The tokens
representing ECG features are then concatenated as an image context preceding the dialogue.

We format all datasets into a chatbot-style multi-turn dialogue format (same as Vicuna-1.5-7B) and
use the special token <image> to represent image features within the text data. For example, a sam-
ple data instance is: “Human: <image> Describe this ECG image. \n Assistant: This image . . . ”.
To enhance the model’s ability to handle ECG images of various sizes encountered in real-world
scenarios, we employ Anyres. Anyres divides high-resolution images into multiple sub-images of
size 336x336. The features of these sub-images are then concatenated with the global features of
the original image to form the final image representation.

We fine-tune all parameters of the vision encoder, projector, and LLM. The training process uses a
learning rate of 2e-5, a batch size of 128, and a cosine scheduler with a 5% warm-up period over
three epochs. The loss is calculated using the cross-entropy loss function, focusing on the response
portion of the dialogue.
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Model Parameters
Total 7.06B
Vision Encoder(clip-vit-large-patch14-336) 303.5M
Connector 21M
LLM(Vicuna-1.5-7B) 6.74B

Training Parameters
Learning Rate 2e-5
Weight Decay 0.0
Warmup Ratio 0.03
Learning Rate Scheduler Cosine
Batch Size 128

Vision Encoder Arch
Hidden Size 1024
Input Resolution 336
ViT Layer 24
ViT Heads 16
Patch Size 14

LLM Arch
Hidden Size 4096
Max Context Length 4096
Attention Heads 32
Hidden Layers 32
KV Heads 32

Table A2: Summary of model parameters.
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G ADDITIONAL RESULTS

Ablation study of ViT model. We conducted an ablation study by unfreezing the ViT module
parameters during training and reported the model performance in Table A3 below. The results
show a further performance improvement (i.e., average score from 71.8 to 75.0) compared to the
original model with frozen ViT parameters.

Models PTB-XL
Super

PTB-XL
Report CSN CODE-15 ECQ-QA CPSC G12 MMMU

ECG
ECG
Arena AVG

Unfrozen ViT 76.9 65.4 87.9 87.0 71.6 65.4 81.4 64.0 41.5 75.0
Frozen ViT 74.8 61.3 85.2 85.4 73.8 57.6 78.2 58.0 38.9 71.8

Table A3: Ablation results on the impact of unfreezing ViT module parameters
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H CASE STUDY

Case Study: PTB-XL Report 

PULSE Response: The electrocardiogram (ECG) reveals a sinus rhythm, indicating that the heart is beating in a regular,
rhythmic pattern, with a normal heart rate and P-wave morphology. The PR interval is prolonged, measuring longer than the
normal range of 120-200 milliseconds, suggesting a delay in the conduction of electrical impulses from the atria to the
ventricles. This prolongation may be indicative of a first-degree atrioventricular (AV) block, which can be a benign finding but
may also be associated with underlying cardiac conditions. The ECG also demonstrates high voltages in the limb leads,
specifically leads I, II, and III, which is suggestive of left ventricular hypertrophy (LVH). This finding is consistent with an
increase in the thickness of the left ventricular wall, which can be a response to chronic pressure overload or volume overload.
The ST segments are depressed in leads I, II, aVL, V5, and V6, indicating a possible alteration in the repolarization pattern of
the ventricles. This depression may be indicative of left ventricular strain or ischemia, which can be a sign of myocardial injury
or infarction. Furthermore, the T waves are low or flat in leads I, II, aVL, V5, and V6, which may be a manifestation of left
ventricular strain or ischemia. The combination of these findings, including the prolonged PR interval, high voltages in the
limb leads, and ST segment depression, suggests that the patient may be experiencing myocardial ischemia, which is a
condition where the heart muscle does not receive sufficient blood flow, leading to a mismatch between oxygen demand and
supply. In conclusion, based on the ECG findings, the diagnosis is consistent with myocardial ischemia, left ventricular
hypertrophy, T wave abnormality, prolonged PR interval, and sinus rhythm.

LLM-as-Judge Feedback for PULSE Response:
1. Diagnosis
Score: 10. Explanation: The generated report correctly identifies all key diagnoses present in the ground truth report,
including sinus rhythm, prolonged PR interval, left ventricular hypertrophy (LVH), ST segment depression, and T wave
abnormalities. The interpretation of these findings as consistent with myocardial ischemia is also accurate.
2. Form
Score: 10. Explanation: The generated report accurately describes the waveform abnormalities, including the prolonged PR
interval, high voltages in the limb leads, ST segment depression in leads I, II, aVL, V5, and V6, and flat T waves in these leads.
These descriptions match the ground truth report precisely.
3. Rhythm
Score: 10. Explanation: The generated report correctly identifies the rhythm as sinus rhythm, which is consistent with the
ground truth report. The description of the rhythm is clear and accurate.
Final Score: (10+10+10)/3 * 10 = 100

GPT-4o Response:
Clinical Report: Electrocardiogram (ECG)
ECG Interpretation: Heart Rate: The heart rate appears to be within normal limits. Precise calculation of the heart rate is
recommended for confirmation. Rhythm: The rhythm appears to be regular. There are consistent R-R intervals, suggesting a
regular sinus rhythm.
P Waves: P waves are present before each QRS complex, indicating sinus rhythm. The morphology of the P waves appears
normal. PR Interval: The PR interval appears to be within normal limits (120-200 ms). QRS Complex: The QRS duration
appears to be within normal limits (less than 120 ms). There is no evidence of significant QRS complex abnormalities such as
bundle branch block.
ST Segment: The ST segments appear to be isoelectric (flat) in most leads, with no significant elevation or depression
noted. T Waves: T waves appear to be upright in leads I, II, V3-V6, and inverted in aVR, which is normal. There are no
significant T wave abnormalities noted. Axis: The QRS axis appears to be normal. The exact axis calculation is recommended
for confirmation.
Additional Observations: There are no significant signs of ischemia, infarction, or other acute changes. No evidence of left
ventricular hypertrophy or other chamber enlargement.
Conclusion: This ECG shows a normal sinus rhythm with no significant abnormalities. The patient’s ECG is within normal
limits for her age and clinical presentation.

LLM-as-Judge Feedback for GPT-4o Response:
1. Diagnosis
Score: 0. Explanation: The generated report fails to identify key diagnoses present in the ground truth report. It does not 
mention the prolonged PR interval, left ventricular hypertrophy (LVH), ST segment depression, or flat T waves. Instead, it 
incorrectly states that there are no significant signs of ischemia, infarction, or other acute changes, and no evidence of left 
ventricular hypertrophy. 
2. Form
Score: 0. Explanation: The generated report inaccurately describes the waveform morphology. It incorrectly states that the PR 
interval is within normal limits, fails to identify the high voltages in limb leads, and does not mention the ST segment 
depression or flat T waves. These are critical waveform abnormalities that are present in the ground truth report.
3. Rhythm
Score: 5. Explanation: The generated report correctly identifies a regular sinus rhythm, which is consistent with the ground 
truth report. However, it fails to mention the prolonged PR interval, which is a notable omission. Therefore, while the rhythm 
interpretation is partially accurate, it contains a significant error. 
Final Score: (0+0+5)/3 * 10 = 16.7

Question:
Please write a clinical report based on this ECG image.

Ground Truth Report: 
Sinus rhythm. Prolonged PR interval. R-S transition zone in V leads displaced to the left. Voltages 
are high in limb leads suggesting left ventricular hypertrophy (LVH). ST segments are depressed 
in leads I, II, aVL, V5, and V6. T waves are flat in these leads. Non-specific but consistent with 
myocardial changes.

Figure A11: Comparison of model outputs on ECG report generation task (Example 1). Blue in-
dicates correct information, while red highlights errors. Our model’s output fully aligns with the
ground truth, with a report score of 10. In comparison, GPT-4’s report, though structurally sound,
contains notable inaccuracies despite its initial appearance of relevance.
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Case Study: PTB-XL Report 

PULSE Response: The electrocardiogram (ECG) reveals a normal sinus rhythm, characterized by a regular heartbeat with a
rate between 60-100 beats per minute, indicating that the heart's natural pacemaker, the sinoatrial (SA) node, is functioning
properly. The axis of the heart's electrical activity is also within normal limits, suggesting that the electrical impulses are being
conducted through the heart in a normal and coordinated manner. However, the ST segment and T waves exhibit
abnormalities, which may be indicative of myocardial ischemia or strain, particularly in the anterior region of the heart. This
could be a sign of reduced blood flow to the heart muscle, potentially leading to damage or even necrosis of the myocardial
tissue. The presence of these abnormalities in the ST segment and T waves suggests that the heart is under stress, which may
be caused by a variety of factors, including coronary artery disease, hypertension, or cardiomyopathy. Overall, the diagnosis
based on this ECG report is sinus rhythm with ST changes, indicating that the heart is functioning normally in terms of
rhythm, but is exhibiting signs of potential myocardial ischemia or strain.

LLM-as-Judge Feedback for PULSE Response:
1. Diagnosis
Score: 8. Explanation: The generated report correctly identifies the sinus rhythm and the presence of abnormalities in the ST
segment and T waves, which are consistent with myocardial ischemia. However, it does not specifically mention the low or
flat T waves in V3, V4, V5, and the slightly inverted T wave in V2, which are key details in the ground truth report.
2. Form
Score: 7. Explanation: The generated report accurately identifies the presence of ST segment and T wave abnormalities, which
are indicative of myocardial ischemia. However, it lacks the specific details about the T wave morphology in V2, V3, V4, and
V5, which are crucial for a precise comparison with the ground truth report.
3. Rhythm
Score: 10. Explanation: The generated report correctly identifies the sinus rhythm and provides a clear and accurate
description of the heart's rhythm, matching the ground truth report.
Final Score: (8+7+10)/3 * 10 = 83.3

GPT-4o Response:
ECG Interpretation:
1. Heart Rate: The heart rate is approximately 75 beats per minute, which is within the normal range (60-100 bpm).
2. Rhythm: The rhythm appears to be regular with consistent R-R intervals, indicating a normal sinus rhythm.
3. P Waves: P waves are present before each QRS complex, indicating normal atrial depolarization. The P wave morphology is
normal.
4. PR Interval: The PR interval is within the normal range (120-200 ms), suggesting normal atrioventricular conduction.
5. QRS Complex: The QRS duration is within the normal range (less than 120 ms), indicating normal ventricular
depolarization. There are no significant Q waves observed, which rules out previous myocardial infarction.
6. ST Segment: The ST segments are isoelectric (flat) in all leads, indicating no signs of acute ischemia or injury.
7. T Waves: T waves are upright in leads I, II, V3-V6, and inverted in aVR, which is a normal finding. There are no signs of
T wave inversion or hyperacute T waves.
8. QT Interval: The QT interval appears to be within the normal range (less than 440 ms for males and less than 460 ms for
females), indicating no prolonged QT syndrome.
9. Axis: The QRS axis is normal, approximately 0 to +90 degrees.
10. Additional Observations: No evidence of left or right ventricular hypertrophy. No signs of bundle branch block or other
conduction abnormalities.
Conclusion: The ECG findings are within normal limits. There are no signs of acute ischemia, infarction, or other significant
cardiac abnormalities. The patient has a normal sinus rhythm with normal atrioventricular and intraventricular conduction.

LLM-as-Judge Feedback for GPT-4o Response:
1. Diagnosis
Score: 0. Explanation: The generated report fails to identify the key diagnosis of myocardial ischemia indicated by the T wave 
abnormalities in the ground truth report. It incorrectly concludes that there are no signs of acute ischemia or other significant 
cardiac abnormalities. 
2. Form
Score: 0. Explanation: The generated report does not mention the low or flat T waves in V3, V4, V5, and the slightly inverted T 
waves in V2, which are critical waveform abnormalities noted in the ground truth report. Instead, it incorrectly states that T 
waves are upright in V3-V6 and does not acknowledge any T wave inversion. 
3. Rhythm
Score: 10. Explanation: The generated report correctly identifies the rhythm as normal sinus rhythm, which is consistent with 
the ground truth report. 
Final Score: (0+0+10)/3 * 10 = 33.3

Question:
Please write a clinical report based on this ECG image.

Ground Truth Report: 
Sinus rhythm. T waves are low or flat in V3, V4, V5 and slightly inverted in V2. Non-specific but 
consistent with myocardial ischemia. The age of the changes is uncertain.

Figure A12: Comparison of model outputs on ECG report generation task (Example 2). Blue in-
dicates correct information, while red highlights errors. Our model’s output mostly aligns with the
ground truth, achieving a report score of 83.3. In comparison, GPT-4’s output correctly identifies
only the ECG rhythm, omitting most other key details.
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Case Study: PTB XL Report 

PULSE Response: The electrocardiogram (ECG) reveals a sinus arrhythmia, characterized by an irregular heart rhythm with
varying intervals between beats, originating from the sinoatrial node. This arrhythmia is often benign and can be influenced by
factors such as respiration, with heart rate increasing during inhalation and decreasing during exhalation. The ECG also
demonstrates an overdriven left type, indicating that the left ventricle is dominant in the cardiac conduction system, which can
be a normal variant or associated with certain cardiac conditions.
Furthermore, the ECG shows evidence of left anterior hemiblock, a conduction defect affecting the anterior fascicle of the left
bundle branch, resulting in delayed activation of the anterior wall of the left ventricle. This can be a sign of underlying cardiac
disease or injury. Additionally, the presence of right bundle branch block is noted, indicating a conduction defect affecting the
right bundle branch, leading to delayed activation of the right ventricle. The combination of left anterior hemiblock and RBBB is
consistent with bifascicular block, a condition where two of the three main fascicles of the cardiac conduction system are affected.
The ECG also reveals a left axis deviation, indicating that the electrical axis of the heart is shifted to the left, which can be a
normal variant or associated with certain cardiac conditions such as left ventricular hypertrophy or cardiomyopathy.
Overall, the ECG findings are consistent with a diagnosis of left axis deviation, sinus arrhythmia, left anterior fascicular block,
and right bundle branch block.

LLM as Judge Feedback for PULSE Response:
1. Diagnosis
Score: 7. Explanation: The generated report correctly identifies sinus arrhythmia, left axis deviation, left anterior hemiblock, and
right bundle branch block. It also correctly identifies the combination of left anterior hemiblock and RBBB as bifascicular block.
However, it fails to mention 'abnormal QRS(T)' and 'possible lateral myocardial damage,' which are key diagnoses.
2. Form
Score: 5. Explanation: The generated report accurately describes the conduction defects (left anterior hemiblock, right bundle
branch block) and left axis deviation. However, it does not address 'abnormal QRS(T)' and 'possible lateral myocardial damage,'
which are critical waveform abnormalities mentioned in the ground truth report.
3. Rhythm
Score: 10. Explanation: The generated report provides a detailed and accurate description of sinus arrhythmia, including its
characteristics and potential influences. This matches the rhythm interpretation in the ground truth report.
Final Score: (7+6+10)/3 * 10 = 73

GPT 4o Response: Clinical Report: Electrocardiogram (ECG) Analysis:
1. Heart Rate and Rhythm: Heart Rate: Approximately 75 beats per minute (bpm). Rhythm: Sinus rhythm is present, as indicated
by the presence of P waves before each QRS complex and a consistent PR interval.
2. Intervals and Durations: PR Interval: 152 ms (within normal range: 120 200 ms). QRS Duration: 125 ms (slightly prolonged;
normal range: 80 120 ms). QT Interval: 421 ms (QT interval, QTcB: 447.5 ms, QTcF: 439.0 ms; within normal limits for QTc).
3. Axis: QRS Axis: 72.0 degrees (left axis deviation). P Axis: 71.5 degrees. T Axis: 73.0 degrees.
4. Waveform Analysis: P Waves: Normal morphology, consistent in all leads. QRS Complexes: Slightly widened, indicating a
possible intraventricular conduction delay. ST Segment: No significant elevation or depression noted. T Waves: Normal
morphology, no inversion or significant abnormalities observed.
5. Additional Observations: Lead V1 V6: Normal R wave progression. No evidence of acute ischemia or infarction. No significant
arrhythmias detected.
Conclusion:
The ECG shows a sinus rhythm with a heart rate of approximately 75 bpm. There is a slight prolongation of the QRS duration,
suggesting a possible intraventricular conduction delay. The QRS axis is deviated to the left. No acute ischemic changes or
significant arrhythmias are noted. The overall findings are within normal limits, with minor deviations that may warrant further
clinical correlation and follow up.

LLM as Judge Feedback for GPT 4o Response:
1. Diagnosis
Score: 5. Explanation: The generated report correctly identifies left axis deviation but misses several key diagnoses present in the 
ground truth report, such as sinus arrhythmia, left anterior hemiblock, right bundle branch block, bifascicular block, abnormal 
QRS(T), and possible lateral myocardial damage. The generated report mentions a possible intraventricular conduction delay, 
which is not explicitly stated in the ground truth report. 
2. Form
Score: 5. Explanation: The generated report correctly identifies the left axis deviation and slightly prolonged QRS duration. 
However, it fails to identify the abnormal QRS(T) and possible lateral myocardial damage mentioned in the ground truth report. 
The generated report also does not mention any abnormalities in the P-wave, ST changes, or T-wave, which are critical for a 
comprehensive waveform analysis. 
3. Rhythm
Score: 5. Explanation: The generated report identifies a sinus rhythm but misses the sinus arrhythmia mentioned in the ground 
truth report. The generated report does not identify any significant arrhythmias, which is a notable omission given the ground 
truth report's mention of sinus arrhythmia. 
Final Score: (5+5+5)/3 * 10 = 50

Question:
Please write a clinical report based on this ECG image.

Ground Truth Report: 
sinus arrhythmia, left axis deviation, left anterior hemiblock, right bundle branch block, bifascicular
block, abnormal QRS(T), possible lateral myocardial damage

Figure A13: Comparison of model outputs on ECG report generation task (Example 3). Blue in-
dicates correct information, while red highlights errors. Our model’s output mostly aligns with the
ground truth report, achieving a report score of 73. In comparison, GPT-4’s output partially aligns
with the ground truth report.
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Case Study: ECG Arena 

PULSE Response to the First Question:
The presence of qR complexes and rS complexes in the leads suggests a pattern of abnormal ventricular depolarization. The
qR complexes, which are small q waves followed by a larger R wave, indicate a possible conduction delay or block in the
ventricular conduction system. The rS complexes, which are small R waves followed by a larger S wave, may indicate a
pattern of abnormal ventricular activation, possibly related to the left anterior fascicular block. The combination of these
complexes suggests that the ventricular depolarization is not following a normal pattern, which can be indicative of
underlying cardiac pathology.
PULSE Response to the Follow-up Question:
The key feature that supports the diagnosis in this ECG image is the presence of a left anterior fascicular block…The left
anterior fascicular block is a specific type of conduction block that affects the left anterior fascicle of the left bundle branch,
resulting in abnormal ventricular activation. This diagnosis is further supported by the presence of left ventricular
hypertrophy, which can contribute to the development of conduction abnormalities.

LLM-as-Judge Feedback for PULSE Response:
1. Accuracy
Score: 5. Explanation: The model's response correctly identifies the presence of qR and rS complexes and associates them with
a conduction abnormality, specifically a left anterior fascicular block (LAFB). However, it introduces inaccuracies by
suggesting a general 'abnormal ventricular depolarization' and mentioning left ventricular hypertrophy, which is not part of
the ground truth answer.
2. Completeness
Score: 5. Explanation: The model's response partially covers the essential aspects of ECG interpretation related to LAFB, such
as the identification of qR and rS complexes. However, it misses critical details like the specific leads involved (I, aVL, II, III,
aVF) and the explanation of left axis deviation (LAD) as a key feature supporting the diagnosis.
3. Instruction Adherence
Score: 7. Explanation: The model follows the instructions by addressing the pattern of qR and rS complexes and suggesting a
diagnosis. However, it deviates slightly by introducing unrelated information about left ventricular hypertrophy and not
explicitly mentioning left axis deviation (LAD) as the key feature supporting the diagnosis.
Final Score: (5+5+7)/3 * 10 = 56.7

GPT-4o Response to the First Question:
The ECG image shows a pattern of qR complexes in leads V1 and V2, and rS complexes in leads V5 and V6. This pattern is
indicative of a right bundle branch block (RBBB).Here are the key features that support this diagnosis:
1. qR Complexes in V1 and V2: In RBBB, the initial part of the QRS complex is normal because the left ventricle is activated
first. This is followed by a delayed right ventricular activation, which results in a secondary R wave (R') in the right precordial
leads (V1 and V2). This can appear as a qR complex. 2. rS Complexes in V5 and V6: In the left precordial leads (V5 and V6), the
delayed right ventricular activation results in a wide S wave….In summary, the pattern of qR complexes in V1 and V2, and rS
complexes in V5 and V6, along with a prolonged QRS duration, is characteristic of a right bundle branch block.
GPT-4o Response to the Follow-up Question:
The key feature that supports the diagnosis of right bundle branch block (RBBB) in this ECG image is the presence of a qR
complex in leads V1 and V2 and an rS complex in leads V5 and V6. Additionally, the QRS complex duration is prolonged,
which is another hallmark of RBBB.
To summarize: qR Complex in V1 and V2: This indicates delayed right ventricular activation…These features collectively
support the diagnosis of right bundle branch block.

LLM-as-Judge Feedback for GPT-4o Response:
1. Accuracy
Score: 0. Explanation: The model's response is largely inaccurate. It incorrectly identifies the pattern of qR complexes in leads
V1 and V2 and rS complexes in leads V5 and V6 as indicative of a right bundle branch block (RBBB). The ground truth
specifies that the pattern of qR complexes in leads I and aVL, along with rS complexes in leads II, III, and aVF, is characteristic
of a Left Anterior Fascicular Block (LAFB). The model's response does not match the correct identification of waveforms,
intervals, and clinical diagnosis.
2. Completeness
Score: 0. Explanation: The model's response partially covers the essential aspects of ECG interpretation related to LAFB, such
as the identification of qR and rS complexes. However, it misses critical details like the specific leads involved (I, aVL, II, III,
aVF) and the explanation of left axis deviation (LAD) as a key feature supporting the diagnosis.
3. Instruction Adherence
Score: 5. Explanation: The model follows the instructions by addressing the pattern of qR and rS complexes and suggesting a
diagnosis. However, it deviates slightly by introducing unrelated information about left ventricular hypertrophy and not
explicitly mentioning left axis deviation (LAD) as the key feature supporting the diagnosis.
Final Score: (0+0+5)/3 * 10 = 16.7

Question:
What can be inferred from the pattern of the qR complexes and rS complexes in the
leads of this ECG image?
Ground Truth Answer:
The pattern of qR complexes in leads I and aVL, along with rS complexes in leads
II, III, and aVF, is characteristic of a Left Anterior Fascicular Block (LAFB). In LAFB,
the ECG typically shows small Q waves and tall R waves in leads I and aVL (qR
complexes), and small R waves followed by deep S waves in leads II, III, and aVF
(rS complexes). This pattern is a result of the altered conduction through the left anterior fascicle, which causes the electrical
activity to spread upwards and leftwards in the heart, leading to these distinctive ECG findings.
Follow-up Question:
What is the key feature that supports the diagnosis in this ECG image?
Ground Truth Answer:
The left axis deviation (LAD) observed in the ECG is a key feature that supports the diagnosis of Left Anterior Fascicular
Block (LAFB). LAD is indicated by the negative deflections in leads II, III, and aVF, and positive deflections in leads I and
aVL. In LAFB, the abnormal conduction pathway leads to the electrical axis of the heart shifting towards the left, which
manifests as a left axis deviation on the ECG. This deviation, combined with the specific patterns of qR complexes in leads I
and aVL and rS complexes in leads II, III, and aVF, strongly suggests LAFB.

Figure A14: Comparison of model outputs on ECG Arena (Example 1). Blue indicates correct in-
formation, while red highlights errors. Given the challenging nature of this task, our model’s output
partially aligns with the ground truth, and GPT-4o’s output largely deviates from the reference.
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I DISCUSSION

Further improvement on model’s instruction-following and multistep reasoning capabilities.
To improve the model’s capabilities of instruction-following and multistep reason, future work can
focus on two main areas: (1) incorporating a more diverse set of instruction-following data to
enhance the model’s generalizability, and (2) scaling up high-quality chain-of-thought (CoT) and
multi-turn training data informed by clinicians’ expertise, established knowledge databases (e.g.,
SNOMEDCT (Stearns et al., 2001)), literature or textbooks. This curated data would include inter-
mediate reasoning steps such as identifying key features, relating these features to diagnoses, and
providing well-grounded rationales to enhance multistep reasoning.

We believe that scaling up and diversifying training data will improve instruction-following and
multistep reasoning performance. This is also supported by our data ablation studies presented
in Tables 5 and 6, which indicate the potential for improving model performance with additional
training resources. We aim to explore these directions in future research to address the gaps noted
in our current work.
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