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ABSTRACT

This paper advances the theoretical understanding of active learning label com-
plexity for decision trees as binary classifiers. We make two main contributions.
First, we provide the first analysis of the disagreement coefficient for decision
trees—a key parameter governing active learning label complexity. Our analysis
holds under two natural assumptions required for achieving polylogarithmic label
complexity: (i) each root-to-leaf path queries distinct feature dimensions, and (ii)
the input data has a regular, grid-like structure. We show these assumptions are es-
sential, as relaxing them leads to polynomial label complexity. Second, we present
the first general active learning algorithm for binary classification that achieves a
multiplicative error guarantee, producing a (1 + ¢)-approximate classifier. By
combining these results, we design an active learning algorithm for decision trees
that uses only a polylogarithmic number of label queries in the dataset size, un-
der the stated assumptions. Finally, we establish a label complexity lower bound,
showing our algorithm’s dependence on the error tolerance € is close to optimal.

1 INTRODUCTION

Active learning is a machine learning paradigm that seeks to minimize the labeling effort required
to train a model by strategically selecting the most informative data points for labeling Ren et al.
(2022). Unlike traditional passive learning, which relies on randomly labeled data, active learning
operates on an unlabeled dataset and iteratively selects a sample to query its label which tailors
the selection process to focus on examples that contribute the most to improve model performance.
Labeling complexity becomes a significant challenge in scenarios where annotation requires human
expertise—particularly in domains like medical applications, where labeling cannot be outsourced
to crowdsourcing platforms but instead relies on skilled professionals. Given the limited availabil-
ity and high cost of such experts, active learning emerges as an invaluable solution in domains
where acquiring labeled data is both expensive and time-consuming. Examples include medical di-
agnosis|Budd et al.[(2021)), autonomous driving [Feng et al.|(2019)), webpage classification Hanneke
(2014), and natural language processing Schroder & Niekler (2020); Zhang et al.| (2022). By reduc-
ing the labeling cost, active learning has become a cornerstone of efficient model development in
data-intensive fields |Settles| (2012)).

Decision trees are extensively utilized in machine learning because they inherently perform feature
selection |Xu et al.| (2014); Banihashem et al.| (2023), offer interpretability (Gilpin et al.| (2018), and
achieve strong practical performance with minimal computational expense. These properties have
made decision trees a core component in ensemble methods such as random forests Breiman| (2001}
and XGBoost|Chen & Guestrin|(2016), which are among the most popular algorithms in supervised
learning tasks. While active learning has been applied to decision trees in various practical con-
texts [Ma et al.| (2016); Wang et al.| (2010), the existing research in this area often lacks a rigorous
theoretical foundation. This gap highlights the need for a deeper understanding of the theoretical
aspects of applying active learning principles to decision tree learning.

This paper addresses a significant gap in the theoretical foundations of active learning by providing
the first rigorous analysis of its sample complexity for decision trees. Our analysis centers on the
disagreement coefficient, a key parameter in active learning theory that, until now, had not been
analyzed for the decision tree class. The importance of bounding this coefficient lies in its direct
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impact on label efficiency, as it appears in many active learning algorithms. For example Hanneke
(2014) get the following label complexity:
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This investigation reveals two critical assumptions required to derive a polylogarithmic bound on
this coefficient: that each node in the decision tree must test a feature dimension distinct from its
ancestors, and that the input data exhibits structural regularity (which we model as a grid). We prove
that without these assumptions, the disagreement coefficient is not effectively bounded, leading to
polynomial sample complexity. Our analysis culminates in the following bound:

Theorem 1.1. Consider a decision tree classification task over a dataset S of n points. Let the input
space be X = {(a1,...,a4m) | Vi,a; € N,a; < w} for some w. If every node in a tree tests a
Sfeature dimension distinct from its ancestors and the tree height is at most d, then the disagreement
coefficient is bounded by 6 = O(In"(n)).

Next, we propose the first active learning algorithm for binary classification tasks on discrete datasets
that achieves a multiplicative error bound, Algorithm[2] In our framework, an algorithm is given n
unlabeled data points and can adaptively query their binary labels. The objective is to return a
(1 + €)-approximate classifier with probability at least 1 — §. A classifier is (1 + €)-approximate
if its error is at most 1 + € times that of the optimal classifier in the class. Our primary focus is to
minimize the algorithm’s label complexity, which is the total number of queries it performs. The
performance of Algorithm [2]is captured by the following theorem:

Theorem 1.2. For any binary classification task, Algorithm E] returns a (1 + €)-approximate classi-
fier with probability greater than 1 — . It does so using
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queries, where n is the dataset size, Vi is the VC dimension of the classifier space, and 0 is the
disagreement coefficient.

The adoption of the multiplicative error model in classification tasks is a key strength of this work.
It enables stronger control over the classifier’s accuracy compared to additive error models, provid-
ing greater flexibility to achieve desirable error rates based on what is achievable. For instance, in
realizable settings, where the optimal classifier has zero error, this approach guarantees perfect clas-
sification—a capability beyond the reach of additive models, which e-off regardless of the optimal
classifier error. While the multiplicative framework has been extensively explored in the context
of active learning for regression (see, e.g., Musco et al.| (2022); Derezinski et al.| (2018)); [Parulekar
et al.[(2021)); Chen & Price|(2019);|Chen & Derezinski| (2021);|Gajjar et al.|(2023};12024); (Chen et al.
(2022)), our work is the first to introduce an algorithm for multiplicative error in classification. This
aligns with broader trends in computer science, such as approximation algorithms and competitive
analysis, where multiplicative error models are standard.

A crucial motivation for our work is the inadequacy of existing additive error algorithms for the
multiplicative setting. A natural approach might be to adapt an additive algorithm by setting its
error parameter €,qditive relative to an estimate of the optimal error 1 (i.e., €uqdiive = €77). However,
this strategy is fundamentally flawed. Estimating 7 with sufficient accuracy to provide a meaningful
guarantee itself requires a number of label queries that is inversely proportional to 1. Consequently,
the label complexity would become dependent on an unknown and potentially very small quantity,
making the required number of labels Q2(n). Alternative strategies, such as iteratively guessing and
verifying 7, face the same bottleneck at the verification step. In Appendix [E| we formalize this
argument, demonstrating that any such adaptation is inherently label-inefficient. This highlights the
need for a fundamentally different approach, like the one we propose, that is designed to be agnostic
to the magnitude of the optimal error.

Our central result is a new label complexity bound for actively learning decision trees, which we de-
rive by combining the two main contributions of this paper. By applying our general multiplicative-
error Algorithm 2] to the decision tree class and using our novel bound on the disagreement coeffi-
cient, we achieve a query complexity that is polylogarithmic in the dataset size. This result holds
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under the previously discussed assumptions on tree structure and data distribution. The algorithm’s
performance depends on the maximum tree depth, denoted by d, and the feature dimensionality,
dim, as formalized in our main theorem:

Corollary 1.3. Ler X = {(z1, 22, ..., Zam) | Vi, z; < w,x; € N} be a set with a binary labeling.
Algorithm 2| returns a (1 + €)-approximate classifier of an optimal decision tree that each node
operates on a data dimension distinct from those used by its ancestors. The algorithm requires at
most the following number of queries:

2d(
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To highlight the efficiency of our algorithm, we also establish lower bounds for the label complexity
of any such active learning algorithm in Theorem [.3]and showed that some terms, like €, can only
experience logarithmic improvements.

To summarize, our contributions are as follows:

* The first active learning algorithm for multiplicative error budget in classification.
* The first label complexity bound for active decision tree learning.

* Proving the necessity of the uniform-like assumption and the constraint that each node
on root-to-leaf paths operates on a unique dimension for achieving poly-logarithmic label
complexity in active decision tree learning.

* The first label complexity lower bound for active stump learning on discrete datasets.

2 RELATED WORKS

Realizable Active Learning for classification: Numerous studies have examined active learning in
the context of binary classification tasks. Some of these works assume the existence of a classifier
with zero error |[El-Yaniv & Wiener| (2010; 2012); Hanneke, (2012); [Hopkins et al.| (2020b)). In con-
trast, our approach does not rely on this assumption, which makes it more applicable to real-world
scenarios where a perfect classifier is not guaranteed.

Agnostic Active Learning for classification: Some prior research has addressed active learning in
agnostic settings, where no perfect classifier exists/Balcan et al.|(2006; [2007); Hanneke| (2007)); Das-
gupta et al.|(2007); Castro & Nowak|(2008;2006). Among these, algorithms based on disagreement-
based active learning, such as A* Balcan et al.| (2006), share similarities with our approach by
maintaining a version space—a set of classifiers that initially includes the optimal classifier and is
iteratively refined without excluding it. However, unlike prior work, our method is the first to exploit
signals arising when the version space fails to shrink rapidly. We use this stagnation to lower-bound
the error and leverage this lower bound to identify a (1 4 €)-approximate classifier.

Notably, all these previous studies assume an additive error framework, guaranteeing that the classi-
fier’s error exceeds that of the optimal classifier by at most a fixed additive margin. In Appendix [El
we examine the relationship between additive and multiplicative error frameworks and algorithms,
demonstrating that existing additive approaches are unsuitable for multiplicative error settings and
cannot be adapted to address our problem. For a comprehensive survey, see [Hanneke| (2014)).

Active Learning in Regression: Active learning has been extensively studied in the context of
linear regression and £, norm regression. Several papers aim to improve the label requirements of
active learning and provide theoretical bounds on the minimum requirements Musco et al.| (2022);
Derezinski et al.| (2018); [Parulekar et al.| (2021);|Chen & Price| (2019); |/Chen & Derezinski| (2021));
Woodruft] (2014); [Sarlos| (2006). Notably, Musco et al.| (2022) investigates £, norm regression.
Throughout our paper, we adopt the setup from Musco et al.| (2022), and our algorithm returns a
(1 + ¢)-approximate solution on a given discrete dataset where labels are arbitrary, without any
assumptions on them.

Theory of Decision Tree Learning: The theoretical study of decision tree learning has been ex-
plored primarily from the perspective of time complexity in various specific contexts [Ehrenfeucht
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& Haussler (1989); Mehta & Raghavan|(2002); [Blanc et al.[(2019;[2022). To the best of our knowl-
edge, however, there is no previous work that considers theoretical guarantees for sample complex-
ity. Additionally, in the context of learning, existing works have analyzed different properties of
decision trees, including their application to sparse feature recovery. Notably, works by Banihashem
et al.|(2023); Kazemitabar et al.| (2017) focused on decision stump learning for regression problems,
motivated by the challenge of sparse feature recovery. While these studies have contributed to our
understanding of decision tree learning in settings such as sparse recovery and sample complexity,
they largely overlook the domain of active learning within decision tree theory.

Disagreement Coefficient of decision trees The theoretical basis for active learning of decision
trees was laid by Balcan et al.| (2010), who showed that axis-parallel trees on continuous inputs in
the [0, 1]™ hypercube can be learned efficiently under the uniform distribution. Their proof relied on
decomposing the class by leaf count and arguing that each subclass has a finite disagreement coef-
ficient. However, they only asserted finiteness without giving a way to compute the coefficient or
bound it quantitatively. Our work fills this gap by providing the first explicit calculation of the dis-
agreement coefficient for decision trees on discrete domains, establishing the bound § = O(In%(n)).

Active Learning Using Stronger Queries: To overcome the limitations of conventional active
learning methods, several studies have considered active learning with stronger query models |Hop-
kins et al.| (2021); Kane et al.| (2017); [Hopkins et al.| (2020a). For example, |Hopkins et al.| (2021)
investigates the active learning of decision trees using queries that check whether two samples be-
long to the same leaf in the optimal decision tree. Similarly, [Kane et al.[| (2017) shows that it is
possible to learn a perfect half-space using only log(dataset size) comparison queries, where the la-
beler answers which sample is more positive. However, these approaches assume realizable settings,
where a perfect classifier exists. In contrast, our work focuses on a simpler and more practical query
model that exclusively returns the label of a sample, without assuming realizability.

3 DISAGREEMENT COEFFICIENT IN DECISION TREES

The theoretical analysis of many active learning algorithms for binary classification relies on the
disagreement coefficient, a parameter that measures the complexity of a hypothesis class |[Balcan
et al.[ (2006); Hanneke| (2014)). Intuitively, it captures how many data points have uncertain labels
within a set of plausible hypotheses. A smaller coefficient suggests that an active learning strategy
can efficiently prune the version space. This section defines the disagreement coefficient and derives
an upper bound for the class of decision trees.

3.1 FORMAL DEFINITIONS

Let H denote the hypothesis class (e.g., decision trees of bounded depth) and S a dataset of n points.

Definition 3.1 (Distance & Hypothesis Ball). The distance between two hypotheses h, h’ € H on
S is the fraction of points where they disagree:

Ds(h, W) = L3 " 1(h(z) # W' (x)).
x€S
The ball of radius r around h € H is the set
By (h,r):={h" € H| Dg(h,h') <r}.

Definition 3.2 (Disagreement Region). For V' C H, the disagreement region is the set of points in
S where some pair of hypotheses in V' differ:

DISS(V) = {m cs | E|h1,h2 eV: hl(l‘) 75 hg(l‘)}
These notions lead to the disagreement coefficient, which compares the size of the disagreement
region to the radius of the corresponding hypothesis ball.
Definition 3.3 (Disagreement Coefficient). For h € H, the disagreement coefficient is
DISg(Bp (h
up IDISs(Bu (b 1)
r>0 rm

0y, =

The disagreement coefficient for H is the worst-case value: 0 := sup;,c g Op.
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Figure 1: (a) A decision tree with 4 leaves (L = 4). Leaf 1 uses dimensions 1,2 so dj 1 = {1, 2}.
(b) LineTreey, 3 classifies all samples as 1 — Ly, 3 except those reaching leaf 3 of h.

3.2 AN UPPER BOUND FOR DECISION TREES

Our first main result, Theorem [I.T} establishes an upper bound on the disagreement coefficient
for decision trees under certain structural and distributional assumptions. The proof proceeds by
decomposing a tree into simpler components, analyzing their disagreement properties, and then
recombining the results, which leads us to define the notion of a LineTree.

Let h be a decision tree. For each leaf i, let [, ; denote its label and dj, ; C {1,...,dim} the set of
dimensions tested along the path from the root to that leaf.

Definition 3.4 (LineTree). For a tree h and leaf ¢, the corresponding line tree, denoted LineTree, ;,
is a classifier that assigns label l}, ; to all inputs reaching leaf ¢ in i, and the opposite label 1 — I, ;
otherwise. Figure|l|shows an example of a tree / and its line tree LineTreey, 3.

To prove Theorem we fix a tree h and bound 6;, by analyzing W for all » > 0.
Although DIS(Bg (A, 7)) seems to depend on all pairs of classifiers in By (h, r), it can be expressed
directly in terms of h. By LemmaD.1| DIS(By (h,r)) = {z | 30’ € By(h,r) : K'(z) # h(z)}.
We decompose this set according to the leaf ¢ that - reaches in h and the dimension set d’ of the leaf
it reaches in h’. Hence, DIS(By (h, r)) is the union over all 4 and d’ C {1,2,...,dim} of

{:17 ‘ LineTreeh,i(x) = lh,,i A\ Eh’EBH(h,r),j dh/,j =d /\LineTreeh/,j(x) = lh/J A\ lh’,j 7é lh,i} (D)

If we can replace b’ € Bp(h,r) with an equation related to LineTreey, ; and LineTreey ;, then
we can relate the analysis of trees to the analysis of line trees. In Lemma [D.2] we achieve this by
showing that if I, ; # I} ;, then Dg, (h, h’) is larger than Dg, (LineTreey, ;, LineTreey, ;) when S;
is the set of data points that reaches leaf 4 in h.

Then, we use Proposition to show that the sets in Equation |1|each have a size of O((%ﬁq‘”))d).
Combining this with the fact that there are L (dim) sets in total, we can prove Theorem

d
Proposition 3.5. In a line tree classification task where each node decides based on one of the
d C{1,2,--- ,dim} input dimensions, different from all of its ancestors, and the tree height is less
than d, with

X:{(al,...,adim) |Viai EN,CLZ' < w; Sw}

for some w; vector and w, the disagreement coefficient of a classifier which assigns the same labels
to all data points is of O ((3Inw)?).

Using the calculated disagreement coefficient and Vi of decision tree in Lemmawhich is 24(d+
In dim), we can completes the proof of Corollary

3.3 NECESSITY OF ASSUMPTIONS

We now show that the assumptions in Theorem [I.1] are necessary. Without them, the disagreement
coefficient becomes substantially larger.

Theorem 3.6. If decision tree nodes are permitted to query the same dimension as their ancestors,
the disagreement coefficient for trees of height d > 2 is = Q(n'/ dim) for any dataset with n distinct
points.
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To prove this we first consider the constant classifier h( that labels all samples as 0. Since decision
tree nodes can query the same dimension as their ancestors, it is possible to construct classifiers that
are very close to hg but label an small portions of the data as 1. This allows us to build a set of
classifiers within a small ball around hy whose disagreement region covers a large fraction of the
dataset.

—1/dim

More specifically, we can construct such a set of classifiers within a radius of r = 2n around

ho. The resulting disagreement region, DIS(Byy (ho, 7)), can be shown to contain at least 2(12137:1
data points. This large disagreement region within a small radius directly leads to a large disagree-
|DIS| 1 /dim)'

ment coefficient. Calculating the ratio =_>* with these values yields a lower bound of § = (n

Theorem 3.7. There exists a size n dataset for which the disagreement coefficient of a binary deci-
sion tree classifier is Q(n), even if nodes are restricted to unique dimensions per root-to-leaf paths.

To prove this we first consider a dataset where all points lie on the line z; = x93 = -+ = Zgim,
e.g., X; = (i,i,...,4) fori = 1,...,n. Let hy be the all-0 classifier. For a radius »r = 1/n, the
ball By (hg,r) contains any tree that misclassifies only one point. It is possible to construct a tree
that isolates and flips the label of any single point X;. Therefore, for any point X, there exists a
hypothesis h; € By (ho,r) such that h;(X;) = 1 # ho(X;). This implies that the entire dataset is
in the disagreement region DIS(By (ho, 7)), yielding a coefficient of at least % = 1= =n.

Z"I’L

3.4 RELAXING THE UNIFORMITY ASSUMPTION

The integer grid assumption for the input distribution is restrictive. We can relax it by assigning a
weight W, € [1, \] to each data point X;, representing its relative importance. This modifies the
distance metric to a weighted average:

2ot U(ha (X5) # ho(X3)) Wi
Z?:l Wi
This formulation generalizes the analysis of classification errors. As we prove in Theorem

(which is a variant of Theorem 7.6 from |Hanneke| (2014) for discrete datasets), the disagreement
coefficient for this weighted task is scaled by at most A compared to the unweighted case.

Dgw(hi,he) =

4 A MULTIPLICATIVE-ERROR-BOUND ACTIVE LEARNING ALGORITHM

This section introduces and analyzes an active learning algorithm designed to find a classifier with
a multiplicative error guarantee. That is, if the optimal classifier h* in a class H has an error of 7,
our algorithm returns a classifier & with error less than 7(1 + €) with high probability.

A natural first question is whether existing algorithms, which typically provide additive error guar-
antees (i.e., returning h with error at most 7 + €'), can be adapted for the multiplicative setting.
However, such adaptations are fundamentally label-inefficient. Any approach based on an additive
algorithm would require an estimate of the optimal error ) to set the additive term €’ appropriately
(e.g., € = en). Estimating or verifying an error rate of n with high probability requires Q(1/7) sam-
ples. Since an effective algorithm’s label complexity cannot depend on the unknown, and potentially
very small, value of 7, additive frameworks are unsuitable for achieving multiplicative guarantees.
In Appendix [E| we formally investigate the scenarios in which these adaptations fail, demonstrating
their inherent limitations.

Our approach, by contrast, is designed to circumvent this dependence on 7. We first present the
algorithm’s core logic in the simple, one-dimensional setting of a decision stump. We then generalize
this framework to arbitrary binary classification tasks, yielding a result whose label complexity
depends on the disagreement coefficient derived in Section 3]

4.1 THE DECISION STUMP CASE

A decision stump for one-dimensional data is a decision tree of depth one, defined by a single
threshold. We begin with this setting to illustrate our algorithmic approach in a simple context. The
main result for this section is the following label complexity bound.
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Theorem 4.1. For a one-dimensional, sorted dataset of size n, Algorithm |I| returns a (1 + ¢)-
approximate decision stump with probability at least 1 — 6, using a total of

0 (o (10 (1)) 210 (1)) et eris

Problem Setup. Our approach operates within the active learning framework of Woodruff et
al. Musco et al.| (2022, where the algorithm has access to all input samples from the outset and
can adaptively query their labels. Specifically, the algorithm is given a sorted vector of unlabeled
data points X € R" (X; < X;41) and can adaptively query their labels from the target vector
Y € {0,1}"™. A stump classifier h is defined by a threshold, which we can represent by the index of
the first sample it classifies as 1. Thus, h € {0, 1,...,n} corresponds to the rule h(z) = I(x > X)),
where we define Xy = —oo to handle the case where all samples are labeled 1. The error of a clas-
sifier h on a subset of samples S’ C S is denoted errg/ (h) := |S—1,| Pz yes Lh(z) #y).

Algorithm Intuition. Algorithmmaintains an interval of candidate stumps [L;, R;] that, with high
probability, contains the optimal one. Each iteration attempts to shrink this interval by (i) sampling
a few labeled points from Xy, g, (i) bounding errors of all classifiers using high-probability
lower/upper bounds (Appendix , and (iii) pruning any classifier 4’ whose lower bound is above
another’s upper bound.

The crucial feature is how the algorithm reacts when pruning fails: if [L;, R;] does not shrink by
at least half, this signals that all classifiers in the interval incur relatively high error. Instead of
wasting more iterations, the algorithm halts and directly estimates the best classifier in the range
using O(Z In +-) additional samples. We call this last phase direct estimation phase.

Formally, in iteration ¢ we obtain bounds for each h using O(In(1/¢")) samples S;, ensuring with
probability 1 — &, where 6’ = §/(2log, 2n) we have:

LB(S;, h,8") < errjp, g, (k) < UB(S;,h,8"), UB—LB< .

Classifiers eliminated by these bounds shrink the interval; if the shrinkage is insufficient, the algo-
rithm switches to direct estimation. Pseudocode is given in Algorithm 1}

Algorithm 1 Stump algorithm Algorithm 2 General Binary Classification
1: Initialize ¢ <— 0 1: S + All samples, H < All classifiers
2: Initialize L; < 0, R; < n 2: 0 < Calculate 6 for using Definition[3.3]
3: while L; < R, do 3: 10
4 Si +— Z(c ln(%) +b1, X1, Ri) 4: H; + H,r; + 1 {Initial progress measure }
50 i+i+1 5: while |H;| > 1do
6: B+ min UB(S;, h,d") 6 S « Z(0*)(Velnb + Ing) +
he€[Li—1,Ri—1] by DIS(H))
! ) (3
E H — , ih € [Lifh Rifl] | 7: ﬂ < minh,EH,-, UB(S“ h, 5/)
LB(S;, ', o) < B} $:  Hiyy < {he H, |LB(S;h,d) < B}
8  L; + mln(H)éRl- 7 max(H) 9: iy ¢ radius(Hisq)
9: ifR; — L; > =—5—— then 10:  ifrjpq > % then
10 S e R(FMngbe) Xpnora) 11§« R(2L(Vin(2) + (L)) +
11: Return ar min  UB(S',h, %) by, DIS(H))
: & e Li1 Ri1 2l 12 Return arg minye 7, UB(S’, h, §)
12:  endif 13:  endif
13: end while 14: i i+1
14: Return Li 15: end While

16: Return h € H

We conducted an empirical study of our algorithm, focusing specifically on practical choices for the
constants that influence its label requirements. Detailed results, along with a discussion on how small
these constants can be set while preserving algorithmic correctness, are provided in Appendix [F} The
following theorem formally establishes the correctness of our algorithm.
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Theorem 4.2. There exist universal constants c1, ¢, by, by such thatAlgorithmreturns a classifier
with an error rate less than n(1 + €) with probability at least 1 — § when provided with a one-
dimensional dataset.

Correctness and Label Complexity Proof Sketch. The proof proceeds in several steps. First,
Lemma shows that the main loop of Algorithm 1| executes at most log22n iterations. Then,
Lemma establishes that, with probability at least 1 —delta, all bounds produced by the algorithm
hold simultaneously throughout its execution. Conditioning on this event, we next prove that the
optimal classifier is never eliminated. The argument is as follows: if a classifier h is suboptimal
within the interval [L;, R;], then h cannot be optimal over the entire dataset, as shown in Lemma
Combining this with Lemma we conclude that the optimal classifier always remains in the
candidate range [L;, R;]. Consequently, when the algorithm terminates, the returned classifier is
guaranteed to be optimal among the remaining candidates.

The main subtlety arises from the two different ways the algorithm can terminate: by continuing to
shrink intervals, or by entering the direct estimate phase. The key idea is that these two outcomes
correspond to complementary regimes for the error of the optimal classifier. When the optimal
classifier has small error on the current interval [L;, R;], Lemma shows that the interval length
shrinks rapidly. In fact, if the optimal error is less than %, then the next interval [L;;1, R; 1] is at
most half the size of [L;, R;]. Thus, in the low-error regime the algorithm never enters the direct
estimate phase; instead, it keeps shrinking intervals until the candidate set is tightly localized around
the optimum. In contrast, if the algorithm does enter the direct estimate phase, this indicates that
the optimal error on the current interval is relatively large. In this high-error regime, approximating
within a factor of (1 + €) becomes easier. Lemma formalizes this intuition, showing that there
exist universal constants co and by such that the classifier returned in the direct estimate phase always
achieves error within the desired (1 + €)-factor guarantee. Putting the cases together, we conclude
that the algorithm always returns a (1 + €)-approximate classifier with probability at least 1 — J,
thereby proving Theorem 4.2

To establish the label complexity bound in Theorem we first apply Lemma to show that
the for loop repeats at most logo2n times. During these iterations, the algorithm uses at most
O(lnnln lnT") label queries. If the algorithm later enters the direct estimate phase, it performs

an additional O (Z% In 5-) label queries. This completes the proof of Theorem

4.2 LOWER BOUND

We aim to demonstrate that any active learning algorithm within the given setting has a label com-
plexity of Q(In(3) - %). This result establishes that it is not possible to significantly improve the
label complexity with respect to the term €, beyond a logarithmic factor. The result is as follows:

Theorem 4.3. Any active learning algorithm requires ) (hl (%) E%) queries to return a (1 + ¢)-
approximate decision stump with probability greater than 1 — 0.

To prove Theorem [4.3] we build upon the lower bound established in [Kéiridinen| (2006), which
determines the minimum number of coin tosses required to decide whether heads is more likely than
tails. We adapt this result by modeling the active learning problem as an analogous coin-tossing
process: here, the “coin” provides the requested labels, and the active learning algorithm’s classifier
determines whether heads is more likely than tails. By applying the lower bound from Kairidinen
(2006) to this framework, we derive a lower bound for the label complexity of the active learning
algorithm. We should mention that this result were proven for continues input spaces |Hanneke
(2014) but needed additional techniques for discrete datasets.

4.3 GENERALIZATION TO ARBITRARY CLASSIFIERS

We now generalize the stump algorithm to handle any binary classification task. The performance
of this resulting algorithm is formally stated in Theorem [I.2] in the introduction. The resulting
algorithm’s performance depends on structural properties of the hypothesis class, captured by the
VC dimension and the disagreement coefficient.

Algorithm [2) follows the same template as the stump algorithm but replaces 1D-specific concepts
with their general counterparts. The candidate set is not an interval [L;, R;] but a general subset
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of hypotheses H; C H. The sampling occurs not from a data range but from the disagreement
region, DISg(H;). This is the set of points informative for distinguishing among remaining clas-
sifiers. Finally, progress is measured not by interval length but by the radius of the hypothesis set,
radius(H;), which is the radius of the smallest ball containing H,. The pruning step remains the
same: eliminate classifiers that are provably worse than another candidate. The algorithm switches
to a final, direct estimation phase if the radius of the hypothesis set fails to halve in an iteration.

Role of the Disagreement Coefficient. The proof of Theorem[4.4]shows that an ineffective pruning
step implies a high optimal error. In this general setting, ’high” is relative to the disagreement
coefficient. Specifically, if the radius fails to halve, the optimal error 7; on the disagreement region
must be at least Q(1/6). The disagreement coefficient § bridges the gap between the radius of the
hypothesis ball and the size of the disagreement region, allowing us to make this critical inference.

Algorithmic Details. Algorithm [2|formalizes this procedure. The core of the algorithm is an itera-
tive loop that prunes the set of candidate classifiers, H;. In iteration 7, we focus on samples = € .S for
which there exist h1, ho € H; such that the two classifiers disagree with each other hy(x) # ha(x)
or more formally DIS(H;). Therefore, in each iteration, a sample set S; is drawn from the disagree-
ment region DIS(H;) (Line 6). Using this sample, the algorithm finds the minimum error upper
bound 8 among all classifiers in H; and then forms the next set, H;1, by eliminating any hypoth-
esis whose error lower bound exceeds 3 (Lines 7-8). This efficiently removes classifiers that are
provably suboptimal based on the evidence from S;.

Measuring Progress. Progress is tracked via the radius of the hypothesis set, which quantifies its
size. The radius of a hypothesis set H; is then the radius of the smallest ball, under this metric, that
encloses all classifiers in the set:

radius(H;) := min{r | 3p.cn,, H; € Bp,, (h',7)}.

Ff an iteration fails to halve this radius (r; > r;_1/2), the algorithm transitions to its final estimation
phase (Lines 10-12). This switch is justified because slow progress implies a high optimal error,
which allows us to select the final classifier. The correctness of the general algorithm is formally
stated below.

Theorem 4.4. There exist universal constants c1,ca, by, bo such that, for any binary classification
task, Algorithm returns a classifier with error less than n(1 + €) with probability at least 1 — 6,
where 1) is the error of the optimal classifier.

The proof mirrors the stump case. We show the main loop runs only O(logn) times (Lemma
and that all probabilistic bounds hold simultaneously with high probability (Lemma[B.2). Crucially,
the optimal classifier h* is never pruned from H; (Lemma [C.5). The argument ties progress to
the optimal error via the disagreement coefficient. Lemma shows that if the optimal error on
DIS(H;) is small (below 1/(166)), the radius must halve. Otherwise, Lemma [C.8|ensures the direct
estimate phase suffices to output a (1 + €)-approximate classifier.

Finally, Corollary follows directly from Theorem [I.1] and Theorem [I.2] with details in Ap-
pendix [D.1]

5 CONCLUSION

In this paper, we established the first rigorous theoretical foundation for actively learning decision
trees, presenting an algorithm that achieves a polylogarithmic label complexity in the dataset size.
This result is built on two core innovations: the first analysis of the disagreement coefficient for deci-
sion trees, which we bound as § = O(lnd(n)), and a proof that our underlying assumptions—unique
feature dimensions per path and a grid-like data structure—are necessary to avoid polynomial com-
plexity. We combined this with the introduction of the first general active learning algorithm for any
binary classification task to provide a (1 + ¢)-multiplicative error guarantee, a more robust frame-
work than traditional additive models whose dependence on € we show is nearly optimal. Our work
bridges a critical gap between the practical use of decision trees and their theoretical understanding,
opening several avenues for future research, such as relaxing our structural assumptions, extending
the analysis to continuous data domains, and applying our general algorithmic framework to other
classifier classes.
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APPENDIX OUTLINE

In Appendix [A] we explain how to calculate the lower and upper bounds, LB and UB, in general.
Next, in Appendix we specifically determine these bounds for stumps, and in Appendix
we determine them for decision trees.

Then, we present the proofs of the theorems and lemmas from the main body, starting with the proofs
of Section.T|in Appendix[B] Specifically, we first provide some required lemmas. In Appendix[B.1]
we then provide proofs for Theorem .2} which proves that Algorithm [T]is correct. Later, in Ap-
pendix we prove Theorem 4.1} which determines the label complexity of Algorithm[I] Finally,
in Appendix [B.3] we prove Theorem [.3] which provides a lower bound on the label complexity of
any active learning algorithm.

In Appendix [C] we provide the proofs for the theorems in Section[4.3} We first introduce and prove
some required lemmas, which serve as the foundation for proving Theorem [4.4] and Theorem [1.2]
These results establish the correctness of Algorithm[2]and analyze its label complexity, respectively.

In Appendix [D} we provide proofs for the lemmas introduced in Section 3] After proving these
lemmas, we proceed to Theorem [I.1] and Proposition [3.5] which calculate the disagreement coeffi-
cient for decision trees and line trees, respectively. In Appendix [D.I] we present the proof of our
main result, Corollary which calculated the label complexity of our algorithm for a decision
tree. Additionally, in Appendix [D.2] we provide proofs of the necessity of our assumptions, i.e.,
Theorem [3.6]and Theorem [3.7] Finally, in Appendix [D.3] we show how you can partially relax the
uniformity assumption, though not remove it entirely.

In Appendix [E] we explain why additive algorithms fail in a multiplicative setting and explain the
relation between additive and multiplicative settings and algorithms.

In Appendix [F| we present an empirical analysis of our Stump algorithm, showing that, in practice,
small values for ¢y, co,b;, and by can be chosen while still ensuring the algorithm performs as
intended.

A CALCULATION OF ERROR BOUNDS

To compute the lower and upper bounds (LB and UB), we leverage the following theorem from An-
thony & Bartlett (2002); Balcan et al.| (2006):

Theorem A.1. Let H be a hypothesis class of functions mapping from X to {—1, 1}, with a finite
VC-dimension Vi > 1. Let D be an arbitrary, but fixed, probability distribution over X x {—1,1}.
Forany €, > 0, if a sample is drawn from D with size

m(e, 0, Vi) = % <2VH In <1€2) +1In <§)> ,

then, with probability at least 1 — §, the following holds for all h € H:
lerr(h) — err(h)| <e.

Using Theorem we can derive the error bounds. From the theorem, we know that |err(h) —
etr(h)| < e. Consequently, we can define the lower and upper bounds as follows:

LB(h) =eir(h) —e and UB(h) =eir(h) + e.
These bounds are valid with probability greater than 1 — J.
A.1 StUMP

For decision stumps, the VC-dimension Vj is known to be 1, as established in Lemma[A.2] Hence,
applying the formula for sample size in Theorem[A.T] we obtain the following sample size require-

ment 256 24 4
= 22 (o1 (1) o (1)),
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After sampling, we can compute the empirical error for each classifier. Subsequently, we define the
lower and upper bounds for each classifier as:

LB(h):e%r(h)—% and UB(h):e%r(h)+§.

This guarantees, with probability at least 1 — 4, that for all hypotheses h, the following holds:
LB(h) < err(h) < UB(h),
and additionally, the width of the bounds is exactly e, i.e., UB(h) — LB(h) = .

Lemma A.2. Let H denote the hypothesis class of decision stumps in one dimension, where each
hypothesis h € H assigns the label 1 to points exceeding a threshold 6 € R and 0 otherwise. Then,
the VC-dimension of H is 1.

Proof. To prove that the VC-dimension of # is 1, we must show that there exists a set of one point
that can be shattered by H, but no set of two points can be shattered.

Shattering a single point: Consider a single point 1 € R. By choosing an appropriate threshold
0, we can label x; as either O or 1. Thus, a set of one point can be shattered by .

Inability to shatter two points: Now, consider a set of two points, 1,29 € R with 1 < xs.
There are four possible labelings: (0,0), (0,1), (1,0), (1,1). However, the labeling (1,0) cannot
be achieved. If we choose a threshold 0 such that 1 < 6 < x5, we obtain the labeling (0, 1). If we
choose 6 < 1, we get (0,0), and if we choose § > x5, we obtain (1,1). Since (1, 0) is impossible,
the set {x1, x2} cannot be shattered. Therefore, no set of two points can be shattered.

Since there exists a set of one point that can be shattered, but no set of two points can be, the
VC-dimension of H is 1. ]

A.2 DECISION TREE

The VC-dimension, Vg, of decision trees with height at most d in dim-dimensional data is
O (2%(d + Indim)), as established in Leboeuf et al.|(2020). Utilizing this, along with Theorem
we can achieve error bounds where UB(h) — LB(h) < ¢ with the following number of samples:

O (12 (Zd(d+ In dim) 2 4 In 1)) .
€ € 1)

More specifically, using Lemma[A.3]and Theorem [A.T] we require:
256 24 4
= (20 -24(d 4 log, dim) In () +In <)>
€ € o

Lemma A.3. Let H be a decision tree of height at most d, where each node uses one of dim > 2
data dimensions. The VC dimension of H, Vy, is at most 10 - 2¢(d + log, dim).

samples.

Proof of LemmalA.3] Based on [Leboeuf et al| (2020), the VC dimension Vy satisfies Vi <
max{m | (14m - dim)™ > 2™}, where dim is the number of dimensions and N is the number

of internal nodes. For a height d, N < 2¢ — 1. Thus, Vi < max{m | (14m - dim)Qd_1 >
2my I (14m - dim)Qd > 2™, we simplify by assuming m = 2%(d + log,dim)c and get
14dim - 2¢(d + log, dim)c > 2(d+log2 dim)e Dividing by 2¢, we derive:

14dim(d + log, dim)c > 24~V dim®.
For ¢ = 10, this inequality fails, since
140dim(d + log, dim) > 2" (¢=YDdim® = 2% (¢~ dim 4 24 ¢~V (dim® — dim).

Here, log, d < d and log,(140) < 8 < 8d < (¢ — 2)d, implying log,(140) + log, d < d - (¢ — 1).
Therefore, 140d < 2%(¢=1) Adding dim to both sides gives:

140d - dim < 2% (=D dim.
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Since dim > 2, and log, dim < dim we get: log, dim < dim'°~%(dim — 1). Adding 140dim to
both sides and noting d < dim we get

140dim log, dim < 140dim“!(d — 1) < 2°dim®~*(dim — 1) < 2¢%dim®~*(dim — 1) <
2% (=D dim*~ ! (dim — 1) < 24 (¢=Ddim®.

Hence:
14dimlog, dim - ¢ < 2% (" YVdim® = Vi < 10 - 2¢(d + log, dim).

B STUMP PROOFS

In this section, we present the proofs associated with Section which pertain to Algorithm
These include proofs of its correctness and label complexity. Additionally, we establish a lower
bound for the label complexity of any active learning algorithm.

We begin by proving that the loop in Algorithm repeats at most log, (2n) times.

Lemma B.1. In the execution of Algorithm we enter the loop at most log,(n) times.

Proof of Lemma @] At the start of the algorithm, we have R; — L; = n, and this value is halved in
each iteration. When it reaches 1, the algorithm terminates—either by entering the If statement or
by reducing R; — L; to 0. Therefore, the number of iterations is at most log, (2n). O

To prove Theorem .2} we need to establish that all lower and upper bounds are valid during the
algorithm’s execution simultaneously with probability at least 1 — §.

Lemma B.2. In an execution of Algorithm|l| all estimated lower and upper bounds are valid with
probability at least 1 — §.

Proof of Lemma From Lemma|B.1] we know that the bounds outside the If statement are evalu-
ated at most log, (2n) times. Each time, the bounds are correct with probability at least 1 — §’. Thus,
the probability of a bound being incorrect is less than ¢’. Therefore, the probability of at least one

bound being incorrect is less than §’ log,(2n). Using the definition of §’, we know &’ = m

so we have 6’ log,(2n) = 2.
Additionally, the bounds 1n51de the If statement are evaluated only once, and the probability of them
being wrong is less than 5- Combining these two factors, the overall probability of any bound being

incorrect is less than 4. O

Next, we must prove that the optimal classifier is never eliminated if all bounds are valid. This is
formalized in Lemma [B.4} which builds upon Lemma Since we estimate the error using ran-
dom samples from the disagreement set rather than the entire dataset, we must first relate the error
of classifiers in the disagreement set to their overall error. Lemma establishes that the error rela-
tionship between two classifiers remains consistent across the disagreement set and the total dataset
if all the samples on which they disagree are contained within the disagreement set. Specifically, if
one classifier has a larger error within the disagreement set, it will also have a larger error on the
total dataset. Consequently, the optimal classifier within the disagreement set is guaranteed to be the
overall optimal classifier.

Lemma B.3. For two classifiers hy and hs, if we have errs(h1) < errs(ha), then for any subset of
samples S’ containing all samples where hy and ho disagree, i.e., {x € S | hy(z) # ha(z)} C 5/,
we will have errg:(hy) < errs:(hg).

Proof of Lemma[B.3] Applying definition of err, to our assumption errs(h1) < errg(hs), we have:

Z I(hi(z) #y) < Z L(ha(z) # y)

(wvy)es (w,y)eS
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Now, splitting .S into S’ and its complement S \ S”:

Yo @) #Fy+ Y @) #y) < D> Lhele) #y)+ Y. I(ha(z) #y)

(z,y)€Ss’ (z,y)€S\S’ (z,y)€S’ (z,y)€S\S’

Since S’ contains all the samples where h; and hs disagree, the error on .S\ S” will be identical for
both classifiers. Therefore:

Y U@ #y)< Y Uha(z) #y)
(z,y)es’ (z,y)es’
Hence: errg: (h1) < errg/ (hg) O

Lemma B.4. If all bounds in the execution of Algorithm|[I|are valid, the algorithm will never elimi-
nate any optimal classifiers.

Proof of Lemma|B.4, We prove by contradiction. Suppose that there exists an iteration ¢ in which
an optimal classifier h* is eliminated, while all bounds are valid in that step. This implies that
h* € [Lifh Rz‘,l] but h* ¢ [Li, Rz] Thus, we have:
LB(S“h*,(S/) > min UB(S“h,(;’)
he€[L;—1,Ri—1]

Let h' be the classifier such that: minyepz, , g, ,)UB(Si,h,0") = UB(S;h',d") Then:
LB(S;, h*,¢") > UB(S;, 1, d).

Let S’ be the set of all samples in the range of valid classifiers, i.e., S’ = { X[z, , g, ,]}- Since the
bounds are assumed to be correct, we know:

errg/ (h*) > LB(S;, h*,8") > UB(S;,h’,d") > errs/ (h') ()

Since both h* and h' belong to the interval [L;_1, R;_1], we know that [L;_1, R;_1] contains all
the samples where h* and h’ disagree. Given that h* is the optimal classifier, we have: errg(h*) <
errg(h').

Using Lemma [B.3] we conclude: errg(h*) < errg/(h). This contradicts Inequality 2] Thus, h*
cannot be eliminated. O

We now aim to demonstrate that classifiers far from 2* have high error rates on Xz, r,), ensuring
they will be eliminated by 4 *. This claim is formally established in Lemma[B.5]below.

Lemma B.5. Forall h € [L;, R;], in any iteration i, the following inequality holds:

|h — h*| .
eer[LivRi](h) > R —L;+1 - eer[Li«Ri](h )’

Proof of Lemma|[B.3] We begin by recalling the definition of the error function errx, . (h):

1

ELa1 2 M)A,

JE€[Li,Ri]

erry h) =

[Lini](

Without loss of generality, assume that A < h*. This assumption allows us to focus on the data
points where h and h* make different predictions. h and h* differ in their predictions on samples
X;, where h < j < h*. Also, let M denote the number of misclassifications made by both / and
h* outside the range [h, h*), but in [L;, R;]. Since h and h* behave identically on samples outside
the range [h, h*), their misclassifications outside of the range are equivalent.

Thus, the error of h can be expressed as:

1
CITX 1. Rr;) (h) -7 1. Z ]I(h(Xj) # Yj) +M
R,—L;+1 P
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Because h and h* make different predictions on X for j € [h, h*), we have:

[Li,Ri](h)=ﬁ (Y 1-Ih (X)) £ ) +

j€[h,h*)

CeIT x

Here, 3¢y, 5+ 1 counts the total number of samples in X, ,«), while 3, 4.y I(h* (X;) # Yj)
counts the number of misclassifications made by h*. Simplifying further:

2M
R, — L; + 1
(3)

Given that M represents the number of misclassifications made by h* outside [h, h*), the error of
h* can be expressed as:

CIT X

) _ }: ]Ih Y M
[Li,Ri]() R,—L;+1 R;,—L;+1 clhh*) AEIE i
J

N 1
errx;, . (h") = R_L 1 D LX) AY) + M

! ! Jj€lh,h*)
Substituting this into Equality

|h — h*| . 2M

eer[Li,Ri](h) = Rz — L2 +1 _eer[L R.](h’ )+ Ri — Lz 1
Since M > 0, it follows that:
|[h = h”| .
eer[L'ivRi] (h) Z R — L. +1 eer[LivRi] (h )

This completes the proof of Lemma B.5] O

We now prove that if the optimal classifier’s error is sufficiently low on X(z,_, r,_,], the algorithm
can successfully reduce the range [L;_1, R;_1] to half its size in [L;, R;].

Lemma B.6. There exist unlversal constants ¢y and by such that in Algorithm l if at some iteration
boerrx, po (h*) < 16, then we have:

Ri—L; < Fic1 —Licy g Liila

provided all lower and upper bounds are valid during the algorithm’s execution.

Proof of Lemma[B.6] We aim to demonstrate that all classifiers with a distance greater than
Ri*l;L"'*l from h* will be eliminated by h* itself.

Define S’ as the set of all samples within the range of remaining classifiers in iteration ¢ — 1, so
S =X,

i—1, -]

Given that errg: (h*) < 1—16 and by examining labels of c; In % + by samples, it follows from Ap-
pendix that for all h,

1
LB(S;, h,¢") < errg, (h) < UB(S;,h,d’), and UB(S;, h,d") — LB(S;, h,8") < 6

provided that
2156 (21n(24) + ln(;l/ ) <e lné + by.
which will be satisfied by larg?enough c1 and by. Thus, for h*, we have:
UB(Si, 1", 8) < errer (h) + = < — + — — L.

6_16 16 8
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Using Lemma[B.5] it follows:
(h) > — = —.
A T S 471616

Therefore,

Hence, all classifiers ~ such that W < |h — h*| will be eliminated. From this, we
determine that R; = max(H;) < h* + W and L; = min(H;) > h* — B=mmliat]

1
Therefore, R; — L; < % '

O

Next, we demonstrate that if the algorithm enters the If starement and the optimal classifier has a
high error in the disagreement range [L;_1, R;_1], the algorithm will produce a sufficiently accurate
classifier.

Lemma B.7. There exist universal constants co and by such that if, in Algorithm[I} we have
1

16’

and the algorithm enters the If statement, It will return a classifier like h with

errs(h) < (1+ €)errg(h™),

errx ((h") >

[Li—1,Ri—1

provided that all lower and upper bounds are valid during the algorithm’s execution.

Proof of Lemma[B.7) When Algorithm|[l|enters the If statement, it constructs the set S’, comprising:

C2 1
= (ln (56> + b2>

random samples drawn from the interval X [Lio1,Ri_1]-
Let 1/ denote the classifier returned by the algorithm, i.e.,

1)
h = i UB(S’.h. =).
arg wmin UB(Sh,3)

From Appendix[A.1] with sufficiently large ¢, and by, it follows that for all h € [L;, R;]:

€

o
UB(S/’ h7 5) S eer[Liprifﬂ(h) + TG

Since h' is chosen to minimize the upper bound, we know: UB(S’, 1/, g) < UB(S', h*, %) Thus:

5 . 0 « €
(h') < UB(S', K, 5) < UB(S',h ,5) <errx, A7)+ —.

CIT x 16

[Li—1.Ri—1]

From the definition of the error metric err, we write:

! S AV S I (X) £ )+

Rio1—Li1+1 Ri1—Li1+1

JE[Li—1,Ri—1] JE[Li—1,Ri-1]

Multiplying through by R; 1 — L;_1 + 1, we obtain:

(Ri—1 — Li—1 + 1)e

SN A Y I AY)+ =

JE[Li—1,Ri—1] JE[Li—1,Ri—1]

19
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Outside the interval [L;_1, R;_1], b’ and h* behave identically. Let M denote the number of samples
they misclassify outside the interval [L;_1, R;—1]. Adding M to both sides:

R (PRI PN A

) _ 16
JE[Li—1,Ri_1] J€[Li—1,Ri_1]
Thus,
* (Rim1 — Li—1 + 1)e
SR (XG) £ ;) < 3 OU0(X5) £ 1) + = .
JjES jES
Dividing both sides by n, and using the definition of errg, we obtain:
(Ric1 — Li—1+1) €
) < h* —. 4
errg(h') <errg(h*) + - 16 4)
From the assumption that the error of A* on the interval [L;_1, R;_1] is greater than %, we have:
1 Ri1—L;_1+1 N (Ri—c1— Li—1 + 1) € "
_ Tt T L — < .
16 - <errg(h*) = - 6= errg(h*)e
Using this inequality and substituting into Inequality {i] we find:
errg(h') <errg(h*)(1+¢).
Hence, the algorithm returns a classifier 4’ that satisfies the desired error bound. O

B.1 PROVING ALGORITHM[I]IS CORRECT

In this section we prove Algorithm [1|is correct, meaning it returns a (1 + €)-approximate decision
stump with probability at least 1 — 0.

Proof of Theorem[{.2] We start by noting that, by Lemma with probability at least 1 — 6, all
lower/upper bounds calculated during the execution of Algorithm[I]are valid. Furthermore, accord-
ing to Lemma|[B.4] if these bounds are valid throughout the execution, the optimal classifier will not
be eliminated at any point.

Thus, if the algorithm never enters the If statement, it will return the optimal classifier.

On the other hand, if the algorithm does enter the If statement, we can reason as follows: From
Lemma[B.6 we know that entering the If statement implies that the error of the optimal classifier in
the interval [L;_1, R;_1] is greater than %
Furthermore, by Lemma we know that if the error of the optimal classifier in X, ) exceeds
%, then:

errg(h') <errg(h*) - (1+¢),
where h* is the optimal classifier and h’ is the returned classifier. This ensures that the classifier
returned by the algorithm is an acceptable approximation to the optimal classifier.

Thus, we have shown that the algorithm will always return an acceptable classifier, either by directly
outputting the optimal classifier or by returning a classifier with an error bounded by (1 + €) times
the error of the optimal classifier.

O
B.2 ALGORITHMI[IILABEL COMPLEXITY

In this section we prove Theorem [d.1] which bounds the label complexity of Algorithm

Proof of Theorem{.1] By Lemma [B.T| we know that the loop in Algorithm [T| will execute at most
log, 2n times. In each iteration, the algorithm queries at most the following number of labels:

1 2log, 2n
C11H§+b1 =c;1n (?) + b;.
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If the algorithm enters the If statement, it will check additional labels of size:

C2 1

Thus, the total number of label checks performed is bounded by the sum of the iterations:
2log, 2 1
logo2n - (erln [ 228220} 4 ) + 2 (= 4 by ).
1) €2 €

This expression simplifies to:
1 In %
Ollnn{Inlnn+In= | + —£=|.
1) €2

B.3 LOWER BOUND ON LABEL COMPLEXITY FOR ACTIVE LEARNING WITH STUMPS

In this subsection, we establish the tightness of the provided algorithm by deriving a lower bound

on the number of queries required for active learning with decision stumps, while ignoring logarith-
1 )
mic factors. Specifically, we present Theorem which states that at least O (i‘—f) queries are

necessary to obtain a (1 + €)-approximate decision stump with a probability greater than 1 — §.

Proof of Theorem We proceed by applying a well-known result from statistics, which states the
following theoremKairidinen| (2006).

1
Theorem B.8. Given a biased coin with a head probability of either % —Aor %—&—)\, at least (li—f)

coin tosses are required to determine with probability at least 1 — & which side the coin is biased
toward.

To prove Theorem we will leverage Theorem and demonstrate that the problem of deter-
mining the bias of the coin can be reduces to active learning algorithm attempting to solve this
problem.

We proceed by contradiction. Assume there exists an algorithm A that returns a (1+ €)-approximate
classifier, where the classifier’s error rate is less than errg (h*)(1 4 ¢) with probability at least 1 — ¢’,
using fewer than In(3;) - % queries.

Now, consider a biased coin whose head probability is either % — Aor % + A. We construct the

dataset D = { % | 1< < n} and assign labels to it as following. For each data point, we toss the
coin and report a label of 0 if the coin lands heads, and 1 if it lands tails.

Claim B.9. If h* is the optimal stump classifier over D, for sufficiently large n we have

1 A )
N<Z_Z)>1-2
P(errs(h ) < 5 2) >1 3

Proof of Claim|[B.9] Without loss of generality, suppose the coin is biased toward heads, meaning
the labels are biased toward 0. Let hg be the classifier that assigns O to all points (i.e., its threshold
is 1). Then:

errg(h”) <errg(ho) = P (errs(h*) < % - ;) >P (errs(ho) < % - ;) )

Since hg misclassify all samples with label 1 and correctly classifies all samples with label 0, we
have errg(ho) = + x number of labels 1.

The number of labels equal to 1 follows a Binomial distribution with parameters n and % - X

1
number of labels 1 ~ Binomial(n, 3~ A).
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Therefore,
1 A 1 A 1 1 1 A
N =) > < ——— | = — i i N —— — .
P (errs(h ) < 5 2) > P (errs(ho) =3 2) P (n x Binomial(n, 5 A) < 5 2)

We now bound the right-hand side using Chernoff’s inequality |[Bertsekas & Tsitsiklis| (2008]), which
implies:

(25) (2 -

1 1 A
P ( Binomial(n, = — Y ACEEE V) -
( momla(n,2 /\)<n(2 A)( +1—2)\>> - P 2+ﬁ

By increasing n, we can make this probability greater than 1 — %. [

i\lgvsi we apply algorithm A with parameters € = % and ¢’ = g to dataset D to classify based on its
abels.

Claim B.10. The algorithm A will return a classifier with error less than (% — %) (1+ €) with
probability at least 1 — 2,—3‘5.

Proof of Claim[B.10} This follows from the that with probability at least 1 — 3, we have

errg(h*) < % — %, and the fact that algorithm .4 returns a classifier with error less than

errs(h*)(1 + €) with probability at least 1 — g. As a result, the error of the returned classifier
is less than (3 — 3) (1 + €) with probability at least (1 — 3) - (1 — §) > 1 — 2. O

Claim B.11. [fthe coin is biased toward heads (i.e., labels are biased toward 0), then for sufficiently
large n, all classifiers h with threshold less than % have error higher than

1 A 5
<2 — 2) (1+€) with probability at least 1 — 3

Note that the similar statement holds for the case where the coin is biased toward tails as well.

Proof of Claim To prove this, we proceed as follows:

P (3 remst < (3-3) 0+0) < X P (ens i< (5-3) a+0)

h<d

Substituting A = 3¢, we get:

1 1 1
(_)\> <1+6):§—6—§62<*—€.

2 2 2 72
Thus,
ZP(errs(h) < <1—/\> (1+e)> < ZP(errS(h) <1—e)
—\2 2 - -2
h<i h<3
For every h = % where i < 7, its probability term in the summation can be upper bounded as

follows. Let us define: Z := n(errg (h)) = l;+r;, where [; ~ Bin(i, £ — ), 7; ~ Bin(n—i, 1+ \).

Then we have:

P(errg(h)<;—e>:P<Z<n(;—e)>

Using the multiplicative Chernoff lower bound |Bertsekas & Tsitsiklis| (2008)) on the variable Z for

l—e
n(ﬁz ) where hz = z(% - A) +(n—1) (% + )\) = 2+ \(n — 2i), this probability is

bounded as follows:

a=1-—
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PrZ < (1-a)uz] < exp(—4puza?),

Substituting o and pz will result in:

(z —n(3 —e>>2)

S R R IR

Using p, = g + A(n — 2i):

. 2
(nz-n(i-0)*\ [ n[M1-%)+¢]
T W == R

2

To summarize the result so far, we have proved that for every h < %:

TL'€2

P (errg (h) < % - e> < eXp(—2 )

3+
Finally, doing a summation over all ~ will get to:

1 n n-e 1)
E P < - —e) <= e )< =

IN

The last inequality holds for any sufficiently large n, because 5 grows linearly but exp(— 2(71'31))
2

decreases exponentially, making the entire term as small as desired.

Now, based on Claim the algorithm A returns a classifier with an error rate of less than

(t-Den

with a probability greater than 1 — %(5 . Moreover, based on Claim all classifiers on the wrong
side of £ have an error greater than (3 — )(1 + ) with probability greater than 1 — %. Thus, with
the probability at least (1 — 26)(1 — $) > 1 — 4, the returned hypothesis 4 can indicate whether the
coin is biased toward heads or tails, by choosing "heads” if A > % and “tails” if A < % However,

ln(%)

as established in Theorem any algorithm requires at least 2(—z~) samples. Therefore, the
algorithm A needs at least:

Q(lng(zg))

samples to achieve this. O

C GENERAL BINARY CLASSIFICATION PROOFS

In this section, we provide the proofs corresponding to Section where we extend our algorithm
to general binary classification tasks as described in Algorithm[2] The structure of the proofs closely
follows the approach in Appendix

To facilitate understanding the general classification algorithm, we first presented the case for
stumps. Table [T] outlines the correspondence between lemmas and theorems in the stump case and
their general binary classification counterparts.

We begin with the following lemma, which establishes that the maximum number of iterations in
the loop of Algorithm 2]is bounded by log, (2n).

Lemma C.1. Algorithm[2|will execute the loop at most log, 2n times.
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Table 1: Correspondence between Stump and General Binary Classification results.

Description Stump Version  General Binary Classification Version

Body section
Proofs in Appendix
Algorithm
Algorithm Correctness
Time Complexity
Number of Iterations
Bounds Validity
Error Comparison
Optimal Classifier Not Eliminated
Lower Bound Error with h*
Low Optimal Error — Reiterate
High Optimal Error — Correct Output

Proof of Lemma[C.]] Initially, we have ro = 1. During each iteration, if the inequality r; >
holds, the algorithm terminates immediately. Thus, for the loop to continue, it must be that r; <
Ti—1

.

If at any point r; < %, no two classifiers in the set H; can disagree on any samples, leaving only a
single classifier to be considered. In this scenario, the algorithm will again conclude. Therefore, the
execution of the loop cannot surpass the threshold of iterations where r; becomes smaller than %

Consequently, the number of iterations required is at most:
1+ logy n = log, 2n
O

We need to show that all lower and upper bounds are valid during the algorithm’s execution with
probability at least 1 — ¢, simultaneously.

Lemma C.2. In an execution of Algorithm|2| all estimated lower and upper bounds are valid with
probability at least 1 — ¢

Proof of Lemma From Lemma|C.1] we know that the bounds outside the If statement are evalu-
ated at most log, (2n) times. Each time, the bounds are correct with probability at least 1 — ¢’. Thus,
the probability of a bound being incorrect is less than ¢’. Therefore, the probability of at least one
bound being incorrect is less than ¢’ log,(2n). Using the definition of ¢’, we know &’ =

[
3

- m’
so we have ¢’ log,(2n) =

Additionally, the bounds inside the If statement are evaluated only once, and the probability of them
being wrong is less than %. Combining these two factors, the overall probability of any bound being
incorrect is less than 4. O

The following lemma establishes that if h* € H', then H' C By (h*, 2radius(H’)). Consequently,
this implies that during iteration 7, when the radius is radius(H;), all classifiers in H; are at most a
distance of 2radius(H;) from h*.

Lemma C3. I[f H' C By (h,r)and i/ € H', then H' C By (h',2r).

Proof of Lemma|C.3] We aim to show that By (h,r) C BH(h' 2r). Consider any " € By (h,r).
By definition, we have: Dg(h, h”") < r which implies: r > L3 T(h(z) # h”(x)). Similarly,

since h' € By(h,r), we have: Dg(h,h’) < r, which 1mphes r > L3 o I(h(x) # W (x)).
Adding these inequalities gives:

2r > % > (U(h(z) # 1 (@) + Lh(z) # b (2))) -

zeS
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Notice that: I(h(z) # h'(z)) + L(h(z) # h'(z)) > I(h'(z) # h”(x)) Therefore, we have:
2r > L3 o I(h'(z) # h”(x)). Thus, by definition of Dg, we conclude: 21 > Dg(h’, ')

Hence, any h" € By (h,r) is also in By (h/, 2r). O

The following lemma helps us relate Dg(h, h') to Dpig(g+y(h, h'). This relation is important be-
cause the final error is measured in .S, but we randomly sample from DIS(H’), which leads to bounds
on Dpis (/).

Lemma C4. If Dg(h,h') > & for some r, and h,h' € H' where H' C By (h, 2r), then

nr 1

Dpscary(hyh') > Bu(h2r)] 2

Proof of Lemma Given that all samples where h and h' disagree are in DIS(H'), the number of
disagreements in DIS(H") is equal to those in .S. From the definition of Dg and since all disagree-
ments are included, we know:

Dpis(ay(h, h') = m Z I(h(z) # B (z)) = |DIS Z x) # h'(x))

z€DIS(H')

Thus,

S S
Donsry (b ) = 176t <|S|Z v) # >>>=|DI§(H,>|Ds<h,h'>

By assumption Dg(h,h') > £ and since H' C By (h, 2r), it follows:

r
2

nr 1
|DIS(Bg (h,2r))| 2

Dpis(ry (b, h') >
]

The following lemma ensures that no optimal classifiers are eliminated if all bounds during the
algorithm’s execution are correct.

Lemma C.5. If all bounds during the execution of Algorithm 2| are valid, the algorithm will not
eliminate any optimal classifiers if all lower/upper bounds are valid.

Proof of Lemma|C.5] We use a proof by contradiction. Suppose there is an iteration ¢ where an
optimal classifier h* is eliminated despite all bounds being valid. This implies h* € H; but h* ¢
H; .1, which means: LB(S;, h*,¢") > minpcp, UB(S;, h,d’). Suppose h' achieves the minimum:
minge g, UB(S;, h,¢") = UB(S;, A, ¢"). Thus, we have: LB(S;, h*,d’) > UB(S;, b/, ")

Let S’ = DIS(H;). With the validity of bounds:
eI‘I‘S/(h*) > LB(S“ h*,5 ) > UB(SZ, h/, 5’) > errgf(h') 4)
Since h* is optimal, we know errg(h*) < errg(h’). From Lemma B.3] this implies: errg (h*) <

errg/(h'). This contradicts inequality [5| thus proving that an optimal classifier cannot be eliminated
if all bounds are valid. O

The following lemma bounds the error of a classifier h based on its distance from the optimal clas-
sifier 1* and the error of h*. Specifically, it shows that if h is far from h* and A* has low error, the
error of h must be high, leading & to be eliminated.

Lemma C.6. For all h, h* € H', the following inequality holds:

eerlS(H')(h) > DDIS H') (h h* ) - eerlS(H’)(h*)'
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Proof of Lemma From definition of the error function errpg( g+ (h):

eerIS(H’)(h) = \DTM Z I(h(X;) # Yj),

JEDIS(H")

Define S’ as the set of samples h and h* makes different predictions. So S' = {x € S| h(z) #
h*(x)}. Since all samples that h and h* makes different predictions are in DIS(H’), S C DIS(H’).
Assume h makes M misclassifications in DIS(H’)/S’. Since h* behave identical to h on these
samples, h* also make M misclassifications in DIS(H')/S".

Thus, the error of h can be expressed as:

ertrs 1) () = s | O M) #Y)) + M
jES’

Because h and h* make different predictions on X; for j € S’, we have:
eerIS(H’)(h) |DIS Z 1=I(r"(X;) #Y; ))
jes’

Here, 3,5 1 counts the total number of samples in S’, while ;¢ I(h*(X;) # Y;) counts the
number of misclassifications made by A* in S’. Simplifying further:

_ 18 ! “ =

Given that M represents the number of misclassifications made by h* outside S’, the error of h* can
be expressed as:

* 1 *
errpis(ay (h*) = [DIS(H)]| Z I(h*(X;) #Y;) + M
JjES’

Substituting this into Equality [6}

9] oM

errprs(g7y (h) = W — errpig(ary (h*) + W

Since M > 0, it follows that:
5]

m - eITDIS(H’)(h*)'

CITpIS(H) (h) >

This completes the proof of Lemma|C.6] O

Having the above Lemmas in place we provide the two main following lemmas. The following
Lemma|[C.7|shows if the error of optimal classifier is low in DIS(H;) the algorithm will reiterate the
for loop.

Lemma C.7. There exist universal constants c1, by such that for any iteration of Algorithm[2} if

1
) < —
eerlS(Hl)(h )< 160

then the radius(H; 1) < iradius(H;), provided that all lower and upper bounds are valid during
the algorithm’s execution.
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Proof of Lemma([C.7} r; is defined as radius(H;). Then using Lemma we know for all h € H;
that Dg(h, h*) > 5 we have Dpis(g,)(h*, h) > W . % Using Lemmawe know that
eerIS(H’)(h) > DDIS H’) (hyh*) — eerIS(H’)(h*)v
plunging Dpyg( gy (b, h*) > m g and errpis(r7y (h*) < s 15 We get,
nr; 1 nr; 1 nr; 7

ermoisr) () 2 TS 2 T B, 2] 16 Btk 2r)] 16

Using definition of 6 in Definition [3.3] we get
7

/ > —.
eerlS(H )(h) = 160

From Theorem[A. 1] we know that if we have
64 4 1
1S’ = 2 <2VH In(12 - 1660) + ln((;/)> €O (HQ(VH In(9) + ln((;/))) ,
160

then errpis 7y (h) — LB(S’, h,6') < 145 Therefore LB(S’, h, ") > 105

Similarly since we assumed errg:(h*) < 15, and we have UB(S’, h*,§') < errg/(h*) + 15 we

have UB(S’, h*,¢") < &, therefore UB(S’, h*,8") < LB(S’,h,d').
So there exist ¢1, by that all classifiers like h that Dg(h, h*) > ” will be removed from the H; thus,

radius(H;;1) < 3. O

Lemma C.8. There exist universal constants ¢z and by such that for any iteration of Algorithm[2] if
1
160°
and the algorithm enters the If statement, it will return a classifier like h' where
errs(h') < errs(h*)(1 +¢),

provided that all lower and upper bounds are valid during the algorithm’s execution.

eer,S(Hi) (h*) >

Proof of Lemma[C.8] The Algorithm 2] will build a set S’ consists of

02 9
a7 (VHln< )+ln >+b2
€2 0

random samples drawn from DIS(H;).

From Theorem |A.1{ we know using g )2 (QVH ln( ) +1In(4 )) samples we get bounds such

that UB(S’, h, §) < errps(m,)(h) + 165 for all h. Therefore, there exists universal co and by such
that this bound holds.

The Algorithm returns A’ = argminge g, UB(S, h, g) Therefore, we have errpg s,y (h') <
errpis ;) (R*) 4 155. Given that errprs r,) (h*) > 155, we have
ertpis ;) (') < errprs ) (h*) (1 + €). (7

Since b’ € H; and h* € H; DIS(H;) include all samples they label differently. Assume they
misclassify M samples in S/DIS(H;).

ems(h) =+ 37 U (x) £ )
(z,y)eS
- Y wrw#n+ Y @4y
(z,y)€DIS(H;)/S (w,y)EDIS(H;)

1 *
= E(M + |DIS(H;)lerrprs(m,) (h*))
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Multiplying both side by 1 + € we get,
1
(1+ e)errg(h*) = - (1 + €)M + (1 + €)|DIS(H;) |errpis(#,) (h*))
Since M >0

(14 e)errs(h™) > — (M + [DIS(H;—1)|(1 + €)errpis(a,_,) (h")) ®)

S|

Applying Inequality [7]to Inequality [§| we have

(1+eerrs(h*) > —(M + |DIS(H7;_1)|eerIS(HPl)(h')) =errg(h’)

1
n

Now lets proof Algorithm 2] correctness.

Proof of Theoremd.4] First, in Lemma we establish that the loop in Algorithm 2] runs for at
most log,(2n) iterations. Using this result, we show in Lemma that all bounds are satisfied
with probability at least 1 — J, ensuring that we can safely assume all lower and upper bounds
are valid during the algorithm’s execution. Next, we prove that the optimal classifier, h*, is never
removed, as shown in Lemma|C.5] assuming that all bounds hold. Then in Lemmawe show that

if errpg () (h*) < ﬁ then we will no go into the If statement. Finally in Lemma|C.8|we show that

if errprs ;) (h*) > 155 and we do go into the If statement then the algorithm will return a (1 + ¢)
classifier. O

Proof of Theorem[I.2] Theorem let us show that Algorithm [2| returns a (1 4 €)-approximate
classifier with probability greater than 1 — 4. For its label complexity, we apply Lemma to
show that the loop in the algorithm repeats at most log, 2n times, and since the If statement is
executed only once, the label complexity is bounded by In(n) times O(6?(V In6 + In ) plus

0] (g(VH In % +In %)) This concludes the proof of Theorem O

D DECISION TREE’S § CALCULATION

As the first lemma, we prove that DIS can be expressed as a relationship between a single classifier
and the other classifiers in the disagreement set.

Lemma D.1. Assuming h € H, we have

DIS(H) = {x | Ipren : W (x) # h(z)}.

Proof of Lemma|D.1} From the definition, we have:

DIS(H) = {J’J | th,hg € H: hl(l‘) 75 hQ(l‘)}
If for some x, we have hy(z) # ho(x), then either h(x) # hi(x) or h(x) # ha(z). Therefore, if
3hy,he € H : hy(x) # ho(z), then 30’ € H : b/ (x) # h(z). O

Next, in the following Lemma, we build a connection between decision trees and line trees.

Lemma D.2. For any two decision trees h,h' and any two leaves i,j such that l,; # Uy j, if
S; = {x | LineTreey, ;(x) = lp, ; }, then:

Dg; (LineTreey, ;, LineTreey,: j) < Dg, (h,h')
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Proof of Lemmal|D.2} 1f for some « we have LineTreey,’ j(x) = lj/ j, then h'(x) = I ;. Therefore:
{x € S; | LineTreey, j(x) = lp ;} C{x € S; | W (x) =lp ;}

Since Iy, ; # I ;, we have:
{x € S; | LineTreey ;(z) # ln;} C{z €S | W (x) # lni}

Since x € S;, we have LineTreey, ;(x) = ;. As aresult h(x) = I, ;. Therefore:

{x € S; | LineTreey, ;(z) # LineTreey, j(z)} C {x € S; | h(x) # W' (z)}

Thus:
|{x € S; | LineTreey, ;(x) # LineTreey, j(x)}| < [{z € S; | h(z) # h'(x)}]
Thus:
|S;|Dg, (LineTreey, ;, LineTreey ;) < |S;|Ds, (h,h')
Therefore:

Dg, (LineTreey, ;, LineTreey, ;) < Dg, (h,h')
L]

In the following Lemma we relate error of a classifier in the overall dataset to the error of the
classifier in a subset.

Lemma D.3. If S’ C S, then Bg(h,r) C Bg (h,r%).

Proof of Lemma|D.3] Assume h’ € Bg(h,r). We will show h' € Bg/(h, r151). We have:

[S7]
Dg(h, h/) S T
Therefore:
{z € S| h(x) #N'(2)}] <rlS]
Since S’ C S:
{z € 8" | h(x) # 1 (x)}| < [{z €S| h(x) # W (x)} < 7r|S|
Therefore:
Lz e S | ha) £ K@) < ]
|57 — Y
From definition of D right side is equal to Dg- (h, k'), Thus:
S|
Dg/(h, k) < |—
S ( 3 ) = T|S,|
Therefore:

s|
h' € Bg/(h 151
< Belhrigy)

O

To extend our analysis to line trees which we need for Theorem 1.1} we first introduce some key
definitions related to line trees.

Definition D.4. A line tree is a decision tree where for each node, at least one of its children is a
leaf, and all leaves except the deepest leaf assign the same label, while the deepest leaf assigns the
opposite label.

Definition D.5. If h is a line tree, then [j is the label that could be the deepest leaf label and is
different from the rest of the leaves’ labels.

Definition D.6. If / is a line tree, then dj, C {1,2,...,dim} is the set of dimensions that nodes in
the line tree decide based on.

Definition D.7. I is the set of all line trees with depth less than d where each node decides based
on a unique dimension. Ly is the set of all line trees with depth less than d and with d;, = d'.
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Definition D.8. For a line tree h € Ly, we define a function f}, : d, — {prefix, suffix}, where
frn(a) specifies the splitting behavior of & for each dimension a € dj,:

* fn(a) = prefix if samples = with x, less than a threshold are directed to the leaf with label
lp-

* fn(a) = suffix if samples x with z,, greater than a threshold are directed to the leaf with
label 1,.

Definition D.9. For a line tree h € L, let h% denote the number of distinct values of x, for which
h(x) = lp,. Formally:
¢ =Hzo |z €SNI(z)=14}].

In the following theorem, we prove that the disagreement coefficient of a decision tree is O(In%(n)),
assuming the input distribution is uniform-like and each node in a root to leaf path works with a
unique dimension.

Proof of Theorem|I.1] Assume we have chosen a tree h and we want to bound 6. This requires
bounding W for all r. Using Lemma we have:
DIS(By(h,r)) = {z | 30" € By (h,r) : h'(z) # h(z)}

Breaking this set based on the leaf x reaches in h, we get:

L
DIS(Bu(h, 7)) = | J{x |  reaches leaf i in h A 3h' € By (h,r) : ' (x) # h(z)}

i=1
Using the definition of a line tree, DIS(Bg (h,)) is equivalent to:
L
U{x | LineTreey, ;(x) =l ; A3h' € By (h,r) : h'(z) # h(z)}
i=1

Further splitting the set based on the dimension set of the leaf that « reaches in h', DIS(By (h, 1))
is equal to:

L
U U {x | LineTreey, ;(z) = [;A3R" € By(h,r),j : x reaches leaf j in K’ AR/ (z) # h(z)Adp j = d'}
i=1d'c{1,2,....dim}

L

= U U {LL’ | LineTreeh’i(:U) = li/\ﬂh’ S BH(h, 7")7j : LineTreehr,j (:l?) = lh/7j/\hl($) =+ h(l‘)/\dh/’j = d/}
i=1d’'C{1,2,..,dim}

Let S; be the set of data points that reach leaf ¢ in tree h. Formally, S; = {z | LineTreey, ;(z) =I5}

Then we have:

L
DIS(Bu(h,r)) €| )  |J  {z€Si|3n € Bu(h,r),j: LineTreey j(x) =l jAN (z) # h(x)Ady ; = d'}
i=1d'c{1,2,...,dim}

Using Lemma|D.3] this is equal to:

L
= U feesi|ane BH,Si(th%),j : LineTreep ;(z) = Iy ;AW (x) £ h(z)Ady; = d'}
i=1d'c{1,2,...,dim} ’

Using the definitions of line trees, rather than first selecting a general decision tree h’ and sub-

sequently addressing one of its line trees, we can directly consider h’ as a line tree, significantly
simplifying the analysis.
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Additionally, observe that if for some h’, j, we have DS (h,h') < rﬁ and I, ; # I 4, then by
Lemma it follows that Dg, (h, LineTree ;) < r‘ 5 Consequently, we can further refine our
expression as:

P W (@) = Uy AR (2) # h(z)} C

DIS(By (h,r) U U A{zesi|an eB,s(h, 5

i=1d’c{1,2,...,dim}

L
U U {eesi|ane BLd,,Si(h,rL%‘) B (2) # h(z)} =

i=1d'C{1,2,...,dim}

Since we only focused on S;, and in S; h and LineTreey, ; behave similarly, we have:

rl) : B/ () # LineTreey, ; ()}

L
U U {x € S; | I e B]Ld,usi (LineTreeh7i, |S‘

i=1d'C{1,2,...,dim}

Since A’ is a line tree and we only have LineTreey, ;, and in S; LineTreey, ; is an all-same classifier,
we can apply Proposition Hence, the size of each of the inner sets is of O (‘SA?“&(?) In w)d) .

Since L < 2% and d’ has (") choices, the total size of DIS(Bj(h, 7)) is of:

. . d
IDIS(Bp (h,r))| < O <2d <d1dm> nr(3 lnw)d> =0 <2d (d;n) nr <din lnn) )
di d 1 d d
<0 (and 1;'1 <dlm lnn> ) =0 (m‘fﬂ In? n) <O (m‘ In? n)

Or(r) € O (ln(n)d)

Therefore:

We need the following Lemmas to prove Proposition [3.5]
Lemma D.10. Let h € Ly be a line tree. Then:
e eS|h@) =} =[] r& ] wa
acd’ a¢d’

where
S = {(al,...,adim) ‘ Vi, a; €N, a; <w; < w}

Proof of Lemma[D.10} For each dimension a € d’, exactly h% of the possible values of z, are
directed to the leaf with label /;,. By the definition of a line tree (Definition[D.4]and Definition[D.3)),
if any x, does not lead to this leaf, the resulting label for i (z) will be 1 — I}, since there is only one
leaf with the label [}, in a line tree.

Given that S represents all possible points, and each combination of valid values of =, corresponds
to exactly one point in S, the number of points where h(x) = [, is the product of h% across all
dimensions a € d'.

Thus:

HeeS|h@) =} = ] r& ] wa-

aed’ agd’
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Lemma D.11. Let h be a line tree with h(x) = ly,. Then for any x' satisfying:
2, < wa if fla) = prefix
Va € dy,

{xa <z, if fn(a) = suffix @ =
we have h(z') = Ij.
Proof of Lemma|D.11] We know that each node in h directs « toward the leaf labeled [;,. We will
show that each node also directs 2’ to the same child.
Consider a node working with dimension a € dj,.

o If f(a) = prefix, then values lower than z, will also be directed toward the leaf labeled
Ip. Since z!, < x4, 2’ follows the same path as .

o If fr(a) = suffix, then values greater than x,, will also be directed toward the leaf labeled
Ip. Since z, < af,, o’ follows the same path as .

Therefore, in all nodes, =’ follows the same path as x, and hence acquires the same label [j,. O
Lemma D.12. The number of sequences of the form (x1, s, ..., xy) such that Vi<;<p : x; € N,
Vi<i<k : T < w;, and H1§igk xz; < sis less than 8H2§i§k In(w;) + 1.
Proof of Lemma We will use induction to prove this lemma. Let g(s, k, w) denote the number
of such sequences.
Base Case: For k& = 1, the theorem is obvious since there are only s possible sequences.
Inductive Step: Assume the theorem holds for any s and k = ky. We need to prove it for k& = ko+1.
Consider the possible values of 1. We have:

g(s, ko +1,w) = Z g(?,ko,w)

1<i<wig+1

By the induction hypothesis, this sum is less than:

< Z ; H In(wj)+1| =s H In(w;) +1 Z %

1<iSwiger \ - 2<5<ko 2<;j<ko 1<i<wgo 1

L < In(wges1) + 1, we have:

J—

Using the harmonic series approximation, 3, ;. .
=*=Wko

<s H In(w;) +1 | (In(wget1) +1) =s H In(w;) +1
2<j<ko 2<j<ko+1

This completes the induction step, and thus the lemma is proved. O

In the following Proposition we show that the disagreement coefficient of a line tree that assigns 0
to all samples is of O(In® w) among line trees.

Proof of Proposition[3.5] Assume a line tree i € Ly that assigns the same label to all data points.
[DIS(BL ,, (h,m))l
s nr :

Without loss of generality, assume this label is 0. We want to bound #(h) = sup
Fixing r, from Lemma|[D.T] we have:

IDIS(Br,, (h,r))| = {x | 3h" € By, (h,r) : K'(z) # h(z)} = {x | 30" € By, (h,r) : ' (x) = 1}

Defining F' as the set of all possible functions f5/ (See Definition , we have |F| = 214’ we
break DIS(Bp, (h,r)) based on fj:
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DIS(By(h,r)) = | J{x | 30 € Br,, (h,r) A fur = f: W (x) =1}
feF

If we define

Appi=A{z| I e B]Ld,(h,r) Afp=FfNp =1:0(z)=1}

Then we have
DIS(BL(h,7) = | Aso+ Asa
fer

Therefore,
IDIS(BL(h,7))| <> |Asol + [Afa] )
fer
We bound size of Ay and Ay separately.
Bounding the Size of A

We aim to bound the cardinality of the following set:

Apo={x |30 € By, (hr), fw = f, Iy =0: K'(z) =1}, (10)

Recall that By, (h,r) denotes the ball of radius 7 around h within the class of Line Trees of depth
at most d’.

Because i’ € B, (h,r), it follows that D(h, ') < r, meaning that i differs from A on at most an
r fraction of the n total points. Since the original classifier h assigns label 0 to every point, ' can
label at most nr points as 1. Equivalently,

{a [ W(x) = 1} <nr = ({2 | () = 0} = n(1 = 7).

From Lemma [D.10} the number of points classified as 0 by &’ can be expressed as:
n(l—7) <[z | W () =0} = ] v [] wa,
acd’ ag¢d’
where w,, is the width in dimension a.

Now, consider a point x that is labeled 1 by h’. By the structure of the tree, since [, = 0 there
must exist a node corresponding to a dimension b € d’ that routes « contrary to the main path. Note
that ¢, denotes the threshold applied to dimension b. Samples with z;, < t5/ 5, are directed to the
left child, while those with =, > 5/ are routed to the right child. So to bound the Size of Ay
we future break the set (Equation [I0) based on dimension of the node that sample x leave the path
toward l;, = 0. Assuming this is dimension b, we consider two cases, depending [,/ (b):

o fn(b) = prefix
Here, h'* = tj,1, — 1, and &' (z) = 1 only if ¢ ;, < 2. Therefore,
HwaHh’“ (xp — 1) Hwa H h'e.
ag¢d’ a€ed’ agd’ acd’\{b}
Since for all @ € d' \ {b}, M'* < w,, and Hiizl we = n, we have [] ¢, wa -

[1.c a\{b} Wa = w- - Putting it all together, we have

n(l—r) < (zp — 1)%

which rearranges to
wp(l—7r) +1 <z
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Thus, for fixed b, the number of possible values for x;, is at most
wp — (wp(L —7) +1) + 1 =wyr,

and, for each fixed b, the number of possible x is

wyT H wanaznr.

acd’' /{b} ag¢d’
o fn(b) = suffix
Now, h'% = wy, — tpp, + 1, and for b’ (x) = 1, we require 23 < tps 5, SO
h/b S wp — Tp.

HwaHh’ag(wb—xb)Hwa H We.

ag¢d  acd ag¢d’  acd/\{b}

Therefore,

By using the same bounding and product arguments as above,

n
1-r)< ) —
n(l—r) < (wy J?b)wb
which simplifies to
xrp < wpr.

Thus, there are at most wyr such zy, yielding at most nr points in total for a fixed b.

Across all possible choices of b € d’, the total number of such points x is at most
Z nr=nr|d| <nr-d
bed’
where d is the depth of the Line Tree, i.e., |[d'| < d.
Thus,
| Aol < dnr.
Bounding the Size of A ;

We aim to bound the cardinality of the following set:

Af’l = {CL‘ | Ir e B[Ld,(hﬂ’), fh’ = f, I =1: hl(l’) = 1}

According to Lemma|[D.11] if  is classified as 1 by a line tree h’ with parameters f;,, and [, = 1,
then every point 2’ satisfying the following will also be classified as 1 by A':

{x; <o i fyla) =prefix -,

xq <l if frr(a) = suffix

we have h(z') = ;. This describes a corner-aligned box in the input space whose size depends on
x and the direction assignments f, .

To express the size of the box leading to 1 under /', define

" {xa if f/(a) = prefix,

= V d/.
o we — xq + 1 if frr(a) = suffix, @€ dn

By this definition, for each x that is classified as 1, the region of points labeled 1 under A’ contains
atleast [ [,y wa [],ecq 2 distinct data points.

Since all such i’ under consideration are within distance r from £, which labels all points as 0, the
number of points for which i’ differs from h (i.e. the number of points classified as 1 by i) is at
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most nr. Thatis, >° _oT(h'(x) = 1) < nr. Therefore, for any = such that h'(z) = 1, the box it
produce as above must satisfy
H Wq, H z® < nr.

ag¢d’ acd’
For a fixed assignment of f3/, values for dimensions a € d’ is uniquely determined by the tuple
{z® : a € d'}; that is, knowing these values and the directions and x,, for a ¢ d’ fixes .

We now seek to bound the number of tuples (%),eqr such that ], ., 2 < nr, with each 2 an
integer in [1, wy].

By Lemma |D.12} the number of integer tuples (z%)qcq that satisfy Ha¢ @ Wa [l[peq v* < nr =

a 1 :
[Tocq @ < N, 18 at most

1 1

nr———— In(w,) +1 < nr—=———
H Ha¢d, Wy,

(1+Inw)?.
H(J,Qd' Wq, acd’

Since the number of ways we can fix z, for a ¢ d'is, [ ¢4 wa we have:

|Apq| < nr(lnw + 1)%.

Combining two above cases
Combining two above cases and Equation [9] we have

IDIS(BL(h,r))| < Z |[Arol +1Ar1] < Z nrd +nr(lnw 4+ 1)4 < 2% nr(d + (Inw + 1)%)
feF fer

Therefore
0 < 24(d + (In(w) + 1)%) = (2In(w) + 2)* 4 2%d

For d > 2 and w > 8 this is of
0, <O ((3 lnw)d)

D.1 PROOF OF COROLLARY [[.3]

Proof of Corollary[I.3] Using the calculated disagreement coefficient of decision trees in Theo-
rem [L.1) which is In(n)? and Vy of decision tree in Lemma[A.3| which is 2¢(d + Indim), we can
plug in these values to Theorem [I.2] which results in

2d d
In(n) In(n)2 <2d(d +Indim)dInlnn + In 1“;) + % <2d(d 4 ndim) n 2 4, (13)
€ €

This is of

1n2d(

€2

1
2d+2 d - L
O(ln (n)(2 (d+lnd1m)d—|—ln5) + - 3

n) (Qd(d + dim) In () 1))

D.2 NECESSITY OF ASSUMPTIONS PROOFS

In this section, we provide the proofs from Section[3.3] Specifically, we first prove that if nodes are
allowed to work on the same dimension as one of their ancestors, the disagreement coefficient is of
Q ( nl / dim)
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Figure 2: A decision tree that assigns label 1, if and only if z, = c.

Proof of Theorem[3.6] We aim to construct a depth-2 decision tree that assigns label 1 to a point
x € RY™ if and only if z, = ¢, for some fixed dimension @ and constant ¢ € R. The structure of
such a tree is shown in Figure [2] where the root node checks whether x, > ¢ and the second node
checks whether z, < ¢+ 1. Because both comparisons involve only the a-th coordinate, the tree
assigns label 1 exactly to the inputs x satisfying z, = ¢, and label 0 otherwise.

Let X C RYm pe 3 dataset of size n, and let the reference classifier hg be the constant-zero function.
Consider the hypothesis ball By (ho, ) of radius 7 = 2 - n=1/9™ which includes all classifiers that
differ from hg on at most 2 - n' ~1/4i™ datapoints.

Fix a dimension a € [dim]. For each value c that appears in the a-th coordinate of the dataset, define
the set (or "row”) R® := {x € X | x4 = c}. If [R?| < 2 - n'~1/4m then the decision tree shown in
Figure 2] labels only the points in R? as 1, and all others as 0. Such a classifier differs from % on at
most 2 - n'~ /4™ points and therefore lies in By (ho, 7). Consequently, all points in such a row R?
lie within the disagreement region DIS(Byy(ho,7)). We call such rows light rows.

Rows R? for which |R?| > 2-n!'~1/4im are called heavy rows. We now upper-bound the number of
heavy rows per dimension. Since each heavy row contains more than 2 - n' ~/9™ points, their total
number for a fixed dimension a is at most:

n _ L 1/dim
9. pi-i/dm 9"t -

A point z € X can be excluded from the disagreement region only if it lies in a heavy row for every
dimension. Formally, we have:

x ¢ DIS(By(ho,7)) = Va € [dim], 3¢ such that z € R® and |R?| > 2 - pl~1/dim,

Since there are at most %nl/ dim heavy rows in each dimension, the number of points that lie in a
heavy row for all dim dimensions is at most:

dim
1 p1/dim __n
2 9dim

n 2dim_1
= 9dm T T gdm

Thus, at least

points belong to the disagreement region:

2dim —1
IDIS(Bri (ho, )| 2 —gm—

1/dim

The disagreement coefficient at radius r = 2 - n~ is therefore lower bounded by:

DIS(By (ho, 20o1, gdim g
\ 3 _

02 On = " = 9pl-1/dim — odim+1

nl/dim _ Q(nl/dim).

This completes the proof. O
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Figure 3: A decision tree assigning label 1 only to X. when X; = (i,4,- - , ).

Next we show that if there is no assumption on input dataset then, the disagreement coefficient is of

Proof of Theorem[3.7} Consider the dataset X = {X; = (i,i,...,i) € N4™ | § =1,... n}, where
all data points lie along the diagonal line 1 = x5 = - -- = x4n. Let the reference classifier hy be
the constant-zero classifier, i.e., ho(x) = 0 forall x € X.

Letr = 711 The hypothesis ball By (hg, r) contains all decision tree classifiers h’ such that &' differs
from hg on at most one point. Since each point X is distinct and isolated, we can construct a tree
h; € By (hg,r) that outputs h;(X;) = 1 and h;(x) = 0 for all x # X;.

To isolate a specific point X. = (¢, ¢, ..., c) in the dataset, it is sufficient to use a decision tree of
depth two that queries only the first two coordinates. This construction is illustrated in Figure

The tree works as follows:

1. The root node tests whether 1 > c.
2. If not, the label is 0.
3. Otherwise, the second node checks whether zo < ¢ + 1.

4. If this is true, the label is 1; otherwise, the label is again 0.

Because each X lies along the diagonal (i.e., 1 = z2 = --- = xgm = 1), this tree correctly
assigns label 1 only to the point X, and label O to all other X;. Thus, even under the structural
constraint that no dimension repeats along a path, we can construct such an isolating tree using only
two features.

Hence, for every point X, there exists h; € By (hg,r) such that h;(X;) # ho(X;), which implies
that every point X; lies in the disagreement region:

DIS(BH(ho,T)) = {$ e X | In' e BH(hQ,’I“) S.t. h/(LL') 75 ho(l‘)} = X.
Therefore,
1
IDIS(Bg (ho,7))| =n, and r=—,
n

so the disagreement coefficient is at least

_ |DIS(Bg (ho, 7)) n
On, = ili% rn “(1/n)-n

=n.

This proves that the disagreement coefficient § = sup,, ¢z 0, satisfies 6 = Q(n).
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D.3 RELAXING UNIFORMITY ASSUMPTION

In this section, we provide the method by which we relax the assumption of uniformity among sam-
ples. As outlined in the main body of the paper, we assign to each sample an importance measure,
denoted as 1 < W; < . In this context, we evaluate the classifier’s error using the formula:

it I(h(X) # Y)W
Z;L:l Wi ‘

We further define the distance between two classifiers in this weighted context with the following
expression:

err’y (h) =

DY (hy, o) = 251 Wﬂ(gh% EXV?/ ;é ha(X0)

. Similarly, the ball r of classifiers within around a given classifier h is defined as:

By (h,r) ={I' € H| D" (h, ') <r}.
Similarly, the disagreement coefficient HZV of classifier h is defined as:
v — sup ZiEDIS(BW(h,r)) Wi
h o<r ry Wi ’

The following theorem establishes a bound on the disagreement coefficient for the weighted case,
showing that it is at most A? times the disagreement coefficient for the unweighted case.

Theorem D.13. In any classification task where 1 < W; < X for all i, the disagreement coefficient
HXV is at most A\? times the disagreement coefficient 0y, in the case where all samples have equal
weight.

The proof of Theorem [D.13]leverages the relationship between the weighted and unweighted dis-

tances between classifiers. Specifically, we show that the weighted distance D" is bounded by A
times the unweighted distance D, i.e.,

DY (hy,ha) < AD(ha, hs)
This relationship implies that the set of classifiers BY (h,r) that are within a distance 7 of classifier

h in the weighted case is a subset of the corresponding set in the unweighted case, By (h,r)\).
Therefore,

BY (h,r) C By(h,7))
which helps us prove the theorem.

Proof of Theorem We aim to prove that for any classifier / and radius 7r:

\2 IDIS(Bg (h, )| S Zz’EDIS(B;{(h,r)) Wi
n(r\) - ry Wi

First, consider any two classifiers h; and hs. The weighted distance D*(hy, ho) is given by:

Since W; < A, we have:
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> l(ha(X;) # ha(X5))

D*(hy, ha) < A
(h1, o) < SW

Given 1 < W, this further simplifies to:

> W(hi(Xy) # ha(X5))

n
From this, we observe that if D*(hy, he) < r, then D(hq, ha) < Ar. Therefore:

D*(hy,ha) < A

= AD(hy, hy)

By (h,r) C By (h,TX)

Given this inclusion, we have:

ZieDls(B;I(h,r)) Wi < ZieDIs(BH(h,M)) Wi
r Zz Wz - T Zz Wz
Since 1 < W; < ), it follows that:

ZiEDIS(BH(h,Ar)) Wi

Diepts(Bu(hpr L _ \DIS(Br(h, Ar))| _ |2 [DIS(Ba(h, Ar))|

<A
ry Wi - n n (rA)n
Therefore:
2 ienis(B;, (hr)) Wi [DIS(Bg (h, Ar))|
0; = sup — ol < A su A =\%
h 0<I7)- Yy Wi - 0<E)- (rA)n 4

This completes the proof.

E ADDITIVE ALGORITHMS ARE INSUFFICIENT IN MULTIPLICATIVE
SETTINGS

In this section, we examine why additive algorithms are fundamentally inadequate for multiplicative
error settings. We outline two high-level approaches that one might consider when adapting additive
algorithms for multiplicative guarantees, and demonstrate the inherent limitations of both.

* Estimating the Optimal Error Rate (Without Output Verification): A natural idea is
to first estimate the optimal classifier’s error, say to within a constant factor (for example,
a 2-approximation), and then use this estimate as a baseline for additive algorithms. This
strategy implicitly assumes either prior knowledge of or access to a tight estimate of the
minimal achievable error. However, even if the optimal classifier is known, estimating
its error rate 7 to within a multiplicative factor of 2 with confidence 1 — § requires at

least % In % samples. Since 7 is unknown in practice—and, crucially, should not appear

in the label complexity of the final algorithm—this approach cannot yield a label-efficient
algorithm for general 7.

* Verifying the Error Rate By Iterative Refinement: Alternatively, one can attempt to
iteratively refine the estimate of the optimal error. For instance, starting with a guess of
7 = 1/2, run the additive algorithm with ¢ = € - 1/2. If this fails to yield the desired
error guarantee, halve the estimate (n = 1/4,€¢' = € - 1/4), and continue. This approach
necessitates verifying, at each step, whether the returned classifier meets the guarantee

In(1/4)

err(h) < n+ €. Such verification also requires O (T) labeled examples per attempt.

As before, the unknown and potentially small value of 1 causes the total label complexity
to depend inversely on 7, which is unacceptable in settings where 7 is not known.
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Both approaches—either without verification (relying on an accurate guess of 1), or with verifica-
tion (iteratively guessing and checking)—face the same fundamental barrier: The number of labeled
examples needed to estimate or verify small error rates scales inversely with the (unknown) true er-
ror 7. Because any algorithm that hopes to achieve a multiplicative error guarantee must operate
efficiently even when 7 is small and unknown, this unavoidable dependence is fatal. As a result,
additive algorithms and their naive adaptations cannot provide effective or label-efficient solutions
in the multiplicative error regime.

F EMPIRICAL BEHAVIOR OF ALGORITHM CONSTANTS

Success Rate Grid for c1=3, b1=3 Success Rate Grid for c2=10, b2=10
Red: <0.9, Green: =0.9 Red: <0.9, Green: =0.9

1000 1000

100 100

c2 value
cl value

1 10 100 1000 1 10 100 1000
b2 value bl value

(a) Success rate grid for c; = 3,b1 = 3 (b) Success rate grid for c2 = 10, b2 = 10

Figure 4: Comparison of success rate grids for various (cy, b1, ¢, by) parameterizations when run-
ning Algorithm with 6 = 0.1 (expected success rate > 90%). For each cell we run Algorithm
on a fixed randomly generated dataset for 50 times and calculate the success rate. evidence suggests
setting each of these constants to 3 is typically sufficient for reliable algorithm performance.

We conducted experiments to assess the effect of algorithmic constants ¢y, b1, co, and b, in practical
scenarios. Our key findings indicate that these constants can be set to relatively small values without
adversely affecting the performance or correctness guarantees of Algorithm [T} In particular, we
observed that values as low as 3 for c1, ce,b; and by are sufficient in practice, despite theoretical
analysis suggesting much larger values.

Additional experimental results, code and full raw data are available via our anonymous Dropbox
link: http://bit.1y/458BS1rl Notably, our empirical results suggest that c; and b; have a
larger impact on algorithm success rates compared to co and bs.

Experimental setup:

+ Sample size: n = 107
* The optimal classifier was selected uniformly at random

» Labels were assigned according to the optimal classifier with independent label noise of
0.1

* Algorithm [T was executed with § = € = 0.1
* Each configuration of (c1, b1, co, bo) was tested in 50 independent trials
* A configuration was considered successful if the success rate exceeded 1 — § = 0.9

* Each experiment was ran on a single CPU core. Each setup takes 1 min to complete.
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