
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTIVE LEARNING FOR DECISION TREES WITH PROV-
ABLE GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper advances the theoretical understanding of active learning label com-
plexity for decision trees as binary classifiers. We make two main contributions.
First, we provide the first analysis of the disagreement coefficient for decision
trees—a key parameter governing active learning label complexity. Our analysis
holds under two natural assumptions required for achieving polylogarithmic label
complexity: (i) each root-to-leaf path queries distinct feature dimensions, and (ii)
the input data has a regular, grid-like structure. We show these assumptions are es-
sential, as relaxing them leads to polynomial label complexity. Second, we present
the first general active learning algorithm for binary classification that achieves a
multiplicative error guarantee, producing a (1 + ϵ)-approximate classifier. By
combining these results, we design an active learning algorithm for decision trees
that uses only a polylogarithmic number of label queries in the dataset size, un-
der the stated assumptions. Finally, we establish a label complexity lower bound,
showing our algorithm’s dependence on the error tolerance ϵ is close to optimal.

1 INTRODUCTION

Active learning is a machine learning paradigm that seeks to minimize the labeling effort required
to train a model by strategically selecting the most informative data points for labeling Ren et al.
(2022). Unlike traditional passive learning, which relies on randomly labeled data, active learning
operates on an unlabeled dataset and iteratively selects a sample to query its label which tailors
the selection process to focus on examples that contribute the most to improve model performance.
Labeling complexity becomes a significant challenge in scenarios where annotation requires human
expertise—particularly in domains like medical applications, where labeling cannot be outsourced
to crowdsourcing platforms but instead relies on skilled professionals. Given the limited availabil-
ity and high cost of such experts, active learning emerges as an invaluable solution in domains
where acquiring labeled data is both expensive and time-consuming. Examples include medical di-
agnosis Budd et al. (2021), autonomous driving Feng et al. (2019), webpage classification Hanneke
(2014), and natural language processing Schröder & Niekler (2020); Zhang et al. (2022). By reduc-
ing the labeling cost, active learning has become a cornerstone of efficient model development in
data-intensive fields Settles (2012).

Decision trees are extensively utilized in machine learning because they inherently perform feature
selection Xu et al. (2014); Banihashem et al. (2023), offer interpretability Gilpin et al. (2018), and
achieve strong practical performance with minimal computational expense. These properties have
made decision trees a core component in ensemble methods such as random forests Breiman (2001)
and XGBoost Chen & Guestrin (2016), which are among the most popular algorithms in supervised
learning tasks. While active learning has been applied to decision trees in various practical con-
texts Ma et al. (2016); Wang et al. (2010), the existing research in this area often lacks a rigorous
theoretical foundation. This gap highlights the need for a deeper understanding of the theoretical
aspects of applying active learning principles to decision tree learning.

This paper addresses a significant gap in the theoretical foundations of active learning by providing
the first rigorous analysis of its sample complexity for decision trees. Our analysis centers on the
disagreement coefficient, a key parameter in active learning theory that, until now, had not been
analyzed for the decision tree class. The importance of bounding this coefficient lies in its direct

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

impact on label efficiency, as it appears in many active learning algorithms. For example Hanneke
(2014) get the following label complexity:

θ(
ν2

ϵ2additive
+ log

1

ϵadditive
)(d log θ + Log

(
log(1/ϵadditive)

δ

)
)

This investigation reveals two critical assumptions required to derive a polylogarithmic bound on
this coefficient: that each node in the decision tree must test a feature dimension distinct from its
ancestors, and that the input data exhibits structural regularity (which we model as a grid). We prove
that without these assumptions, the disagreement coefficient is not effectively bounded, leading to
polynomial sample complexity. Our analysis culminates in the following bound:
Theorem 1.1. Consider a decision tree classification task over a dataset S of n points. Let the input
space be X = {(a1, . . . , adim) | ∀i, ai ∈ N, ai ≤ w} for some w. If every node in a tree tests a
feature dimension distinct from its ancestors and the tree height is at most d, then the disagreement
coefficient is bounded by θ = O(lnd(n)).

Next, we propose the first active learning algorithm for binary classification tasks on discrete datasets
that achieves a multiplicative error bound, Algorithm 2. In our framework, an algorithm is given n
unlabeled data points and can adaptively query their binary labels. The objective is to return a
(1 + ϵ)-approximate classifier with probability at least 1 − δ. A classifier is (1 + ϵ)-approximate
if its error is at most 1 + ϵ times that of the optimal classifier in the class. Our primary focus is to
minimize the algorithm’s label complexity, which is the total number of queries it performs. The
performance of Algorithm 2 is captured by the following theorem:
Theorem 1.2. For any binary classification task, Algorithm 2 returns a (1+ ϵ)-approximate classi-
fier with probability greater than 1− δ. It does so using

O

(
ln(n)θ2(VH ln θ + ln

lnn

δ
) +

θ2

ϵ2
(VH ln

θ

ϵ
+ ln

1

δ
)

)
queries, where n is the dataset size, VH is the VC dimension of the classifier space, and θ is the
disagreement coefficient.

The adoption of the multiplicative error model in classification tasks is a key strength of this work.
It enables stronger control over the classifier’s accuracy compared to additive error models, provid-
ing greater flexibility to achieve desirable error rates based on what is achievable. For instance, in
realizable settings, where the optimal classifier has zero error, this approach guarantees perfect clas-
sification—a capability beyond the reach of additive models, which ϵ-off regardless of the optimal
classifier error. While the multiplicative framework has been extensively explored in the context
of active learning for regression (see, e.g., Musco et al. (2022); Derezinski et al. (2018); Parulekar
et al. (2021); Chen & Price (2019); Chen & Derezinski (2021); Gajjar et al. (2023; 2024); Chen et al.
(2022)), our work is the first to introduce an algorithm for multiplicative error in classification. This
aligns with broader trends in computer science, such as approximation algorithms and competitive
analysis, where multiplicative error models are standard.

A crucial motivation for our work is the inadequacy of existing additive error algorithms for the
multiplicative setting. A natural approach might be to adapt an additive algorithm by setting its
error parameter ϵadditive relative to an estimate of the optimal error η (i.e., ϵadditive = ϵη). However,
this strategy is fundamentally flawed. Estimating η with sufficient accuracy to provide a meaningful
guarantee itself requires a number of label queries that is inversely proportional to η. Consequently,
the label complexity would become dependent on an unknown and potentially very small quantity,
making the required number of labels Ω(n). Alternative strategies, such as iteratively guessing and
verifying η, face the same bottleneck at the verification step. In Appendix E, we formalize this
argument, demonstrating that any such adaptation is inherently label-inefficient. This highlights the
need for a fundamentally different approach, like the one we propose, that is designed to be agnostic
to the magnitude of the optimal error.

Our central result is a new label complexity bound for actively learning decision trees, which we de-
rive by combining the two main contributions of this paper. By applying our general multiplicative-
error Algorithm 2 to the decision tree class and using our novel bound on the disagreement coeffi-
cient, we achieve a query complexity that is polylogarithmic in the dataset size. This result holds

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

under the previously discussed assumptions on tree structure and data distribution. The algorithm’s
performance depends on the maximum tree depth, denoted by d, and the feature dimensionality,
dim, as formalized in our main theorem:
Corollary 1.3. Let X = {(x1, x2, . . . , xdim) | ∀i, xi ≤ w, xi ∈ N} be a set with a binary labeling.
Algorithm 2 returns a (1 + ϵ)-approximate classifier of an optimal decision tree that each node
operates on a data dimension distinct from those used by its ancestors. The algorithm requires at
most the following number of queries:

O

(
ln2d+2(n)

(
2d(d+ ln dim)d+ ln

1

δ

)
+

ln2d(n)

ϵ2

(
2d(d+ dim) ln

lnd(n)

ϵ
+ ln

1

δ

))
.

To highlight the efficiency of our algorithm, we also establish lower bounds for the label complexity
of any such active learning algorithm in Theorem 4.3 and showed that some terms, like ϵ, can only
experience logarithmic improvements.

To summarize, our contributions are as follows:

• The first active learning algorithm for multiplicative error budget in classification.

• The first label complexity bound for active decision tree learning.

• Proving the necessity of the uniform-like assumption and the constraint that each node
on root-to-leaf paths operates on a unique dimension for achieving poly-logarithmic label
complexity in active decision tree learning.

• The first label complexity lower bound for active stump learning on discrete datasets.

2 RELATED WORKS

Realizable Active Learning for classification: Numerous studies have examined active learning in
the context of binary classification tasks. Some of these works assume the existence of a classifier
with zero error El-Yaniv & Wiener (2010; 2012); Hanneke (2012); Hopkins et al. (2020b). In con-
trast, our approach does not rely on this assumption, which makes it more applicable to real-world
scenarios where a perfect classifier is not guaranteed.

Agnostic Active Learning for classification: Some prior research has addressed active learning in
agnostic settings, where no perfect classifier exists Balcan et al. (2006; 2007); Hanneke (2007); Das-
gupta et al. (2007); Castro & Nowak (2008; 2006). Among these, algorithms based on disagreement-
based active learning, such as A2 Balcan et al. (2006), share similarities with our approach by
maintaining a version space—a set of classifiers that initially includes the optimal classifier and is
iteratively refined without excluding it. However, unlike prior work, our method is the first to exploit
signals arising when the version space fails to shrink rapidly. We use this stagnation to lower-bound
the error and leverage this lower bound to identify a (1 + ϵ)-approximate classifier.

Notably, all these previous studies assume an additive error framework, guaranteeing that the classi-
fier’s error exceeds that of the optimal classifier by at most a fixed additive margin. In Appendix E,
we examine the relationship between additive and multiplicative error frameworks and algorithms,
demonstrating that existing additive approaches are unsuitable for multiplicative error settings and
cannot be adapted to address our problem. For a comprehensive survey, see Hanneke (2014).

Active Learning in Regression: Active learning has been extensively studied in the context of
linear regression and ℓp norm regression. Several papers aim to improve the label requirements of
active learning and provide theoretical bounds on the minimum requirements Musco et al. (2022);
Derezinski et al. (2018); Parulekar et al. (2021); Chen & Price (2019); Chen & Derezinski (2021);
Woodruff (2014); Sarlós (2006). Notably, Musco et al. (2022) investigates ℓp norm regression.
Throughout our paper, we adopt the setup from Musco et al. (2022), and our algorithm returns a
(1 + ϵ)-approximate solution on a given discrete dataset where labels are arbitrary, without any
assumptions on them.

Theory of Decision Tree Learning: The theoretical study of decision tree learning has been ex-
plored primarily from the perspective of time complexity in various specific contexts Ehrenfeucht

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

& Haussler (1989); Mehta & Raghavan (2002); Blanc et al. (2019; 2022). To the best of our knowl-
edge, however, there is no previous work that considers theoretical guarantees for sample complex-
ity. Additionally, in the context of learning, existing works have analyzed different properties of
decision trees, including their application to sparse feature recovery. Notably, works by Banihashem
et al. (2023); Kazemitabar et al. (2017) focused on decision stump learning for regression problems,
motivated by the challenge of sparse feature recovery. While these studies have contributed to our
understanding of decision tree learning in settings such as sparse recovery and sample complexity,
they largely overlook the domain of active learning within decision tree theory.

Disagreement Coefficient of decision trees The theoretical basis for active learning of decision
trees was laid by Balcan et al. (2010), who showed that axis-parallel trees on continuous inputs in
the [0, 1]n hypercube can be learned efficiently under the uniform distribution. Their proof relied on
decomposing the class by leaf count and arguing that each subclass has a finite disagreement coef-
ficient. However, they only asserted finiteness without giving a way to compute the coefficient or
bound it quantitatively. Our work fills this gap by providing the first explicit calculation of the dis-
agreement coefficient for decision trees on discrete domains, establishing the bound θ = O(lnd(n)).

Active Learning Using Stronger Queries: To overcome the limitations of conventional active
learning methods, several studies have considered active learning with stronger query models Hop-
kins et al. (2021); Kane et al. (2017); Hopkins et al. (2020a). For example, Hopkins et al. (2021)
investigates the active learning of decision trees using queries that check whether two samples be-
long to the same leaf in the optimal decision tree. Similarly, Kane et al. (2017) shows that it is
possible to learn a perfect half-space using only log(dataset size) comparison queries, where the la-
beler answers which sample is more positive. However, these approaches assume realizable settings,
where a perfect classifier exists. In contrast, our work focuses on a simpler and more practical query
model that exclusively returns the label of a sample, without assuming realizability.

3 DISAGREEMENT COEFFICIENT IN DECISION TREES

The theoretical analysis of many active learning algorithms for binary classification relies on the
disagreement coefficient, a parameter that measures the complexity of a hypothesis class Balcan
et al. (2006); Hanneke (2014). Intuitively, it captures how many data points have uncertain labels
within a set of plausible hypotheses. A smaller coefficient suggests that an active learning strategy
can efficiently prune the version space. This section defines the disagreement coefficient and derives
an upper bound for the class of decision trees.

3.1 FORMAL DEFINITIONS

Let H denote the hypothesis class (e.g., decision trees of bounded depth) and S a dataset of n points.
Definition 3.1 (Distance & Hypothesis Ball). The distance between two hypotheses h, h′ ∈ H on
S is the fraction of points where they disagree:

DS(h, h
′) := 1

n

∑
x∈S

I(h(x) ̸= h′(x)).

The ball of radius r around h ∈ H is the set

BH(h, r) := {h′ ∈ H | DS(h, h
′) ≤ r}.

Definition 3.2 (Disagreement Region). For V ⊆ H , the disagreement region is the set of points in
S where some pair of hypotheses in V differ:

DISS(V) := {x ∈ S | ∃h1, h2 ∈ V : h1(x) ̸= h2(x)}.

These notions lead to the disagreement coefficient, which compares the size of the disagreement
region to the radius of the corresponding hypothesis ball.
Definition 3.3 (Disagreement Coefficient). For h ∈ H , the disagreement coefficient is

θh := sup
r>0

|DISS(BH(h, r))|
rn

.

The disagreement coefficient for H is the worst-case value: θ := suph∈H θh.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

t1 ≤ x1

t2 ≤ x2 t3 ≤ x3

lh,1 lh,2 lh,3 lh,4

No Yes

No Yes No Yes

(a)

t1 ≤ x1

1− lh,3 t3 ≤ x2

lh,3 1− lh,3

No Yes

No Yes

(b)

Figure 1: (a) A decision tree with 4 leaves (L = 4). Leaf 1 uses dimensions 1, 2 so dh,1 = {1, 2}.
(b) LineTreeh,3 classifies all samples as 1− Lh,3 except those reaching leaf 3 of h.

3.2 AN UPPER BOUND FOR DECISION TREES

Our first main result, Theorem 1.1, establishes an upper bound on the disagreement coefficient
for decision trees under certain structural and distributional assumptions. The proof proceeds by
decomposing a tree into simpler components, analyzing their disagreement properties, and then
recombining the results, which leads us to define the notion of a LineTree.

Let h be a decision tree. For each leaf i, let lh,i denote its label and dh,i ⊆ {1, . . . , dim} the set of
dimensions tested along the path from the root to that leaf.

Definition 3.4 (LineTree). For a tree h and leaf i, the corresponding line tree, denoted LineTreeh,i,
is a classifier that assigns label lh,i to all inputs reaching leaf i in h, and the opposite label 1 − lh,i
otherwise. Figure 1 shows an example of a tree h and its line tree LineTreeh,3.

To prove Theorem 1.1, we fix a tree h and bound θh by analyzing |DIS(BH(h,r))|
nr for all r > 0.

Although DIS(BH(h, r)) seems to depend on all pairs of classifiers in BH(h, r), it can be expressed
directly in terms of h. By Lemma D.1, DIS(BH(h, r)) = {x | ∃h′ ∈ BH(h, r) : h′(x) ̸= h(x)}.
We decompose this set according to the leaf i that x reaches in h and the dimension set d′ of the leaf
it reaches in h′. Hence, DIS(BH(h, r)) is the union over all i and d′ ⊆ {1, 2, . . . , dim} of

{x | LineTreeh,i(x) = lh,i ∧∃h′∈BH(h,r),j dh′,j = d′ ∧LineTreeh′,j(x) = lh′,j ∧ lh′,j ̸= lh,i} (1)

If we can replace h′ ∈ BH(h, r) with an equation related to LineTreeh,i and LineTreeh′,j , then
we can relate the analysis of trees to the analysis of line trees. In Lemma D.2, we achieve this by
showing that if lh,i ̸= lh′,j , then DSi

(h, h′) is larger than DSi
(LineTreeh,i,LineTreeh′,j) when Si

is the set of data points that reaches leaf i in h.

Then, we use Proposition 3.5 to show that the sets in Equation 1 each have a size of O((2 ln(n)
dim)d).

Combining this with the fact that there are L
(dim

d

)
sets in total, we can prove Theorem 1.1.

Proposition 3.5. In a line tree classification task where each node decides based on one of the
d′ ⊆ {1, 2, · · · , dim} input dimensions, different from all of its ancestors, and the tree height is less
than d, with

X = {(a1, . . . , adim) | ∀i ai ∈ N, ai ≤ wi ≤ w}
for some wi vector and w, the disagreement coefficient of a classifier which assigns the same labels
to all data points is of O

(
(3 lnw)d

)
.

Using the calculated disagreement coefficient and VH of decision tree in Lemma A.3 which is 2d(d+
ln dim), we can completes the proof of Corollary 1.3.

3.3 NECESSITY OF ASSUMPTIONS

We now show that the assumptions in Theorem 1.1 are necessary. Without them, the disagreement
coefficient becomes substantially larger.

Theorem 3.6. If decision tree nodes are permitted to query the same dimension as their ancestors,
the disagreement coefficient for trees of height d ≥ 2 is θ = Ω(n1/dim) for any dataset with n distinct
points.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To prove this we first consider the constant classifier h0 that labels all samples as 0. Since decision
tree nodes can query the same dimension as their ancestors, it is possible to construct classifiers that
are very close to h0 but label an small portions of the data as 1. This allows us to build a set of
classifiers within a small ball around h0 whose disagreement region covers a large fraction of the
dataset.

More specifically, we can construct such a set of classifiers within a radius of r = 2n−1/dim around
h0. The resulting disagreement region, DIS(BH(h0, r)), can be shown to contain at least 2dim−1

2dim · n
data points. This large disagreement region within a small radius directly leads to a large disagree-
ment coefficient. Calculating the ratio |DIS|

rn with these values yields a lower bound of θ = Ω(n1/dim).
Theorem 3.7. There exists a size n dataset for which the disagreement coefficient of a binary deci-
sion tree classifier is Ω(n), even if nodes are restricted to unique dimensions per root-to-leaf paths.

To prove this we first consider a dataset where all points lie on the line x1 = x2 = · · · = xdim,
e.g., Xi = ⟨i, i, . . . , i⟩ for i = 1, . . . , n. Let h0 be the all-0 classifier. For a radius r = 1/n, the
ball BH(h0, r) contains any tree that misclassifies only one point. It is possible to construct a tree
that isolates and flips the label of any single point Xi. Therefore, for any point Xi, there exists a
hypothesis hi ∈ BH(h0, r) such that hi(Xi) = 1 ̸= h0(Xi). This implies that the entire dataset is
in the disagreement region DIS(BH(h0, r)), yielding a coefficient of at least |DIS|

rn = n
1
n ·n = n.

3.4 RELAXING THE UNIFORMITY ASSUMPTION

The integer grid assumption for the input distribution is restrictive. We can relax it by assigning a
weight Wi ∈ [1, λ] to each data point Xi, representing its relative importance. This modifies the
distance metric to a weighted average:

DS,W (h1, h2) =

∑n
i=1 I(h1(Xi) ̸= h2(Xi))Wi∑n

i=1 Wi

This formulation generalizes the analysis of classification errors. As we prove in Theorem D.13
(which is a variant of Theorem 7.6 from Hanneke (2014) for discrete datasets), the disagreement
coefficient for this weighted task is scaled by at most λ2 compared to the unweighted case.

4 A MULTIPLICATIVE-ERROR-BOUND ACTIVE LEARNING ALGORITHM

This section introduces and analyzes an active learning algorithm designed to find a classifier with
a multiplicative error guarantee. That is, if the optimal classifier h∗ in a class H has an error of η,
our algorithm returns a classifier h with error less than η(1 + ϵ) with high probability.

A natural first question is whether existing algorithms, which typically provide additive error guar-
antees (i.e., returning h with error at most η + ϵ′), can be adapted for the multiplicative setting.
However, such adaptations are fundamentally label-inefficient. Any approach based on an additive
algorithm would require an estimate of the optimal error η to set the additive term ϵ′ appropriately
(e.g., ϵ′ = ϵη). Estimating or verifying an error rate of η with high probability requires Ω(1/η) sam-
ples. Since an effective algorithm’s label complexity cannot depend on the unknown, and potentially
very small, value of η, additive frameworks are unsuitable for achieving multiplicative guarantees.
In Appendix E, we formally investigate the scenarios in which these adaptations fail, demonstrating
their inherent limitations.

Our approach, by contrast, is designed to circumvent this dependence on η. We first present the
algorithm’s core logic in the simple, one-dimensional setting of a decision stump. We then generalize
this framework to arbitrary binary classification tasks, yielding a result whose label complexity
depends on the disagreement coefficient derived in Section 3.

4.1 THE DECISION STUMP CASE

A decision stump for one-dimensional data is a decision tree of depth one, defined by a single
threshold. We begin with this setting to illustrate our algorithmic approach in a simple context. The
main result for this section is the following label complexity bound.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 4.1. For a one-dimensional, sorted dataset of size n, Algorithm 1 returns a (1 + ϵ)-
approximate decision stump with probability at least 1− δ, using a total of

O

(
ln(n)

(
ln(ln(n)) + ln

(
1

δ

))
+

1

ϵ2
ln

(
1

δϵ

))
label queries.

Problem Setup. Our approach operates within the active learning framework of Woodruff et
al. Musco et al. (2022), where the algorithm has access to all input samples from the outset and
can adaptively query their labels. Specifically, the algorithm is given a sorted vector of unlabeled
data points X ∈ Rn (Xi < Xi+1) and can adaptively query their labels from the target vector
Y ∈ {0, 1}n. A stump classifier h is defined by a threshold, which we can represent by the index of
the first sample it classifies as 1. Thus, h ∈ {0, 1, . . . , n} corresponds to the rule h(x) = I(x ≥ Xh),
where we define X0 = −∞ to handle the case where all samples are labeled 1. The error of a clas-
sifier h on a subset of samples S′ ⊆ S is denoted errS′(h) := 1

|S′|
∑

(x,y)∈S′ I(h(x) ̸= y).

Algorithm Intuition. Algorithm 1 maintains an interval of candidate stumps [Li, Ri] that, with high
probability, contains the optimal one. Each iteration attempts to shrink this interval by (i) sampling
a few labeled points from X[Li,Ri], (ii) bounding errors of all classifiers using high-probability
lower/upper bounds (Appendix A.1), and (iii) pruning any classifier h′ whose lower bound is above
another’s upper bound.

The crucial feature is how the algorithm reacts when pruning fails: if [Li, Ri] does not shrink by
at least half, this signals that all classifiers in the interval incur relatively high error. Instead of
wasting more iterations, the algorithm halts and directly estimates the best classifier in the range
using O(1

ϵ2 ln
1
δϵ) additional samples. We call this last phase direct estimation phase.

Formally, in iteration i we obtain bounds for each h using O(ln(1/δ′)) samples Si, ensuring with
probability 1− δ′, where δ′ = δ/(2 log2 2n) we have:

LB(Si, h, δ
′) ≤ err[Li,Ri](h) ≤ UB(Si, h, δ

′), UB− LB ≤ 1
16 .

Classifiers eliminated by these bounds shrink the interval; if the shrinkage is insufficient, the algo-
rithm switches to direct estimation. Pseudocode is given in Algorithm 1.

Algorithm 1 Stump algorithm

1: Initialize i← 0
2: Initialize Li ← 0, Ri ← n
3: while Li ≤ Ri do
4: Si+1 ← R(c1 ln(

1
δ′) + b1, X[Li,Ri])

5: i← i+ 1
6: β ← min

h∈[Li−1,Ri−1]
UB(Si, h, δ

′)

7: H ← {h′ ∈ [Li−1, Ri−1] |
LB(Si, h

′, δ′) ≤ β}
8: Li ← min(H), Ri ← max(H)

9: if Ri − Li >
Ri−1−Li−1

2 then
10: S′ ← R(c2ϵ2 (ln

1
δϵ +b2), X[Li−1,Ri−1])

11: Return arg min
h∈[Li−1,Ri−1]

UB(S′, h, δ
2)

12: end if
13: end while
14: Return Li

Algorithm 2 General Binary Classification

1: S ← All samples, H ← All classifiers
2: θ ← Calculate θ for using Definition 3.3.
3: i← 0
4: Hi ← H, ri ← 1 {Initial progress measure}
5: while |Hi| > 1 do
6: Si ← R(c1θ

2(VH ln θ + ln 1
δ′) +

b1,DIS(Hi))
7: β ← minh∈Hi

UB(Si, h, δ
′)

8: Hi+1 ← {h ∈ Hi | LB(Si, h, δ
′) ≤ β}

9: ri+1 ← radius(Hi+1)
10: if ri+1 > ri

2 then
11: S′ ← R(c2θ

2

ϵ2 (VH ln(θϵ) + ln(1δ)) +
b2,DIS(Hi))

12: Return argminh∈Hi
UB(S′, h, δ

2)
13: end if
14: i← i+ 1
15: end while
16: Return h ∈ H

We conducted an empirical study of our algorithm, focusing specifically on practical choices for the
constants that influence its label requirements. Detailed results, along with a discussion on how small
these constants can be set while preserving algorithmic correctness, are provided in Appendix F. The
following theorem formally establishes the correctness of our algorithm.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 4.2. There exist universal constants c1, c2, b1, b2 such that Algorithm 1 returns a classifier
with an error rate less than η(1 + ϵ) with probability at least 1 − δ when provided with a one-
dimensional dataset.

Correctness and Label Complexity Proof Sketch. The proof proceeds in several steps. First,
Lemma B.1 shows that the main loop of Algorithm 1 executes at most log22n iterations. Then,
Lemma B.2 establishes that, with probability at least 1−delta, all bounds produced by the algorithm
hold simultaneously throughout its execution. Conditioning on this event, we next prove that the
optimal classifier is never eliminated. The argument is as follows: if a classifier h is suboptimal
within the interval [Li, Ri], then h cannot be optimal over the entire dataset, as shown in Lemma B.3.
Combining this with Lemma B.4, we conclude that the optimal classifier always remains in the
candidate range [Li, Ri]. Consequently, when the algorithm terminates, the returned classifier is
guaranteed to be optimal among the remaining candidates.

The main subtlety arises from the two different ways the algorithm can terminate: by continuing to
shrink intervals, or by entering the direct estimate phase. The key idea is that these two outcomes
correspond to complementary regimes for the error of the optimal classifier. When the optimal
classifier has small error on the current interval [Li, Ri], Lemma B.6 shows that the interval length
shrinks rapidly. In fact, if the optimal error is less than 1

16 , then the next interval [Li+1, Ri+1] is at
most half the size of [Li, Ri]. Thus, in the low-error regime the algorithm never enters the direct
estimate phase; instead, it keeps shrinking intervals until the candidate set is tightly localized around
the optimum. In contrast, if the algorithm does enter the direct estimate phase, this indicates that
the optimal error on the current interval is relatively large. In this high-error regime, approximating
within a factor of (1 + ϵ) becomes easier. Lemma B.7 formalizes this intuition, showing that there
exist universal constants c2 and b2 such that the classifier returned in the direct estimate phase always
achieves error within the desired (1 + ϵ)-factor guarantee. Putting the cases together, we conclude
that the algorithm always returns a (1 + ϵ)-approximate classifier with probability at least 1 − δ,
thereby proving Theorem 4.2.

To establish the label complexity bound in Theorem 4.1, we first apply Lemma B.1 to show that
the for loop repeats at most log22n times. During these iterations, the algorithm uses at most
O(lnn ln lnn

δ) label queries. If the algorithm later enters the direct estimate phase, it performs
an additional O

(
1
ϵ2 ln

1
δϵ

)
label queries. This completes the proof of Theorem 4.1.

4.2 LOWER BOUND

We aim to demonstrate that any active learning algorithm within the given setting has a label com-
plexity of Ω(ln(1δ) ·

1
ϵ2). This result establishes that it is not possible to significantly improve the

label complexity with respect to the term ϵ, beyond a logarithmic factor. The result is as follows:
Theorem 4.3. Any active learning algorithm requires Ω

(
ln
(
1
δ

)
1
ϵ2

)
queries to return a (1 + ϵ)-

approximate decision stump with probability greater than 1− δ.

To prove Theorem 4.3, we build upon the lower bound established in Kääriäinen (2006), which
determines the minimum number of coin tosses required to decide whether heads is more likely than
tails. We adapt this result by modeling the active learning problem as an analogous coin-tossing
process: here, the “coin” provides the requested labels, and the active learning algorithm’s classifier
determines whether heads is more likely than tails. By applying the lower bound from Kääriäinen
(2006) to this framework, we derive a lower bound for the label complexity of the active learning
algorithm. We should mention that this result were proven for continues input spaces Hanneke
(2014) but needed additional techniques for discrete datasets.

4.3 GENERALIZATION TO ARBITRARY CLASSIFIERS

We now generalize the stump algorithm to handle any binary classification task. The performance
of this resulting algorithm is formally stated in Theorem 1.2 in the introduction. The resulting
algorithm’s performance depends on structural properties of the hypothesis class, captured by the
VC dimension and the disagreement coefficient.

Algorithm 2 follows the same template as the stump algorithm but replaces 1D-specific concepts
with their general counterparts. The candidate set is not an interval [Li, Ri] but a general subset

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of hypotheses Hi ⊆ H . The sampling occurs not from a data range but from the disagreement
region, DISS(Hi). This is the set of points informative for distinguishing among remaining clas-
sifiers. Finally, progress is measured not by interval length but by the radius of the hypothesis set,
radius(Hi), which is the radius of the smallest ball containing Hi. The pruning step remains the
same: eliminate classifiers that are provably worse than another candidate. The algorithm switches
to a final, direct estimation phase if the radius of the hypothesis set fails to halve in an iteration.

Role of the Disagreement Coefficient. The proof of Theorem 4.4 shows that an ineffective pruning
step implies a high optimal error. In this general setting, ”high” is relative to the disagreement
coefficient. Specifically, if the radius fails to halve, the optimal error ηi on the disagreement region
must be at least Ω(1/θ). The disagreement coefficient θ bridges the gap between the radius of the
hypothesis ball and the size of the disagreement region, allowing us to make this critical inference.

Algorithmic Details. Algorithm 2 formalizes this procedure. The core of the algorithm is an itera-
tive loop that prunes the set of candidate classifiers, Hi. In iteration i, we focus on samples x ∈ S for
which there exist h1, h2 ∈ Hi such that the two classifiers disagree with each other h1(x) ̸= h2(x)
or more formally DIS(Hi). Therefore, in each iteration, a sample set Si is drawn from the disagree-
ment region DIS(Hi) (Line 6). Using this sample, the algorithm finds the minimum error upper
bound β among all classifiers in Hi and then forms the next set, Hi+1, by eliminating any hypoth-
esis whose error lower bound exceeds β (Lines 7-8). This efficiently removes classifiers that are
provably suboptimal based on the evidence from Si.

Measuring Progress. Progress is tracked via the radius of the hypothesis set, which quantifies its
size. The radius of a hypothesis set Hi is then the radius of the smallest ball, under this metric, that
encloses all classifiers in the set:

radius(Hi) := min{r | ∃h′∈Hi , Hi ⊆ BDS′ (h
′, r)}.

Ff an iteration fails to halve this radius (ri > ri−1/2), the algorithm transitions to its final estimation
phase (Lines 10-12). This switch is justified because slow progress implies a high optimal error,
which allows us to select the final classifier. The correctness of the general algorithm is formally
stated below.

Theorem 4.4. There exist universal constants c1, c2, b1, b2 such that, for any binary classification
task, Algorithm 2 returns a classifier with error less than η(1 + ϵ) with probability at least 1 − δ,
where η is the error of the optimal classifier.

The proof mirrors the stump case. We show the main loop runs only O(log n) times (Lemma C.1)
and that all probabilistic bounds hold simultaneously with high probability (Lemma B.2). Crucially,
the optimal classifier h∗ is never pruned from Hi (Lemma C.5). The argument ties progress to
the optimal error via the disagreement coefficient. Lemma C.7 shows that if the optimal error on
DIS(Hi) is small (below 1/(16θ)), the radius must halve. Otherwise, Lemma C.8 ensures the direct
estimate phase suffices to output a (1 + ϵ)-approximate classifier.

Finally, Corollary 1.3 follows directly from Theorem 1.1 and Theorem 1.2, with details in Ap-
pendix D.1.

5 CONCLUSION

In this paper, we established the first rigorous theoretical foundation for actively learning decision
trees, presenting an algorithm that achieves a polylogarithmic label complexity in the dataset size.
This result is built on two core innovations: the first analysis of the disagreement coefficient for deci-
sion trees, which we bound as θ = O(lnd(n)), and a proof that our underlying assumptions—unique
feature dimensions per path and a grid-like data structure—are necessary to avoid polynomial com-
plexity. We combined this with the introduction of the first general active learning algorithm for any
binary classification task to provide a (1 + ϵ)-multiplicative error guarantee, a more robust frame-
work than traditional additive models whose dependence on ϵ we show is nearly optimal. Our work
bridges a critical gap between the practical use of decision trees and their theoretical understanding,
opening several avenues for future research, such as relaxing our structural assumptions, extending
the analysis to continuous data domains, and applying our general algorithmic framework to other
classifier classes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Anthony and Peter L. Bartlett. Neural Network Learning - Theoretical Foundations. Cam-
bridge University Press, 2002. ISBN 978-0-521-57353-5. URL http://www.cambridge.
org/gb/knowledge/isbn/item1154061/?site_locale=en_GB.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In
William W. Cohen and Andrew W. Moore (eds.), Machine Learning, Proceedings of the Twenty-
Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006,
volume 148 of ACM International Conference Proceeding Series, pp. 65–72. ACM, 2006. doi:
10.1145/1143844.1143853. URL https://doi.org/10.1145/1143844.1143853.

Maria-Florina Balcan, Andrei Z. Broder, and Tong Zhang. Margin based active learning. In Nader H.
Bshouty and Claudio Gentile (eds.), Learning Theory, 20th Annual Conference on Learning The-
ory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings, volume 4539 of Lecture
Notes in Computer Science, pp. 35–50. Springer, 2007. doi: 10.1007/978-3-540-72927-3\ 5.
URL https://doi.org/10.1007/978-3-540-72927-3_5.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample complexity
of active learning. Mach. Learn., 80(2-3):111–139, 2010. doi: 10.1007/S10994-010-5174-Y.
URL https://doi.org/10.1007/s10994-010-5174-y.

Kiarash Banihashem, Mohammad Hajiaghayi, and Max Springer. Optimal sparse recovery with de-
cision stumps. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 6745–6752.
AAAI Press, 2023. doi: 10.1609/AAAI.V37I6.25827. URL https://doi.org/10.1609/
aaai.v37i6.25827.

Dimitri Bertsekas and John N Tsitsiklis. Introduction to probability, volume 1. Athena Scientific,
2008.

Guy Blanc, Jane Lange, and Li-Yang Tan. Top-down induction of decision trees: rigorous guarantees
and inherent limitations. CoRR, abs/1911.07375, 2019. URL http://arxiv.org/abs/
1911.07375.

Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly learning decision trees in almost
polynomial time. J. ACM, 69(6):39:1–39:19, 2022. doi: 10.1145/3561047. URL https://
doi.org/10.1145/3561047.

Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001. doi: 10.1023/A:1010933404324.
URL https://doi.org/10.1023/A:1010933404324.

Samuel Budd, Emma C. Robinson, and Bernhard Kainz. A survey on active learning and human-in-
the-loop deep learning for medical image analysis. Medical Image Anal., 71:102062, 2021. doi:
10.1016/J.MEDIA.2021.102062. URL https://doi.org/10.1016/j.media.2021.
102062.

Rui M Castro and Robert D Nowak. Upper and lower error bounds for active learning. In The 44th
Annual Allerton Conference on Communication, Control and Computing, volume 2, pp. 1, 2006.

Rui M. Castro and Robert D. Nowak. Minimax bounds for active learning. IEEE Trans. Inf. The-
ory, 54(5):2339–2353, 2008. doi: 10.1109/TIT.2008.920189. URL https://doi.org/10.
1109/TIT.2008.920189.

Cheng Chen, Yi Li, and Yiming Sun. Online active regression. In International Conference on
Machine Learning, pp. 3320–3335. PMLR, 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Balaji Krishnapu-
ram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.),
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 785–794. ACM, 2016. doi:
10.1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785.

10

http://www.cambridge.org/gb/knowledge/isbn/item1154061/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item1154061/?site_locale=en_GB
https://doi.org/10.1145/1143844.1143853
https://doi.org/10.1007/978-3-540-72927-3_5
https://doi.org/10.1007/s10994-010-5174-y
https://doi.org/10.1609/aaai.v37i6.25827
https://doi.org/10.1609/aaai.v37i6.25827
http://arxiv.org/abs/1911.07375
http://arxiv.org/abs/1911.07375
https://doi.org/10.1145/3561047
https://doi.org/10.1145/3561047
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.media.2021.102062
https://doi.org/10.1016/j.media.2021.102062
https://doi.org/10.1109/TIT.2008.920189
https://doi.org/10.1109/TIT.2008.920189
https://doi.org/10.1145/2939672.2939785

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xue Chen and Michal Derezinski. Query complexity of least absolute deviation regression via robust
uniform convergence. In Mikhail Belkin and Samory Kpotufe (eds.), Conference on Learning
Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings
of Machine Learning Research, pp. 1144–1179. PMLR, 2021. URL http://proceedings.
mlr.press/v134/chen21d.html.

Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Alina Beygelzimer
and Daniel Hsu (eds.), Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix,
AZ, USA, volume 99 of Proceedings of Machine Learning Research, pp. 663–695. PMLR, 2019.
URL http://proceedings.mlr.press/v99/chen19a.html.

Sanjoy Dasgupta, Daniel J. Hsu, and Claire Monteleoni. A general agnostic active
learning algorithm. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T.
Roweis (eds.), Advances in Neural Information Processing Systems 20, Proceedings of
the Twenty-First Annual Conference on Neural Information Processing Systems, Van-
couver, British Columbia, Canada, December 3-6, 2007, pp. 353–360. Curran Asso-
ciates, Inc., 2007. URL https://proceedings.neurips.cc/paper/2007/hash/
8f85517967795eeef66c225f7883bdcb-Abstract.html.

Michal Derezinski, Manfred K. Warmuth, and Daniel J. Hsu. Leveraged volume sam-
pling for linear regression. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
2510–2519, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
2ba8698b79439589fdd2b0f7218d8b07-Abstract.html.

Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples. Inf.
Comput., 82(3):231–246, 1989. doi: 10.1016/0890-5401(89)90001-1. URL https://doi.
org/10.1016/0890-5401(89)90001-1.

Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. J. Mach.
Learn. Res., 11:1605–1641, 2010. doi: 10.5555/1756006.1859904. URL https://dl.acm.
org/doi/10.5555/1756006.1859904.

Ran El-Yaniv and Yair Wiener. Active learning via perfect selective classification. J. Mach. Learn.
Res., 13:255–279, 2012. doi: 10.5555/2503308.2188394. URL https://dl.acm.org/
doi/10.5555/2503308.2188394.

Di Feng, Xiao Wei, Lars Rosenbaum, Atsuto Maki, and Klaus Dietmayer. Deep active learning for
efficient training of a lidar 3d object detector. In 2019 IEEE Intelligent Vehicles Symposium, IV
2019, Paris, France, June 9-12, 2019, pp. 667–674. IEEE, 2019. doi: 10.1109/IVS.2019.8814236.
URL https://doi.org/10.1109/IVS.2019.8814236.

Aarshvi Gajjar, Christopher Musco, and Chinmay Hegde. Active learning for single neuron models
with lipschitz non-linearities. In International Conference on Artificial Intelligence and Statistics,
pp. 4101–4113. PMLR, 2023.

Aarshvi Gajjar, Wai Ming Tai, Xu Xingyu, Chinmay Hegde, Christopher Musco, and Yi Li. Agnostic
active learning of single index models with linear sample complexity. In The Thirty Seventh
Annual Conference on Learning Theory, pp. 1715–1754. PMLR, 2024.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter, and Lalana Ka-
gal. Explaining explanations: An overview of interpretability of machine learning. In Francesco
Bonchi, Foster J. Provost, Tina Eliassi-Rad, Wei Wang, Ciro Cattuto, and Rayid Ghani (eds.), 5th
IEEE International Conference on Data Science and Advanced Analytics, DSAA 2018, Turin,
Italy, October 1-3, 2018, pp. 80–89. IEEE, 2018. doi: 10.1109/DSAA.2018.00018. URL
https://doi.org/10.1109/DSAA.2018.00018.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In Zoubin Ghahramani
(ed.), Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML

11

http://proceedings.mlr.press/v134/chen21d.html
http://proceedings.mlr.press/v134/chen21d.html
http://proceedings.mlr.press/v99/chen19a.html
https://proceedings.neurips.cc/paper/2007/hash/8f85517967795eeef66c225f7883bdcb-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/8f85517967795eeef66c225f7883bdcb-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2ba8698b79439589fdd2b0f7218d8b07-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2ba8698b79439589fdd2b0f7218d8b07-Abstract.html
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1016/0890-5401(89)90001-1
https://dl.acm.org/doi/10.5555/1756006.1859904
https://dl.acm.org/doi/10.5555/1756006.1859904
https://dl.acm.org/doi/10.5555/2503308.2188394
https://dl.acm.org/doi/10.5555/2503308.2188394
https://doi.org/10.1109/IVS.2019.8814236
https://doi.org/10.1109/DSAA.2018.00018

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

2007), Corvallis, Oregon, USA, June 20-24, 2007, volume 227 of ACM International Con-
ference Proceeding Series, pp. 353–360. ACM, 2007. doi: 10.1145/1273496.1273541. URL
https://doi.org/10.1145/1273496.1273541.

Steve Hanneke. Activized learning: Transforming passive to active with improved label complexity.
J. Mach. Learn. Res., 13:1469–1587, 2012. doi: 10.5555/2503308.2343693. URL https:
//dl.acm.org/doi/10.5555/2503308.2343693.

Steve Hanneke. Theory of disagreement-based active learning. Found. Trends Mach. Learn.,
7(2-3):131–309, 2014. doi: 10.1561/2200000037. URL https://doi.org/10.1561/
2200000037.

Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. Noise-tolerant, reliable ac-
tive classification with comparison queries. In Jacob D. Abernethy and Shivani Agarwal (eds.),
Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], vol-
ume 125 of Proceedings of Machine Learning Research, pp. 1957–2006. PMLR, 2020a. URL
http://proceedings.mlr.press/v125/hopkins20a.html.

Max Hopkins, Daniel M. Kane, Shachar Lovett, and Gaurav Mahajan. Point location and ac-
tive learning: Learning halfspaces almost optimally. 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 1034–1044, 2020b. URL https://api.
semanticscholar.org/CorpusID:216144593.

Max Hopkins, Daniel Kane, Shachar Lovett, and Michal Moshkovitz. Bounded memory active
learning through enriched queries. In Mikhail Belkin and Samory Kpotufe (eds.), Conference
on Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134
of Proceedings of Machine Learning Research, pp. 2358–2387. PMLR, 2021. URL http://
proceedings.mlr.press/v134/hopkins21a.html.

Matti Kääriäinen. Active learning in the non-realizable case. In José L. Balcázar, Philip M.
Long, and Frank Stephan (eds.), Algorithmic Learning Theory, 17th International Conference,
ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings, volume 4264 of Lecture Notes
in Computer Science, pp. 63–77. Springer, 2006. doi: 10.1007/11894841\ 9. URL https:
//doi.org/10.1007/11894841_9.

Daniel M. Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active classification with com-
parison queries. In Chris Umans (ed.), 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pp. 355–366. IEEE Computer
Society, 2017. doi: 10.1109/FOCS.2017.40. URL https://doi.org/10.1109/FOCS.
2017.40.

S. Jalil Kazemitabar, Arash A. Amini, Adam E. Bloniarz, and Ameet Talwalkar. Variable
importance using decision trees. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
426–435, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5737c6ec2e0716f3d8a7a5c4e0de0d9a-Abstract.html.

Jean-Samuel Leboeuf, Frédéric Leblanc, and Mario Marchand. Decision trees as parti-
tioning machines to characterize their generalization properties. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
d2a10b0bd670e442b1d3caa3fbf9e695-Abstract.html.

Liyao Ma, Sébastien Destercke, and Yong Wang. Online active learning of decision trees with
evidential data. Pattern Recognit., 52:33–45, 2016. doi: 10.1016/J.PATCOG.2015.10.014. URL
https://doi.org/10.1016/j.patcog.2015.10.014.

12

https://doi.org/10.1145/1273496.1273541
https://dl.acm.org/doi/10.5555/2503308.2343693
https://dl.acm.org/doi/10.5555/2503308.2343693
https://doi.org/10.1561/2200000037
https://doi.org/10.1561/2200000037
http://proceedings.mlr.press/v125/hopkins20a.html
https://api.semanticscholar.org/CorpusID:216144593
https://api.semanticscholar.org/CorpusID:216144593
http://proceedings.mlr.press/v134/hopkins21a.html
http://proceedings.mlr.press/v134/hopkins21a.html
https://doi.org/10.1007/11894841_9
https://doi.org/10.1007/11894841_9
https://doi.org/10.1109/FOCS.2017.40
https://doi.org/10.1109/FOCS.2017.40
https://proceedings.neurips.cc/paper/2017/hash/5737c6ec2e0716f3d8a7a5c4e0de0d9a-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5737c6ec2e0716f3d8a7a5c4e0de0d9a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d2a10b0bd670e442b1d3caa3fbf9e695-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d2a10b0bd670e442b1d3caa3fbf9e695-Abstract.html
https://doi.org/10.1016/j.patcog.2015.10.014

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dinesh P. Mehta and Vijay Raghavan. Decision tree approximations of boolean functions. Theor.
Comput. Sci., 270(1-2):609–623, 2002. doi: 10.1016/S0304-3975(01)00011-1. URL https:
//doi.org/10.1016/S0304-3975(01)00011-1.

Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active linear regres-
sion for ℓp norms and beyond. In 63rd IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pp. 744–753. IEEE, 2022.
doi: 10.1109/FOCS54457.2022.00076. URL https://doi.org/10.1109/FOCS54457.
2022.00076.

Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights subsam-
pling. In Mary Wootters and Laura Sanità (eds.), Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-
18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pp. 49:1–49:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi: 10.4230/LIPICS.APPROX/RANDOM.2021.49. URL https://doi.org/10.4230/
LIPIcs.APPROX/RANDOM.2021.49.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM Comput. Surv., 54(9):180:1–180:40, 2022.
doi: 10.1145/3472291. URL https://doi.org/10.1145/3472291.

Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October
2006, Berkeley, California, USA, Proceedings, pp. 143–152. IEEE Computer Society, 2006. doi:
10.1109/FOCS.2006.37. URL https://doi.org/10.1109/FOCS.2006.37.

Christopher Schröder and Andreas Niekler. A survey of active learning for text classification us-
ing deep neural networks. CoRR, abs/2008.07267, 2020. URL https://arxiv.org/abs/
2008.07267.

Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers, 2012. ISBN 978-3-031-00432-2.
doi: 10.2200/S00429ED1V01Y201207AIM018. URL https://doi.org/10.2200/
S00429ED1V01Y201207AIM018.

Shuo Wang, Jianjian Wang, Xiang-Hui Gao, and Xue-Zheng Wang. Pool-based active learning
based on incremental decision tree. In International Conference on Machine Learning and Cy-
bernetics, ICMLC 2010, Qingdao, China, July 11-14, 2010, Proceedings, pp. 274–278. IEEE,
2010. doi: 10.1109/ICMLC.2010.5581052. URL https://doi.org/10.1109/ICMLC.
2010.5581052.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput.
Sci., 10(1-2):1–157, 2014. doi: 10.1561/0400000060. URL https://doi.org/10.1561/
0400000060.

Zhixiang Eddie Xu, Gao Huang, Kilian Q. Weinberger, and Alice X. Zheng. Gradient boosted
feature selection. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid
Ghani (eds.), The 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pp. 522–531. ACM, 2014. doi:
10.1145/2623330.2623635. URL https://doi.org/10.1145/2623330.2623635.

Zhisong Zhang, Emma Strubell, and Eduard H. Hovy. A survey of active learning for natural
language processing. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 6166–6190. Associa-
tion for Computational Linguistics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.414. URL
https://doi.org/10.18653/v1/2022.emnlp-main.414.

13

https://doi.org/10.1016/S0304-3975(01)00011-1
https://doi.org/10.1016/S0304-3975(01)00011-1
https://doi.org/10.1109/FOCS54457.2022.00076
https://doi.org/10.1109/FOCS54457.2022.00076
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.49
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.49
https://doi.org/10.1145/3472291
https://doi.org/10.1109/FOCS.2006.37
https://arxiv.org/abs/2008.07267
https://arxiv.org/abs/2008.07267
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1109/ICMLC.2010.5581052
https://doi.org/10.1109/ICMLC.2010.5581052
https://doi.org/10.1561/0400000060
https://doi.org/10.1561/0400000060
https://doi.org/10.1145/2623330.2623635
https://doi.org/10.18653/v1/2022.emnlp-main.414

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX OUTLINE

In Appendix A, we explain how to calculate the lower and upper bounds, LB and UB, in general.
Next, in Appendix A.1, we specifically determine these bounds for stumps, and in Appendix A.2,
we determine them for decision trees.

Then, we present the proofs of the theorems and lemmas from the main body, starting with the proofs
of Section 4.1 in Appendix B. Specifically, we first provide some required lemmas. In Appendix B.1,
we then provide proofs for Theorem 4.2, which proves that Algorithm 1 is correct. Later, in Ap-
pendix B.2, we prove Theorem 4.1, which determines the label complexity of Algorithm 1. Finally,
in Appendix B.3, we prove Theorem 4.3, which provides a lower bound on the label complexity of
any active learning algorithm.

In Appendix C, we provide the proofs for the theorems in Section 4.3. We first introduce and prove
some required lemmas, which serve as the foundation for proving Theorem 4.4 and Theorem 1.2.
These results establish the correctness of Algorithm 2 and analyze its label complexity, respectively.

In Appendix D, we provide proofs for the lemmas introduced in Section 3. After proving these
lemmas, we proceed to Theorem 1.1 and Proposition 3.5, which calculate the disagreement coeffi-
cient for decision trees and line trees, respectively. In Appendix D.1, we present the proof of our
main result, Corollary 1.3, which calculated the label complexity of our algorithm for a decision
tree. Additionally, in Appendix D.2, we provide proofs of the necessity of our assumptions, i.e.,
Theorem 3.6 and Theorem 3.7. Finally, in Appendix D.3, we show how you can partially relax the
uniformity assumption, though not remove it entirely.

In Appendix E, we explain why additive algorithms fail in a multiplicative setting and explain the
relation between additive and multiplicative settings and algorithms.

In Appendix F, we present an empirical analysis of our Stump algorithm, showing that, in practice,
small values for c1, c2, b1, and b2 can be chosen while still ensuring the algorithm performs as
intended.

A CALCULATION OF ERROR BOUNDS

To compute the lower and upper bounds (LB and UB), we leverage the following theorem from An-
thony & Bartlett (2002); Balcan et al. (2006):
Theorem A.1. Let H be a hypothesis class of functions mapping from X to {−1, 1}, with a finite
VC-dimension VH ≥ 1. Let D be an arbitrary, but fixed, probability distribution over X ×{−1, 1}.
For any ϵ, δ > 0, if a sample is drawn from D with size

m(ϵ, δ, VH) =
64

ϵ2

(
2VH ln

(
12

ϵ

)
+ ln

(
4

δ

))
,

then, with probability at least 1− δ, the following holds for all h ∈ H:

|err(h)− êrr(h)| ≤ ϵ.

Using Theorem A.1, we can derive the error bounds. From the theorem, we know that |err(h) −
êrr(h)| ≤ ϵ. Consequently, we can define the lower and upper bounds as follows:

LB(h) = êrr(h)− ϵ and UB(h) = êrr(h) + ϵ.

These bounds are valid with probability greater than 1− δ.

A.1 STUMP

For decision stumps, the VC-dimension VH is known to be 1, as established in Lemma A.2. Hence,
applying the formula for sample size in Theorem A.1, we obtain the following sample size require-
ment:

m(ϵ, δ) =
256

ϵ2

(
2 ln

(
24

ϵ

)
+ ln

(
4

δ

))
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

After sampling, we can compute the empirical error for each classifier. Subsequently, we define the
lower and upper bounds for each classifier as:

LB(h) = êrr(h)− ϵ

2
and UB(h) = êrr(h) +

ϵ

2
.

This guarantees, with probability at least 1− δ, that for all hypotheses h, the following holds:

LB(h) ≤ err(h) ≤ UB(h),

and additionally, the width of the bounds is exactly ϵ, i.e., UB(h)− LB(h) = ϵ.
Lemma A.2. Let H denote the hypothesis class of decision stumps in one dimension, where each
hypothesis h ∈ H assigns the label 1 to points exceeding a threshold θ ∈ R and 0 otherwise. Then,
the VC-dimension ofH is 1.

Proof. To prove that the VC-dimension of H is 1, we must show that there exists a set of one point
that can be shattered byH, but no set of two points can be shattered.

Shattering a single point: Consider a single point x1 ∈ R. By choosing an appropriate threshold
θ, we can label x1 as either 0 or 1. Thus, a set of one point can be shattered byH.

Inability to shatter two points: Now, consider a set of two points, x1, x2 ∈ R with x1 < x2.
There are four possible labelings: (0, 0), (0, 1), (1, 0), (1, 1). However, the labeling (1, 0) cannot
be achieved. If we choose a threshold θ such that x1 < θ < x2, we obtain the labeling (0, 1). If we
choose θ ≤ x1, we get (0, 0), and if we choose θ ≥ x2, we obtain (1, 1). Since (1, 0) is impossible,
the set {x1, x2} cannot be shattered. Therefore, no set of two points can be shattered.

Since there exists a set of one point that can be shattered, but no set of two points can be, the
VC-dimension ofH is 1.

A.2 DECISION TREE

The VC-dimension, VH , of decision trees with height at most d in dim-dimensional data is
O
(
2d(d+ ln dim)

)
, as established in Leboeuf et al. (2020). Utilizing this, along with Theorem A.1,

we can achieve error bounds where UB(h)− LB(h) ≤ ϵ with the following number of samples:

O

(
1

ϵ2

(
2d(d+ ln dim) ln

1

ϵ
+ ln

1

δ

))
.

More specifically, using Lemma A.3 and Theorem A.1, we require:

256

ϵ2

(
20 · 2d(d+ log2 dim) ln

(
24

ϵ

)
+ ln

(
4

δ

))
samples.
Lemma A.3. Let H be a decision tree of height at most d, where each node uses one of dim ≥ 2
data dimensions. The VC dimension of H , VH , is at most 10 · 2d(d+ log2 dim).

Proof of Lemma A.3. Based on Leboeuf et al. (2020), the VC dimension VH satisfies VH ≤
max{m | (14m · dim)N ≥ 2m}, where dim is the number of dimensions and N is the number
of internal nodes. For a height d, N ≤ 2d − 1. Thus, VH ≤ max{m | (14m · dim)2

d−1 ≥
2m}. If (14m · dim)2

d ≥ 2m, we simplify by assuming m = 2d(d + log2 dim)c and get
14dim · 2d(d+ log2 dim)c ≥ 2(d+log2 dim)c. Dividing by 2d, we derive:

14dim(d+ log2 dim)c ≥ 2d(c−1)dimc.

For c = 10, this inequality fails, since

140dim(d+ log2 dim) ≥ 2h·(c−1)dimc = 2d·(c−1)dim + 2d·(c−1)(dimc − dim).

Here, log2 d < d and log2(140) < 8 ≤ 8d ≤ (c− 2)d, implying log2(140) + log2 d < d · (c− 1).
Therefore, 140d < 2d·(c−1). Adding dim to both sides gives:

140d · dim < 2d·(c−1)dim.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Since dim ≥ 2, and log2 dim < dim we get: log2 dim < dim(c−2)(dim − 1). Adding 140dim to
both sides and noting d ≤ dim we get

140dim log2 dim < 140dimc−1(d− 1) < 29dimc−1(dim− 1) ≤ 2d·9dimc−1(dim− 1) ≤
2d·(c−1)dimc−1(dim− 1) ≤ 2d·(c−1)dimc.

Hence:
14dim log2 dim · c < 2d·(c−1)dimc ⇒ VH ≤ 10 · 2d(d+ log2 dim).

B STUMP PROOFS

In this section, we present the proofs associated with Section 4.1, which pertain to Algorithm 1.
These include proofs of its correctness and label complexity. Additionally, we establish a lower
bound for the label complexity of any active learning algorithm.

We begin by proving that the loop in Algorithm 1 repeats at most log2(2n) times.

Lemma B.1. In the execution of Algorithm 1, we enter the loop at most log2(n) times.

Proof of Lemma B.1. At the start of the algorithm, we have Ri−Li = n, and this value is halved in
each iteration. When it reaches 1, the algorithm terminates—either by entering the If statement or
by reducing Ri − Li to 0. Therefore, the number of iterations is at most log2(2n).

To prove Theorem 4.2, we need to establish that all lower and upper bounds are valid during the
algorithm’s execution simultaneously with probability at least 1− δ.

Lemma B.2. In an execution of Algorithm 1, all estimated lower and upper bounds are valid with
probability at least 1− δ.

Proof of Lemma B.2. From Lemma B.1, we know that the bounds outside the If statement are evalu-
ated at most log2(2n) times. Each time, the bounds are correct with probability at least 1−δ′. Thus,
the probability of a bound being incorrect is less than δ′. Therefore, the probability of at least one
bound being incorrect is less than δ′ log2(2n). Using the definition of δ′, we know δ′ = δ

2 log2(2n)
,

so we have δ′ log2(2n) =
δ
2 .

Additionally, the bounds inside the If statement are evaluated only once, and the probability of them
being wrong is less than 1

2δ . Combining these two factors, the overall probability of any bound being
incorrect is less than δ.

Next, we must prove that the optimal classifier is never eliminated if all bounds are valid. This is
formalized in Lemma B.4, which builds upon Lemma B.3. Since we estimate the error using ran-
dom samples from the disagreement set rather than the entire dataset, we must first relate the error
of classifiers in the disagreement set to their overall error. Lemma B.3 establishes that the error rela-
tionship between two classifiers remains consistent across the disagreement set and the total dataset
if all the samples on which they disagree are contained within the disagreement set. Specifically, if
one classifier has a larger error within the disagreement set, it will also have a larger error on the
total dataset. Consequently, the optimal classifier within the disagreement set is guaranteed to be the
overall optimal classifier.

Lemma B.3. For two classifiers h1 and h2, if we have errS(h1) ≤ errS(h2), then for any subset of
samples S′ containing all samples where h1 and h2 disagree, i.e., {x ∈ S | h1(x) ̸= h2(x)} ⊆ S′,
we will have errS′(h1) ≤ errS′(h2).

Proof of Lemma B.3. Applying definition of err, to our assumption errS(h1) ≤ errS(h2), we have:∑
(x,y)∈S

I(h1(x) ̸= y) ≤
∑

(x,y)∈S

I(h2(x) ̸= y)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Now, splitting S into S′ and its complement S \ S′:∑
(x,y)∈S′

I(h1(x) ̸= y)+
∑

(x,y)∈S\S′

I(h1(x) ̸= y) ≤
∑

(x,y)∈S′

I(h2(x) ̸= y)+
∑

(x,y)∈S\S′

I(h2(x) ̸= y)

Since S′ contains all the samples where h1 and h2 disagree, the error on S \ S′ will be identical for
both classifiers. Therefore: ∑

(x,y)∈S′

I(h1(x) ̸= y) ≤
∑

(x,y)∈S′

I(h2(x) ̸= y)

Hence: errS′(h1) ≤ errS′(h2)

Lemma B.4. If all bounds in the execution of Algorithm 1 are valid, the algorithm will never elimi-
nate any optimal classifiers.

Proof of Lemma B.4. We prove by contradiction. Suppose that there exists an iteration i in which
an optimal classifier h∗ is eliminated, while all bounds are valid in that step. This implies that
h∗ ∈ [Li−1, Ri−1] but h∗ /∈ [Li, Ri]. Thus, we have:

LB(Si, h
∗, δ′) > min

h∈[Li−1,Ri−1]
UB(Si, h, δ

′)

Let h′ be the classifier such that: minh∈[Li−1,Ri−1] UB(Si, h, δ
′) = UB(Si, h

′, δ′) Then:
LB(Si, h

∗, δ′) > UB(Si, h
′, δ′).

Let S′ be the set of all samples in the range of valid classifiers, i.e., S′ = {X[Li−1,Ri−1]}. Since the
bounds are assumed to be correct, we know:

errS′(h∗) ≥ LB(Si, h
∗, δ′) > UB(Si, h

′, δ′) ≥ errS′(h′) (2)

Since both h∗ and h′ belong to the interval [Li−1, Ri−1], we know that [Li−1, Ri−1] contains all
the samples where h∗ and h′ disagree. Given that h∗ is the optimal classifier, we have: errS(h∗) ≤
errS(h′).

Using Lemma B.3, we conclude: errS′(h∗) ≤ errS′(h′). This contradicts Inequality 2. Thus, h∗

cannot be eliminated.

We now aim to demonstrate that classifiers far from h∗ have high error rates on X[Li,Ri], ensuring
they will be eliminated by h∗. This claim is formally established in Lemma B.5 below.
Lemma B.5. For all h ∈ [Li, Ri], in any iteration i, the following inequality holds:

errX[Li,Ri]
(h) ≥ |h− h∗|

Ri − Li + 1
− errX[Li,Ri]

(h∗),

Proof of Lemma B.5. We begin by recalling the definition of the error function errX[Li,Ri]
(h):

errX[Li,Ri]
(h) =

1

Ri − Li + 1

∑
j∈[Li,Ri]

I(h(Xj) ̸= Yj),

Without loss of generality, assume that h < h∗. This assumption allows us to focus on the data
points where h and h∗ make different predictions. h and h∗ differ in their predictions on samples
Xj , where h ≤ j < h∗. Also, let M denote the number of misclassifications made by both h and
h∗ outside the range [h, h∗), but in [Li, Ri]. Since h and h∗ behave identically on samples outside
the range [h, h∗), their misclassifications outside of the range are equivalent.

Thus, the error of h can be expressed as:

errX[Li,Ri]
(h) =

1

Ri − Li + 1

 ∑
j∈[h,h∗)

I(h(Xj) ̸= Yj) +M

 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Because h and h∗ make different predictions on Xj for j ∈ [h, h∗), we have:

errX[Li,Ri]
(h) =

1

Ri − Li + 1

(∑
j∈[h,h∗)

1− I(h∗(Xj) ̸= Yj)
)
+M

 .

Here,
∑

j∈[h,h∗) 1 counts the total number of samples in X[h,h∗), while
∑

j∈[h,h∗) I(h∗(Xj) ̸= Yj)

counts the number of misclassifications made by h∗. Simplifying further:

errX[Li,Ri]
(h) =

|h− h∗|
Ri − Li + 1

− 1

Ri − Li + 1

 ∑
j∈[h,h∗)

I(h∗(Xj) ̸= Yj) +M

+
2M

Ri − Li + 1
.

(3)

Given that M represents the number of misclassifications made by h∗ outside [h, h∗), the error of
h∗ can be expressed as:

errX[Li,Ri]
(h∗) =

1

Ri − Li + 1

 ∑
j∈[h,h∗)

I(h∗(Xj) ̸= Yj) +M

 .

Substituting this into Equality 3:

errX[Li,Ri]
(h) =

|h− h∗|
Ri − Li + 1

− errX[Li,Ri]
(h∗) +

2M

Ri − Li + 1
.

Since M > 0, it follows that:

errX[Li,Ri]
(h) ≥ |h− h∗|

Ri − Li + 1
− errX[Li,Ri]

(h∗).

This completes the proof of Lemma B.5.

We now prove that if the optimal classifier’s error is sufficiently low on X[Li−1,Ri−1], the algorithm
can successfully reduce the range [Li−1, Ri−1] to half its size in [Li, Ri].
Lemma B.6. There exist universal constants c1 and b1 such that in Algorithm 1, if at some iteration
i, errX[Li−1,Ri−1]

(h∗) ≤ 1
16 , then we have:

Ri − Li ≤
Ri−1 − Li−1

2
,

provided all lower and upper bounds are valid during the algorithm’s execution.

Proof of Lemma B.6. We aim to demonstrate that all classifiers with a distance greater than
Ri−1−Li−1

4 from h∗ will be eliminated by h∗ itself.

Define S′ as the set of all samples within the range of remaining classifiers in iteration i − 1, so
S′ = X[Li−1,Ri−1].

Given that errS′(h∗) ≤ 1
16 and by examining labels of c1 ln 1

δ′ + b1 samples, it follows from Ap-
pendix A.1 that for all h,

LB(Si, h, δ
′) ≤ errSi(h) ≤ UB(Si, h, δ

′), and UB(Si, h, δ
′)− LB(Si, h, δ

′) <
1

16
,

provided that
256(
1
16

)2 (2 ln(24) + ln(
4

δ′
)) ≤ c1 ln

1

δ′
+ b1.

which will be satisfied by large enough c1 and b1. Thus, for h∗, we have:

UB(Si, h
∗, δ′) < errS′(h∗) +

1

16
≤ 1

16
+

1

16
=

1

8
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Using Lemma B.5, it follows:

errS′(h) ≥ |h− h∗|
Ri−1 − Li−1 + 1

− errS′(h∗) >
1

4
− 1

16
=

3

16
.

Therefore,

LB(Si, h, δ
′) >

3

16
− 1

16
=

1

8
.

Hence, all classifiers h such that Ri−1−Li−1+1
4 ≤ |h − h∗| will be eliminated. From this, we

determine that Ri = max(Hi) < h∗ + Ri−1−Li−1+1
4 and Li = min(Hi) > h∗ − Ri−1−Li−1+1

4 .
Therefore, Ri − Li ≤ Ri−1−Li−1

2 .

Next, we demonstrate that if the algorithm enters the If statement and the optimal classifier has a
high error in the disagreement range [Li−1, Ri−1], the algorithm will produce a sufficiently accurate
classifier.

Lemma B.7. There exist universal constants c2 and b2 such that if, in Algorithm 1, we have

errX[Li−1,Ri−1]
(h∗) >

1

16
,

and the algorithm enters the If statement, It will return a classifier like h with

errS(h) ≤ (1 + ϵ)errS(h∗),

provided that all lower and upper bounds are valid during the algorithm’s execution.

Proof of Lemma B.7. When Algorithm 1 enters the If statement, it constructs the set S′, comprising:

c2
ϵ2

(
ln

(
1

δϵ

)
+ b2

)
random samples drawn from the interval X[Li−1,Ri−1].

Let h′ denote the classifier returned by the algorithm, i.e.,

h′ = arg min
h∈[Li,Ri]

UB(S′, h,
δ

2
).

From Appendix A.1, with sufficiently large c2 and b2, it follows that for all h ∈ [Li, Ri]:

UB(S′, h,
δ

2
) ≤ errX[Li−1,Ri−1]

(h) +
ϵ

16
.

Since h′ is chosen to minimize the upper bound, we know: UB(S′, h′, δ
2) ≤ UB(S′, h∗, δ

2). Thus:

errX[Li−1,Ri−1]
(h′) ≤ UB(S′, h′,

δ

2
) ≤ UB(S′, h∗,

δ

2
) ≤ errX[Li−1,Ri−1]

(h∗) +
ϵ

16
.

From the definition of the error metric err, we write:

1

Ri−1 − Li−1 + 1

∑
j∈[Li−1,Ri−1]

I(h′(Xj) ̸= Yj) ≤
1

Ri−1 − Li−1 + 1

∑
j∈[Li−1,Ri−1]

I(h∗(Xj) ̸= Yj)+
ϵ

16
.

Multiplying through by Ri−1 − Li−1 + 1, we obtain:∑
j∈[Li−1,Ri−1]

I(h′(Xj) ̸= Yj) ≤
∑

j∈[Li−1,Ri−1]

I(h∗(Xj) ̸= Yj) +
(Ri−1 − Li−1 + 1)ϵ

16
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Outside the interval [Li−1, Ri−1], h′ and h∗ behave identically. Let M denote the number of samples
they misclassify outside the interval [Li−1, Ri−1]. Adding M to both sides:

M +
∑

j∈[Li−1,Ri−1]

I(h′(Xj) ̸= Yj) ≤M +
∑

j∈[Li−1,Ri−1]

I(h∗(Xj) ̸= Yj) +
(Ri−1 − Li−1 + 1)ϵ

16
.

Thus, ∑
j∈S

I(h′(Xj) ̸= Yj) ≤
∑
j∈S

I(h∗(Xj) ̸= Yj) +
(Ri−1 − Li−1 + 1)ϵ

16
.

Dividing both sides by n, and using the definition of errS , we obtain:

errS(h′) ≤ errS(h∗) +
(Ri−1 − Li−1 + 1)

n

ϵ

16
. (4)

From the assumption that the error of h∗ on the interval [Li−1, Ri−1] is greater than 1
16 , we have:

1

16

Ri−1 − Li−1 + 1

n
≤ errS(h∗)⇒ (Ri−1 − Li−1 + 1)

n

ϵ

16
≤ errS(h∗)ϵ.

Using this inequality and substituting into Inequality 4, we find:

errS(h′) ≤ errS(h∗)(1 + ϵ).

Hence, the algorithm returns a classifier h′ that satisfies the desired error bound.

B.1 PROVING ALGORITHM 1 IS CORRECT

In this section we prove Algorithm 1 is correct, meaning it returns a (1 + ϵ)-approximate decision
stump with probability at least 1− δ.

Proof of Theorem 4.2. We start by noting that, by Lemma B.2, with probability at least 1 − δ, all
lower/upper bounds calculated during the execution of Algorithm 1 are valid. Furthermore, accord-
ing to Lemma B.4, if these bounds are valid throughout the execution, the optimal classifier will not
be eliminated at any point.

Thus, if the algorithm never enters the If statement, it will return the optimal classifier.

On the other hand, if the algorithm does enter the If statement, we can reason as follows: From
Lemma B.6, we know that entering the If statement implies that the error of the optimal classifier in
the interval [Li−1, Ri−1] is greater than 1

16 .

Furthermore, by Lemma B.7, we know that if the error of the optimal classifier in X[Li,Ri] exceeds
1
16 , then:

errS(h′) ≤ errS(h∗) · (1 + ϵ),

where h∗ is the optimal classifier and h′ is the returned classifier. This ensures that the classifier
returned by the algorithm is an acceptable approximation to the optimal classifier.

Thus, we have shown that the algorithm will always return an acceptable classifier, either by directly
outputting the optimal classifier or by returning a classifier with an error bounded by (1 + ϵ) times
the error of the optimal classifier.

B.2 ALGORITHM 1 LABEL COMPLEXITY

In this section we prove Theorem 4.1 which bounds the label complexity of Algorithm 1.

Proof of Theorem 4.1. By Lemma B.1, we know that the loop in Algorithm 1 will execute at most
log2 2n times. In each iteration, the algorithm queries at most the following number of labels:

c1 ln
1

δ′
+ b1 = c1 ln

(
2 log2 2n

δ

)
+ b1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

If the algorithm enters the If statement, it will check additional labels of size:

c2
ϵ2

(
ln

1

ϵδ
+ b2

)
.

Thus, the total number of label checks performed is bounded by the sum of the iterations:

log2 2n ·
(
c1 ln

(
2 log2 2n

δ

)
+ b1

)
+

c2
ϵ2

(
ln

1

ϵδ
+ b2

)
.

This expression simplifies to:

O

(
lnn

(
ln lnn+ ln

1

δ

)
+

ln 1
ϵδ

ϵ2

)
.

B.3 LOWER BOUND ON LABEL COMPLEXITY FOR ACTIVE LEARNING WITH STUMPS

In this subsection, we establish the tightness of the provided algorithm by deriving a lower bound
on the number of queries required for active learning with decision stumps, while ignoring logarith-
mic factors. Specifically, we present Theorem 4.3, which states that at least O

(
ln 1

δ

ϵ2

)
queries are

necessary to obtain a (1 + ϵ)-approximate decision stump with a probability greater than 1− δ.

Proof of Theorem 4.3. We proceed by applying a well-known result from statistics, which states the
following theoremKääriäinen (2006).

Theorem B.8. Given a biased coin with a head probability of either 1
2−λ or 1

2+λ, at least Ω
(

ln 1
δ

λ2

)
coin tosses are required to determine with probability at least 1 − δ which side the coin is biased
toward.

To prove Theorem 4.3, we will leverage Theorem B.8 and demonstrate that the problem of deter-
mining the bias of the coin can be reduces to active learning algorithm attempting to solve this
problem.

We proceed by contradiction. Assume there exists an algorithmA that returns a (1+ϵ)-approximate
classifier, where the classifier’s error rate is less than errS(h∗)(1+ ϵ) with probability at least 1− δ′,
using fewer than ln(1

δ′) ·
1
ϵ2 queries.

Now, consider a biased coin whose head probability is either 1
2 − λ or 1

2 + λ. We construct the
dataset D =

{
i
n

∣∣ 1 ≤ i ≤ n
}

and assign labels to it as following. For each data point, we toss the
coin and report a label of 0 if the coin lands heads, and 1 if it lands tails.

Claim B.9. If h∗ is the optimal stump classifier over D, for sufficiently large n we have

P

(
errS(h∗) ≤ 1

2
− λ

2

)
≥ 1− δ

3

Proof of Claim B.9. Without loss of generality, suppose the coin is biased toward heads, meaning
the labels are biased toward 0. Let h0 be the classifier that assigns 0 to all points (i.e., its threshold
is 1). Then:

errS(h∗) ≤ errS(h0) ⇒ P

(
errS(h∗) ≤ 1

2
− λ

2

)
≥ P

(
errS(h0) ≤

1

2
− λ

2

)
.

Since h0 misclassify all samples with label 1 and correctly classifies all samples with label 0, we
have errS(h0) =

1
n × number of labels 1.

The number of labels equal to 1 follows a Binomial distribution with parameters n and 1
2 − λ:

number of labels 1 ∼ Binomial(n,
1

2
− λ).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Therefore,

P

(
errS(h∗) ≤ 1

2
− λ

2

)
≥ P

(
errS(h0) ≤

1

2
− λ

2

)
= P

(
1

n
× Binomial(n,

1

2
− λ) <

1

2
− λ

2

)
.

We now bound the right-hand side using Chernoff’s inequality Bertsekas & Tsitsiklis (2008), which
implies:

P

(
Binomial(n,

1

2
− λ) < n

(
1

2
− λ

)(
1 +

λ

1− 2λ

))
≥ 1− exp

−
(

λ
1−2λ

)2
n
(
1
2 − λ

)
2 + λ

1−2λ

 .

By increasing n, we can make this probability greater than 1− δ
3 .

Now we apply algorithm A with parameters ϵ = λ
3 and δ′ = δ

3 to dataset D to classify based on its
labels.

Claim B.10. The algorithm A will return a classifier with error less than
(
1
2 −

λ
2

)
(1 + ϵ) with

probability at least 1− 2δ
3 .

Proof of Claim B.10. This follows from the B.9 that with probability at least 1 − δ
3 , we have

errS(h∗) ≤ 1
2 −

λ
2 , and the fact that algorithm A returns a classifier with error less than

errS(h∗)(1 + ϵ) with probability at least 1 − δ
3 . As a result, the error of the returned classifier

is less than
(
1
2 −

λ
2

)
(1 + ϵ) with probability at least

(
1− δ

3

)
·
(
1− δ

3

)
≥ 1− 2δ

3 .

Claim B.11. If the coin is biased toward heads (i.e., labels are biased toward 0), then for sufficiently
large n, all classifiers h with threshold less than 1

2 have error higher than(
1

2
− λ

2

)
(1 + ϵ) with probability at least 1− δ

3
.

Note that the similar statement holds for the case where the coin is biased toward tails as well.

Proof of Claim B.11. To prove this, we proceed as follows:

P

(
∃h≤ 1

2
: errS(h) ≤

(
1

2
− λ

2

)
(1 + ϵ)

)
≤
∑
h< 1

2

P

(
errS (h) ≤

(
1

2
− λ

2

)
(1 + ϵ)

)

Substituting λ = 3ϵ, we get:(
1

2
− λ

2

)
(1 + ϵ) =

1

2
− ϵ− 3

2
ϵ2 ≤ 1

2
− ϵ.

Thus,

∑
h< 1

2

P

(
errS (h) ≤

(
1

2
− λ

2

)
(1 + ϵ)

)
≤
∑
h< 1

2

P

(
errS (h) ≤ 1

2
− ϵ

)

For every h = i
n where i < n

2 , its probability term in the summation can be upper bounded as
follows. Let us define: Z := n(errS (h)) = li+ri, where li ∼ Bin(i, 1

2−λ), ri ∼ Bin(n−i, 1
2+λ).

Then we have:

P

(
errS (h) ≤ 1

2
− ϵ

)
= P

(
Z ≤ n(

1

2
− ϵ)

)
Using the multiplicative Chernoff lower bound Bertsekas & Tsitsiklis (2008) on the variable Z for

α = 1− n(
1
2−ϵ)

µZ
where µZ = i

(
1
2 − λ

)
+ (n− i)

(
1
2 + λ

)
= n

2 + λ
(
n− 2i

)
, this probability is

bounded as follows:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Pr[Z ≤ (1− α)µZ] ≤ exp
(
− 1

2 µZ α2
)
,

Substituting α and µZ will result in:

Pr
[
Z ≤ (1− α)µZ

]
= Pr

[
Z ≤ n(12 − ϵ)

]
≤ exp

(
− 1

2 µZ α2
)
= exp

(
−
(
µZ − n(12 − ϵ)

)2
2µZ

)

Using µz =
n

2
+ λ
(
n− 2i

)
:

exp

(
−
(
µZ − n(12 − ϵ)

)2
2µZ

)
= exp

(
−
n
[
λ
(
1− 2i

n

)
+ ϵ
]2

2[12 + λ
(
1− 2i

n

)
]

)
≤ exp(− n · ϵ2

2(12 + λ)
)

To summarize the result so far, we have proved that for every h ≤ 1
2 :

P

(
errS (h) ≤ 1

2
− ϵ

)
≤ exp(− n · ϵ2

2(12 + λ)
)

Finally, doing a summation over all h will get to:∑
h< 1

2

P

(
errS (h) ≤ 1

2
− ϵ

)
≤ n

2
exp(− n · ϵ2

2(12 + λ)
) ≤ δ

3

The last inequality holds for any sufficiently large n, because n
2 grows linearly but exp(− n·ϵ2

2(
1
2+λ)

)

decreases exponentially, making the entire term as small as desired.

Now, based on Claim B.10 the algorithm A returns a classifier with an error rate of less than(
1

2
− λ

2

)
(1 + ϵ)

with a probability greater than 1− 2
3δ. Moreover, based on Claim B.11 all classifiers on the wrong

side of 1
2 have an error greater than (12 −

λ
2)(1 + ϵ) with probability greater than 1− δ

3 . Thus, with
the probability at least (1− 2

3δ)(1−
δ
3) ≥ 1− δ, the returned hypothesis h can indicate whether the

coin is biased toward heads or tails, by choosing ”heads” if h > 1
2 and ”tails” if h ≤ 1

2 . However,

as established in Theorem B.8, any algorithm requires at least Ω(
ln(1

δ)
λ2) samples. Therefore, the

algorithm A needs at least:

Ω(
ln
(
3
δ

)
ϵ2

)

samples to achieve this.

C GENERAL BINARY CLASSIFICATION PROOFS

In this section, we provide the proofs corresponding to Section 4.3, where we extend our algorithm
to general binary classification tasks as described in Algorithm 2. The structure of the proofs closely
follows the approach in Appendix B.

To facilitate understanding the general classification algorithm, we first presented the case for
stumps. Table 1 outlines the correspondence between lemmas and theorems in the stump case and
their general binary classification counterparts.

We begin with the following lemma, which establishes that the maximum number of iterations in
the loop of Algorithm 2 is bounded by log2(2n).

Lemma C.1. Algorithm 2 will execute the loop at most log2 2n times.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 1: Correspondence between Stump and General Binary Classification results.

Description Stump Version General Binary Classification Version

Body section Section 4.1 Section 4.3
Proofs in Appendix Appendix B Appendix C

Algorithm Algorithm 1 Algorithm 2
Algorithm Correctness Theorem 4.2 Theorem 4.4

Time Complexity Theorem 4.1 Theorem 1.2
Number of Iterations Lemma B.1 Lemma C.1

Bounds Validity Lemma B.2 Lemma C.2
Error Comparison Lemma B.3 Lemma B.3

Optimal Classifier Not Eliminated Lemma B.4 Lemma C.5
Lower Bound Error with h∗ Lemma B.5 Lemma C.6

Low Optimal Error→ Reiterate Lemma B.6 Lemma C.7
High Optimal Error→ Correct Output Lemma B.7 Lemma C.8

Proof of Lemma C.1. Initially, we have r0 = 1. During each iteration, if the inequality ri >
ri−1

2
holds, the algorithm terminates immediately. Thus, for the loop to continue, it must be that ri ≤
ri−1

2 .

If at any point ri < 1
n , no two classifiers in the set Hi can disagree on any samples, leaving only a

single classifier to be considered. In this scenario, the algorithm will again conclude. Therefore, the
execution of the loop cannot surpass the threshold of iterations where ri becomes smaller than 1

n .

Consequently, the number of iterations required is at most:

1 + log2 n = log2 2n

We need to show that all lower and upper bounds are valid during the algorithm’s execution with
probability at least 1− δ, simultaneously.

Lemma C.2. In an execution of Algorithm 2, all estimated lower and upper bounds are valid with
probability at least 1− δ

Proof of Lemma C.2. From Lemma C.1, we know that the bounds outside the If statement are evalu-
ated at most log2(2n) times. Each time, the bounds are correct with probability at least 1−δ′. Thus,
the probability of a bound being incorrect is less than δ′. Therefore, the probability of at least one
bound being incorrect is less than δ′ log2(2n). Using the definition of δ′, we know δ′ = δ

2 log2(2n)
,

so we have δ′ log2(2n) =
δ
2 .

Additionally, the bounds inside the If statement are evaluated only once, and the probability of them
being wrong is less than 1

2δ . Combining these two factors, the overall probability of any bound being
incorrect is less than δ.

The following lemma establishes that if h∗ ∈ H ′, then H ′ ⊆ BH(h∗, 2radius(H ′)). Consequently,
this implies that during iteration i, when the radius is radius(Hi), all classifiers in Hi are at most a
distance of 2radius(Hi) from h∗.

Lemma C.3. If H ′ ⊆ BH(h, r) and h′ ∈ H ′, then H ′ ⊆ BH(h′, 2r).

Proof of Lemma C.3. We aim to show that BH(h, r) ⊆ BH(h′, 2r). Consider any h′′ ∈ BH(h, r).
By definition, we have: DS(h, h

′′) ≤ r which implies: r ≥ 1
n

∑
x∈S I(h(x) ̸= h′′(x)). Similarly,

since h′ ∈ BH(h, r), we have: DS(h, h
′) ≤ r, which implies: r ≥ 1

n

∑
x∈S I(h(x) ̸= h′(x)).

Adding these inequalities gives:

2r ≥ 1

n

∑
x∈S

(I(h(x) ̸= h′(x)) + I(h(x) ̸= h′′(x))) .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Notice that: I(h(x) ̸= h′(x)) + I(h(x) ̸= h′′(x)) ≥ I(h′(x) ̸= h′′(x)) Therefore, we have:
2r ≥ 1

n

∑
x∈S I(h′(x) ̸= h′′(x)). Thus, by definition of DS , we conclude: 2r ≥ DS(h

′, h′′)

Hence, any h′′ ∈ BH(h, r) is also in BH(h′, 2r).

The following lemma helps us relate DS(h, h
′) to DDIS(H′)(h, h

′). This relation is important be-
cause the final error is measured in S, but we randomly sample from DIS(H ′), which leads to bounds
on DDIS(H′).

Lemma C.4. If DS(h, h
′) ≥ r

2 for some r, and h, h′ ∈ H ′ where H ′ ⊆ BH(h, 2r), then

DDIS(H′)(h, h
′) ≥ nr

|BH(h, 2r)|
· 1
2
.

Proof of Lemma C.4. Given that all samples where h and h′ disagree are in DIS(H ′), the number of
disagreements in DIS(H ′) is equal to those in S. From the definition of DS and since all disagree-
ments are included, we know:

DDIS(H′)(h, h
′) =

1

|DIS(H ′)|
∑

x∈DIS(H′)

I(h(x) ̸= h′(x)) =
1

|DIS(H ′)|
∑
x∈S

I(h(x) ̸= h′(x))

Thus,

DDIS(H′)(h, h
′) =

|S|
|DIS(H ′)|

(
1

|S|
∑
x∈S

I(h(x) ̸= h′(x))

)
=

|S|
|DIS(H ′)|

DS(h, h
′)

By assumption DS(h, h
′) ≥ r

2 and since H ′ ⊆ BH(h, 2r), it follows:

DDIS(H′)(h, h
′) ≥ nr

|DIS(BH(h, 2r))|
· 1
2

The following lemma ensures that no optimal classifiers are eliminated if all bounds during the
algorithm’s execution are correct.
Lemma C.5. If all bounds during the execution of Algorithm 2 are valid, the algorithm will not
eliminate any optimal classifiers if all lower/upper bounds are valid.

Proof of Lemma C.5. We use a proof by contradiction. Suppose there is an iteration i where an
optimal classifier h∗ is eliminated despite all bounds being valid. This implies h∗ ∈ Hi but h∗ /∈
Hi+1, which means: LB(Si, h

∗, δ′) > minh∈Hi
UB(Si, h, δ

′). Suppose h′ achieves the minimum:
minh∈Hi

UB(Si, h, δ
′) = UB(Si, h

′, δ′). Thus, we have: LB(Si, h
∗, δ′) > UB(Si, h

′, δ′)

Let S′ = DIS(Hi). With the validity of bounds:

errS′(h∗) ≥ LB(Si, h
∗, δ′) > UB(Si, h

′, δ′) ≥ errS′(h′) (5)

Since h∗ is optimal, we know errS(h∗) ≤ errS(h′). From Lemma B.3, this implies: errS′(h∗) ≤
errS′(h′). This contradicts inequality 5, thus proving that an optimal classifier cannot be eliminated
if all bounds are valid.

The following lemma bounds the error of a classifier h based on its distance from the optimal clas-
sifier h∗ and the error of h∗. Specifically, it shows that if h is far from h∗ and h∗ has low error, the
error of h must be high, leading h to be eliminated.
Lemma C.6. For all h, h∗ ∈ H ′, the following inequality holds:

errDIS(H′)(h) ≥ DDIS(H′)(h, h
∗)− errDIS(H′)(h

∗).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof of Lemma C.6. From definition of the error function errDIS(H′)(h):

errDIS(H′)(h) =
1

|DIS(H ′)|
∑

j∈DIS(H′)

I(h(Xj) ̸= Yj),

Define S′ as the set of samples h and h∗ makes different predictions. So S′ = {x ∈ S | h(x) ̸=
h∗(x)}. Since all samples that h and h∗ makes different predictions are in DIS(H ′), S′ ⊆ DIS(H ′).
Assume h makes M misclassifications in DIS(H ′)/S′. Since h∗ behave identical to h on these
samples, h∗ also make M misclassifications in DIS(H ′)/S′.

Thus, the error of h can be expressed as:

errDIS(H′)(h) =
1

|DIS(H ′)|

∑
j∈S′

I(h(Xj) ̸= Yj) +M

 .

Because h and h∗ make different predictions on Xj for j ∈ S′, we have:

errDIS(H′)(h) =
1

|DIS(H ′)|

(∑
j∈S′

1− I(h∗(Xj) ̸= Yj)
)
+M

 .

Here,
∑

j∈S′ 1 counts the total number of samples in S′, while
∑

j∈S′ I(h∗(Xj) ̸= Yj) counts the
number of misclassifications made by h∗ in S′. Simplifying further:

errDIS(H′)(h) =
|S′|

|DIS(H ′)|
− 1

|DIS(H ′)|

∑
j∈S′

I(h∗(Xj) ̸= Yj) +M

+
2M

|DIS(H ′)|
. (6)

Given that M represents the number of misclassifications made by h∗ outside S′, the error of h∗ can
be expressed as:

errDIS(H′)(h
∗) =

1

|DIS(H ′)|

∑
j∈S′

I(h∗(Xj) ̸= Yj) +M

 .

Substituting this into Equality 6:

errDIS(H′)(h) =
|S′|

|DIS(H ′)|
− errDIS(H′)(h

∗) +
2M

|DIS(H ′)|
.

Since M > 0, it follows that:

errDIS(H′)(h) ≥
|S′|

|DIS(H ′)|
− errDIS(H′)(h

∗).

This completes the proof of Lemma C.6.

Having the above Lemmas in place we provide the two main following lemmas. The following
Lemma C.7 shows if the error of optimal classifier is low in DIS(Hi) the algorithm will reiterate the
for loop.

Lemma C.7. There exist universal constants c1, b1 such that for any iteration of Algorithm 2, if

errDIS(Hi)(h
∗) ≤ 1

16θ

then the radius(Hi+1) ≤ 1
2 radius(Hi), provided that all lower and upper bounds are valid during

the algorithm’s execution.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof of Lemma C.7. ri is defined as radius(Hi). Then using Lemma C.4 we know for all h ∈ Hi

that DS(h, h
∗) ≥ ri

2 we have DDIS(Hi)(h
∗, h) ≥ nri

|BH(h∗,2ri)| ·
1
2 . Using Lemma C.6 we know that

errDIS(H′)(h) ≥ DDIS(H′)(h, h
∗)− errDIS(H′)(h

∗),

plunging DDIS(H′)(h, h
∗) ≥ nri

|BH(h∗,2ri)| ·
1
2 and errDIS(H′)(h

∗) ≤ nr
|BH(h∗,2ri)| ·

1
16 we get,

errDIS(H′)(h) ≥
nri

|BH(h∗, 2ri)|
· 1
2
− nri
|BH(h∗, 2ri)|

· 1
16

=
nri

|BH(h∗, 2ri)|
· 7
16

.

Using definition of θ in Definition 3.3 we get

errDIS(H′)(h) ≥
7

16θ
.

From Theorem A.1 we know that if we have

|S′| = 64

(1
16θ)

2

(
2VH ln(12 · 16θ) + ln(

4

δ′
)

)
∈ O

(
θ2(VH ln(θ) + ln(

1

δ′
))

)
,

then errDIS(H′)(h)− LB(S′, h, δ′) ≤ 1
16θ Therefore LB(S′, h, δ′) ≥ 6

16θ

Similarly since we assumed errS′(h∗) ≤ 1
16θ , and we have UB(S′, h∗, δ′) ≤ errS′(h∗) + 1

16θ we
have UB(S′, h∗, δ′) ≤ 2

16 , therefore UB(S′, h∗, δ′) < LB(S′, h, δ′).

So there exist c1, b1 that all classifiers like h that DS(h, h
∗) ≥ ri

2 will be removed from the Hi thus,
radius(Hi+1) ≤ ri

2 .

Lemma C.8. There exist universal constants c2 and b2 such that for any iteration of Algorithm 2, if

errDIS(Hi)(h
∗) >

1

16θ
,

and the algorithm enters the If statement, it will return a classifier like h′ where
errS(h′) ≤ errS(h∗)(1 + ϵ),

provided that all lower and upper bounds are valid during the algorithm’s execution.

Proof of Lemma C.8. The Algorithm 2 will build a set S′ consists of
c2θ

2

ϵ2

(
VH ln

(
θ

ϵ

)
+ ln

1

δ

)
+ b2

random samples drawn from DIS(Hi).

From Theorem A.1 we know using 64
(ϵ
16θ)

2

(
2VH ln(12

ϵ
16θ

) + ln(4
δ
2

)
)

samples we get bounds such

that UB(S′, h, δ
2) ≤ errDIS(Hi)(h) +

ϵ
16θ for all h. Therefore, there exists universal c2 and b2 such

that this bound holds.

The Algorithm returns h′ = argminh∈Hi
UB(S′, h, δ

2). Therefore, we have errDIS(Hi)(h
′) ≤

errDIS(Hi)(h
∗) + ϵ

16θ . Given that errDIS(Hi)(h
∗) ≥ 1

16θ , we have

errDIS(Hi)(h
′) ≤ errDIS(Hi)(h

∗)(1 + ϵ). (7)

Since h′ ∈ Hi and h∗ ∈ Hi DIS(Hi) include all samples they label differently. Assume they
misclassify M samples in S/DIS(Hi).

errS(h∗) =
1

n

∑
(x,y)∈S

I(h∗(x) ̸= y)

=
1

n

 ∑
(x,y)∈DIS(Hi)/S

I(h∗(x) ̸= y) +
∑

(x,y)∈DIS(Hi)

I(h∗(x) ̸= y)


=

1

n
(M + |DIS(Hi)|errDIS(Hi)(h

∗))

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Multiplying both side by 1 + ϵ we get,

(1 + ϵ)errS(h∗) =
1

n

(
(1 + ϵ)M + (1 + ϵ)|DIS(Hi)|errDIS(Hi)(h

∗)
)

Since M ≥ 0

(1 + ϵ)errS(h∗) ≥ 1

n
(M + |DIS(Hi−1)|(1 + ϵ)errDIS(Hi−1)(h

∗)) (8)

Applying Inequality 7 to Inequality 8 we have

(1 + ϵ)errS(h∗) ≥ 1

n
(M + |DIS(Hi−1)|errDIS(Hi−1)(h

′)) = errS(h′)

Now lets proof Algorithm 2 correctness.

Proof of Theorem 4.4. First, in Lemma C.1, we establish that the loop in Algorithm 2 runs for at
most log2(2n) iterations. Using this result, we show in Lemma C.2 that all bounds are satisfied
with probability at least 1 − δ, ensuring that we can safely assume all lower and upper bounds
are valid during the algorithm’s execution. Next, we prove that the optimal classifier, h∗, is never
removed, as shown in Lemma C.5, assuming that all bounds hold. Then in Lemma C.7 we show that
if errDIS(Hi)(h

∗) ≤ 1
16θ then we will no go into the If statement. Finally in Lemma C.8 we show that

if errDIS(Hi)(h
∗) > 1

16θ and we do go into the If statement then the algorithm will return a (1 + ϵ)
classifier.

Proof of Theorem 1.2. Theorem 4.4 let us show that Algorithm 2 returns a (1 + ϵ)-approximate
classifier with probability greater than 1 − δ. For its label complexity, we apply Lemma C.1 to
show that the loop in the algorithm repeats at most log2 2n times, and since the If statement is
executed only once, the label complexity is bounded by ln(n) times O(θ2(VH ln θ + ln 1

δ′)) plus

O
(

θ2

ϵ2 (VH ln θ
ϵ + ln 1

δ)
)

. This concludes the proof of Theorem 1.2.

D DECISION TREE’S θ CALCULATION

As the first lemma, we prove that DIS can be expressed as a relationship between a single classifier
and the other classifiers in the disagreement set.

Lemma D.1. Assuming h ∈ H , we have

DIS(H) = {x | ∃h′∈H : h′(x) ̸= h(x)}.

Proof of Lemma D.1. From the definition, we have:

DIS(H) = {x | ∃h1, h2 ∈ H : h1(x) ̸= h2(x)}

If for some x, we have h1(x) ̸= h2(x), then either h(x) ̸= h1(x) or h(x) ̸= h2(x). Therefore, if
∃h1, h2 ∈ H : h1(x) ̸= h2(x), then ∃h′ ∈ H : h′(x) ̸= h(x).

Next, in the following Lemma, we build a connection between decision trees and line trees.

Lemma D.2. For any two decision trees h, h′ and any two leaves i, j such that lh,i ̸= lh′,j , if
Si = {x | LineTreeh,i(x) = lh,i}, then:

DSi
(LineTreeh,i, LineTreeh′,j) ≤ DSi

(h, h′)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Proof of Lemma D.2. If for some x we have LineTreeh′,j(x) = lh′,j , then h′(x) = lh′,j . Therefore:

{x ∈ Si | LineTreeh′,j(x) = lh′,j} ⊆ {x ∈ Si | h′(x) = lh′,j}

Since lh,i ̸= lh′,j , we have:

{x ∈ Si | LineTreeh′,j(x) ̸= lh,i} ⊆ {x ∈ Si | h′(x) ̸= lh,i}

Since x ∈ Si, we have LineTreeh,i(x) = lh,i. As a result h(x) = lh,i. Therefore:

{x ∈ Si | LineTreeh,i(x) ̸= LineTreeh′,j(x)} ⊆ {x ∈ Si | h(x) ̸= h′(x)}

Thus:
|{x ∈ Si | LineTreeh,i(x) ̸= LineTreeh′,j(x)}| ≤ |{x ∈ Si | h(x) ̸= h′(x)}|

Thus:
|Si|DSi

(LineTreeh,i,LineTreeh′,j) ≤ |Si|DSi
(h, h′)

Therefore:
DSi

(LineTreeh,i,LineTreeh′,j) ≤ DSi
(h, h′)

In the following Lemma we relate error of a classifier in the overall dataset to the error of the
classifier in a subset.
Lemma D.3. If S′ ⊂ S, then BS(h, r) ⊆ BS′(h, r |S|

|S′|).

Proof of Lemma D.3. Assume h′ ∈ BS(h, r). We will show h′ ∈ BS′(h, r |S|
|S′|). We have:

DS(h, h
′) ≤ r

Therefore:
|{x ∈ S | h(x) ̸= h′(x)}| ≤ r|S|

Since S′ ⊆ S:

|{x ∈ S′ | h(x) ̸= h′(x)}| ≤ |{x ∈ S | h(x) ̸= h′(x)}| ≤ r|S|

Therefore:
1

|S′|
|{x ∈ S′ | h(x) ̸= h′(x)}| ≤ r

|S|
|S′|

From definition of D right side is equal to DS′(h, h′), Thus:

DS′(h, h′) ≤ r
|S|
|S′|

Therefore:

h′ ∈ BS′(h, r
|S|
|S′|

)

To extend our analysis to line trees which we need for Theorem 1.1, we first introduce some key
definitions related to line trees.
Definition D.4. A line tree is a decision tree where for each node, at least one of its children is a
leaf, and all leaves except the deepest leaf assign the same label, while the deepest leaf assigns the
opposite label.
Definition D.5. If h is a line tree, then lh is the label that could be the deepest leaf label and is
different from the rest of the leaves’ labels.
Definition D.6. If h is a line tree, then dh ⊆ {1, 2, . . . , dim} is the set of dimensions that nodes in
the line tree decide based on.
Definition D.7. L is the set of all line trees with depth less than d where each node decides based
on a unique dimension. Ld′ is the set of all line trees with depth less than d and with dh = d′.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Definition D.8. For a line tree h ∈ Ld′ , we define a function fh : dh → {prefix, suffix}, where
fh(a) specifies the splitting behavior of h for each dimension a ∈ dh:

• fh(a) = prefix if samples x with xa less than a threshold are directed to the leaf with label
lh.

• fh(a) = suffix if samples x with xa greater than a threshold are directed to the leaf with
label lh.

Definition D.9. For a line tree h ∈ L, let ha
S denote the number of distinct values of xa for which

h(x) = lh′ . Formally:
ha
S = |{xa | x ∈ S ∧ h(x) = lh}|.

In the following theorem, we prove that the disagreement coefficient of a decision tree is O(lnd(n)),
assuming the input distribution is uniform-like and each node in a root to leaf path works with a
unique dimension.

Proof of Theorem 1.1. Assume we have chosen a tree h and we want to bound θh. This requires
bounding |DIS(BH(h,r))|

nr for all r. Using Lemma D.1, we have:

DIS(BH(h, r)) = {x | ∃h′ ∈ BH(h, r) : h′(x) ̸= h(x)}

Breaking this set based on the leaf x reaches in h, we get:

DIS(BH(h, r)) =

L⋃
i=1

{x | x reaches leaf i in h ∧ ∃h′ ∈ BH(h, r) : h′(x) ̸= h(x)}

Using the definition of a line tree, DIS(BH(h, r)) is equivalent to:
L⋃

i=1

{x | LineTreeh,i(x) = lh,i ∧ ∃h′ ∈ BH(h, r) : h′(x) ̸= h(x)}

Further splitting the set based on the dimension set of the leaf that x reaches in h′, DIS(BH(h, r))
is equal to:
L⋃

i=1

⋃
d′⊂{1,2,...,dim}

{x | LineTreeh,i(x) = li∧∃h′ ∈ BH(h, r), j : x reaches leaf j in h′∧h′(x) ̸= h(x)∧dh′,j = d′}

=

L⋃
i=1

⋃
d′⊂{1,2,...,dim}

{x | LineTreeh,i(x) = li∧∃h′ ∈ BH(h, r), j : LineTreeh′,j(x) = lh′,j∧h′(x) ̸= h(x)∧dh′,j = d′}

Let Si be the set of data points that reach leaf i in tree h. Formally, Si = {x | LineTreeh,i(x) = lh,i}.
Then we have:

DIS(BH(h, r)) ⊆
L⋃

i=1

⋃
d′⊂{1,2,...,dim}

{x ∈ Si | ∃h′ ∈ BH(h, r), j : LineTreeh′,j(x) = lh′,j∧h′(x) ̸= h(x)∧dh′,j = d′}

Using Lemma D.3, this is equal to:

=

L⋃
i=1

⋃
d′⊂{1,2,...,dim}

{x ∈ Si | ∃h′ ∈ BH,Si
(h, r

n

|Si|
), j : LineTreeh′,j(x) = lh′,j∧h′(x) ̸= h(x)∧dh′,j = d′}

Using the definitions of line trees, rather than first selecting a general decision tree h′ and sub-
sequently addressing one of its line trees, we can directly consider h′ as a line tree, significantly
simplifying the analysis.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Additionally, observe that if for some h′, j, we have DSi
(h, h′) ≤ r n

|Si| and lh,i ̸= lh′,j , then by
Lemma D.2, it follows that DSi(h,LineTreeh′,j) ≤ r n

|Si| . Consequently, we can further refine our
expression as:

DIS(BH(h, r)) ⊆
L⋃

i=1

⋃
d′⊂{1,2,...,dim}

{x ∈ Si | ∃h′ ∈ BLd′ ,Si
(h, r

n

|Si|
) : h′(x) = lh′∧h′(x) ̸= h(x)} ⊆

L⋃
i=1

⋃
d′⊂{1,2,...,dim}

{x ∈ Si | ∃h′ ∈ BLd′ ,Si(h, r
n

|Si|
) : h′(x) ̸= h(x)} =

Since we only focused on Si, and in Si h and LineTreeh,i behave similarly, we have:

L⋃
i=1

⋃
d′⊂{1,2,...,dim}

{x ∈ Si | ∃h′ ∈ BLd′ ,Si(LineTreeh,i, r
n

|Si|
) : h′(x) ̸= LineTreeh,i(x)}

Since h′ is a line tree and we only have LineTreeh,i, and in Si LineTreeh,i is an all-same classifier,

we can apply Proposition 3.5. Hence, the size of each of the inner sets is of O
(
|Si|r n

|Si| (3 lnw)
d
)

.

Since L ≤ 2d and d′ has
(dim

d

)
choices, the total size of DIS(BH(h, r)) is of:

|DIS(BH(h, r))| ≤ O

(
2d
(

dim
d

)
nr(3 lnw)d

)
= O

(
2d
(

dim
d

)
nr

(
3

dim
lnn

)d
)

≤ O

(
nr6d

dimd

d!

(
1

dim
lnn

)d
)

= O

(
nr

6d

d!
lnd n

)
≤ O

(
nr lnd n

)
Therefore:

θh(r) ∈ O
(
ln(n)d

)

We need the following Lemmas to prove Proposition 3.5.

Lemma D.10. Let h ∈ Ld′ be a line tree. Then:

|{x ∈ S | h(x) = lh}| =
∏
a∈d′

ha
S ·
∏
a/∈d′

wa,

where
S = {(a1, . . . , adim) | ∀i, ai ∈ N, ai ≤ wi ≤ w}.

Proof of Lemma D.10. For each dimension a ∈ d′, exactly ha
S of the possible values of xa are

directed to the leaf with label lh. By the definition of a line tree (Definition D.4 and Definition D.5),
if any xa does not lead to this leaf, the resulting label for h(x) will be 1− lh, since there is only one
leaf with the label lh in a line tree.

Given that S represents all possible points, and each combination of valid values of xa corresponds
to exactly one point in S, the number of points where h(x) = lh is the product of ha

S across all
dimensions a ∈ d′.

Thus:
|{x ∈ S | h(x) = lh}| =

∏
a∈d′

ha
S ·
∏
a/∈d′

wa.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Lemma D.11. Let h be a line tree with h(x) = lh. Then for any x′ satisfying:{
x′
a ≤ xa if fh(a) = prefix

xa ≤ x′
a if fh(a) = suffix

∀a ∈ dh,

we have h(x′) = lh.

Proof of Lemma D.11. We know that each node in h directs x toward the leaf labeled lh. We will
show that each node also directs x′ to the same child.

Consider a node working with dimension a ∈ dh.

• If fh(a) = prefix, then values lower than xa will also be directed toward the leaf labeled
lh. Since x′

a ≤ xa, x′ follows the same path as x.

• If fh(a) = suffix, then values greater than xa will also be directed toward the leaf labeled
lh. Since xa ≤ x′

a, x′ follows the same path as x.

Therefore, in all nodes, x′ follows the same path as x, and hence acquires the same label lh.

Lemma D.12. The number of sequences of the form ⟨x1, x2, . . . , xk⟩ such that ∀1≤i≤k : xi ∈ N,
∀1≤i≤k : xi ≤ wi, and

∏
1≤i≤k xi ≤ s is less than s

∏
2≤i≤k ln(wi) + 1.

Proof of Lemma D.12. We will use induction to prove this lemma. Let g(s, k, w) denote the number
of such sequences.

Base Case: For k = 1, the theorem is obvious since there are only s possible sequences.

Inductive Step: Assume the theorem holds for any s and k = k0. We need to prove it for k = k0+1.

Consider the possible values of xk0+1. We have:

g(s, k0 + 1, w) =
∑

1≤i≤wk0+1

g
(s
i
, k0, w

)

By the induction hypothesis, this sum is less than:

≤
∑

1≤i≤wk0+1

s

i

∏
2≤j≤k0

ln(wj) + 1

 = s

 ∏
2≤j≤k0

ln(wj) + 1

 ∑
1≤i≤wk0+1

1

i

Using the harmonic series approximation,
∑

1≤i≤wk0+1

1
i ≤ ln(wk0+1) + 1, we have:

≤ s

 ∏
2≤j≤k0

ln(wj) + 1

 (ln(wk0+1) + 1) = s
∏

2≤j≤k0+1

ln(wj) + 1

This completes the induction step, and thus the lemma is proved.

In the following Proposition we show that the disagreement coefficient of a line tree that assigns 0
to all samples is of O(lnd w) among line trees.

Proof of Proposition 3.5. Assume a line tree h ∈ Ld′ that assigns the same label to all data points.

Without loss of generality, assume this label is 0. We want to bound θ(h) = supr
|DIS(BL

d′
(h,r))|

nr .
Fixing r, from Lemma D.1, we have:

|DIS(BLd′ (h, r))| = {x | ∃h
′ ∈ BLd′ (h, r) : h

′(x) ̸= h(x)} = {x | ∃h′ ∈ BLd′ (h, r) : h
′(x) = 1}

Defining F as the set of all possible functions fh′ (See Definition D.8), we have |F | = 2|d
′|. We

break DIS(BL(h, r)) based on fh′ :

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

DIS(BL(h, r)) =
⋃
f∈F

{x | ∃h′ ∈ BLd′ (h, r) ∧ fh′ = f : h′(x) = 1}

If we define

Af,l := {x | ∃h′ ∈ BLd′ (h, r) ∧ fh′ = f ∧ lh′ = l : h′(x) = 1}

Then we have
DIS(BL(h, r)) =

⋃
f∈F

Af,0 +Af,1

Therefore,
|DIS(BL(h, r))| ≤

∑
f∈F

|Af,0|+ |Af,1| (9)

We bound size of Af,0 and Af,1 separately.

Bounding the Size of Af,0

We aim to bound the cardinality of the following set:

Af,0 =
{
x
∣∣ ∃h′ ∈ BLd′ (h, r), fh′ = f, lh′ = 0 : h′(x) = 1

}
. (10)

Recall that BLd′ (h, r) denotes the ball of radius r around h within the class of Line Trees of depth
at most d′.

Because h′ ∈ BLd′ (h, r), it follows that D(h, h′) ≤ r, meaning that h′ differs from h on at most an
r fraction of the n total points. Since the original classifier h assigns label 0 to every point, h′ can
label at most nr points as 1. Equivalently,

|{x | h′(x) = 1}| ≤ nr ⇒ |{x | h′(x) = 0}| ≥ n(1− r).

From Lemma D.10, the number of points classified as 0 by h′ can be expressed as:

n(1− r) ≤ |{x | h′(x) = 0}| =
∏
a∈d′

h′a ·
∏
a/∈d′

wa,

where wa is the width in dimension a.

Now, consider a point x that is labeled 1 by h′. By the structure of the tree, since lh′ = 0 there
must exist a node corresponding to a dimension b ∈ d′ that routes x contrary to the main path. Note
that th′,b denotes the threshold applied to dimension b. Samples with xb ≤ th′,b are directed to the
left child, while those with xb > th′,b are routed to the right child. So to bound the Size of Af,0

we future break the set (Equation 10) based on dimension of the node that sample x leave the path
toward lh = 0. Assuming this is dimension b, we consider two cases, depending fh′(b):

• fh′(b) = prefix

Here, h′b = th′,b − 1, and h′(x) = 1 only if th′,b ≤ xb. Therefore,∏
a/∈d′

wa

∏
a∈d′

h′a ≤ (xb − 1)
∏
a/∈d′

wa

∏
a∈d′\{b}

h′a.

Since for all a ∈ d′ \ {b}, h′a ≤ wa, and
∏dim

a=1 wa = n, we have
∏

a/∈d′ wa ·∏
a∈d′\{b} wa = n

wb
.. Putting it all together, we have

n(1− r) ≤ (xb − 1)
n

wb

which rearranges to
wb(1− r) + 1 ≤ xb.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Thus, for fixed b, the number of possible values for xb is at most

wb − (wb(1− r) + 1) + 1 = wbr,

and, for each fixed b, the number of possible x is

wbr
∏

a∈d′/{b}

wa

∏
a/∈d′

wa = nr.

• fh′(b) = suffix

Now, h′b = wb − th′,b + 1, and for h′(x) = 1, we require xb < th′,b, so

h′b ≤ wb − xb.

Therefore, ∏
a/∈d′

wa

∏
a∈d′

h′a ≤ (wb − xb)
∏
a/∈d′

wa

∏
a∈d′\{b}

wa.

By using the same bounding and product arguments as above,

n(1− r) ≤ (wb − xb)
n

wb

which simplifies to
xb ≤ wbr.

Thus, there are at most wbr such xb, yielding at most nr points in total for a fixed b.

Across all possible choices of b ∈ d′, the total number of such points x is at most∑
b∈d′

nr = nr|d′| ≤ nr · d

where d is the depth of the Line Tree, i.e., |d′| ≤ d.

Thus,
|Af,0| ≤ dnr.

Bounding the Size of Af,1

We aim to bound the cardinality of the following set:

Af,1 =
{
x | ∃h′ ∈ BLd′ (h, r), fh′ = f, lh′ = 1 : h′(x) = 1

}
.

According to Lemma D.11, if x is classified as 1 by a line tree h′ with parameters fh′ and lh′ = 1,
then every point x′ satisfying the following will also be classified as 1 by h′:

{
x′
a ≤ xa if fh′(a) = prefix

xa ≤ x′
a if fh′(a) = suffix

∀a ∈ dh′ ,

we have h(x′) = lh. This describes a corner-aligned box in the input space whose size depends on
x and the direction assignments fh′ .

To express the size of the box leading to 1 under h′, define

xa =

{
xa if fh′(a) = prefix,

wa − xa + 1 if fh′(a) = suffix,
∀a ∈ dh′ .

By this definition, for each x that is classified as 1, the region of points labeled 1 under h′ contains
at least

∏
a/∈d′ wa

∏
a∈d′ xa distinct data points.

Since all such h′ under consideration are within distance r from h, which labels all points as 0, the
number of points for which h′ differs from h (i.e. the number of points classified as 1 by h′) is at

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

most nr. That is,
∑

x∈S I (h′(x) = 1) ≤ nr. Therefore, for any x such that h′(x) = 1, the box it
produce as above must satisfy ∏

a/∈d′

wa

∏
a∈d′

xa ≤ nr.

For a fixed assignment of fh′ , values for dimensions a ∈ d′ is uniquely determined by the tuple
{xa : a ∈ d′}; that is, knowing these values and the directions and xa for a /∈ d′ fixes x.

We now seek to bound the number of tuples (xa)a∈d′ such that
∏

a∈d′ xa ≤ nr, with each xa an
integer in [1, wa].

By Lemma D.12, the number of integer tuples (xa)a∈d′ that satisfy
∏

a/∈d′ wa

∏
a∈d′ xa ≤ nr ⇒∏

a∈d′ xa ≤ nr 1∏
a/∈d′ wa

is at most

nr
1∏

a/∈d′ wa

∏
a∈d′

ln(wa) + 1 ≤ nr
1∏

a/∈d′ wa
(1 + lnw)d.

Since the number of ways we can fix xa for a /∈ d′ is,
∏

a/∈d′ wa we have:

|Af,1| ≤ nr (lnw + 1)d.

Combining two above cases

Combining two above cases and Equation 9, we have

|DIS(BL(h, r))| ≤
∑
f∈F

|Af,0|+ |Af,1| ≤
∑
f∈F

nrd+ nr(lnw + 1)d ≤ 2d · nr(d+ (lnw + 1)d)

Therefore
θh ≤ 2d(d+ (ln(w) + 1)d) = (2 ln(w) + 2)d + 2dd

For d ≥ 2 and w ≥ 8 this is of
θh ≤ O

(
(3 lnw)d

)

D.1 PROOF OF COROLLARY 1.3

Proof of Corollary 1.3. Using the calculated disagreement coefficient of decision trees in Theo-
rem 1.1 which is ln(n)d and VH of decision tree in Lemma A.3 which is 2d(d + ln dim), we can
plug in these values to Theorem 1.2 which results in

ln(n) ln(n)2d
(
2d(d+ ln dim)d ln lnn+ ln

lnn

δ

)
+

ln(n)2d

ϵ2

(
2d(d+ ln dim) ln

ln(n)d

ϵ
+ ln

1

δ

)
This is of

O

(
ln2d+2(n)

(
2d(d+ ln dim)d+ ln

1

δ

)
+

ln2d(n)

ϵ2

(
2d(d+ dim) ln

lnd(n)

ϵ
+ ln

1

δ

))

D.2 NECESSITY OF ASSUMPTIONS PROOFS

In this section, we provide the proofs from Section 3.3. Specifically, we first prove that if nodes are
allowed to work on the same dimension as one of their ancestors, the disagreement coefficient is of
Ω(n1/dim)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

c ≤ xa

0 c+ 1 ≤ xa

1 0

No Yes

No Yes

Figure 2: A decision tree that assigns label 1, if and only if xa = c.

Proof of Theorem 3.6. We aim to construct a depth-2 decision tree that assigns label 1 to a point
x ∈ Rdim if and only if xa = c, for some fixed dimension a and constant c ∈ R. The structure of
such a tree is shown in Figure 2, where the root node checks whether xa ≥ c and the second node
checks whether xa < c + 1. Because both comparisons involve only the a-th coordinate, the tree
assigns label 1 exactly to the inputs x satisfying xa = c, and label 0 otherwise.

Let X ⊂ Rdim be a dataset of size n, and let the reference classifier h0 be the constant-zero function.
Consider the hypothesis ball BH(h0, r) of radius r = 2 · n−1/dim, which includes all classifiers that
differ from h0 on at most 2 · n1−1/dim datapoints.

Fix a dimension a ∈ [dim]. For each value c that appears in the a-th coordinate of the dataset, define
the set (or ”row”) Ra

c := {x ∈ X | xa = c}. If |Ra
c | ≤ 2 · n1−1/dim, then the decision tree shown in

Figure 2 labels only the points in Ra
c as 1, and all others as 0. Such a classifier differs from h0 on at

most 2 · n1−1/dim points and therefore lies in BH(h0, r). Consequently, all points in such a row Ra
c

lie within the disagreement region DIS(BH(h0, r)). We call such rows light rows.

Rows Ra
c for which |Ra

c | > 2 ·n1−1/dim are called heavy rows. We now upper-bound the number of
heavy rows per dimension. Since each heavy row contains more than 2 · n1−1/dim points, their total
number for a fixed dimension a is at most:

n

2 · n1−1/dim =
1

2
n1/dim.

A point x ∈ X can be excluded from the disagreement region only if it lies in a heavy row for every
dimension. Formally, we have:

x /∈ DIS(BH(h0, r)) ⇒ ∀a ∈ [dim], ∃c such that x ∈ Ra
c and |Ra

c | > 2 · n1−1/dim.

Since there are at most 1
2n

1/dim heavy rows in each dimension, the number of points that lie in a
heavy row for all dim dimensions is at most:(

1

2
n1/dim

)dim

=
n

2dim .

Thus, at least

n− n

2dim =
2dim − 1

2dim n

points belong to the disagreement region:

|DIS(BH(h0, r))| ≥
2dim − 1

2dim n.

The disagreement coefficient at radius r = 2 · n−1/dim is therefore lower bounded by:

θ ≥ θh0
≥ |DIS(BH(h0, r))|

rn
≥

2dim−1
2dim n

2n1−1/dim =
2dim − 1

2dim+1
n1/dim = Ω(n1/dim).

This completes the proof.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

c ≤ x1

0 c+ 1 ≤ x2

1 0

No Yes

No Yes

Figure 3: A decision tree assigning label 1 only to Xc when Xi = ⟨i, i, · · · , i⟩.

Next we show that if there is no assumption on input dataset then, the disagreement coefficient is of
Ω(n).

Proof of Theorem 3.7. Consider the dataset X = {Xi = (i, i, . . . , i) ∈ Ndim | i = 1, . . . , n}, where
all data points lie along the diagonal line x1 = x2 = · · · = xdim. Let the reference classifier h0 be
the constant-zero classifier, i.e., h0(x) = 0 for all x ∈ X .

Let r = 1
n . The hypothesis ball BH(h0, r) contains all decision tree classifiers h′ such that h′ differs

from h0 on at most one point. Since each point Xi is distinct and isolated, we can construct a tree
hi ∈ BH(h0, r) that outputs hi(Xi) = 1 and hi(x) = 0 for all x ̸= Xi.

To isolate a specific point Xc = (c, c, . . . , c) in the dataset, it is sufficient to use a decision tree of
depth two that queries only the first two coordinates. This construction is illustrated in Figure 3.

The tree works as follows:

1. The root node tests whether x1 ≥ c.

2. If not, the label is 0.

3. Otherwise, the second node checks whether x2 < c+ 1.

4. If this is true, the label is 1; otherwise, the label is again 0.

Because each Xi lies along the diagonal (i.e., x1 = x2 = · · · = xdim = i), this tree correctly
assigns label 1 only to the point Xc, and label 0 to all other Xi. Thus, even under the structural
constraint that no dimension repeats along a path, we can construct such an isolating tree using only
two features.

Hence, for every point Xi, there exists hi ∈ BH(h0, r) such that hi(Xi) ̸= h0(Xi), which implies
that every point Xi lies in the disagreement region:

DIS(BH(h0, r)) = {x ∈ X | ∃h′ ∈ BH(h0, r) s.t. h′(x) ̸= h0(x)} = X.

Therefore,

|DIS(BH(h0, r))| = n, and r =
1

n
,

so the disagreement coefficient is at least

θh0
= sup

r>0

|DIS(BH(h0, r))|
rn

≥ n

(1/n) · n
= n.

This proves that the disagreement coefficient θ = suph∈H θh satisfies θ = Ω(n).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

D.3 RELAXING UNIFORMITY ASSUMPTION

In this section, we provide the method by which we relax the assumption of uniformity among sam-
ples. As outlined in the main body of the paper, we assign to each sample an importance measure,
denoted as 1 ≤Wi ≤ λ. In this context, we evaluate the classifier’s error using the formula:

errWX (h) =

∑n
i=1 I(h(Xi) ̸= Yi)Wi∑n

i=1 Wi
.

We further define the distance between two classifiers in this weighted context with the following
expression:

DW (h1, h2) =

∑n
i=1 WiI(h1(Xi) ̸= h2(Xi))∑n

i=1 Wi
.

. Similarly, the ball r of classifiers within around a given classifier h is defined as:

BW
H (h, r) = {h′ ∈ H | DW (h, h′) ≤ r}.

Similarly, the disagreement coefficient θWh of classifier h is defined as:

θWh = sup
0<r

∑
i∈DIS(BW (h,r)) Wi

r
∑n

i=1 Wi
,

The following theorem establishes a bound on the disagreement coefficient for the weighted case,
showing that it is at most λ2 times the disagreement coefficient for the unweighted case.
Theorem D.13. In any classification task where 1 ≤ Wi ≤ λ for all i, the disagreement coefficient
θWh is at most λ2 times the disagreement coefficient θh in the case where all samples have equal
weight.

The proof of Theorem D.13 leverages the relationship between the weighted and unweighted dis-
tances between classifiers. Specifically, we show that the weighted distance DW is bounded by λ
times the unweighted distance D, i.e.,

DW (h1, h2) ≤ λD(h1, h2)

This relationship implies that the set of classifiers BW
H (h, r) that are within a distance r of classifier

h in the weighted case is a subset of the corresponding set in the unweighted case, BH(h, rλ).
Therefore,

BW
H (h, r) ⊆ BH(h, rλ)

which helps us prove the theorem.

Proof of Theorem D.13. We aim to prove that for any classifier h and radius r:

λ2 |DIS(BH(h, rλ))|
n(rλ)

≥
∑

i∈DIS(B∗
H(h,r)) Wi

r
∑

i Wi

First, consider any two classifiers h1 and h2. The weighted distance D∗(h1, h2) is given by:

D∗(h1, h2) =

∑
i WiI(h1(Xi) ̸= h2(Xi))∑

i Wi

Since Wi ≤ λ, we have:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

D∗(h1, h2) ≤ λ

∑
i I(h1(Xi) ̸= h2(Xi))∑

i Wi

Given 1 ≤Wi, this further simplifies to:

D∗(h1, h2) ≤ λ

∑
i I(h1(Xi) ̸= h2(Xi))

n
= λD(h1, h2)

From this, we observe that if D∗(h1, h2) ≤ r, then D(h1, h2) ≤ λr. Therefore:

B∗
H(h, r) ⊆ BH(h, rλ)

Given this inclusion, we have:∑
i∈DIS(B∗

H(h,r)) Wi

r
∑

i Wi
≤
∑

i∈DIS(BH(h,λr)) Wi

r
∑

i Wi

Since 1 ≤Wi ≤ λ, it follows that:

∑
i∈DIS(BH(h,λr)) Wi

r
∑

i Wi
≤ λ

∑
i∈DIS(BH(h,λr)) 1

rn
= λ
|DIS(BH(h, λr))|

rn
= λ2 |DIS(BH(h, λr))|

(rλ)n

Therefore:

θ∗h = sup
0<r

∑
i∈DIS(B∗

H(h,r)) Wi

r
∑

i Wi
≤ λ2 sup

0<r

|DIS(BH(h, λr))|
(rλ)n

= λ2θh

This completes the proof.

E ADDITIVE ALGORITHMS ARE INSUFFICIENT IN MULTIPLICATIVE
SETTINGS

In this section, we examine why additive algorithms are fundamentally inadequate for multiplicative
error settings. We outline two high-level approaches that one might consider when adapting additive
algorithms for multiplicative guarantees, and demonstrate the inherent limitations of both.

• Estimating the Optimal Error Rate (Without Output Verification): A natural idea is
to first estimate the optimal classifier’s error, say to within a constant factor (for example,
a 2-approximation), and then use this estimate as a baseline for additive algorithms. This
strategy implicitly assumes either prior knowledge of or access to a tight estimate of the
minimal achievable error. However, even if the optimal classifier is known, estimating
its error rate η to within a multiplicative factor of 2 with confidence 1 − δ requires at
least 1

η ln 1
δ samples. Since η is unknown in practice—and, crucially, should not appear

in the label complexity of the final algorithm—this approach cannot yield a label-efficient
algorithm for general η.

• Verifying the Error Rate By Iterative Refinement: Alternatively, one can attempt to
iteratively refine the estimate of the optimal error. For instance, starting with a guess of
η = 1/2, run the additive algorithm with ϵ′ = ϵ · 1/2. If this fails to yield the desired
error guarantee, halve the estimate (η = 1/4, ϵ′ = ϵ · 1/4), and continue. This approach
necessitates verifying, at each step, whether the returned classifier meets the guarantee
err(h) ≤ η+ ϵ′. Such verification also requires O

(
ln(1/δ)

η

)
labeled examples per attempt.

As before, the unknown and potentially small value of η causes the total label complexity
to depend inversely on η, which is unacceptable in settings where η is not known.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Both approaches—either without verification (relying on an accurate guess of η), or with verifica-
tion (iteratively guessing and checking)—face the same fundamental barrier: The number of labeled
examples needed to estimate or verify small error rates scales inversely with the (unknown) true er-
ror η. Because any algorithm that hopes to achieve a multiplicative error guarantee must operate
efficiently even when η is small and unknown, this unavoidable dependence is fatal. As a result,
additive algorithms and their naive adaptations cannot provide effective or label-efficient solutions
in the multiplicative error regime.

F EMPIRICAL BEHAVIOR OF ALGORITHM CONSTANTS

(a) Success rate grid for c1 = 3, b1 = 3 (b) Success rate grid for c2 = 10, b2 = 10

Figure 4: Comparison of success rate grids for various (c1, b1, c2, b2) parameterizations when run-
ning Algorithm 1 with δ = 0.1 (expected success rate > 90%). For each cell we run Algorithm 1
on a fixed randomly generated dataset for 50 times and calculate the success rate. evidence suggests
setting each of these constants to 3 is typically sufficient for reliable algorithm performance.

We conducted experiments to assess the effect of algorithmic constants c1, b1, c2, and b2 in practical
scenarios. Our key findings indicate that these constants can be set to relatively small values without
adversely affecting the performance or correctness guarantees of Algorithm 1. In particular, we
observed that values as low as 3 for c1, c2, b1 and b2 are sufficient in practice, despite theoretical
analysis suggesting much larger values.

Additional experimental results, code and full raw data are available via our anonymous Dropbox
link: http://bit.ly/458BSlr. Notably, our empirical results suggest that c1 and b1 have a
larger impact on algorithm success rates compared to c2 and b2.

Experimental setup:

• Sample size: n = 107

• The optimal classifier was selected uniformly at random
• Labels were assigned according to the optimal classifier with independent label noise of
0.1

• Algorithm 1 was executed with δ = ϵ = 0.1

• Each configuration of (c1, b1, c2, b2) was tested in 50 independent trials
• A configuration was considered successful if the success rate exceeded 1− δ = 0.9

• Each experiment was ran on a single CPU core. Each setup takes 1 min to complete.

40

http://bit.ly/458BSlr

	Introduction
	Related Works
	Disagreement Coefficient in Decision Trees
	Formal Definitions
	An Upper Bound for Decision Trees
	Necessity of Assumptions
	Relaxing the Uniformity Assumption

	A Multiplicative-Error-Bound Active Learning Algorithm
	The Decision Stump Case
	Lower Bound
	Generalization to Arbitrary Classifiers

	Conclusion
	Calculation of Error Bounds
	Stump
	Decision Tree

	Stump Proofs
	Proving Algorithm 1 is correct
	Algorithm 1 label complexity
	Lower Bound on Label Complexity for Active Learning with Stumps

	General Binary Classification Proofs
	Decision Tree's Calculation
	Proof of Corollary 1.3
	Necessity of Assumptions Proofs
	Relaxing Uniformity Assumption

	Additive Algorithms Are Insufficient in Multiplicative Settings
	Empirical Behavior of Algorithm Constants

