
Continuous Language Model Interpolation for
Dynamic and Controllable Text Generation

Sara Kangaslahti
Harvard University

sarakangaslahti@g.harvard.edu

David Alvarez-Melis
Harvard University

dam@seas.harvard.edu

Abstract

As large language models (LLMs) have gained popularity for a variety of use
cases, making them adaptable and controllable has become increasingly important,
especially for user-facing applications. While the existing literature on LLM
adaptation primarily focuses on finding methods that optimize over a fixed set of
attribute classes, here we focus on the challenging continuous case where the model
must dynamically adapt to diverse —and often changing— user preferences within
predefined attribute ranges. For this, we leverage adaptation methods based on
linear weight interpolation, casting them as continuous multi-domain interpolators
that produce models with specific prescribed generation characteristics on-the-fly.
Specifically, we use low-rank updates to fine-tune a base model to various different
domains, yielding a set of anchor models with distinct generation profiles. Then, we
use the weight updates of these anchor models to parametrize the entire (infinite)
class of models contained within their convex hull. We empirically show that
varying the interpolation weights yields predictable and consistent change in the
model outputs with respect to all of the controlled attributes. We find that there
is little entanglement between most attributes. Our results suggest that linearly
interpolating between the weights of fine-tuned models facilitates predictable, fine-
grained control of model outputs with respect to multiple stylistic characteristics
simultaneously.1

1 Introduction

Large language models (LLMs) are used for a diverse set of applications due to their high performance
across a wide spectrum of tasks [Bubeck et al., 2023]. In many common LLM use cases (such as
chatbots), different users often have distinct and continuously evolving preferences for the type of
output they want. For example, a user might want a creative and verbose response for certain queries,
but a concise and precise response for others. In practice, a user may try different variations of
the same query successively until they elicit a desired generation. This trial-and-error process can
be time-consuming and lacks guaranteed results, especially since minor word changes in a prompt
can have disproportionate impact on the output. Additionally, expressing fine-grained continuous
preferences (e.g., simplifying a response by 25%) is often difficult in —inherently discrete— natural
language. These challenges are exacerbated when the user has complex, multi-faceted preferences
(e.g., a specific combination of simplicity, formality, and verbosity) that they expect the generation
to satisfy all at once. As a result, there is a pressing need for methods that allow for fine-grained
and predictable control over LLM text generation, and which can adapt on-the-fly to mutable user
preferences and constraints.

Prior work in controllable text generation (CTG) has largely focused on optimizing for one set of
control criteria through techniques such as instruction tuning [Zhou et al., 2023], modifying the output
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Figure 1: Overview of our continuous model interpolation framework. Given a collection of
‘anchor’ models fine-tuned on datasets at opposite ends of an attribute spectrum (e.g., θ+i: positive
and θ−i: negative sentiment) for N different attributes, the user selects interpolation parameters α
(per-attribute spectrum modulation) and λ (attribute mixture weights), which are used to generate
a model with weights θα,λ tailored to that specific parameter choice. This framework allows for
any such interpolating model to be created on-the-fly and without additional fine-tuning, providing
efficient, dynamic, and fine-grained generation control.

probability distributions [Pascual et al., 2021, Yang and Klein, 2021, Dekoninck et al., 2024], changing
model activations at inference time [Li et al., 2023], learning modifications to the embeddings [Li
and Liang, 2021, Han et al., 2023], or training [Keskar et al., 2019, Krause et al., 2021]. The vast
majority of these methods, however, are not parametrized continuously and instead require a fixed
set of controls criteria. Thus, to achieve fine-grained control in the range between different attribute
classes, they would have to be individually applied to each specific set of intermediate attribute values,
which is prohibitively expensive over a continuous range. Similarly, while fine-tuning models with
data that contains a proportionate amount of documents from each desired objective (ie 0.5 positive
and 0.5 negative sentiment documents for a neutral model) would likely allow for the most precise
optimization, this is computationally infeasible to do for each combination of control variables and
strengths of control in the entire (infinite) set of possible combinations.

With these challenges in mind, here we seek to enable dynamic and controllable text generation
in a manner that takes advantage of the strengths of fine-tuning while remaining computationally
feasible for dynamically changing control variables. Recent work has demonstrated that multiple
pre-trained or fine-tuned models can be effectively composed through linear weight interpolation
[Wortsman et al., 2022, Ilharco et al., 2023]. This has also been shown to extend to models trained
with parameter-efficient fine-tuning (PEFT) methods [Zhang et al., 2023, Huang et al., 2024] such
as low-rank adaptation [Hu et al., 2021]. We build upon and extend this line of work by showing
that linear weight interpolation can be used to obtain models with specific mixtures of characteristics
on-the-fly and without additional training, effectively providing a continuous parametrization of the
(infinite) ‘convex hull’ of a set of fine-tuned models. To do so, we fine-tune two endpoint anchor
models for each control attribute, one at each extreme of attribute strength. We then interpolate along
the vector between the weights of these two models for each attribute before computing a weighted
average across all of the single-attribute interpolated models. Thus, varying the interpolation and
averaging weights gives us dense coverage of the model parameter space, allowing us to create
models tailored to any preference profile spanned by the fine-tuned models. We evaluate linear
weight interpolation for multiple style attributes and demonstrate empirically that changes in the
interpolation and averaging weights yield predictable and consistent responses in the level of each
attribute in the generations.

A potential pitfall of this approach is that, as seen in prior work in the vision domain [Ortiz-Jimenez
et al., 2023], the weights for different single-attribute interpolated models may be entangled. This
could lead to unexpected correlations between attributes in the averaged models. These correlations
are detrimental to CTG, as changing the interpolation weights for one attribute could have an
unexpected effect on the correlated attributes in the output text. However, we find that there is
surprisingly little entanglement between the vast majority of control attributes.

In summary, our key contributions are: (1) we show how parameter-efficient adaptation methods
can be used to continuously interpolate between models fine-tuned with various distinct generation
objectives, allowing for on-the-fly adaptation to user-specified generation preferences expressed in
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terms of interpretable control variables; and (2) we demonstrate that changes in the interpolation
yield smooth and predictable changes in the properties of the generated text across multiple sets of
controls with limited entanglement.

2 Fine-tuning and Weight Interpolation

We evaluate the ability of weight interpolation to control the outputs of LLMs on five commonly
used style attributes defined in prior style transfer literature [Jin et al., 2022]: simplicity, formality,
politeness, sentiment, and humor. For every style characteristic, we first fine-tune two endpoint
‘anchor’ models, each of which optimizes for one extreme of the style attribute. We then use these
models as the basis of the interpolation scheme.

2.1 Datasets

For each style attribute, we fine-tune a separate anchor Llama2-7b model [Touvron et al., 2023]
on two English datasets representing the extremes of the attribute level. For simplicity, we use the
TinyStories dataset [Eldan and Li, 2023] to fine-tune a simple model and novel chapters from the
BookSum dataset [Kryscinski et al., 2021] to fine-tune a complex model. We use the documents
classified as formal and informal in Grammarly’s Yahoo Answers Formality Corpus (GYAFC) dataset
[Rao and Tetreault, 2018] to fine-tune formal and informal models. For the politeness attribute, we
use the documents in the highest and lowest politeness class in the work by Madaan et al. [2020] for
fine-tuning polite and impolite models, respectively. We fine-tune positive and negative sentiment
models using the Stanford Sentiment Treebank (SST-2) dataset [Socher et al., 2013]. For humor, we
use the FlickrStyle dataset [Gan et al., 2017] to fine-tune humorous and non-humorous models.

2.2 Fine-tuning

We fine-tune our models in a parameter-efficient manner using Low-Rank Adaptation [LoRA, Hu et al.,
2021], which keeps pretrained model weights frozed but learns an additive low-rank matrix update for
each layer during fine-tuning. Denoting the pretrained language model weights as θPRE ∈ Rd1×d1 ,
LoRA computes the updated weights as:

θ = θPRE +BA (1)

Here, A ∈ Rk×d2 and B ∈ Rd1×k (with k ≪ d1, d2) are trainable parameters learned during
fine-tuning. We use LoRA as an adaptation method because it requires significantly fewer parameters
than traditional fine-tuning while maintaining similar performance, so LoRA weights can be quickly
modified and applied to large pretrained language models. We use the parameters in Appendix A.4
for fine-tuning the models and fine-tune two LoRA models per style characteristic, one on each of
the extreme classes outlined in 2.1. We denote the two LoRA fine-tuned endpoint anchor models for
attribute i by θ+i = θPRE +B+iA+1 and θ−i = θPRE +B−iA−1.

2.3 Linear weight interpolation

Given a collection of fine-tuned model weights obtained by LoRA as described above, we generate
interpolated models by linearly interpolating betweeen their weights. We formulate linear weight
interpolation between the LoRA fine-tuned models in terms of interpolation weights αi and attribute
mixing weights λi as shown in Figure 1. For a single attribute, we interpolate along the vector
between the two fine-tuned endpoint models by computing

θαi
= θPRE + αiθ+i + (1− αi)θ−i

= θPRE + αiB+iA+i + (1− αi)B−iA−i
(2)

We call αi the interpolation weight for the ith attribute. We note that αi = 0 and αi = 1 correspond
to letting the interpolated model equal the fine-tuned models θαi

= θ−i and θαi
= θ+i, respectively.

Using Equation 2, we then combine multiple interpolated models θαi
by taking their weighted sum:

θα,λ =
∑
i

λiθαi (3)
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Figure 2: Interpolated models recover custom fine-tuned models across the interpolation range.
We show the attribute scores for our model with weight α compared to DExperts [Liu et al., 2021]
and model arithmetic [Dekoninck et al., 2024] with α scaled such that the scaled α = 0 and α = 1
models have the same score as the fine-tuned endpoint models. Our approach most closely follows
the trend of the ground truth fine-tuned models.

We denote λi to be the mixing weight for the ith attribute and constrain
∑

i λi = 1. We note that the
case with one attribute dimension corresponds to the sum having a single term with λ1 = 1. With
this formulation, we can construct any model in the convex hull of the fine-tuned models by choosing
appropriate interpolation weights α and mixing weights λ. While the raw interpolation parameters
do not have a clear meaning, we seek to show that a user can controllably increase or decrease the
level of each attribute by modifying α and λ.

2.4 Evaluation

To evaluate the interpolated models, we use a subset of 1k randomly sampled prompts from the
WritingPrompts dataset [Fan et al., 2018] and generate 3 continuations for each prompt. Similarly
to prior work on text style transfer [Xu et al., 2018], we fine-tune a RoBERTa [Liu et al., 2019]
classification head on each attribute using a held out split of the datasets in 2.1 and compute a sigmoid
over the output logits to obtain the probability of class 1, which we report as the attribute score.
We label the documents such that an attribute score closer to 1 corresponds to a document that is
more simple, formal, polite, positive in sentiment, or humorous. We also compute perplexity on the
test split of the WikiText dataset [Merity et al., 2016] and n-gram diversity of the WritingPrompts
generations to evaluate fluency in the Appendix.

3 Continuous Language Model Interpolation

We begin by investigating the linear interpolations between each pair of fine-tuned anchor models
(3.1). We then extend this analysis to the convex hull of anchor models for multiple attributes (3.2).

3.1 Linear interpolation for a single attribute dimension

We first explore the effect of moving along the vector between a single pair of fine-tuned anchor
models. We compare our weight interpolation method to DExperts Liu et al. [2021] and model
arithmetic Dekoninck et al. [2024], as these are the main approaches that allow for continuous control
over the attribute strength parameter. We use the fine-tuned anchor models for DExperts and prompt-
condition Llama2-7b-chat (see A.5 for details) for model arithmetic. We note that while our approach
requires a single inference pass, both of these approaches require 2∗number dimensions+1 inference
passes, and DExperts also requires the same number of fine-tuned models as our method. For both
comparisons, we compute the attribute scores for α ∈ [−2, 2]. To provide a direct comparison to
the fine-tuned ground truth models, we scale the α parameter such that the scaled α = 0 and α = 1
correspond to the models with attribute score equal to that of the fine-tuned endpoint models. We
evaluate these interpolation methods by their proximity to the ground truth interpolated models,
which are models fine-tuned with α fraction data from class 1 and 1− α fraction data from class 0.

As shown in Figure 3, we find that our approach has a smooth and predictable increase in the attribute
score for all of the control dimensions. Furthermore, it consistently is significantly closer to the fine-
tuned ground truth models than model arithmetic. Model arithmetic also has very poor controllability
for the politeness and humor dimensions, as the attribute score is unpredictable. While DExperts
has similar performance as our approach, we note that since it requires 2 ∗ number dimensions
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λj = (1− λi)/4. We find that increasing αi consistently increases the attribute score and increasing
λi consistently increases the effect of αi.
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Figure 4: Effect of λi on interpolation between the sentiment, politeness, and simplicity dimen-
sions for αi = 1. The vertices of the triangle represent the models with αi = 1 for each of the three
attribute dimensions. The scores in the simplex of λ weights between the three control dimensions
smoothly interpolate between the extreme models.

more inference passes than our approach and the same set of fine-tuned models, it is much more
computationally expensive for applications with many attribute dimensions or inference passes.
These results indicate that for one control attribute, interpolating between two endpoint models yields
fine-grained control over the model outputs that outperforms or is on par with prior more approaches
while maintaining very inexpensive inference computation.

3.2 Multi-dimensional interpolation

In real-world LLM applications, users often have diverse output preferences across multiple control
dimensions at once, and these preferences may change dynamically for different inputs to the LLM.
In this section, we show that linear interpolation between fine-tuned parameter-efficient adapters can
be used to parametrize a whole convex hull of models, which can be used to dynamically generate
text with attribute levels specified on-the-fly.

3.2.1 Parametrization of the convex hull

Analysis of interpolation parameter α: We find that when interpolating across up to five attribute
dimensions, modifying the weight parameters λi and αi results in predictable, fine-grained control
over the attribute scores for the desired attributes while having a comparatively small effect on the
remaining attributes. Figure 2 shows that increasing the αi parameter smoothly increases the ith
attribute score. Similarly, as the model mixture parameter λi increases, the effect on the attribute
score of changing αi increases.

Analysis of interpolation parameter λ: We also analyze the relationship throughout the whole
simplex of λ weights for sets of three control dimensions in Figure 4 (as well as Figures 17-30 in the
Appendix). For each set of three attributes listed, these plots show the scores in the three dimensional
simplex of mixing weights λ for which

∑
i λi = 1. The value of the interpolation weight αi for each

of the attributes is equal to 1 in Figure 4, so increasing the λ weight of each attribute should increase
the attribute score. For the majority of attributes, we observe an approximately even increase in score
as λi for a given attribute dimension increases, regardless of the other λj parameters.
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A Appendix

A.1 Related Work

A.1.1 Controllable text generation (CTG)

As it is crucial to constrain generated text in many downstream applications, CTG has been a recent
focus of NLP research. Methods such as CTRL [Keskar et al., 2019] and GeDI [Krause et al., 2021]
pretrain language models on text prepended with control codes and generate text conditioned on
the desired control. However, these methods require pretraining a new model if new controls are
added, which is computationally expensive. To mitigate these issues, a variety of methods have been
proposed to perform CTG without additional language model training. For example, Khalifa et al.
[2021], Pascual et al. [2021], Yang and Klein [2021], Dekoninck et al. [2024] constrain language
model outputs by modifying their output probability distributions. Li and Liang [2021], Qian et al.
[2022] learn prefixes and Dathathri et al. [2019], Han et al. [2023] train additional classifiers to guide
generation. Subramani et al. [2022], Hernandez et al. [2023], Li et al. [2023], Turner et al. [2023]
control model outputs by changing activations at inference time. Kumar et al. [2021] optimize the
inference decoding. Mireshghallah et al. [2022], Qin et al. [2022] use energy-based constrained
generation and Zhou et al. [2023] use instruction tuning for CTG.

Among these, only the methods of Liu et al. [2021], Dekoninck et al. [2024] are composable and
achieves fine-grained control over multiple attributes at once, so we provide these methods as a
comparison in this paper. However, as these methods require composing multiple models at inference
time, the inference cost is significantly higher than our approach, especially as the model size and
number of controlled attributes increases.

A.1.2 Weight interpolation

Our work builds on prior work on linear weight interpolation, such as task vectors [Ilharco et al.,
2023], parameter-efficient task vectors [Zhang et al., 2023], and model souping [Wortsman et al.,
2022], as we use linear interpolation and weighted model averaging as the basis for our analysis. Prior
work in this domain has focused mainly on improving multitask performance when composing fully
fine-tuned models [Matena and Raffel, 2021, Yadav et al., 2023, Ortiz-Jimenez et al., 2023, Ramé
et al., 2023] or parameter-efficient fine-tuned models [Huang et al., 2024, Jiang et al., 2024]. However,
these methods all differ from our work, since they focus on combining model weights to improve a
single multitask objective rather than analyzing performance across a wide range of flexible, diverse
objectives. These approaches are orthogonal to our work and could be used in conjunction with it
to better combine the α-interpolated models. Perhaps most similar to our work are methods that
interpolate between the weights of fine-tuned models to control over a range of outputs [Gandikota
et al., 2023, Nylund et al., 2023]. However, Gandikota et al. [2023] focus on the vision domain and
use a fine-tuning objective specific to diffusion models, and Nylund et al. [2023] only analyze control
over the time dimension.

A.2 Limitations

The main limitation of our work is that some pairs of attributes are correlated, so when a correlated
model has a large mixing weight, it can unpredictably affect other control attributes. It would be
valuable to investigate whether this correlation is inherent to the pair of tasks or if it can be eliminated.
For example, text that is more polite might always be more formal. However, it may be the case that
some correlations can be reduced by regularizing the LoRA updates to be more orthogonal to each
other or by merging the α-interpolated using more sophisticated methods that have recently shown
improvement over naive weight averaging in the multitask setting [Matena and Raffel, 2021, Yadav
et al., 2023, Ortiz-Jimenez et al., 2023, Ramé et al., 2023].

Another limitation is that our method requires fine-tuned models and the average generation attribute
scores are limited to the range between the attribute scores of the fine-tuned anchor models. The
single attribute extrapolation results could be expanded upon to better understand when extrapolation
can be used to extend the range of the control attribute style.

Additionally, human evaluation would be ideal for assessing text style, but is out of scope for this
paper. The challenge is that, unlike prior work, we are interested in controlling text style attributes in
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the region between the endpoint fine-tuned models rather than the endpoint performance. As a result,
in order to adequately assess the performance of the interpolation with human-provided labels, we
would need to query humans hundreds of times per prompt. A full-blown user study on this scale
thus remains infeasible for this evaluation.

A.3 Ethics Statement

Continuous weight interpolation may output text that contains existing biases from the pre-trained
models and fine-tuning datasets. It could also be used to control the level of undesirable attributes
such as toxicity. However, we believe that this work is still beneficial overall, since it can be used to
improve the experience of LLM users for a variety of applications, and these issues are faced by all
pre-trained and fine-tuned language models.

A.4 Hyperparameters for fine-tuning

LoRA hyperparameter Value
Batch size 64
Learning rate 5e-5
LoRA r 32
LoRA α 16
LoRA dropout 0.1
Max sequence length 128
Quantization 4 bit

Table 1: Parameters for LoRA fine-tuning. We use 20 epochs for fine-tuning the sentiment attribute
models and 1 epoch for the remaining fine-tuned models. All experiments were run on single NVIDIA
A100 80GB SXM GPU nodes.

Domain Llama2 split size RoBERTa split size
Class 0 Class 1

Sentiment Socher et al. [2013] 25k 30k 10k
Politeness Madaan et al. [2020] 78k 100k 20k
Formality Rao and Tetreault [2018] 104k 104k 10k
Simplicity [Kryscinski et al., 2021, Eldan and Li, 2023] 9k 100k 10k
Humor Gan et al. [2017] 100k 100k 20k

Table 2: Fine-tuning splits. We report the number of examples from each attribute dataset used to
fine-tune Llama2-7b generation and RoBERTa attribute scoring models. Each split is sampled from
the combined train, test, and validation set.

A.5 Model Arithmetic Formulation

For the model arithmetic [Dekoninck et al., 2024] comparison, we use the following formula, inspired
by DExperts [Liu et al., 2021]:

M + α(Mpos −Mneg)

Here, M is the base model, Mpos is the model conditioned for class 1, and Mneg is the model
conditioned for class 0. The system prompts used for conditioning are listed in Table 3.
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Conditioned
model name Llama2-7b-chat System Prompt

sentiment_pos "The following is a positive story, with a very positive sentiment and a very positive tone."
sentiment_neg "The following is a negative story, with very negative sentiment and a very negative tone."
formality_pos "The following is a formal story, with very formal language and a very formal tone."
formality_neg "The following is an informal story, with very informal language and a very informal tone."
simplicity_pos "The following is a simple story, with very simple language."
simplicity_neg "The following is a complex story, with very complex language."
humor_pos "The following is a humorous story, with very humorous language and a very humorous tone."
humor_neg "The following is a nonhumorous story, with factual language and a very serious tone."
politeness_pos "The following is a polite story, with very polite language and a very polite tone."
politeness_neg "The following is an impolite story, with very impolite language and a very impolite tone."

Table 3: System prompts used for conditioning model arithmetic. .

11



A.6 Plots with errorbars

0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00
Sentiment

0.0 0.5 1.0

Politeness

0.0 0.5 1.0

Formality

0.0 0.5 1.0

Simplicity

0.0 0.5 1.0

Humor

Scaled Attribute Parameter 

At
tri

bu
te

 S
co

re
Attribute Score on WritingPrompts

Fine-tuned (ground truth)
Weight Interpolation
DExperts
Model Arithmetic

Figure 5: Interpolated models recover custom fine-tuned models across the interpolation range.
We show the attribute scores with standard deviation error bars for our model with weight α compared
to DExperts [Liu et al., 2021] and model arithmetic [Dekoninck et al., 2024] with α scaled such that
the scaled α = 0 and α = 1 models have the same score as the fine-tuned endpoint models. Our
approach most closely follows the trend of the ground truth fine-tuned models.
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Figure 6: Effect of αi and λi on 5-dimensional interpolation. For each attribute, we show the
attribute scores with standard deviation errorbars for models with the given αi and λi parameters,
with all four other αj = 1 and λj = (1− λi)/4. We find that increasing αi consistently increases the
attribute score and increasing λi consistently increases the effect of αi.

12



A.7 Linear weight extrapolation

Linear extrapolation: Figure 7 shows the attribute scores when extrapolating linearly beyond the
two fine-tuned models along the vector between them. We find that even beyond the region of
interpolation between the two fine-tuned models, there is a small stable extrapolation regime up
to α values of around −1 and 2 (Figure 7). In this region, for many of the attributes, the attribute
score continues to behave predictably as α is increased. However, beyond the stable extrapolation
values, there is an unstable extrapolation regime where the attribute score changes unpredictably as α
is varied. This is likely due to the model output quality degrading, since as shown in Figure 8 and
Figure 12, the model perplexity increases sharply and the diversity decreases starting near the edges
of the stable extrapolation regime. While prior work has shown that linear weight extrapolation can
be used for tasks such as model unlearning [Ilharco et al., 2023, Zhang et al., 2023], these results
provide a cautionary tale against extrapolating too far, as they suggest that this ability only extends to
a certain threshold before the attribute score and model outputs become unpredictable due to poor
quality outputs. For the remainder of our experiments, we thus focus on the interpolation regime.
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Figure 7: Effect of linear weight extrapolation for a single attribute dimension. For each style
attribute, we report the attribute score when linearly extrapolating beyond the fine-tuned models
(α < 0 and α > 1). There is a stable region where the score changes smoothly until a certain point
(around α equal to −1 and 2), where performance degrades and the extrapolation is unstable.
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A.8 Perplexity analysis

A.8.1 Perplexity of interpolated and extrapolated models
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Figure 8: Wikitext perplexity of linearly interpolated and extrapolated models. We report the
average perplexity (lower is better) of each model from Figure 7 on the Wikitext test set. For all of
the interpolated models (α ∈ [0, 1]), the perplexity is either better than or between the performance of
the endpoint fine-tuned models. For the extrapolated models (α < 0.0 and α > 1.0), the perplexity
increases rapidly beyond α values of around −1 and 2. We clip the y-axis at 7.0 for readability (the
full plot is shown in Figure 9).

A.8.2 Perplexity comparison to fine-tuned models

In this section, we compare the WikiText perplexity of weight-interpolated models versus the
perplexity of fine-tuned models trained on data with α fraction from class 1 and 1− α fraction from
class 0 for each attribute.
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Figure 9: Wikitext perplexity of linearly interpolated and extrapolated models. We report the
average perplexity of each model from Figure 7 on the Wikitext test set. For the extrapolated models
not shown in Figure 8, the perplexity increases rapidly.
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Figure 10: Wikitext perplexity for single attribute interpolated versus fine-tuned models. We
report the perplexity when linearly interpolating between the models with weight α as compared
to the perplexity for models trained with α fraction class 1 and 1 − α fraction class 0 data. The
perplexity for the interpolated models is lower than that of the endpoint fine-tuned models for the
intermediate values of α.
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A.9 Diversity analysis
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Figure 11: N-gram diversity scores for the interpolated models. We report the 1-, 2-, and 3-gram
diversity scores for the single-attribute interpolated models. The diversity scores remain similar to or
between those of the endpoint fine-tuned models within the interpolation region.
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Figure 12: N-gram diversity scores for the extrapolated models. We report the 1-, 2-, and 3-gram
diversity scores for the single-attribute interpolated and extrapolated models. The diversity scores
remain similar to or between those of the endpoint fine-tuned models within the interpolation region
(α ∈ [0, 1]) and in the stable extrapolation region (α ∈ [−1, 0) ∪ (1, 2]), but become unstable beyond
the stable extrapolation region.

0.0 0.5 1.0

0.945

0.950

0.955

0.0 0.5 1.0

0.915

0.920

0.925

0.0 0.5 1.0

0.934

0.936

0.938

0.940

0.942

0.0 0.5 1.0

0.88

0.90

0.92

0.0 0.5 1.0

0.94

0.95

0.96

di
st

1 
Sc

or
e

Dist1 Diversity
Sentiment Interpolated
Sentiment Fine-tuned
Politeness Interpolated
Politeness Fine-tuned
Formality Interpolated
Formality Fine-tuned
Simplicity Interpolated
Simplicity Fine-tuned
Humor Interpolated
Humor Fine-tuned

Figure 13: 1-gram diversity comparison of single attribute interpolated versus fine-tuned models.
We report the dist1 diversity scores for the single-attribute interpolated models with weight α as
compared to the perplexity for models trained with α fraction class 1 and 1− α fraction class 0 data.
The diversity scores remain similar to or between those of the endpoint fine-tuned models within the
interpolation region.
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Figure 14: 2-gram diversity comparison of single attribute interpolated versus fine-tuned models.
We report the dist2 diversity scores for the single-attribute interpolated models with weight α as
compared to the perplexity for models trained with α fraction class 1 and 1− α fraction class 0 data.
The diversity scores remain similar to or between those of the endpoint fine-tuned models within the
interpolation region.
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Figure 15: 3-gram diversity comparison of single attribute interpolated versus fine-tuned models.
We report the dist3 diversity scores for the single-attribute interpolated models with weight α as
compared to the perplexity for models trained with α fraction class 1 and 1− α fraction class 0 data.
The diversity scores remain similar to or between those of the endpoint fine-tuned models within the
interpolation region.
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A.10 Generation example

We provide an example generation to compare between weight interpolated models for a single
attribute and prompting an instruction-tuned model (Llama2-13b-chat). We provide the model
generations for the following prompt set-up inspired by Han et al. [2023]:

• "Complete this story so that it embodies a sentiment score of 0.5, where 0 is negative and 1
is positive: You find a rip in time walking through the alleys . You enter it to find yourself "

• For each style attribute, we replace the words “sentiment”, “negative”, and “positive” with
the corresponding attribute and class names, and 0.5 with the corresponding α score.

• We report the output until the first occurrence of a newline character or the amount of output
that fits in 2-3 lines of the table.

We find that in general, it is challenging to achieve fine-grained control over the output attributes with
prompting as compared to interpolation. The prompted model often does not properly account for the
α value and produces outputs at one attribute extreme or the other regardless of α. Furthermore, for
dimensions that are less commonly used in CTG (ie formality), the prompted model often produces
very similar outputs for each value of α.
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Table 4: Generation comparison: we present a comparison of generations for single attribute
interpolation versus prompted Llama2-13b-chat for various α values with the prompt "You find a rip
in time walking through the alleys . You enter it to find yourself "

Dimension α Single attribute interpolation Prompted Llama2-13b-chat

Sentiment

0.0 40 minutes later still wondering what the h*ll
you did wrong. [...]

months in the future. Everything has
changed but... [...]

0.3 12 hours earlier with your hopes and sanity
battered only to discover the time rip still [...]

months in the future. Everything has
changed but it seems the world has
gotten better. [...]

0.7 40 years earlier, passing through an archway
into a deeply familiar but different world. [...]

10 minutes in the past, before you
were born. You decide to go back in
time and give your younger self [...]

1.0 10 years older and wondering how it
happened. [...]

20 years earlier, in a world before the
wars, global warming and the division
of society. [...]

Politeness

0.0 100 miles away from the starting line, but who
told you to quit. [...]

30 years earlier. You ask the current
you what to do next to maximize [...]

0.3 100 miles away from a nobody jerk. you find a
rip in space boarding a bus on west 96th [...]

10 minutes in the past, before you
were scheduled to meet a friend for coffee.
You realize that by altering the past, [...]

0.7 10 years in the future. you are discovering all
sorts of things. it comes to you [...]

7 years ago in a Cafe you have been to
before. [...]

1.0 10 years ago, trying to figure out where the
next stride will take you or perhaps where [...]

7 years ago in a Cafe you have been to
before, supposed to meet with a friend
that never showed up. [...]

Formality

0.0 20! LOL that doesn’t seem right or fair. [...] in the past... [...]

0.3 7 years older. END OF STORY!! Things were
going well until you started to take [...]

in the past, an absolute fantasy. You see
a young version of yourself there, who [...]

0.7 40 or older, happily married, and with 3 kids.
[...]

10 minutes in the past, before the recent
break-in at your apartment. [...]

1.0 21 years older from your prior adventures. [...] 10 minutes in the past, before the recent
break-in at your office. [...]

Simplicity

0.0
on a black public hillside, and a yellow sun
butchered and bleeding in an ugly sky, and
you know the cut of sandstone in the [...]

20 years earlier, in a world before the great
collapse. Children are playing, birds are
chirping, and people are smiling. [...]

0.3
3 kilometres outside of town at a main road.
you slowly move forward looking around your
surroundings. Seeing a man sitting under a [...]

7 years ago in a crucial moment of your
past. [...]

0.7
300 years before your time. Some kids around
you are running off to play in the forest. You
stand there trying to figure out what to do [...]

10 minutes in the past, before the recent
downpour. How do you handle it? [...]

1.0 300 years back! It is 1828 in London. You stay
in the alley until it becomes fully sunny. [...]

10 minutes in the past, before the recent
downpour of rains and flooding. [...]

Humor

0.0 30 years in the past under another name. You’re
married to an old fling [...]

7 years ago in a parking lot looking 7 years
younger. [...]

0.3 30 years back, walking through the alleys.
So much for not being surprised. [...]

7 years ago in a parking lot looking 7 years
younger. You see a car you can’t remember [...]

0.7
75 years in the future, Washington DC’s
Newbridge Apartments has become an urban
theme park [...]

20 years earlier, in high school. Your
younger self is looking at you, confused. You
then see yourself in high school and [...]

1.0
255 years into the future, the day at the
’harmless’ age of sixty million, a desperate,
crazed - looking [...]

10 minutes in the past, but you bring a
hand-held portal weapon with you. [...]
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A.11 Multi-dimensional scaling (MDS) analysis of fine-tuned models

We project the weights of the LoRA fine-tuned endpoint models, as well as some of the interpolated
models, into two dimensions using multi-dimensional scaling (MDS). As shown in Figure 16, we
find that the interpolating between the endpoint fine-tuned models generally results in models that are
closer to the base model. This is expected behavior since we would anticipate that the base model is
fairly neutral with respect to all attributes.
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Figure 16: Multi-dimensional scaling (MDS) plot for the fine-tuned models and linear interpola-
tions. This plot shows the 2-dimensional MDS projection of the fine-tuned anchor models and the
models interpolated at intervals of 0.1. This corresponds to the models in Figure 3.
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A.12 Additional multi-dimensional lambda simplex plots
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Figure 17: Effect of λi on interpolation between the sentiment, politeness, and humor dimensions
for αi = 0. The vertices of the triangle represent the models with αi = 0 for each of the three
dimensions.
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Figure 18: Effect of λi on interpolation between the sentiment, politeness, and humor dimensions
for αi = 0.5. The vertices of the triangle represent the models with αi = 0.5 for each of the three
dimensions.
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Figure 19: Effect of λi on interpolation between the sentiment, politeness, and humor dimensions
for αi = 1. The vertices of the triangle represent the models with αi = 1 for each of the three
dimensions.
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Figure 20: Effect of λi on interpolation between the sentiment, politeness, and formality
dimensions for αi = 0. The vertices of the triangle represent the models with αi = 0 for each of the
three dimensions.
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Figure 21: Effect of λi on interpolation between the sentiment, politeness, and formality
dimensions for αi = 0.5. The vertices of the triangle represent the models with αi = 0.5 for each of
the three dimensions.

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

0.4

0.45

0.5

0.55

0.6

0.65

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

0.52

0.54

0.56

0.58

0.6

0.62

Figure 22: Effect of λi on interpolation between the sentiment, politeness, and formality
dimensions for αi = 1. The vertices of the triangle represent the models with αi = 1 for each of the
three dimensions.
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Figure 23: Effect of λi on interpolation between the sentiment, politeness, and simplicity
dimensions for αi = 0. The vertices of the triangle represent the models with αi = 0 for each of the
three dimensions.
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Figure 24: Effect of λi on interpolation between the sentiment, politeness, and simplicity
dimensions for αi = 0.5. The vertices of the triangle represent the models with αi = 0.5 for each of
the three dimensions.
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Figure 25: Effect of λi on interpolation between the humor, formality, and simplicity dimensions
for αi = 0. The vertices of the triangle represent the models with αi = 0 for each of the three
dimensions.
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Figure 26: Effect of λi on interpolation between the humor, formality, and simplicity dimensions
for αi = 0.5. The vertices of the triangle represent the models with αi = 0.5 for each of the three
dimensions.
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Figure 27: Effect of λi on perplexity interpolation between the sentiment, politeness, and humor
dimensions for various αi values. The vertices of the triangle represent the models with the given
αi value for each of the three dimensions. The perplexity for each model is bounded above by the
perplexities of the fine-tuned anchor models.
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Figure 28: Effect of λi on perplexity interpolation between the sentiment, politeness, and
formality dimensions for various αi values. The vertices of the triangle represent the models with
the given αi value for each of the three dimensions. The perplexity for each model is bounded above
by the perplexities of the fine-tuned anchor models.
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Figure 29: Effect of λi on perplexity interpolation between the sentiment, politeness, and
simplicity dimensions for various αi values. The vertices of the triangle represent the models with
the given αi value for each of the three dimensions. The perplexity for each model is bounded above
by the perplexities of the fine-tuned anchor models.
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Figure 30: Effect of λi on perplexity interpolation between the humor, formality, and simplicity
dimensions for various αi values. The vertices of the triangle represent the models with the given
αi value for each of the three dimensions. The perplexity for each model is bounded above by the
perplexities of the fine-tuned anchor models.
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A.13 Similarity between pairs of fine-tuned models

Given the results from the simplex plots, we analyze the relationships between the fine-tuned endpoint
models to better understand the attribute score correlations. Figure 31, which plots the average
cosine similarity between the LoRA layers of each pair of models, shows that the LoRA weights
are relatively orthogonal to each other in most cases. We hypothesize that the lower orthogonality
between each pair of endpoint models for the same attribute is because the models are trained on
similar datasets. This is supported by the fact that the simple and complex models are the most
orthogonal of the pairs of endpoint models and they are the only two models trained on different
datasets rather than different classes from the same dataset. In addition, the humor models tend to be
the least orthogonal to the other models (such as politeness), so this may provide a partial explanation
for why some of the other models were correlated with a higher humor score.
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Figure 31: Cosine similarity of LoRA weights averaged across layers between each pair of
fine-tuned anchor models. The LoRA weights are all relatively orthogonal to each other, except
some of the two endpoint models for the same attribute are less orthogonal to each other, as well as
the politeness and humorous models.
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Figure 32: Average pairwise squared L2 norms between LoRA layers. The fine-tuned anchor
models trained on the class with attribute score of 1 tend to be closer to the other models than those
trained on the class with attribute score of 0. The polite and impolite models are the farthest from the
other models.

27


	Introduction
	Fine-tuning and Weight Interpolation
	Datasets
	Fine-tuning
	Linear weight interpolation
	Evaluation

	Continuous Language Model Interpolation
	Linear interpolation for a single attribute dimension
	Multi-dimensional interpolation
	Parametrization of the convex hull


	Appendix
	Related Work
	Controllable text generation (CTG)
	Weight interpolation

	Limitations
	Ethics Statement
	Hyperparameters for fine-tuning
	Model Arithmetic Formulation
	Plots with errorbars
	Linear weight extrapolation
	Perplexity analysis
	Perplexity of interpolated and extrapolated models
	Perplexity comparison to fine-tuned models

	Diversity analysis
	Generation example
	Multi-dimensional scaling (MDS) analysis of fine-tuned models
	Additional multi-dimensional lambda simplex plots
	Similarity between pairs of fine-tuned models


