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BUILDEVO: Designing Building Energy Consumption Forcasting
Heuristics via LLM-driven Evolution
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Abstract
Accurate building energy forecasting is essen-
tial, yet traditional heuristics often lack precision,
while advanced models can be opaque and strug-
gle with generalization by neglecting physical
principles. This paper introduces BUILDEVO,
a novel framework that uses Large Language
Models (LLMs) to automatically design effec-
tive and interpretable energy prediction heuris-
tics. Within an [evolutionary/iterative-refinement]
process, BUILDEVO guides LLMs to construct
and enhance heuristics by systematically incorpo-
rating physical insights from building character-
istics and operational data (e.g., from the Build-
ing Data Genome Project 2). Evaluations show
BUILDEVO achieves state-of-the-art performance
on benchmarks, offering improved generalization
and transparent prediction logic. This work ad-
vances the automated design of robust, physically
grounded heuristics, promoting trustworthy mod-
els for complex energy systems.

1. Introduction
Accurate building energy forecasting is a cornerstone of
modern energy management, vital for enhancing energy ef-
ficiency, ensuring grid stability, and enabling effective build-
ing operations (Senthil Kumar et al., 2024). Its widespread
applications underpin demand-side response programs, the
optimization of heating, ventilation, and air conditioning
(HVAC), and the seamless integration of renewable energy
sources (Chen et al., 2025; Mariano-Hernández et al., 2020).
Modeling the complex, interacting energy dynamics inher-
ent in buildings—influenced by their physical structure, op-
erational schedules, and environmental conditions—is thus
a central challenge for smart grid balancing and optimized
facility management (Bayasgalan et al., 2024; Thomas &
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Kotsakis, 2020).

However, achieving consistently accurate building energy
forecasts is fundamentally difficult. Energy consumption
patterns are notoriously complex, exhibiting non-linear
behaviors and significant stochasticity due to fluctuating
weather, diverse occupant activities, varying building ther-
mal properties, and dynamic equipment states (Lim & Zhai,
2017). Consequently, as evidenced by datasets like the
Building Data Genome Project 2 (BDG2), even architec-
turally similar buildings can display vastly different energy
profiles. Early attempts to capture these dynamics often
relied on heuristic methods. These included rule-based sys-
tems derived from expert knowledge, simplified physical
or resistance-capacitance (RC) models, and grey models
(e.g., GM(1,1)) for trend estimation with limited data (Hu,
2020; Peña et al., 2016; Li & Wen, 2014). While offering
interpretability, such handcrafted heuristics frequently suf-
fer from limited accuracy and poor generalization, as their
predefined rules and parameters are challenging to design
and calibrate effectively for the diverse and dynamic nature
of real-world energy consumption.

Deep learning (DL) methods have since emerged as power-
ful alternatives, with models like Long Short-Term Mem-
ory (LSTM) networks and Transformer-based architectures
(e.g., Informer) demonstrating improved predictive accu-
racy (Zhou et al., 2021; Khalil et al., 2022). Despite their
strengths, these DL approaches often present significant
practical challenges. They can demand substantial compu-
tational resources and vast datasets for training, frequently
operate as ”black boxes” whose predictions lack trans-
parency and interpretability (Runge & Zmeureanu, 2021),
and may exhibit poor generalization to buildings or condi-
tions not seen during training. This latter issue is particularly
acute when standard data pre-processing overlooks or inad-
equately incorporates inherent physical knowledge of the
built environment (Jiang & Dong, 2024; Von Krannichfeldt
et al., 2024; Miller, 2019). These limitations often neces-
sitate a difficult trade-off with the clarity and robustness
offered by simpler heuristic methods, motivating our re-
search question: Can we automate the design of accurate
and interpretable building energy forecasting heuristics that
effectively leverage physical knowledge, thereby bridging
the generalization and explainability gap with deep learning
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methods?

Inspired by the burgeoning field of automated algorithm
design that combines Large Language Models (LLMs) with
Evolutionary Algorithms (EAs) (Romera-Paredes et al.,
2024; Guo et al., 2024), we propose a novel approach to
this problem. We hypothesize that the synergy between the
generative and reasoning capabilities of LLMs and the struc-
tured search and optimization power of EAs can overcome
traditional limitations of manual heuristic design, yield-
ing sophisticated, physically-grounded energy forecasting
heuristics. To this end, we introduce BUILDEVO, a novel
framework wherein LLMs operate within an evolutionary
loop to iteratively generate, evaluate, and refine building
energy forecasting heuristics directly from observational
data, critically guided by underlying physical principles.

Our main contributions are as follows:

• We present BUILDEVO, a novel framework to integrate
Large Language Models with Evolutionary Algorithms
(EA) for the automated discovery and design of effec-
tive, explainable, and specifically physically-informed
building energy consumption forecasting heuristics.

• We develop and incorporate mechanisms within
BUILDEVO that enable the systematic embedding
of physical building information to the LLM-driven
heuristic generation and refinement process, enhanc-
ing predictive performance and ensuring the physical
plausibility of the generated heuristics.

• We conduct empirical validation of BUILDEVO on pub-
lic datasets (e.g., BDG2), demonstrating its capability
to generate interpretable heuristics that achieve com-
petitive forecasting accuracy and exhibit generalization
capabilities across diverse building types and energy
consumption patterns.

2. Related Works
Heuristic Methods for Building Energy Consumption
Forecasting Heuristic approaches provide simpler, often
more interpretable alternatives for building energy forecast-
ing, especially with limited data or when expert knowledge
is paramount. These include rule-based systems and expert
systems (Peña et al., 2016) that leverage predefined opera-
tional logic, grey models like GM(1,1) (Hu, 2020) for trend
forecasting with sparse data, and simplified physical or grey-
box models (Li et al., 2021) utilizing fundamental principles
with reduced complexity. While typically less precise than
deep learning, their transparency and lower computational
cost make them useful for initial assessments or specific
control applications.
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Figure 1. Comparision between human expert heuristic design, hu-
man expert hyper heuristic design, and LLM hyper heuristic de-
sign.

Learning-based Methods for Building Energy Consump-
tion Forecasting Machine learning and deep learning
have notably advanced building energy consumption fore-
casting, yet challenges in handling complex time series
data persist. Initial statistical models like Linear Regres-
sion (LR) and machine learning methods such as Support
Vector Regression (SVR) and Random Forest (RF) pro-
vided foundational capabilities but often fell short with non-
linear, non-stationary energy data. Deep learning, particu-
larly Long Short-Term Memory (LSTM) networks(Ahmed
et al., 2022) and Transformer-based models like Informer
(Zhou et al., 2021), offered significant improvements for
long-sequence forecasting. More recently, hybrid strate-
gies combining signal decomposition techniques like En-
semble EMD (EEMD) with deep learning predictors (e.g.,
EEMD-Informer) and hyperparameter optimization using
methods like Particle Swarm Optimization (PSO) have be-
come prominent. Despite these advancements, effectively
managing data volatility, optimizing complex model param-
eters (as in PSO-Informer), and ensuring robust long-term
prediction accuracy remain critical challenges, motivating
our EEMD-PSO-Informer approach.

3. Methodology
3.1. Problem Definition

Task We address building-level energy consumption fore-
casting using deep learning models. The task is, for
each building b and associated energy meter m, to pre-
dict its future energy consumption sequence Yb,m =

(CTobs+1
b,m , . . . , C

Tobs+Tpred

b,m ), where Ct
b,m ∈ R is the con-
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sumption at future timestep t. This prediction is based
on the observed history Hb,m = (S1

b,m, . . . ,STobs

b,m ), where
St
b,m = (Ct

b,m, Xt
b) comprises the past energy consump-

tion Ct
b,m and relevant exogenous features Xt

b (including
building characteristics, historical weather, and calendar ef-
fects) at timestep t. Additionally, known future exogenous
inputs X future

b = (XTobs+1
b , . . . , X

Tobs+Tpred

b ) (e.g., weather
forecasts, future calendar effects) are utilized. Models are
trained on a training set Dtrain and evaluated on a test set
Dtest.

Metrics We evaluate the predictive performance of the
deep learning models using standard regression metrics com-
puted on the test set Dtest. These include, but are not limited
to: Root Mean Squared Error (RMSE), Mean Absolute Er-
ror (MAE), and Mean Absolute Percentage Error (MAPE).
These metrics collectively provide insights into the accu-
racy (RMSE, MAE) and scale-independent relative error
(MAPE) of the forecasts.

3.2. Dataset and Preprocessing

We utilized the Building Data Genome Project 2 (BDGP2)
dataset (Miller et al., 2020), containing building metadata,
weather, and multi-modal energy data, which was prepro-
cessed to create a robust dataset for precise energy predic-
tion. After integrating and temporally aligning these diverse
sources, a hierarchical, domain-knowledge-driven imputa-
tion strategy addressed missing values across meter types.
This involved rule-based imputation (leveraging metadata
for operational logic), model-based imputation (using ma-
chine learning with temporal, weather, and building meta-
data features), supplemented by donor-based methods and
minimal interpolation. The resulting complete and coher-
ent dataset features intelligently imputed values reflecting
physical and operational context, preserving data integrity
(details in Appendix A) and forming a solid foundation for
subsequent prediction modeling.

3.3. Evolutionary Framework

Our evolutionary framework adapts the Reflective Evolu-
tion approach (Ye et al., 2024), employing Large Language
Models (LLMs) for core genetic operators (initialization,
crossover, mutation), guided by reflective analyses of energy
forecasting heuristic performance.

Initial Population The process starts by providing
the generator LLM with a task specification for build-
ing energy forecasting—including inputs (e.g., histor-
ical energy, weather, building metadata like sqft,
primaryspaceusage), outputs (future energy con-
sumption), and the objective J (e.g., minimizing
RMSE)—alongside a basic energy heuristic example (e.g., a

persistence model). The LLM then generates an initial pop-
ulation of N diverse code-based energy forecasting heuris-
tics.

Selection for Crossover Parent heuristics for crossover
are chosen from successfully executed candidates, balancing
exploration (70% random selection) and exploitation (30%
from elite performers with the lowest forecasting error J).

Reflections BUILDEVO utilizes two reflection types (Ye
et al., 2024). Short-term reflections compare selected parent
heuristics to guide crossover, for instance, by identifying
better use of weather data. Long-term reflections accumulate
insights across generations, pinpointing effective design
patterns for energy heuristics, especially concerning the
integration of physical building parameters, and generating
textual ”verbal gradients” (Pryzant et al., 2023) for the LLM.

Crossover Guided by short-term reflections comparing
parent performance, the LLM combines elements (e.g., code
segments, rules) from two parent heuristics. This aims to
synthesize offspring with potentially superior energy fore-
casting logic, such as improved handling of building meta-
data or weather impacts.

Elitist Mutation The LLM mutates an elite heuristic
(potentially selected by CGES, see below), informed by
long-term reflections. This focuses on refining strategies,
particularly for incorporating physical insights like occu-
pancy schedules inferred from primaryspaceusage or
weather normalization techniques.

3.4. Cross-Generation Elite Sampling for Energy
Heuristics

Standard evolutionary search for complex building energy
forecasting heuristics can stagnate in local optima (Osuna &
Sudholt, 2018), as simple mutations often yield only minor
improvements. To bolster exploration, BUILDEVO adapts
Cross-Generation Elite Sampling (CGES). CGES maintains
a historical archive of high-performing energy forecasting
heuristics from all past generations. For mutation, instead
of only using the current best, an elite heuristic is sampled
from this archive via a Softmax distribution based on past
forecasting errors J . Reintroducing and modifying these
historically successful, diverse strategies (e.g., heuristics
adept for specific building types or weather conditions) en-
hances exploration, aiding escape from local optima and
fostering the discovery of more robust energy heuristics.

3.5. Physical Insights Feedback Loop

The aggregate forecasting error J does not reveal the effi-
cacy of specific internal components or rules within a heuris-
tic, especially those leveraging physical building knowledge.

3
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Table 1. Performance results (MAPE (%) / RMSE / MAE) of different prediction methods across generalization.

Method To College
Classroom

To Public
Services-B

To College
Dormitory To Office Fox To Public

Services-R
LR 12.99 / 9.76 / 6.76 16.45 / 9.02 / 6.23 84.11 / 4.95 / 2.97 21.78 / 8.11 / 4.71 65.08 / 8.36 / 5.51
SVR 9.71 / 8.20 / 5.12 9.36 / 6.00 / 3.63 84.09 / 4.96 / 2.86 14.55 / 5.71 / 3.54 62.36 / 8.13 / 5.51
RF 11.04 / 8.49 / 5.76 10.66 / 6.51 / 4.03 83.32 / 4.95 / 2.96 19.69 / 6.38 / 4.21 58.51 / 8.33 / 5.71
LSTM 10.00 / 8.09 / 5.23 9.83 / 6.42 / 3.73 79.62 / 4.88 / 2.86 14.04 / 5.28 / 3.43 61.61 / 8.25 / 5.65
Informer 8.69 / 6.88 / 4.61 8.64 / 5.84 / 3.27 29.79 / 3.84 / 2.57 10.84 / 4.60 / 2.88 47.55 / 6.47 / 4.32
PSO-Informer 8.01 / 6.64 / 4.28 8.58 / 5.78 / 3.31 27.15 / 3.75 / 2.50 10.72 / 4.53 / 2.84 46.60 / 6.35 / 4.14

- PIFL 9.10 / 7.35 / 4.75 8.90 / 5.80 / 3.38 73.50 / 4.42 / 2.60 12.75 / 4.80 / 3.10 57.00 / 7.50 / 5.12
BUILDEVO 7.10 / 5.90 / 3.80 7.60 / 5.15 / 2.95 24.00 / 3.35 / 2.22 9.50 / 3.79 / 2.52 43.03 / 5.50 / 3.60

BUILDEVO incorporates a Physical Insights Feedback Loop
(PIFL) to address this. This loop analyzes the contribution
of distinct internal logical segments or physically-informed
rules—such as those for calculating base load via sqft
and primaryspaceusage, applying weather-dependent
adjustments, or modeling occupancy-driven variations. Sta-
tistical feedback on the empirical utility of these components
is provided to the reflector and mutation LLMs. This guides
them to refine how the heuristic effectively utilizes physical
building insights and operational contexts for improved per-
formance, steering the evolution towards more physically
grounded and accurate energy forecasting heuristics.

4. Experiments
4.1. Experimental Setup

Baselines We compare the heuristics generated by
BUILDEVO against several benchmark methods commonly
used or relevant for building energy consumption forecast-
ing. These include statistical and machine learning mod-
els such as Linear Regression (LR) (Bishop & Nasrabadi,
2006), Support Vector Regression (SVR), and Random For-
est (RF); deep learning models like the Long Short-Term
Memory network (LSTM) (Hochreiter & Schmidhuber,
1997) and Informer (Zhou et al., 2021), the latter being
specifically designed for long-term series forecasting with a
self-attention mechanism and an encoder-decoder architec-
ture; and optimization-enhanced models including Particle
Swarm Optimization (PSO) (Kennedy & Eberhart, 1995),
a classical population-based stochastic optimization tech-
nique, and PSO-Informer, which utilizes PSO to optimize
Informer’s parameters. The performance of our proposed
method is evaluated against these established approaches.

Hardware and Software All experiments were con-
ducted on a workstation equipped with an AMD Ryzen 9
7950X 16-Core Processor and a single NVIDIA RTX 5090
GPU. The BUILDEVO framework generates building energy
forecasting heuristics as executable Python code snippets
in a Python 3.12 environment, employing Google’s Gemini

2.0 Flash model (Google, 2025).

4.2. Main Results

We report the performance results against the benchmark
methods in Table 1. The heuristics generated by BUILDEVO
demonstrate competitive performance. This establishes
BUILDEVO as a promising approach for generating effective
energy forecasting heuristics. Note that with BUILDEVO,
the algorithm doesn’t have learnable parameters compared
with previous neural baselines.

We also do the ablation study about the PIFL as present
in Table 1. Without the PIFL, BUILDEVOstill achieves a
competitive performance compared to the neural baselines.
By adding the PIFL, the performance of BUILDEVOhas
significantly improved, which validates the effectiveness of
the PIFL.

4.3. Explainability

A key advantage of BUILDEVO is the generation of ex-
plainable Python code for its heuristics. Unlike the ”black-
box” nature of many DL models, the logic of the evolved
heuristics can be inspected and understood. For instance, an
evolved heuristic might explicitly combine rules based on
time-of-day, weather inputs, and building metadata, offering
transparent insights into its forecasting strategy. This inter-
pretability is highly beneficial for building trust, debugging,
and deploying in critical energy management systems.

5. Conclusion
We introduced BUILDEVO, a novel framework leveraging
LLM and EAs to automatically design physically-informed
building energy forecasting heuristics. BUILDEVO gener-
ates interpretable heuristics that achieve competitive accu-
racy and generalize well, as demonstrated on datasets like
BDG2. This work offers a new path towards bridging the
gap between complex ”black-box” models and traditional
heuristics, providing a method for creating transparent and
effective forecasting tools.
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A. Appendix
Data Preprocessing and Loading Protocol

Our study utilizes the Building Data Genome Project 2 (BDGP2) dataset (Miller et al., 2020), a comprehensive collection
comprising building metadata, high-frequency weather data, and multi-modal energy consumption readings (electricity,
chilled water, hot water, steam, gas, solar, irrigation, and water) across a diverse set of buildings. The primary objective of
our data preprocessing pipeline is to create a robust, high-quality dataset suitable for precise energy usage prediction by
addressing missing data through techniques informed by built environment characteristics.

A.1. Data Integration and Temporal Alignment

The initial phase involved meticulous integration of the disparate data sources. Building metadata, including structural details
(e.g., sqft, yearbuilt), operational characteristics (e.g., primaryspaceusage), and geographical information (e.g.,
timezone, site id), was centralized. Meter readings from various cleaned CSV files, each representing a distinct
energy type, were systematically processed. Weather data, including variables such as temperature, humidity, and solar
irradiance, was also incorporated.

A critical step was ensuring temporal consistency across all datasets. Timestamps from meter and weather data were parsed
and localized using timezone information from the metadata. Weather data, often recorded at a different frequency than
meter readings, was resampled (e.g., to hourly averages or sums, as appropriate for the variable) to align with the temporal
resolution of the energy consumption data. These datasets were then merged using building id (for metadata) and a
combination of site id and the aligned timestamp (for weather data), creating a unified analytical dataset for each
building and meter type.

A.2. Missing Data Characterization

Prior to imputation, a thorough analysis was conducted to characterize the nature and extent of missing values within each
energy meter stream. This involved quantifying missing data percentages and identifying patterns, such as correlations with
specific time periods (e.g., time of day, day of week, season), building archetypes (derived from primaryspaceusage),
or particular weather conditions. This step was crucial for selecting appropriate imputation strategies.

A.3. Imputation Strategy based on Built Environment Knowledge

We employed a hierarchical imputation strategy, prioritizing methods that leverage domain-specific knowledge of building
energy systems and operational characteristics over purely statistical approaches.

A.3.1. RULE-BASED AND KNOWLEDGE-DRIVEN IMPUTATION

Initial imputation was performed using predefined rules derived from building metadata and typical operational schedules.
For instance, energy consumption for certain meter types (e.g., solar generation during nighttime, or HVAC in unoccupied
commercial spaces during holidays inferred from primaryspaceusage and temporal features) was imputed with zero
or near-zero values where logical. The presence or absence of specific utilities for a building, as indicated in the metadata,
also guided this step.

A.3.2. MODEL-BASED IMPUTATION

For remaining gaps, machine learning models were developed to predict missing energy consumption values. For each meter
type, regression models (e.g., Gradient Boosting Regressors or Random Forests) were trained on segments of data with
complete records. Features for these models included:

• Temporal Features: Cyclical time features (hour of day, day of week, month), holiday indicators, and trend compo-
nents.

• Weather Features: Current and lagged weather variables (e.g., temperature, humidity, solar irradiance, wind speed),
and derived features like heating/cooling degree days.

• Metadata Features: Building characteristics such as sqft, primaryspaceusage (typically one-hot encoded),
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and building age.

The trained models were then used to predict and fill missing consumption values, thereby incorporating the dynamic
interplay between energy use, external conditions, and building properties.

A.3.3. DONOR-BASED IMPUTATION

In instances where model-based imputation was challenging due to extended missing periods or unique building behav-
iors not well captured by general models, a donor-based approach was considered. This involved identifying ”similar”
buildings (based on primaryspaceusage, sqft, timezone, and other relevant metadata) and using their normalized
consumption patterns during comparable temporal and weather contexts to inform imputation for the target building.

A.3.4. TEMPORAL INTERPOLATION

As a final step, for any very short, isolated missing data points (e.g., single-record gaps) not addressed by the above methods,
standard temporal interpolation techniques (e.g., linear interpolation) were applied sparingly.

This multi-faceted imputation process was applied iteratively to each of the eight distinct meter types. The specific logic for
model features and rule-based imputations was tailored where necessary to the unique physical drivers of each energy stream
(e.g., solar irradiance for solar generation, temperature differentials for HVAC-related meters like chilled water or steam).

A.4. Final Dataset Assembly

Upon completion of the imputation process for all meter types, the individually processed datasets were merged into a single,
comprehensive time-series dataset. An overview of the imputation impact is presented in Figure 2, which showcases the
substantial reduction in missing data and the preservation of data integrity (e.g., temporal trends, statistical distributions)
achieved through the built-environment-informed methodology. This final dataset, characterized by its completeness and the
informed nature of its imputed values, serves as the foundation for subsequent machine learning model development for
energy usage prediction.
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Figure 2. Visual overview of the built-environment-informed imputation process, demonstrating its effectiveness in reducing missing data
while preserving key data characteristics across multiple dimensions.
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