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Abstract

Classic option pricing models, such as the Black-Scholes for-
mula, often depend on some rigid assumptions on the dynam-
ics of the underlying asset prices. These assumptions are in-
evitably violated in practice and thus induce the model risk.
To mitigate this, robust option pricing that only requires the
no-arbitrage principle has attracted a great deal of attention
among researchers. In this paper, we give new robust upper
bounds for option prices based on a novel η-momentum trad-
ing strategy. Our bounds for European options are tighter for
most common moneyness, volatility, and expiration date se-
tups than those presented in (DeMarzo, Kremer, and Mansour
2016). Our bounds for average strike Asian options are the
first closed-form robust upper bounds for those options. Nu-
merical simulations demonstrate that our bounds significantly
outperform the benchmarks for both European and Asian op-
tions.

Introduction
Option pricing has long been one of the most intriguing
problems in finance. An option is a financial contract that
allows its holder to purchase or sell a given underlying as-
set, such as a stock, for a predetermined price on or before
a predetermined date. The price and the date in the con-
tract are known as the strike price and the expiration date,
respectively. For instance, a European call (or put) option
on a stock with strike price K and expiration date T gives
its holder the right to buy (or sell) the stock for a price K
at time T . Consequently, the European call (or put) option
has a payoff of max(ST − K, 0) (or max(K − ST , 0)) at
time T , where ST is the stock price at time T . Besides the
standard European options, various customized exotic op-
tions are traded in the over-the-counter market. Options are
widely used for hedging against potential price fluctuations
of the underlying asset as well as speculation. According
to the webpage of Chicago Board Options Exchange, the
largest U.S. options exchange, more than 1.5 billion stock
options have been traded in 2021. 1
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The famous Nobel Prize-winning Black-Scholes formula
(Black and Scholes 1973), which is based on the princi-
ple of no-arbitrage pricing and risk-neutral probability, was
a milestone in the literature on option pricing. An implicit
assumption in the Black-Scholes framework is that the un-
derlying asset price follows a geometric Brownian motion,
which is quite rigid. With this model setting, the stochastic
calculus can be utilized to obtain the explicit pricing formu-
las for European options. To make the option pricing the-
ory work in practice, the follow-up studies attempt to reduce
or weaken the assumptions a pricing model depends on. In
one line of existing research on option pricing, numerous
models are introduced to deal with more general dynamics
of the underlying assets, such as the Heston model (Hes-
ton 1993), the Bates model (Bates 1996), the jump-diffusion
model (Kou 2002), among others. In the other line of the re-
search, model-independent bounds are developed for various
options, such as (Hobson 1998; Brown, Hobson, and Rogers
2001; Chen and Yeh 2002; Hobson, Laurence, and Wang
2005a, 2005b; Chung and Chang 2007; Chen et al. 2008;
Laurence and Wang 2008; Laurence and Wang 2009; Hob-
son and Neuberger 2012; Kahalé 2016, 2017). DeMarzo,
Kremer, and Mansour (2006) first introduce the techniques
of no-regret learning to option pricing and provide upper
bounds for European call options. Following their work,
Gofer and Mansour (2011) apply the methodology to ex-
otic option pricing. DeMarzo et al. (2016) exploit a new gra-
dient trading strategy to derive upper bounds for European
options. Their results are robust in that they only depend on
the no-arbitrage principle. Based on the same trading strat-
egy, Du, Xue, and Liu (2019) and Xue et al. (2022) develop
robust upper bounds for American options and various ex-
otic options, respectively. Since robust option pricing only
requires the no-arbitrage principle, the robust bounds are
usually not very tight. Therefore, in this study, we investi-
gate a novel no-regret learning strategy, which we call the
η-momentum trading strategy, to derive tighter robust upper
bounds for options.

Pricing and Learning. In the classic finance literature, the
seller (writer) of an option will use the underlying asset to
hedge her risk (i.e., use the underlying asset to replicate the
option). The cost of this replication process is actually the
price of the option. This dynamic hedging process can be ex-
actly reframed as a learning process. The intuition is that the



more loss incurred by the seller, the more hedging position
she will take. Based on this simple observation, DeMarzo et
al. (2006) invent a dramatically different approach to price
a European call option from the classic finance literature.
The basic idea comes from no-regret learning, a well-studied
technique from machine learning. Consider an investor with
an initial capital I , she has a dynamic strategy to allocate
the capital between a stock and a bond during the subse-
quent periods. If her final capital at time T is no less than
the payoff of the option on the stock plus the strike price K
for any possible scenario of the stock price, the option price
is bounded by I −K from above based on the no-arbitrage
principle. DeMarzo et al. (2006) provide an upper bound for
the option, which only depends on two variables: the max-
imal sum of squared single-period return of the stock over
N periods QT and the maximal absolute return in each pe-
riod M . Although this result is groundbreaking, it has two
drawbacks: On one hand, the two variables QT and M are
not directly observable in the market. In order to make this
work in practice, some estimation methods must be intro-
duced for QT and M . On the other hand, in their model, M
is assumed to be less than 1−

√
2

2 , which is impractical. For
instance, in the classic geometric Brownian motion model,
the stock return in any time period follows a normal distri-
bution. This implies that the maximal return in any period
could potentially be infinitely large, which contradicts the
assumption of M < 1 −

√
2

2 . Gofer and Mansour (2011)
study the pricing of exotic options by extending the method-
ology of (DeMarzo et al. 2006). Unfortunately, their results
inherit the two drawbacks of the method in (DeMarzo et al.
2006). In the work of (DeMarzo et al. 2016), the assumption
on the maximal possible absolute return of the stock in each
period is dropped.

Contributions. Our contributions are threefold. Foremost,
we exploit a novel trading strategy: the η-momentum strat-
egy, in which the potential function is an exponential func-
tion with η as the exponent. We derive an upper bound
on the regret of the η-momentum strategy. Based on that,
new robust upper bounds for the prices of European call
options, which is a function of moneyness, the maximum
quadratic variation of the stock return paths q2(ΦT ) and η,
are achieved. Our optimal bound for the at-the-money option
is in closed form and strictly tighter than the result presented
in (DeMarzo et al. 2016). Although the optimal bounds in
our framework do not have closed-form solutions for gen-
eral cases, we prove that they are theoretically tighter for
most common moneyness, volatility and expiration date se-
tups than the benchmarks. This implies that by taking a spe-
cific value of η, our framework admits suboptimal closed-
form upper bounds that are still superior.

Furthermore, we extend the methodology to derive robust
and closed-form upper bounds for average strike Asian call
options. This is the first result of its kind to the best of our
knowledge. Although Xue et al. (2022) provide robust upper
bounds for various exotic options, they do not cover average
strike Asian options. We show that our bounds are strictly
tighter than the corresponding results in (Gofer and Man-
sour 2011) when q2(ΦT ) ≤ QT . This implies that in the

standard binomial-tree model, our bounds are guaranteed to
be superior.

Finally, we investigate the performance of our bounds by
extensive numerical simulations. Consistent with the the-
oretical results, both of our bounds for European options
and Asian options are significantly tighter than those bench-
marks for most cases. In particular, our bounds for European
options outperform the benchmarks better when they are out
of the money than in the money. More interestingly, since we
do not have closed-form solutions for the optimal bounds,
numerical results suggest that our bounds have even better
performance than the predictions of our theoretical results.
Related Literature. No-regret learning is an important
model studied in the interdisciplinary field of computer sci-
ence, game theory and statistics (Hannan 1957; Foster and
Vohra 1999; Cesa-Bianchi and Lugosi 2006; Blum and Man-
sour 2007). Blackwell (1956) studies the approachability
problem that is equivalent to no-regret learning in repeated
games. It is well known that when players follow no-regret
strategies in games, the empirical frequency of their plays
converges to correlated equilibrium (Foster and Vohra 1997;
Hart and Mas-Colell 2000). The idea of no-regret learning
is also closely related to the concept of boosting in machine
learning (Freund and Schapire 1996). Recently, the model of
no-regret learning is further extended to the field of online
convex optimization (Shalev-Shwartz 2011).

DeMarzo et al. (2006) are the first to study option pric-
ing from the perspective of no-regret learning. Abernethy,
Frongillo, and Wibisono (2012) consider the option pricing
through an online learning game between Nature and an In-
vestor, and show that the minimax option price converges to
the price under the Black-Scholes model in the limit. Their
results are further proved by (Abernethy et al. 2013) under
much weaker assumptions.

The η-monmentum Trading Strategy
Consider a discrete-time trading model with N periods
from time 0 to time T , where a period is indexed by n ∈
{0, 1, ..., N}with equal length ∆t = N

T . There are two basic
assets: a stock and a bond, the prices of which at the end of
the nth period are Sn andBn, respectively. Denote the stock
return in the nth period as rn,s = Sn

Sn−1
−1 and its log return

as πn,s = ln(1 + rn,s). Let R = {r1,s, r2,s, ..., rN,s} be a
return path of the stock, and the set of all possible paths is
denoted by φT . Denote by rb the bond return in each period
such that Bn = Bn−1(1 + rb). For simplicity, we assume
that B0 = 1 and rb = 0, which yields Bn = 1 for all n.

There are two reference investment strategies: Strategy I
and Strategy II, which are self-financing trading strategies
on the stock and the bond. For each Strategy j with j = I or
II, V0,j is the initial capital invested in the strategy and its
value is Vn,j at the end of the nth period. Denote by rn,j the
return of Strategy j in the nth period where rn,j =

Vn,j
Vn−1,j

−
1, and its corresponding log return is πn,j = ln(1 + rn,j).

An investor in this model manages a dynamic portfolio
consisting of the stock and the bond. The portfolio has an
initial valueG0 = 1 and its value at the end of the nth period
isGn. The investor aims at making the value of the portfolio



comparable to the ex-post best of the two reference strate-
gies at time T . To accomplish the objective, She utilizes a
no-regret learning strategy, which we call the η-momentum
trading strategy, to allocate her capital between the two ref-
erence strategies. To illustrate the strategy, we first define a
regret vector Ln = (ln

x1Vn,I
V0,I

− lnGn, ln
x2Vn,II
V0,II

− lnGn),
where lnx = (lnx1, lnx2) is a parameter representing an
initial fictitious loss, and is used to optimize the performance
of the dynamic portfolio. At the beginning of the nth pe-
riod, the η-momentum trading strategy invests wn,I portion
ofGn−1 in Strategy I andwn,II = 1−wn,I portion in Strat-
egy II, where wn,I is specified as

wn,I =
eηLn−1,1

eηLn−1,1 + eηLn−1,2
=

(
x1Vn−1,I

V0,I
)η

(
x1Vn−1,I

V0,I
)η + (

x2Vn−1,II

V0,II
)η
.

The positive parameter η in the trading strategy is used to op-
timize the performance of the dynamic portfolio as well. The
regret bound of the η-momentum trading strategy is summa-
rized in the following Theorem.
Theorem 1. The η-momentum trading strategy with initial
loss lnx guarantees

max(ln
x1VN,I
V0,I

, ln
x2VN,II
V0,II

)−lnGN ≤
ln(xη1 + xη2)

η
+
ηq2(R)

8
,

where q2(R) =
N∑
n=1

(πn,I − πn,II)2.

Proof. We first define Wn = (
x1Vn,I
V0,I

)η + (
x2Vn,II
V0,II

)η and
πn = wn,Iπn,I + wn,IIπn,II . Direct calculation verifies

ln
Wn

Wn−1
= ln

(x1Vn,I/V0,I)
η + (x2Vn,II/V0,II)

η

(x1Vn−1,I/V0,I)η + (x2Vn−1,II/V0,II)η

= ln[wn,I(
Vn,I
Vn−1,I

)η + wn,II(
Vn,II
Vn−1,II

)η]

= ln(
∑

i∈{I,II}

wn,ie
ηπn,i)

= ηπn + ln[
∑

i∈{I,II}

wn,ie
η(πn,i−πn)]

= ηπn + ln[wn,I + wn,IIe
η(πn,II−πn,I )]

+ η(πn,I − πn)
= ηπn + ln[wn,I + (1− wn,I)eη(πn,II−πn,I )]
+ η(1− wn,I)(πn,I − πn,II).

Denote by πn,g the log return of the dynamic portfolio ad-
justed by the η-momentum trading strategy such that πn,g =
ln[1 +wn,Irn,I +wn,IIrn,II ]. From the concavity of the ln
function, we have

πn = wn,Iπn,I + wn,IIπn,II ≤ πn,g.

Define f(s) := ln[wn,I + (1−wn,I)e−ηs] + η(1−wn,I)s.
By straightforward calculation we have

f
′
(s) = − η(1− wn,I)e−ηs

wn,I + (1− wn,I)e−ηs
+ η(1− wn,I),

and

f
′′
(s) =

η2wn,I(1− wn,I)e−ηs

[wn,I + (1− wn,I)e−ηs]2
≤ η2

4
.

Since f(0) = f
′
(0) = 0, by Taylor’s theorem there exists

some θ lying between 0 and s such that

f(s) = f(0) + f
′
(0)s+

f
′′
(θ)

2
s2 =

f
′′
(θ)

2
s2 ≤ η2s2

8
.

It follows that

ln
Wn

Wn−1
= ηπn+f(πn,I−πn,II) ≤ ηπn,g+

η2(πn,I − πn,II)2

8
.

For one thing,

lnWN = ln[(
x1VN,I
V0,I

)η + (
x2VN,II
V0,II

)η]

≥ ηmax(ln
x1VN,I
V0,I

, ln
x2VN,II
V0,II

).

For another,

lnWN = lnW0 +
N∑
n=1

ln
Wn

Wn−1

≤ ln(xη1 + xη2) +
N∑
n=1

[ηπn,g +
η2(πn,I − πn,II)2

8
]

= ln(xη1 + xη2) + η lnGN +
η2

8

N∑
n=1

(πn,I − πn,II)2.

Define q2(R) =
N∑
n=1

(πn,I − πn,II)2. Combining the lower

bound with the upper bound of lnWN and rearranging, we
get the stated inequality.

The Robust Pricing of European Options
Consider a European call option on the stock with strike
price K and expiration date T . It has a payoff of max(SN −
K, 0) at time T . In order to price the call option, we consider
a static portfolio consisting of the call option and K shares
of the bond. At time T , the portfolio earns max(SN ,K). If
we can construct a dynamic portfolio such that its value at
time T is always greater than max(SN ,K) for anyR ∈ ΦT ,
then based on the no-arbitrage principle, the initial cost of
the dynamic portfolio minus K could be viewed as the upper
bound of the call option price. In fact, based on the regret
bound in Theorem 1, we can construct such a dynamic port-
folio by the η-momentum trading strategy as long as the two
reference strategies are defined as:

• Strategy I: Buy one share of the stock at time 0 and hold
it up to time T .

• Strategy II: Invest an initial capital of K in the bond at
time 0 and hold it up to time T .



Robust Upper Bounds for European Call Options
Theorem 2. The price of a European call option with stock
price S0, strike price K and expiration date T satisfies

CE(S0,K, T |ΦT ) ≤ min
η>0

S0e
ln[1+(K/S0)η ]

η +
ηq2(ΦT )

8 −K, (1)

where q2(ΦT ) is the maximal quadratic variation of the ex-
cess log returns among all of the possible stock return paths

in Φ: q(ΦT ) =
√

supR∈ΦT q
2(R) =

√
supR∈ΦT

N∑
n=1

π2
n,s.

Proof. To derive upper bounds for European call options,
we define the two reference strategies in section as

• Strategy I: Buy one share of the stock at time 0 and hold
it up to time T .

• Strategy II: Invest an initial capital of K in the bond at
time 0 and hold it up to time T .

By Theorem 1, the dynamical portfolio adjusted by the
η-momentum trading strategy at time T is worth

GN ≥ e−
ln(x

η
1+x

η
2 )

η − ηq
2(R)
8 max(

x1SN
S0

, x2),

where q2(R) =
N∑
n=1

π2
n,s. Define q2(ΦT ) =

supR∈ΦT q
2(R). We get, for any R ∈ ΦT ,

GN ≥ e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 max(
x1SN
S0

, x2).

Now consider the following two portfolios at time 0:
Portfolio A: long one European call option on stock with

strike price K and expiration date T and simultaneously in-
vest an initial capital of K in the bond.

Portfolio B: invest I into the dynamically adjusted port-
folio above.

At time T , Portfolio A earns max(SN ,K),
while portfolio B is worth greater than I ∗

e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 max(x1SN
S0

, x2). If (x1, x2, η, I) is
carefully chosen such that the payoff of portfolio B at time
T is greater than max(SN ,K), portfolio B should have a
greater initial investment cost than portfolio A. As a result,
I − K should be viewed as an upper bound for the price
of the European call option CE(S0,K, T |ΦT ). In order to
obtain an upper bound as tight as possible, (x1, x2, η, I) is
selected to satisfy:

min
x1,x2,η,I

I

s.t. x1e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 I ≥ S0,

x2e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 I ≥ K.
By Karush-Kuhn-Tucker Conditions, the optimal solution
(x∗1, x

∗
2, I
∗) satisfies:

x∗1 =
S0

K
x∗2,

and I∗ = min
η>0

S0e
ln[1+(K/S0)η ]

η +
ηq2(ΦT )

8 .

Therefore, the price of the European call option
CE(S0,K, T |ΦT ) satisfies

CE(S0,K, T |ΦT ) ≤ min
η>0

S0e
ln[1+(K/S0)η ]

η +
ηq2(ΦT )

8 −K.

Note that the inequality (1) holds for all η > 0. Spe-
cially, when K = S0, the optimal η takes the value of
η∗ =

√
8 ln 2
q2(ΦT ) . Substituting η by η∗ in the inequality (1),

we can obtain the optimal upper bound with a closed-form
expression for an at-the-money call option.
Corollary 3. The price of an at-the-money call option with
stock price S0 and expiration date T satisfies

CE(K = S0, S0, T |ΦT ) ≤ S0(e
√

ln 2
2 q(ΦT ) − 1),

where q(ΦT ) is defined in Theorem 2.

Comparison with (DeMarzo et al. 2016)
By exploiting the gradient trading strategy, DeMarzo et al.
(2016) develop robust upper bounds for European call op-
tion prices that satisfy

CE(S0,K, T |ΦT ) ≤ S0e
1
2

√
2q2(ΦT )+(ln K

S0
)2+ 1

2 ln K
S0 −K,

where q2(ΦT ) is defined in Theorem 2. Let UE be our opti-
mal upper bounds and UEDKM be the corresponding results
in (DeMarzo et al. 2016) for European call options. Based on
the above results, we can directly compare UE with UEDKM
for the at-the-money option.
Theorem 4. If K = S0, then UE < UEDKM for all positive
q2(ΦT ).

Proof. When K = S0, UEDKM = S0(e
√

1
2 q(ΦT )−1). Since

ln 2
2 < 1

2 , we get UE < UEDKM for all positive q2(ΦT ).

Specially, for the at-the-money option with small q2(ΦT ),
UE

UEDKM
= e

√
ln 2
2
q(ΦT )−1

e

√
1
2
q(ΦT )−1

≈
√

ln 2
2 q(ΦT )√
1
2 q(ΦT )

=
√

ln 2 ≈ 0.83.

For general cases, our optimal bounds UE do not
have closed-form solutions. Instead of comparing UE with
UEDKM directly, we first construct suboptimal upper bounds
by specifying η to take a fixed value of η∗ in Theorem 2, and
then compare UEDKM with the suboptimal bounds to evalu-
ate the tightness of UE . For a given option, define the mon-
eyness, m, as the ratio of its strike price to the stock price.
We have the following result.
Theorem 5. Given any q2(ΦT ), UE < UEDKM if K

S0
∈

[e−1.27∗q(ΦT ), e1.27∗q(ΦT )]. In other words, given any mon-
eyness interval [1 − ε, 1 + ε] with ε ∈ (0, 1], if q(ΦT ) ≥
qmin = − ln(1−ε)

1.27 , UE < UEDKM for all KS0
∈ [1− ε, 1 + ε].

Proof. We first prove the following technical inequality: for
∀ y > 0,

(
y − 1

y + 1
)2 ≥ ln2 y

16 ln 2 + ln2 y
, (2)



Define h(y) := 2
√

ln 2(y−1)√
y − ln y. Since h(1) = 0, and

h
′
(y) =

√
ln 2

y
+

√
ln 2

y
3
2

− 1

y

=

√
ln 2

y
(1 +

1

y
− 1√

y ln 2
)

=

√
ln 2

y
[(

1
√
y
− 1√

4 ln 2
)2 + 1− 1

4 ln 2
] > 0,

we have 2
√

ln 2(y−1)√
y ≥ ln y ≥ 0 for y ≥ 1, and

2
√

ln 2(y−1)√
y < ln y < 0 for 0 < y < 1. It follows

that for ∀ y > 0, 4 ln 2∗(y−1)2

ln2 y
≥ y. Substituting y by

1
4 [(y+1)2−(y−1)2] in the right-hand side of the inequality
above and rearranging, we obtain the inequality (2).

Define g(m) := ln(1+mη
∗

)
η∗ + η∗q2(ΦT )

8 −
1
2

√
2q2(ΦT ) + (lnm)2 − 1

2 lnm, where m = K
S0

and

η∗ =
√

8 ln 2
q2(ΦT ) . Since

g
′
(m) =

mη∗−1

1 +mη∗
− lnm

2m
√

2q2(ΦT ) + (lnm)2
− 1

2m

=
1

2m
[

2mη∗

1 +mη∗
− lnm√

2q2(ΦT ) + (lnm)2
− 1]

=
1

2m
[
mη∗ − 1

mη∗ + 1
− lnmη∗√

2q2(ΦT )η∗2 + (lnmη∗)2
]

=
1

2m
[
mη∗ − 1

mη∗ + 1
− lnmη∗√

16 ln 2 + (lnmη∗)2
],

based on the inequality (2), we have g
′
(m) > 0 for m > 1

and g
′
(m) < 0 for 0 < m < 1. Since g(1) =

√
ln 2
2 q(ΦT )−√

1
2q(ΦT ) < 0 and limm→0 g(m) = limm→+∞ g(m) =

η∗q2(ΦT )
8 > 0 for positive q(ΦT ), it follows that there must

exist 0 < m1 < 1 and m2 > 1 such that g(m1) = g(m2) =
0. To determine m1 and m2, we guess they satisfy the fol-
lowing function form: mi = eλiq(ΦT ) with i ∈ {1, 2}. Plug-
ging mi in g(m), we get

g(mi) = [
ln(1 + eλi

√
8 ln 2)√

2 ln 2
+

√
ln 2

2
−

√
2 + λ2

i − λi]
q(ΦT )

2
.

Solving g(mi) = 0 numerically, we get
λ1 ≈ −1.27 and λ2 ≈ 1.27. Therefore, when
m ∈ [e−1.27∗q(ΦT ), e1.27∗q(ΦT )], we have ln(1+mη

∗
)

η∗ +
η∗q2(ΦT )

8 ≤ 1
2

√
2q2(ΦT ) + (lnm)2 + 1

2 lnm. Noting that

min
η>0

ln(1+mη)
η + ηq2(ΦT )

8 ≤ ln(1+mη
∗

)
η∗ + η∗q2(ΦT )

8 , we thus

have UE < UEDKM if K
S0
∈ [e−1.27∗q(ΦT ), e1.27∗q(ΦT )]. It

follows that given any moneyness interval [1− ε, 1 + ε] with

ε ∈ (0, 1], if q(ΦT ) ≥ qmin = max( ln(1+ε)
1.27 ,− ln(1−ε)

1.27 ) =

− ln(1−ε)
1.27 , UE < UEDKM for all K

S0
∈ [1− ε, 1 + ε].

In the Black-Scholes or standard binomial-tree frame-
work with risk-free rate r = 0, q2(ΦT ) = σ2T .2
This result provides us with an opportunity to exam-
ine the superiority of our bounds in common money-
ness, volatility and expiration date setups. We set σ ∈
{0.15, 0.3, 0.45} to cover low, medium, and high volatil-
ity, and T ∈ {1 month, 3 months, 6 months, 1 year} to cover
short-, medium- and long-term expiration date. Since op-
tions with moneyness m ∈ [0.9, 1.1] are usually traded fre-
quently, we are concerned if our bounds are superior within
the prevalent moneyness interval for these common money-
ness, volatility and expiration date setups. The moneyness
interval within which our bounds are superior for various
combination of σ and T is reported in Table 1. We find
that, except for (σ, T ) = (0.15, 1 month) combination, our
bounds outperform the benchmarks when m ∈ [0.9, 1.1] for
all volatility and expiration date setups. Therefore, although
our optimal upper bounds do not have closed-form solutions,
by taking a specific value of η, our framework admits sub-
optimal closed-form upper bounds that are still superior for
most common moneyness, volatility and expiration date se-
tups.

σ
T

1 month 3 months 6 months 1 year

0.15 [0.95 1.05] [0.90,1.10] [0.88,1.14] [0.83,1.20]
0.30 [0.90,1.11] [0.83,1.21] [0.76,1.31] [0.69,1.46]
0.45 [0.85,1.18] [0.75,1.33] [0.67,1.50] [0.56,1.77]

Table 1: Moneyness interval within which our bounds are
superior.

Extension to Asian Options
By appropriately modifying the reference strategies to ac-
commodate the payoff function of options, our methodology
can be extended to obtain robust upper bounds for several
prevalent exotic options. In this section, we mainly focus
on pricing discretely monitored average strike Asian options
with the arithmetic mean.

Robust Upper Bounds for Average Strike Asian
Call Options
An average strike call option with expiration date T is an
Asian option that pays its holder max(SN − SN , 0) at time

T , where SN = 1
N+1

N∑
i=0

Si. To derive the upper bound, we

define the two reference strategies as:
• Strategy I :Buy one share of the stock at time 0. From

time 0 on, sell a fraction 1
N+1−n of the remaining stock

and invest the proceeds in the bond at the end of the nth
period for n ∈ {0, ..., N − 1}.
2Please refer to (DeMarzo et al. 2016) for the detail.



• Strategy II: Buy one share of the stock at time 0 and hold
it up to time T .

Denote by pn,s the portion of Vn−1,I invested in the
stock at the beginning of the nth period. By definition,

pn,s =
1

N+1 (N−n+1)Sn−1

1
N+1

∑n−1
i=0 Si+

(N−n+1)Sn−1
N+1

= N−n+1∑n−2
i=0

Si
Sn−1

+N−n+2
.

We have the following result.

Theorem 6. The price of an average strike call option with
initial stock price S0 and expiration date T satisfies:

CEAS(S0, T |ΦT ) ≤ S0(e
√

ln 2
2 q(ΦT ) − 1),

where q(ΦT ) is defined in Theorem 2.

Proof. By Theorem 1, the dynamical portfolio adjusted
by the η-momentum trading strategy at time T is

worth GN ≥ e−
ln(x

η
1+x

η
2 )

η − ηq
2(R)
8 max(x1SN

S0
, x2SN

S0
), where

q2(R) =
N∑
n=1

(πn,I − πn,s)
2. Since ∂(πn,I−πn,s)2

∂pn,s
=

2 ln[1− (1−pn,s)rn,s
1+rn,s

]· rn,s
1+rn,s

1− (1−pn,s)rn,s
1+rn,s

≤ 0, namely, (πn,I − πn,s)2 de-

creases in pn,s, we have q2(R) =
N∑
n=1

(πn,I − πn,s)
2 ≤

N∑
n=1

π2
n,s. It follows that for any R ∈ ΦT ,

GN ≥ e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 max(
x1SN
S0

,
x2SN
S0

).

Consider the following two portfolios at time 0:
Portfolio A: Buy one average strike call option with expi-

ration date T and simultaneously buy one share of the stock
following Strategy I.

Portfolio B: Invest an initial capital of I into the dynamic
portfolio, which will be adjusted by the η-momentum strat-
egy later on.

At time T , Portfolio A earns max(SN , SN ). On the other
hand, Portfolio B is worth I ∗GN , which satisfies:

I ∗GN ≥ I ∗ e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 max(
x1SN
S0

,
x2SN
S0

).

If (x1, x2, η, I) is carefully chosen such that the payoff
of Portfolio B at time T is greater than max(SN , SN ),
the initial value of Portfolio B should be greater than that
of Portfolio A. Consequently, I − S0 should be an upper
bound on CEAS(S0, T ). To obtain an optimal upper bound,
(x1, x2, η, I) should satisfy:

min
x1,x2,η,I

I

s.t. x1e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 I ≥ S0,

x2e−
ln(x

η
1+x

η
2 )

η − ηq
2(ΦT )

8 I ≥ S0.

By the Karush-Kuhn-Tucker Conditions, we obtain the opti-
mal solution (x∗1, x

∗
2, η
∗, I∗) as:

x∗1 = x∗2,

η∗ =

√
8 ln 2

q2(ΦT )
,

and I∗ = S0e
√

ln 2
2 q(ΦT ).

The stated result is thus obtained by plugging in I∗.

Given a constant R, if Sn
Sn−1

≥ R, the above upper bound
can be further tightened by reducing the value of q2(ΦT ).
It is easy to verify that pn,s ≥ N−n+1

1−R1−n
R−1 +N−n+2

. Denote

N−n+1
1−R1−n
R−1 +N−n+2

as p
n,s

, we have the following Corollary

according to Theorem 6.

Corollary 7. If Sn
Sn−1

≥ R, then the price of an average
strike call option with initial stock price S0 and expiration
date T satisfies:

CEAS(S0, T |ΦT ) ≤ S0(e
√

ln 2
2 qc(ΦT ) − 1),

where q2
c(ΦT ) = supR∈ΦT

∑N
n=1 ln2(1 + p

n,s
rn,s).

Comparison with (Gofer and Mansour 2011)
By extending the methodology of (DeMarzo et al. 2006),
Gofer and Mansour (2011) derive upper bounds for average
strike Asian call options that satisfy

CEAS(S0, T |ΦT ) ≤ min
1≤µ≤ 1−2M

2M(1−M)

S0(e(µ−1)QT+ ln 2
µ − 1),

where QT = supR∈ΦT

∑N
n=1r

2
n,s and M is the maximal

absolute return of the stock in each period. Note that their
bounds are not robust, since they require M ≤ 1 −

√
2

2 ex-
cept for the no-arbitrage principle. Let UAS and UASc be
our bounds in Theorem 6 and Theorem 7, and UASGM be the
corresponding results in (Gofer and Mansour 2011) for av-
erage strike Asian call options. Since q2(ΦT ) and QT have
distinct definitions, it is hard to determine which bounds
are lower theoretically. However, for the special case of
q2(ΦT ) ≤ QT ≤ 2 ln 2, our upper bounds for average strike
Asian options are definitely superior.
Theorem 8. If q2(ΦT ) ≤ QT ≤ 2 ln 2, then we have
UASc ≤ UAS ≤ UASGM .

Proof. If ln 2 ≤ q2(ΦT ) ≤ QT ≤ 2 ln 2, UASGM = S0 and
UAS ≤ S0. We thus have UAS ≤ UASGM . If q2(ΦT ) ≤
QT < ln 2, it is easy to verify that min1≤µ≤ 1−2M

2M(1−M)
(µ −

1)QT + ln 2
µ ≥ minµ>0(µ− 1)QT + ln 2

µ = 2
√

ln 2 ∗QT −
QT ≥ (2

√
ln 2 − 1)

√
QT ≥ (2

√
ln 2 − 1)q(ΦT ). Since

2
√

ln 2−1 >
√

ln 2
2 , we have min1≤µ≤ 1−2M

2M(1−M)
(µ−1)QT+

ln 2
µ ≥

√
ln 2
2 q(ΦT ). It follows that UAS ≤ UASGM . Recalling

that UASc ≤ UAS , we conclude the proof.



Note that, when QT > 2 ln 2, UASGM is equal to S0, which
is a trivial upper bound, while UAS and UASc may exceed
S0. However, by taking the minimum of UAS (or UASc )
and S0, we can guarantee our new upper bounds are always
lower than UASGM as long as q2(ΦT ) ≤ QT .

Consider a N -time step binomial tree model from time 0
to time T with step size ∆t = T

N , the gross return of the
stock in each step is either u = eσ

√
∆t or d = 1

u . Since
u − 1 ≥ 1 − d > 0, we have QT = N(u − 1)2 and
q2(φT ) = N(lnu)2 by definition. It follows that q2(ΦT ) <
QT . Therefore, by Theorem 8, our bounds for Asian options
are superior in the standard binomial-tree model.

Numerical Simulations
In this section, the performance of our upper bounds for Eu-
ropean options and average strike Asian options is examined
by comparing them with their corresponding benchmarks.

For a given option, let U and Ub be our upper bound
and the benchmark upper bound for the option, respectively.
To evaluate the performance of our bounds relative to the
benchmarks, we define the tightness of our bounds, Tu, as
Tu = 1− U

Ub
. We enumerate all reasonable combinations of

m and q2(φ). The range for m is [0.6, 1.4] with stepsize 0.1
while the range for q2(φ) is [0, 0.5] with stepsize 10−4.

Figure 1: Tightness of our bounds for European call options.

For European options, the benchmarks we use are the
bounds in (DeMarzo et al. 2016). Our optimal upper bounds
are generated by solving the optimization problems with η
numerically, while the benchmarks are calculated by plug-
ging in the parameters directly. The magnitude of Tu with
varying q2(ΦT ) and m for European call options is illus-
trated in Figure 1. In the heatmap, the red area represents our
bounds underperform the benchmarks, while the other color
area represents our bounds outperform the benchmarks. As
the color changes from yellow to green, and then to blue, Tu
increases gradually, which indicates the performance of our
bounds relative to the benchmarks is getting better.

For a given q2(ΦT ), denote by [ml,mu] the moneyness
interval within which U ≤ Ub through numerical simula-
tions. Denote by q̂2

min the minimum q2(ΦT ) to guarantee
U ≤ Ub within a given moneyness interval [1 − ε, 1 + ε]
through numerical simulations. There are at least four ob-
servations worth noting. First, our bounds outperform the
benchmarks for most cases because of the quite small pro-
portion of the red area. In line with Theorem 5, the inter-
val [ml,mu] becomes wider as q2(ΦT ) increases. Second,

ε Moneyness interval q̂2
min q2

min

0.05 [0.95,1.05] 5.0 ∗ 10−4 1.63 ∗ 10−3

0.1 [0.9,1.1] 2.2 ∗ 10−3 6.88 ∗ 10−3

0.15 [0.85,1.15] 5.1 ∗ 10−3 1.64 ∗ 10−2

0.2 [0.8,1.2] 9.5 ∗ 10−3 3.09 ∗ 10−2

Table 2: q2
min versus q̂2

min for common moneyness interval.

Figure 2: Upper bounds versus Black-Scholes prices.

as reported in Table 2, q̂2
min is one third smaller than q2

min
for common moneyness interval. This indicates that our up-
per bounds are lower than the benchmarks within a much
wider moneyness spread than that implied by Theorem 5 for
a given q2(ΦT ). Third, Tu tends to take the largest value
as m approaches to one, i.e., when options are near at-the-
money. With m departure from one, Tu exhibits a decreas-
ing tendency. Specially, for the at-the-money call options,
Tu increases and ranges from 17% to 22% with increasing
q2(ΦT ). Last but not the least, It’s interesting to see that Tu
tends to take larger value when m > 1 than m < 1 for a
given q2(ΦT ), which means our upper bounds perform bet-
ter relative to the benchmarks for out-of-the-money options
than for in-the-money options, especially for deep-out-of-
the-money options.

Besides the general comparisons of the European call
option pricing above, we also make comparisons in the
Black-Scholes framework. We set S0 = 100, σ = 0.15,
T = 1 year, m ∈ [0.8, 1.2], and r = q = 0. It follows
that q2(φT ) = σ2T = 0.0225. The results are illustrated
in Figure 2. Both our bound and the bound in (DeMarzo et
al. 2016) are a convex function of the strike price, which
are akin to the shape of the Black-Scholes option price. Fur-
thermore, our bounds are significantly tighter than those in
(DeMarzo et al. 2016) for all m ∈ [0.8, 1.2]. Specially, for
the at-the-money call option, our bound is 54% larger than
the Black-Scholes price, whereas the value is 87% for the



Figure 3: Upper bounds for Asian call options.

result in (DeMarzo et al. 2016).
For average strike Asian option, the results in (Gofer and

Mansour 2011) are the benchmarks. To accommodate their
requirement that the maximal absolute return of the stock
in each period is no more than 1 −

√
2

2 , we use the bino-
mial tree as the model of stock returns. Consider a N-time
step binomial tree model from time 0 to time T with step
size ∆t = T

N , where r = q = 0. During each step, the
gross return of the stock is either u = eσ

√
∆t or d = 1

u .
Since u − 1 ≥ 1 − d > 0, by definition, it follows that
M = u− 1, R = d, QT = N(u− 1)2, q2(φT ) = σ2T , and
q2
c(φT ) =

∑N
n=1 ln[1 + N−n+1

u−un
1−u +N−n+2

(u − 1)]2. Both of

our bounds and the benchmarks are calculated by plugging
in these parameters directly. The comparison of our bounds
with the benchmarks is illustrated in Figure 3. In this fig-
ure, the blue line represents the benchmarks scaled by S0,
whereas the dashed and solid red line represent our bounds
with or without the constraint of d ≤ Sn

Sn−1
scaled by S0,

respectively. Consistent with Theorem 8, our upper bounds
for Asian call options are always lower than the bench-
marks across the whole spectrum of q2(ΦT ). As q2(ΦT ) in-
creases, Tu decreases monotonically with range from 46.9%
to 64.6%. With the constraint of d ≤ Sn

Sn−1
, our bounds are

even tighter. As q2(ΦT ) increases, Tu increases monotoni-
cally with range from 80% to 86.3%.

Conclusions
By exploiting the η-momentum trading strategy, we develop
new robust upper bounds for European options and aver-
age strike Asian options. Our upper bounds are proved to be
tighter than the benchmarks under mild conditions. Numer-
ical simulations demonstrate that both of our bounds signif-
icantly outperform the benchmarks for most cases. Except
for average strike Asian options, our methodology can be
applied in other prevalent exotic option pricing, including
average price Asian options, shout options, forward start op-
tions as well as exchange options.

It is worth noting that, although our bounds significantly
outperform the benchmarks for most common moneyness,

volatility and expiration date setups. It would be interesting
to investigate the optimal upper bound in the robust setting.
In addition, we do not provide lower bounds in this paper,
which is left as an attractive open question.
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