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Abstract

Aspect sentiment quad prediction (ASQP) has
become a popular task in the field of aspect-
based sentiment analysis, which aims to pre-
dict four sentiment elements: aspect category,
aspect term, opinion term, sentiment polarity.
Although its great success, existing methods
still have shortcomings. First, the sentiment
element is only related to the specific words
in the input sentence. The existing works pre-
dict quads based on the whole input, which
adds redundant information. Second, recent
methods convert quad prediction into a gen-
erative task through a pre-defined templates.
Constructing different template orders can im-
prove the performance of the model. However,
most methods simply utilize pre-trained lan-
guage models to select template order group-
ings without deeply analyzing the relationships
between template orders. In this paper, we pro-
pose a relational mask multi-head attention and
template-order grouping method, which not
only reduces the redundant information in the
input but also select appropriate template order
groupings. Specifically, we construct a train-
able relation mask matrix and fuse it into the
multi-head attention of the TS5 decoder. Then
we introduce relation constraint loss to reduce
redundant information in the input. In addition,
we quantify the effect of one template order’s
gradient on another template order’s loss to
determine the template order groupings. Exper-
iments on multiple public datasets demonstrate
that our method outperforms state-of-the-art
methods.

1 Introduction

ASQP task has received widespread attention in the
field of aspect-based sentiment analysis (ABSA).
It focuses on extracting four elements of aspect-
level sentiment, including (1) aspect category (ac)
defines the type of the concerned aspect; (2) aspect
term (at) is the opinion target which is explicitly
or implicitly in the given text; (3) opinion term

(ot) expresses the sentiment towards the aspect; (4)
sentiment polarity (sp) describes the orientation of
the sentiment over an aspect term. If the aspect and
opinion terms are implicit in the given text, they
are set as NULL. For example, the sentence “The
view is spectacular, and the food is great.” contains
two sentiment quadruples (location general, view,
spectacular, positive) and (food quality, food, great,
positive).

Existing methods (Zhang et al., 2021a; Hu et al.,
2022, 2023; Gou et al., 2023; Bai et al., 2024)
gradually use generative methods to handle ASQP
task and have achieved good performance. They
convert sentiment quads into natural language sen-
tences through pre-defined templates and then train
the model using the sequence-to-sequence method.
However, the above method still has some issues.
First, the sentiment element is only related to spe-
cific words in the sentence. For example, "food
quality" corresponds to "food" in the sentence. Ex-
isting methods predict quads based on the entire
input, which may add redundant information and
harm the performance of the model. Second, dif-
ferent template orders can augment quads and im-
prove the performance of the model. Yet, previous
methods simply use pre-trained language models
to select template order groupings with minimal
entropy (Hu et al., 2022) or jensen—shannon diver-
gence (Bai et al., 2024) without deeply analyzing
the correlations between the template orders.

In this paper, we propose a relational mask multi-
head attention and template-order grouping method
to address the above problems. First, we introduce
a trainable relation mask matrix and integrate it into
the multi-head attention module of the T5 (Raffel
et al., 2020) decoder. We construct the correspond-
ing true relation mask matrices and use relation
constraint loss to reduce the redundant information
of the input sentence. Second, we use different tem-
plate orders to augment quads and relation mask
matrices. We train all template orders together and



quantify the impact of gradient updates of one or-
der on the loss of another order to measure the
correlation score between template orders. Then
we find all groups containing K, template orders
and select the group with the greatest correlation
score. In summary, the main contributions of our
work are summarized as follows:

e We construct a trainable relation mask matrix
and use relation constraint loss to reduce the redun-
dant information in the input sentence. To the best
of our knowledge, this work is the first focus on the
relationship between input sentences and quads in
the ASQP task.

e We propose a template-order grouping method
that can select more appropriate template order
groups by deeply analyzing the relationship be-
tween the orders.

e Experimental results show that our method out-
performs other state-of-the-art methods on multiple
public datasets.

2 Related Work

2.1 Aspect-base Sentiment Analysis

ABSA has received wide attention in recent years.
Early studies focus on predicting a single sentiment
element, such as aspect term extraction (Liu et al.,
2015; Ma et al., 2019; Xu et al., 2019), aspect cate-
gory detection (Zhou et al., 2015; Bu et al., 2021),
and sentiment polarity classification for a given
aspect term (Wang et al., 2016; Huang and Car-
ley, 2018; Sun et al., 2019). Some works further
consider the relationship between multiple senti-
ment elements, including the aspect-opinion pair
extraction (Wu et al., 2020; Gao et al., 2021), as-
pect term-polarity co-extraction (Li et al., 2019;
Luo et al., 2019; Chen and Qian, 2020), aspect
sentiment triplet extraction (ASTE) (Peng et al.,
2020), and ASQP (Zhang et al., 2021a). Among
these, ASQP is the most complete and also the
most challenging task.

2.2 Aspect Sentiment Quad Prediction

ASQP can reveal a more comprehensive and com-
plete aspect-level sentiment structure. Genera-
tive methods have gradually become mainstream
because they use the information from label se-
mantics and are highly universal. These methods
can mainly be classified as template-based (Hu
et al., 2022), structure-based (Mao et al., 2022;
Bao et al., 2022, 2023). This paper focuses only
on template-based methods. (Hu et al., 2023) pro-

pose an uncertainty-aware unlikelihood learning,
which boosts original learning and reduces mis-
takes. Multi-view Prompting (MVP) (Gou et al.,
2023) is an element order-based prompt learning
method and improves the performance of the model
by aggregating multi-view results. Broad-view Soft
Prompting (BvSP) (Bai et al., 2024) aggregates
multiple templates with a broader view by consid-
ering the correlations between different templates.
Self-Consistent Reasoning-based Aspect sentiment
quadruple Prediction (SCRAP) (Kim et al., 2024)
uses the reasoning of large language models to
improve the accuracy and interpretability of the
model. Since labeled quads are scarce, some stud-
ies augment the training samples to solve the high
annotation cost problem. (Wang et al., 2023) use
quads-to-text generation task to generate the texts
and utilize average context inverse document fre-
quency to evaluate the difficulty of augmented sam-
ples and balance the difficulty distribution. (Yu
et al., 2023) and (Zhang et al., 2024b) use the self-
training mechanism to filter out mismatched sam-
ples to improve the quality of generated samples.
(Zhang et al., 2024a) propose an adaptive data aug-
mentation method to tackle the quad-pattern imbal-
ance and aspect-category imbalance.

The sentiment element in the quads is only asso-
ciated with the specific words in the input. Most
of the above methods utilize the entire input to pre-
dict the quads, which adds redundant information.
Our approach constructs multiple trainable relation
mask matrices and uses relation constraint loss to
make the sentiment element focus on related words.
Furthermore, we deeply analyze the relationship
between template orders to find more suitable tem-
plate order groupings.

3 Approach

3.1 Task Definition

Given an input sentence I = {wy, wa, ..., wy } con-
taining N words, ASQP aims to predict all quads
(at, ot, ac, sp). In order to better predict implicit
aspect terms and opinion terms, we add special
markers to the input sentence: “[IA] [10] I”’. Fol-
lowing the previous template-based method (Hu
et al., 2022), we use special markers to convert
the quads into a target sequence: “[AT] at [OT] ot
[AC] ac [SP] sp”. If a sentence contains multiple
quads, the target sequences are concatenated with
a special marker [SSEP] to obtain the final target
sequence.
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Figure 1: The architecture of relational mask multi-head attention.

3.2 Relational Mask Multi-Head Attention

Existing template-based methods predict quads
based on the entire input. The sentiment elements
in the quads are only related to specific words
in a sentence. In this paper, we propose a rela-
tional mask multi-head attention that incorporates
a trainable relation mask matrix into the multi-
head attention of the T5 decoder in Figure 1. For-
mally, X € RV*9 denotes the feature representa-
tions of I and is projected through three matrices
Wgo € R, Wy € R¥*da and Wy, € R¥*%
to obtain (), K, and V. d and d, are dimensions.
PE ¢ RN*N js the position embedding. The
multi-head attention of the T5 model is computed
as follows:

Qn=XW
Kp=XWh
Vi, = XW (1)

2 = softmaz(QnK} + PE,)V,
Z = concat(z1, 22, ..., zi1 )Wy

where zj, is the h-th head. H is the number of heads.
W, € RHdaxd s the parameter matrices. We intro-
duce a trainable relation mask matrix M,, € RN*N
and integrate it into the multi-head attention of the
T5 decoder. The h-th head is computed as follows:

2 = softmaz(QuK} + PE, + M)V, (2)

Note that M, is the same in each head. The
relational mask multi-head attention is as follows:

3)

Z% = concat (21, 28, ... 2BYW,

3.3 Relation Constraint

We introduce a relation constraint to establish the
connection between sentiment elements and cor-
responding words in the input, which can reduce
redundant information in the input. First, we con-
struct the real relation mask matrix. For aspect
terms, we keep the corresponding aspect terms in
the input and mask other words. For opinion terms,
we keep the corresponding aspect terms and opin-
ion terms in the input and mask other words. If
the aspect terms or opinion terms are implicit, they
are mapped with the corresponding special mark-
ers. The aspect category and sentiment polarity
are consistent with the aspect terms and opinion
terms, respectively. [SSEP] does not mask words
in the input. For example, the sentence is “The
food is terrible and not worth going again” and
the target sequence is “<BEGIN> [AT] food [OT]
terrible [AC] food quality [SP] negative [SSEP]
[AT] NULL [OT] not worth [AC] restaurant gen-
eral [SP] negative”. The true relation mask matrix
is shown in Figure 2. For a template order, we
compute the true and predicted cross-attention and
use the euclidean distance to compute the relation
constraint loss:

AD = softmaz(QnK} + PE), + M,)
Al = softmaz(QnK} + PE), + My)
Ly = ED(A}, AY)

1 &
R R
Lf= N1k
h=1

where M, is the true relation mask matrix.
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Figure 2: The true relation mask matrix between the input sentence and the target sequence.

3.4 Template-Order Grouping

Inspired by (Hu et al., 2023), we construct all tar-
get sequences with multiple order mapping func-
tions o;, where i € [0, 23]. Note that we only sort
the sentiment quadruple. Formally, 6, represents
the shared parameters and {0; = M|i € [0, 23]}
represents the private parameters corresponding
to each template order. We train the model using
the sequence-to-sequence method. The encoder-
decoder model converts the input sentence into the
target sequence {y° } by o;. The cross-entropy loss
is as follows:

N
L = — Z logp{es,oi}(ytoiu? yZe) o)
t=1

Existing methods simply use pre-trained lan-
guage models to select template order groupings
without deeply analyzing the correlations between
the template orders. In this paper, we propose a
template order grouping method that can quantify
the effect of one template order’s gradient on an-
other template order’s loss to select the appropriate
groupings. For the training batch D! at time-step
t, we define 611 to represent the updated shared
parameters after template order ¢ is updated. The
formula is as follows:

0L = 0L — Vg Li(D', 05,01 (6)

18V

where 7 is the learning rate. L;(D?, 6%, 6!) denotes
the relation constraint loss and cross-entropy loss
of template order ¢. For the same training batch, we
can compare the loss of template order j before and
after applying the gradient update of template order
1. We define an asymmetric measure to evaluate
the correlation score between template order ¢ and

template order j at time-step .

ot —q_ RiDLO0)) %
= L;(Dt, 6L, 6%)

’57]

Notice that a positive value of C} ; denotes that
the update of shared parameters is beneficial to
template order j, while a negative value of C!_, y
denotes that the update of template order ¢ will re-
duce the performance of template order 7. Then we
can calculate the correlation score over the whole

training set.

T

— 1

Cinj = T g Cf_>j (8)
=1

where T' is the number of iterations. For all groups
containing K, template orders, we first calculate
the correlation score of each group. For exam-
ple, for the group consisting of template orders
{1, 2, 3}, the correlation score is as follows:

ol _62~>1 +Cs51  Cioo+ O3
1,23 = 9 5 ©
Cios+ Cass
t——

Then we pick the group with the highest score.
Algorithm 1 describes the process of template-
order grouping.

3.5 Training Strategy

We train the model by combining relation con-
straint loss and cross-entropy loss on the selected
template-order grouping:

K,
1 g
L=—=> A" 4 L
Ky &~

(10)

where A controls the impacts of relation constraint,
balancing the two learning objectives.

4 Experiment

4.1 Dataset Preparation

We evaluate our method on four tasks. Restl5
and Rest16 datasets are proposed by (Zhang et al.,



Algorithm 1 Procedure of template-order grouping
Input: Training dataset D, V¢ is the batch size,
0, is the shared parameter of all template orders,
{60;li € [0,23]} is the private parameter of each
template order, K, and Nk, are the number of
selected template orders and groups, 7' is the total
number of iterations.
Stage 1: Template order correlation calculation:

1: Lett =0.

2: while t <T" do

3:  Randomly select N; samples D! from D

4. Lett=0.

5:  while ¢ <24 do

6: Compute the forward loss of all template

orders {L;(D',0,6%)|5 € [0,23]}

y Vg

7: Update the 6 and 0;57 of the i-th template
order

8: Compute the forward loss of all template
orders { L;(D', 6511, 0%)|5 € [0,23]}

9: Compute the correlation score C} be-

tween the i-th template order and all tem-
plate orders
10: 1=1+1
11:  end while
12:  Obtain the correlation score matrix C? by
connecting {C%|j € [0, 23]}
13: t=t+1
14: end while
15: Compute the final correlation score matrix C'
by averaging {C*|t € [0,T]}
Stage 2: Template order grouping:
1: Lett =0.
2: while ¢ <NK9 do
3:  Compute the correlation score Gy of the t-th
group
t=t+1
: end while
: Select the group with the highest score from
{Gt|t S [0, NKg]}

2021a). They are based on SemEval Shared Chal-
lenges (Pontiki et al., 2015, 2016). The annotations
of the opinion term and aspect category are derived
from (Peng et al., 2020) and (Wan et al., 2020)
respectively. Restaurant and Laptop datasets are
proposed by (Cai et al., 2021). The Restaurant
dataset is constructed based on the SemEval 2016
Restaurant dataset (Pontiki et al., 2016) and its ex-
pansion datasets (Fan et al., 2019; Xu et al., 2020).
The Laptop dataset is collected from the Amazon

Data Train Test Val
#S #Q #S #Q #S #Q
Rest15 834 1354 537 795 209 347
Rest16 1264 1989 544 799 316 507
Restaurant 1530 2484 583 916 171 261

Laptop 2934 4172 816 1161 326 440

Table 1: Statistics of the experimental datasets. #S: num-
ber of sentences. #Q: number of sentiment quadruple
labels.

platform at the years of 2017 and 2018. Table 1
summarizes the all datasets. In addition, we also
conduct experiments on augmented dataset (Zhang
et al., 2024b).

4.2 Implementation Details

We adopt T5-base (Raffel et al., 2020) as the pre-
trained generative model. During the training, The
maximum sequence length, learning rate, and batch
size is 200, le-4, and 16, respectively. The epochs
of the original dataset and augmented dataset are
20 and 10. For the hyper-parameter K, and A, the
experimental results are in Section 4.6. During
the inference, we employ a beam size of 1 and
use different templates to generate results. Then
we get the final quadruple on the original dataset
through the voting mechanism. For the augmented
dataset, we use the reranking method (Zhang et al.,
2024b) to improve the prediction performance of
the model. All the reported results are the average
of 5 runs.

4.3 Baselines

We compare our model with the strong baselines.
They include both the large language model, i.e.
ChatGPT (Xu et al., 2023), and the following
state-of-the-art methods, namely Extract-Classify-
ACOS (Cai et al., 2021), GAS (Zhang et al.,,
2021b), Paraphrase (Zhang et al., 2021a), SS,
DLO, ILO (Hu et al., 2022), MvP (Gou et al.,
2023), GenDA (Wang et al., 2023), ADA (Zhang
et al., 2024a), ST-Scorer (Zhang et al., 2024b), and
UGTS (Su et al., 2025).

4.4 Experiment Results

We compare our method with other state-of-the-art
methods on the four datasets and the experimental
results in Table 2. SS+Ours and ST-Scorer+Ours
represent the experimental results of our method
on the original and augmented datasets. As can



Model Rest15 Rest16 Restaurant Laptop

P R F1 P R F1 P R F1 P R F1
ChatGPT 29.66 37.86 33.26 36.09 46.93 40.81 29.66 37.86 33.26 36.09 46.93 40.81
Extract-Classify* 35.64 37.25 36.42 38.40 50.93 43.77 38.54 52.96 44.61 45.56 29.48 35.80
GAS* 45.31 46.70 45.98 54.54 57.62 56.04 57.09 57.51 57.30 43.45 43.29 43.37
Paraphrase* 46.16 47.72 46.93 56.63 59.30 57.93 59.85 59.88 59.87 43.44 42.56 43.00
SS* 48.24 48.93 48.58 58.74 60.35 59.53 59.98 58.40 59.18 43.58 42.72 43.15
DLO* 47.08 49.33 48.18 57.92 61.80 59.79 60.02 59.84 59.93 43.40 43.80 43.60
ILO* 47.78 50.38 49.05 57.58 61.17 59.32 58.43 58.95 58.69 44.14 44.56 44.35
MvP* - - 51.04 - - 6039 - - 6154 - - 4392
GenDA* 49.74 50.29 50.01 60.08 61.70 60.88 - - - - - -
ADA* 49.31 53.96 51.53 59.34 62.83 61.03 60.15 61.95 61.04 45.03 44.53 44.78
ST-Scorer* 51.94 52.00 51.97 63.46 64.31 63.88 65.43 61.92 63.63 47.05 45.32 46.17
UGTS* 52.76 52.43 52.59 65.72 64.50 65.10 65.94 63.47 64.68 48.21 46.39 47.28
SS+Ours 52.28 50.63 51.44 61.31 59.95 60.62 64.91 59.71 62.20 45.83 43.66 44.72
ST-Scorer+Ours 54.22 52.69 53.44 66.90 66.23 66.56 66.72 63.96 65.31 48.37 45.94 47.12

Table 2: Evaluation results compared with baseline methods. The experimental results of baseline methods, marked
with *,are obtained from (Hu et al., 2023) and (Su et al., 2025).

Model Rest15 Rest16 Restaurant Laptop

P R F1 P R F1 P R F1 P R F1

Original Datasets
SS+Ours 52.28 50.63 51.44 61.31 59.95 60.62 64.91 59.71 62.20 45.83 43.66 44.72
w/o RMMA 50.84 49.61 50.22 60.72 58.97 59.83 63.67 58.51 60.98 44.36 43.04 43.69
w/o RC 50.12 47.26 48.65 59.83 56.77 58.26 61.15 57.32 59.17 43.17 42.06 42.61
w/o TOG 51.06 48.68 49.84 59.96 58.41 59.17 62.88 58.39 60.55 44.13 42.98 43.55
Augmented Datasets

ST-Scorer+Ours 54.22 52.69 53.44 66.90 66.23 66.56 66.72 63.96 65.31 48.37 45.94 47.12
w/o RMMA 53.77 51.88 52.81 66.23 65.89 66.06 65.48 63.54 64.50 47.24 44.53 45.84
w/o RC 52.39 50.52 51.44 65.12 64.85 64.98 65.17 62.18 63.64 46.71 44.16 45.40

Table 3: Results of ablation on Rest15, Rest16, Restaurant, and Laptop datasets. w/o means deletion operation.

be seen, our method has achieved the best perfor-
mance on most tasks.

Specifically, we have the following observations:
(1) Compared to the pipeline Extract-Classify, end-
to-end methods achieve better performance be-
cause they can reduce the error propagation prob-
lem. (2) Compared with ILO, SS+Ours gains abso-
lute F1-score improvements by 2.39% (4.87% rel-
atively), 1.30% (2.19% relatively), 3.51% (5.89%
relatively), and 0.37% (0.88% relatively) in Rest15,
Rest16, Restaurant and Laptop datasets, respec-
tively. Similarly, SS+Ours also outperform MvP,
DLO, and SS on all datasets. (3) On the augmented
datasets, ST-Scorer+Ours outperforms ST-Scorer
and UGTS on most datasets. Overall, our method
reduces the redundant information in the input and
selects more appropriate groups by deeply analyz-
ing the relationship between the template orders.

The experimental results verify the effectiveness of
the proposed method.

4.5 Ablation Study

To analyze the effect of relational mask multi-head
attention (RMMA), relation constraint (RC), and
template-order grouping (TOG), we conduct the
ablation experiments in Table 3. The experimental
results show that adding the trainable relation mask
matrix can improve classification accuracy. When
we remove the relation constraint loss, the classi-
fication accuracy of w/o RC degrades on Rest15,
Rest16, Restaurant, and Laptop datasets. It shows
that RC is beneficial to improve model perfor-
mance. Besides, template order grouping can fur-
ther improve the performance of the model on the
original dataset. Although RMMA, RC, and TOG
are both beneficial to improve the performance of
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Figure 4: Fl-score under different A values on Rest15, Rest16, Restaurant, and Laptop datasets.

the model, RC tends to play a more essential role.

K, F1 T-Speedup I-Speedup
1 49.89  1.00x 1.00x
2 5026  0.50x 0.56x
3 5144  0.33x 0.35x
4 51.52 0.25x 0.26x
5 5124  0.20x 0.21x
6 5135 0.17x 0.18x

Table 4: The F1, training speedup, and inference
speedup under different K, values on the Rest15 dataset
in the original dataset.

4.6 Hyperparameter Study

We observe the effect of two hyperparameters: K,
and \. K, is the number of selected template or-
ders. A balances relation constraint loss and cross-
entropy loss.

We analyze the effect of the K, value on the
origin and augmented datasets in Figure 3. The
range of K, is 1,2, 3,4, 5, 6. It can be seen that
increasing the K, can improve the performance of
the model on the original dataset. However, the
improvement on the augmented dataset is small or
even decreases. The augmented dataset has more
training data, and increasing the K, may cause
overfitting. Besides, we also analyze the impact
of K, on training time and inference time in Table

4. As K, increases, the training and inference
time gradually increases. Considering the model
performance, training, and inference efficiency, we
choose K; = 3 and K, = 1 on the original and
augmented datasets.

We investigate the effect of the A value on the
origin and augmented datasets in Figure 4. We
vary the A value with 0.001, 0.005, 0.01, 0.02, 0.05,
0.1, 0.5, and 1 respectively. The F1 increases first
and then decreases as A increases on most tasks.
It shows that our method can improve the perfor-
mance of the model through appropriate parame-
ters.

4.7 Effect of Trainable Relation Mask Matrix

For each attention head, we construct two different
ways to observe the effects of the trainable relation
mask matrix in Table 5: same trainable relation
mask matrix (STRMM) and different trainable re-
lation mask matrices (DTRMM). The experimental
results show that DTRMM does not achieve bet-
ter performance. For example, STRMM obtains a
higher F1 score on the Rest15 dataset. Finally, we
use the same trainable relation mask matrix in the
relational mask multi-head attention module.

4.8 Effect of Correlation Score

The template order grouping is obtained according
to the correlation score matrix between different



Rest15

Model P R F1 P R

Rest16

Restaurant Laptop

F1 P R F1 P R F1

Original Datasets

STRMM 52.28 50.63 51.44 61.31 59.95 60.62 64.91 59.71 62.20 45.83 43.66 44.72
DTRMM 52.09 49.82 50.93 60.24 60.57 60.40 64.76 60.59 62.61 45.55 44.26 44.90

Augmented Datasets

STRMM 54.22 52.69 53.44 66.90 66.23 66.56 66.72 63.96 65.31 48.37 45.94 47.12
DTRMM 54.24 52.56 53.39 67.01 66.45 66.73 66.07 63.51 64.76 48.49 46.53 47.49

Table 5: Effect of trainable relation mask matrix on Rest15, Rest16, Restaurant, and Laptop datasets.

templates, so how calculating the correlation scores
between different templates is very important. In
the consecutive steps of model training, the corre-
lation scores between different templates are likely
to be similar. We set eight correlation score cal-
culation methods and analyze the performance of
the model on the Rest15 dataset. The experimental
results demonstrate that the 10-steps is 6.16x faster
while achieving more than 99.54% the performance
of the 1-step. In addition, First 50%, Middle 50%,
and Final 50% will reduce the performance of the
model. This result suggests the correlation scores
between different templates are constantly chang-
ing during the training process. Considering com-
putational cost and model performance, we choose
10-steps on the original and augmented datasets.

Model F1 Speedup
1-step 51.68 1.00x
5-steps 51.37 3.95x
10-steps 51.44 6.16x
15-steps 49.01 7.93x
20-steps 4726 9.25x
First 50%  49.13  1.90x
Middle 50% 50.53 1.90x
Final 50%  49.67 1.90x

Table 6: Effect of correlation score on the Rest15 dataset
in the original dataset. First 50%, Middle 50%, and Fi-
nal 50% represent the start, middle and end of training.

4.9 Attention Visualization

For more intuitive understanding our approach, we
visualize the attention between the input and tar-
get sequences. We train the model using a single
template order and visualize the attention of the
last layer in Figure 5. For aspect term and opinion
term, our method can focus on specific words in the
sentence and reduce redundant information. For
aspect category and sentiment polarity, our method
cannot pay attention to the specified words in the

sentence well. For example, "positive" should fo-
cus on "nice" and "calm" instead of "The", The
observations are similar in other template orders,
which are presented in the Appendix A.1.

<BEGIN>- 3.9 6.8 14.8 5.6 6.5 5.7 5.8 14

T
d- o5 08 2.6 1.7

wwwwwwww 6.3 3.7 13 0.3 0.6 0.3

[SSEP]- 0.3 08 1.0 5.9 05 0.5 0.2 17

tom _ N -75
on- o2 06 26 19 59 15 33

ambience - 0.3 0.6 25 0.9 12 0.3 0.2 2.9 “5.0

[SP]
ssssssss - 07 1.4 8.5 5.7 12 0.2 12 21

[AT]
e 0.6 16 17.3 16 0.1 0.2 3.6

(] 1ol The place was nice and calm

Figure 5: The visualization of attention between input
sequence and target sequence. The template order is
"[OT] ot [AC] ac [SP] sp [AT] at".

5 Conclusion

In this paper, we propose a relational mask
multi-head attention and template-order grouping
method, which can reduce the redundant informa-
tion in the sentence and select appropriate template
order groupings. First, we introduce a trainable
relation mask matrix and use the relation constraint
loss to reduce the redundant information in the in-
put sentence. Second, we use different template
orders to augment quads and deeply analyze the re-
lationship between different templates to select the
template order groupings. Finally, experiments on
the original and augmented datasets demonstrate
that our method outperforms the state-of-the-art
methods.



Limitations

The limitations of our method are as follows:

(1) We use euclidean distance to calculate the
distance between the true and predicted cross-
attention. There may be other measurement meth-
ods that can achieve better results.

(2) Although the template-order grouping
method can deeply analyze the relationship be-
tween different templates and achieve better per-
formance, it also has a higher computational cost.
However, the correlation score matrix between dif-
ferent templates is only calculated once.
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