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ABSTRACT

Real-world applications often face scarce labeled data due to the high cost and time
requirements of gold-standard experiments, whereas unlabeled data are typically
abundant. With the growing adoption of machine learning techniques, it has
become increasingly feasible to generate multiple predicted labels using a variety
of models and algorithms, including deep learning, large language models, and
generative AI. In this paper, we propose a novel approach that safely and adaptively
aggregates multiple black-box predictions with unknown quality while preserving
valid statistical inference. Our method provides two key guarantees: (i) it never
performs worse than using the labeled data alone, regardless of the quality of the
predictions; and (ii) if any one of the predictions (without knowing which one)
perfectly fits the ground truth, the algorithm adaptively exploits this to achieve either
a faster convergence rate or the semiparametric efficiency bound. We demonstrate
the effectiveness of the proposed algorithm through experiments on both synthetic
and benchmark datasets.

1 INTRODUCTION

In real-world applications, labeled data are often expensive, time-consuming, or requires expert
knowledge to obtain, whereas unlabeled data are abundant and easier to collect. With the rapid
advancement of machine learning and generative AI, generating predicted labels using powerful tools
such as large language models (LLMs) and other algorithms has become easier than ever before. With
predictions derived from a single source, many methods have been proposed, such as self-training
(Lee, 2013; Zhu et al., 2023) and prediction-powered inference (PPI) (Angelopoulos et al., 2023;
2024), to obtain better predictions or inference results under a variety of conditions.

However, the availability of multiple predictions introduces practical challenges. Outputs from
different models–such as GPT, Llama, or DeepSeek–often differ, sometimes substantial; and the
quality of predictions from black-box models can be highly variable. In particular, low-quality or
poorly calibrated predictions can introduce significant noise, increasing variance and leading to
unreliable inference. While one can evaluate the quality of each prediction or identify which model’s
output is closest to the ground truth, a more compelling goal is to develop a principled method to
aggregate multiple sources of predictions such that the resulting inference is guaranteed to perform no
worse than using the labeled data alone. Moreover, if any one of the predictions is perfectly accurate
or satisfies some ideal conditions, the aggregation method should achieve performance equivalent to
using that prediction alone. Thus, this paper aims to answer the following question:

Given multiple predicted labels with unknown quality, how can we aggregate
them in a safe and data-adaptive manner to improve estimation and inference?

To answer this question, we introduce a novel method that can safely and adaptively aggregate
predictions from multiple black-box models, enabling valid and more informative inference. The
proposed method has two key highlights:

• Safety: The proposed method is guaranteed to perform no worse than the naive estimator
(using the labeled data alone) in terms of mean squared error, regardless of the choice of
machine learning models or their prediction accuracy. This means the method remains valid
even when the ML predictions are arbitrarily misspecified.
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• Adaptivity: With multiple predictions, the proposed method adaptively utilizes more infor-
mation of the better predictions to reduce variance, while downweighting poor predictions to
avoid variance inflation. In particular, when one prediction is perfectly accurate, the method
can effectively pick it up and performs as if we knew the ground truth of the unlabeled data.

1.1 OUR NOVEL CONTRIBUTIONS

First, we consider a semi-supervised setting where multiple sets of predicted labels are available,
without making any assumptions about their quality or requiring prior knowledge of which predictions
are more accurate. The predicted labels are also not needed to share the same scale or format, either
with each other or with the true labels. This bridges the gap between advanced machine learning
tools and principled methods for leveraging them to improve the inference results.

Second, we propose a safe and adaptive approach for aggregating multiple black-box predictions.
Our method assigns data-driven weights to the predictions, effectively leveraging helpful information
to reduce bias while mitigating the influence of harmful information that could increase variance.
Importantly, it is guaranteed to perform no worse than using the labeled data alone, regardless of the
quality of black-box predictions.

Third, we demonstrate that if any one of the predictions (no need to know which one) is perfectly
accurate, the proposed estimator achieves a faster convergence rate, same as the oracle estimator
that knows the ground truth of the unlabeled data. In addition, if we restrict the predictions to be
deterministic functions of the observed features, say, generated by some pre-trained learners, and
if any one of the predictions (no need to know which one) satisfies some ideal conditions, then the
proposed estimator achieves the best possible estimation efficiency among all regular asymptotically
linear estimators; i.e., it attains the semiparametric efficiency bound.

1.2 RELATED WORK

Semi-supervised learning (SSL) SSL has become a prominent approach in machine learning
and statistics, leveraging both limited labeled data and abundant unlabeled data to enhance the
performance of models (Grandvalet & Bengio, 2004; Zhu, 2005; Pan & Yang, 2010).

Over the past two decades, a wide range of SSL algorithms has been proposed. These methods differ
in the assumptions, in how they utilize unlabeled data, and in their relationship to supervised learning
approaches (van Engelen & Hoos, 2020). Broadly, these algorithms can be categorized into two
types: inductive and transductive methods. Inductive methods, similar to supervised learning, use a
pre-trained model to assign labels to unlabeled data. Examples include self-training (Yarowsky, 1995;
Lee, 2013; Berthelot et al., 2019; 2020), co-training (Blum & Mitchell, 1998; Wang & Zhou, 2010;
Deng & Guo, 2011), pseudo-labeled boosting methods (Zhou, 2012), unsupervised preprocessing
(Sheikhpour et al., 2017). In contrast, transductive methods do not produce a generalizable model;
instead, they predict labels by directly propagating information through connections between data
points. It typically defines a graph over all data points, both labeled and unlabeled, encoding the
pairwise similarity of data points with possibly weighted edges (Jebara et al., 2009; Liu et al., 2012;
Subramanya & Talukdar, 2014). Additionally, significant progress has been made in recent years to
understand, as well as how to leverage, the statistical benefits of the unlabeled data. Chakrabortty &
Cai (2018) and Azriel et al. (2022) studied linear regression problems within the SSL framework and
proposed estimators that are more efficient than ordinary least squares (OLS) which relies solely on
labeled data. Song et al. (2023) further extended this framework to general M-estimation problems.
The methodology has also been adapted to high-dimensional settings, where the number of features
exceeds the sample size (Zhang et al., 2019; Cai & Guo, 2020; Zhang & Bradic, 2022; Deng et al.,
2024). Applications of SSL have expanded beyond statistical models to include both 2D computer
vision tasks (Jeong et al., 2019; Liu et al., 2021; Tang et al., 2021; Zhou et al., 2022) and 3D object
detection problems (Wang et al., 2021; Park et al., 2022; Li et al., 2023; Liu et al., 2023).

Prediction-powered inference (PPI) In the past few years, a growing body of research has focused
on enhancing statistical inference by incorporating predictions from black-box AI/ML models (Wang
et al., 2020; Motwani & Witten, 2023). In particular, Angelopoulos et al. (2023) introduced prediction-
powered inference (PPI), a framework that enables valid inference even when the predictive model
is of low quality. However, PPI might perform worse in estimation efficiency compared to the
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naive method that uses labeled data only. This limitation has motivated further research aimed at
improving the efficiency of PPI or integrating it with ideas from other statistical and machine learning
frameworks. Examples include PPI++ (Angelopoulos et al., 2024), cross PPI (Zrnic & Candès, 2024),
stratified PPI (Fisch et al., 2024), and recalibrated PPI (Ji et al., 2025).

In related work, Zhu et al. (2023) proposed a doubly robust self-training method that achieves
faster convergence rates when predictions are highly accurate. Miao et al. (2024) introduced a
post-prediction adaptive inference approach that ensures valid statistical inference without relying
on assumptions about the ML predictions. Gan et al. (2024) explored a broader class of imputed
loss functions to enhance modeling flexibility and efficiency. Gronsbell et al. (2025) focused on
inference under squared error loss, situating PPI within the broader context of semiparametric theory.
Bartolomeis et al. (2025) introduced a framework that integrates the predictions from multiple
foundation models with randomized experiments while preserving valid statistical inference.

Missing data and causal inference SSL is also closely related to missing data and causal inference
(Rubin, 1974; 1976). In those problems, common approaches include likelihood-based inference
(Dempster et al., 1977; Ibrahim, 1990), imputation methods (Rubin & Schenker, 1986; Rubin, 2004;
Vach & Schumacher, 1993), Bayesian approaches (Rubin, 1976), and semiparametric methods
(Robins et al., 1994; Zhao et al., 1996). For more complex missing-not-at-random scenarios, earlier
work established identification under specific modeling assumptions, such as outcome-selection
models (Heckman, 1979), pattern-mixture parametrizations (Little, 1993; 1994), graphical models
(Fay, 1986; Ma et al., 2003), and sensitivity analysis techniques (Rotnitzky et al., 1998; Robins et al.,
2000).

2 PROBLEM SETUP

We first introduce some notations we use throughout. All vectors are assumed to be column vectors
unless otherwise specified. Let u⊗2 = uuT for a vector u. We denote A � B for two symmetric
square matrices A and B if B−A is positive semi-definite. We generally use capital letters to denote
random variables, and the corresponding lowercase letters to denote their realizations. We use P to
denote the probability measure and E to denote the expectation. For two random vectors U and V,
let cov(U,V) = E[{U− E(U)}{V − E(V)}T] and var(U) = cov(U,U).

SSL, objective and the naive estimator We consider a standard SSL setting that consists of
a set of n labeled samples, L = {(xi, yi), i = 1, . . . , n} and a set of N − n unlabeled samples,
U = {xi, i = n+ 1, . . . , N}, drawn from some underlying distribution of random variables (X, Y ).
Let `θ(x, y) be a convex loss function. In this paper, we focus on a p-dimensional parameter,
θ∗ ∈ Θ ⊂ Rp, defined as

θ∗ = argmin
θ∈Θ

E{`θ(X, Y )}.

We define the score function s(x, y;θ) = ∂`θ(x, y)/∂θ. Then, we can write θ∗ as the solution to
the estimating equation

E{s(X, Y ;θ)} = 0. (1)
The definition of θ∗ is intentionally broad and includes many commonly studied parameters. For
example, if the goal is to estimate the outcome mean E(Y ), one may define the loss function as
`θ(x, y) = (y − θ)2/2, which yields the score function s(x, y; θ) = y − θ. As another example,
when the parameter of interest is the coefficient in a linear regression model, the loss can be defined
as `θ(x, y) = (y − xTθ)2/2, leading to the score function s(x, y;θ) = (y − xTθ)x.

The naive estimator, θ̂nv, which only uses the labeled data, solves

1

n

n∑
i=1

s(xi, yi;θ) = 0.

Assume the Hessian matrix H = E{∂s(X, Y ;θ∗)T/∂θ} exists and is nonsingular. Under some
regularity conditions (see Assumption 1), the mean squared error of θ̂nv equals

E{(θ̂nv − θ∗)⊗2} =
1

n
H−1ΣnvH

−1, (2)
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where Σnv = var{s(X, Y ;θ∗)}.

Availability of multiple predicted labels We consider the availability of predicted labels from K
black-box models, denoted as ŷi = (ŷ1,i, . . . , ŷK,i), for each subject i = 1, . . . , N . For example,
in our application of wine reviews (see Section 5.2), a LLM can quickly predict a score based on
information such as the wine’s name, price, vineyard, and other attributes. Multiple LLMs–such as
GPT, Llama, and DeepSeek–can be used to generate a range of predictions. We make no assumptions
on the quality of these predictions. The data structure and generating process are illustrated in Table 1
and left panel of Figure 1.

Table 1: Data structure in SSL with multiple sets of predicted labels.

Unit Feature Label Multiple predicted labels

Labeled data L
1 x1 y1 ŷ1 = (ŷ1,1, . . . , ŷK,1)

T

...
...

...
...

n xn yn ŷn = (ŷ1,n, . . . , ŷK,n)
T

Unlabeled data U
n+ 1 xn+1 ? ŷn+1 = (ŷ1,n+1, . . . , ŷK,n+1)

T

...
...

...
...

N xN ? ŷN = (ŷ1,N , . . . , ŷK,N )T

Overarching goal The overarching goal of this paper is to propose a safe and adaptive algorithm
that constructs valid and more informative inference for θ∗ by leveraging multiple predictions,
regardless of their individual quality. Importantly, we do not require the predictions Ŷk to share the
same magnitude or form either with each other or with Y . For example, when Y is a binary label,
each prediction Ŷk may be either categorical or continuous. We allow the generation process of
Ŷk to be a black box, potentially depending not only on the observed feature X but also on some
unobservable or latent variables.

3 KEY IDEA: ILLUSTRATION WITH MEAN ESTIMATION

We elaborate the intuition behind our approach using the example of mean estimation. Consider
s(x, y; θ) = y − θ, which corresponds to the estimand θ∗ = E(Y ), the outcome mean. The naive
estimator is the averaged outcome of the labeled samples, θ̂nv = n−1

∑n
i=1 yi. While this estimator

is unbiased, it may suffer from high variance and mean squared error due to the limited size of the
labeled dataset. To improve efficiency by leveraging the K machine learning-predicted outcomes
ŷi from both labeled and unlabeled data, we introduce a family of unbiased estimators indexed by
weights ω = (ω1, . . . , ωK)T:

θ̂(ω) :=
1

n

n∑
i=1

yi +

K∑
k=1

ωk

(
1

N − n

N∑
i=n+1

ŷk,i −
1

n

n∑
i=1

ŷk,i

)
.

This family covers several existing methods as special cases. For example, when ω = 0, it reduced
to the naive estimator θ̂nv. When there is only one prediction, i.e. K = 1, and ω = 1, it turns out to
be the PPI estimator (Angelopoulos et al., 2023):

θ̂ppi =
1

n

n∑
i=1

yi +
1

N − n

N∑
i=n+1

ŷi −
1

n

n∑
i=1

ŷi.

Assuming that var(Ŷ) is positive definite. To find the best estimator among the family, we can
compute the variance, equivalently, the mean squared error, of θ̂(ω):

E[{θ̂(ω)− θ∗}2] = 1

n
var(Y )︸ ︷︷ ︸

naive estimator

+
N

n(N − n)
ωT var(Ŷ)ω − 2

n
ωT cov(Ŷ, Y )︸ ︷︷ ︸

additional term

. (3)
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The first term of (3) is the variance of the naive estimator, while the second captures the variance
contributed by leveraging ML predictions. Notice that (3) is a quadratic form of ω, which achieves
the minimum at

ωopt =
N − n

N
var(Ŷ)−1 cov(Ŷ, Y ). (4)

The optimal weight ωopt is fully determined by and can be easily estimated from the available data.
In practical applications, one can estimate ωopt as

ω̂opt =
N − n

N

{
1

N

N∑
i=1

(ŷi − ŷ)(ŷi − ŷ)T
}−1{

1

n

n∑
i=1

(ŷi − ŷ)(yi − y)

}
,

where y = n−1
∑n

i=1 yi, and ŷ = N−1
∑N

i=1 ŷi.

In this paper, we refer to the resulting optimal estimator θ̂(ω̂opt) as the proposed SADA estimator,
denoted as θ̂sada. In what follows, for certain theoretical analyses and illustrations, we do not
distinguish between the estimator θ̂(ωopt) and the SADA estimator θ̂sada, as they are asymptotically
equivalent. This simplification is made when it does not lead to confusion.

The SADA estimator θ̂sada enjoys the following two attractive properties.

Safety Based on (3) and (4), one can compute that

E{(θ̂sada − θ∗)2} =
1

n
var(Y )︸ ︷︷ ︸

naive estimator

−
(
1

n
− 1

N

)
cov(Ŷ, Y )T var(Ŷ)−1 cov(Ŷ, Y )︸ ︷︷ ︸

efficiency gain

. (5)

The efficiency gain in (5) is always non-negative regardless of the quality of the predictions. It
vanishes to zero if and only if cov(Ŷ, Y ) = 0, that means, none of the predictions are correlated with
the ground truth Y . In this worst-case scenario, the optimal weight is automatically assigned to zero
(i.e., ω = 0), reducing to the naive estimator. Except this worst-case scenario, the SADA estimator
offers a guaranteed positive efficiency gain over the naive method and enables more informative
inference for θ∗ (see Theorem 1 and Appendix B for details in the general case).

Adaptivity If any one of the predictions (no need to know which one) is highly accurate, the weight
automatically picks it up and introduces an estimator with either a faster convergence rate or an
improved estimation efficiency. We elaborate this in two scenarios.

First, consider the case where one of the predictions perfectly matches the ground truth, for example,
Ŷ1 ≡ Y . As shown in Appendix C, the optimal weight in this case is ωopt = (1, 0, . . . , 0)T · (N −
n)/N . This means that the algorithm selects the most accurate prediction, Ŷ1, for estimation while
discarding the less informative ones. Then, the SADA estimator turns out to be N−1

∑N
i=1 ŷ1,i, and

E{(θ̂sada − θ∗)2} = N−1 var(Y ), same as the oracle estimator who knows the ground truth of the
unlabeled data. In this case, the SADA estimator converges at a faster rate of N−1/2.

Second, consider the restricted case where the predictions are deterministic functions of the available
feature X, i.e., Yk = f̂k(X). Then the best prediction one can expect to fit the outcome is the
conditional mean, E(Y | X), which minimizes the mean squared error between Y and f(X).
Assume that Ŷ1 ≡ E(Y | X). As shown in Appendix C, the optimal weight in this case also equals
ωopt = (1, 0, . . . , 0)T · (N − n)/N . We show in the following proposition that θ̂sada achieves the
semiparametric efficiency bound (see Appendix A for the definition).
Proposition 1. Denote ri = 1 for labeled units i = 1, . . . , n and 0 for unlabeled units. Suppose
n/N → π ∈ (0, 1) as n,N → ∞. Assume Ŷk = f̂k(X) for k = 1, . . . ,K. Then the efficient
influence function (EIF) for estimating θ∗, based on labeled data L = {(xi, yi), i = 1, . . . , n} and
unlabeled data U = {xi, i = n+1, . . . , N}, is φeif(r,x, y) = rπ−1{y−E(Y | x)}+E(Y | x)−θ∗.

For the estimator θ̂sada, we have
√
N(θ̂sada − θ∗)

d−→ N{0,E(φ2
eif)}, which attains the semiparametric

efficiency bound.
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Remark 1 (Interpretation). We provide an intuitive interpretation of why the propose algorithm enjoys
these properties from the perspective of projection. We can rewrite θ̂sada = θ̂nv +N−1

∑N
i=1 g(ŷi)−

n−1
∑n

i=1 g(ŷi), where g(ŷ) = ŷTωopt = ŷT var(Ŷ)−1 cov(Ŷ, Y ) is the L2(P)-projection of
Y on the space linearly spanned by Ŷ. The projection ensures the safety and adaptivity of the
SADA estimator. Specifically, (i) when all predictions Ŷ are inaccurate and uncorrelated with the
ground truth Y , the projection g(ŷ) shrinks to zero, reducing the SADA estimator to the naive
one–but never performing worse than it; and (ii) when some prediction, for example Ŷ1, most
closely fits the ground truth Y , the projection of Y to Ŷ turns out to be Ŷ1, resulting in an estimator
θ̂sada = θ̂nv +N−1

∑N
i=1 ŷ1,i−n−1

∑n
i=1 ŷ1,i. If additionally Ŷ1 ≡ Y , then θ̂sada = N−1

∑N
i=1 ŷ1,i

achieves a faster convergence rate. Alternatively, if Ŷ1 ≡ E(Y | X), then θ̂sada becomes the
semiparametrically efficient estimator of E(Y ).
Remark 2 (Comparison with PPI++). In case of the mean estimation (or, more generally, a scalar
parameter θ∗) with K = 1, the SADA estimator θ̂sada is equivalent to the PPI++ estimator (Angelopou-
los et al., 2024). As shown later, for a vector-valued parameter, the PPI++ estimator is generally less
efficient than the proposed algorithm. Moreover, the PPI++ approach cannot, in general, leverage
multiple predictions (K > 1) simultaneously.

4 FULL PROTOCOL: SAFE AND ADAPTIVE AGGREGATION OF MULTIPLE
PREDICTIONS

Considering the general parameter θ∗ defined in (1), we construct a family of unbiased estimators,
θ̂(W), indexed by the tuning parameters W = (WT

1 ,WT
2 , . . . ,WT

K)T ∈ R(Kp)×p, which solves

1

n

n∑
i=1

s(xi, yi;θ) +

K∑
k=1

WT

k

{
1

N − n

N∑
i=n+1

s(xi, ŷk,i;θ)−
1

n

n∑
i=1

s(xi, ŷk,i;θ)

}
= 0. (6)

Noting that the second term has zero expectation regardless of the choice of W or the performance
of ŷ, therefore, equation (6) is always a feasible estimating equation for θ∗. In particular, the naive
estimator θ̂nv is a special case with W = 0. When there is only one prediction (K = 1): (i) if
W = I, θ̂(W) reduces to the PPI estimator (Angelopoulos et al., 2023); (ii) if W = ωI with the
tuning parameter ω selected optimally, it reduces to the PPI++ estimator (Angelopoulos et al., 2024).

We propose to identify the best estimator by minimizing the mean squared error of θ̂(W).

Proposition 2. Among the family of estimators θ̂(W), the optimal tuning parameter, Wopt, that
minimizes the mean squared error loss such that E[{θ̂(Wopt)− θ∗}⊗2] � E[{θ̂(W)− θ∗}⊗2] for
any W ∈ R(Kp)×p is

Wopt =
N − n

N
var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T},

where S(x, ŷ; θ) := (s(x, ŷ1; θ)
T, · · · , s(x, ŷK ; θ)T)T.

The proof of Proposition 2 is given in Appendix D. Proposition 2 implies that θ̂(Wopt) performs
no worse than the naive estimator regardless of the quality of predictions. To clarify this, one can
compute that E[{θ̂(Wopt)− θ∗}⊗2] = n−1H−1ΣoptH

−1, where

Σopt = var{s(X, Y ;θ∗)} − N − n

N
E{s(X, Y ;θ∗)S(X, Ŷ;θ∗)T}

× var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}.
The matrix Σopt consists of two terms: the first term corresponds to the variance of the naive
estimator, Σnv, defined in (2), while the second term is a positive semi-definite matrix that represents
an efficiency gain. Practically, one can estimate the optimal weight, Wopt, by

Ŵopt =

{
1

N

N∑
i=1

S(xi, ŷi; θ̂)S(xi, ŷi; θ̂)
T

}−1{
1

n

n∑
i=1

S(xi, ŷi; θ̂)s(xi, yi; θ̂)
T

}
,

6
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where θ̂ is some consistent estimator of θ∗, for example, θ̂nv. Then, the proposed SADA estimator is
θ̂sada = θ̂(Ŵopt).

Before presenting the theoretical properties, we briefly summarize the whole protocol for calculating
the proposed estimator θ̂sada below.

…

𝐗𝑌 #𝑌! #𝑌" … #𝑌#

…

…𝒰

𝓛

ω̂sada solves:

1

n

n∑

i=1

s(xi, yi;ω) +
K∑

k=1

(Ŵopt
k )→

{
1

N → n

N∑

i=n+1

s(xi, ŷk,i;ω)

→ 1

n

n∑

i=1

s(xi, ŷk,i;ω)

}
= 0.

Ŵopt =

{
1

N

N∑

i=1

(xi, ŷi; ω̂)(xi, ŷi; ω̂)
→

}↑1

→
{
1

n

n∑

i=1

(xi, ŷi; ω̂)s(xi, yi; ω̂)
→

}
.

Figure 1: Protocol for computing the proposed SADA estimator θ̂sada.

4.1 PROPERTIES OF THE SADA ESTIMATOR

We impose the following regularity assumptions.
Assumption 1. (i) The parameter θ∗ lies in the interior of Θ, and Θ is compact in Rp; (ii)
E{s(X, Y ;θ)} 6= 0 if θ 6= θ∗; (iii) s(x, y;θ) is differentiable with respect to θ in a neighborhood
of θ∗, and H = E{∂s(X, Y ;θ∗)T/∂θ} exists and nonsingular. (iv) s(X, Y ;θ) and s(X, Ŷk;θ)
have bounded first and second order moments in a neighborhood of θ∗ for k = 1, . . . ,K; (v)
Ŵopt p−→ Wopt.
Theorem 1 (Safety). Under Assumption 1, the SADA estimator θ̂sada has the asymptotic representa-
tion

√
n(θ̂sada − θ∗)

d−→ N
(
0,H−1ΣoptH

−1
)
. More specifically, for its mean squared error, up to a

negligible term, we have

E{(θ̂sada − θ∗)2} =
1

n
H−1ΣoptH

−1,

where Σopt = Σnv − (N − n)/N ·Σg , and

Σg = E{s(X, Y ;θ∗)S(X, Ŷ;θ∗)T} var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}

is always positive semi-definite. It implies that var(θ̂sada) � var(θ̂nv).

The proof of Theorem 1 is provided in Appendix E. In the general case, Theorem 1 shows that
the SADA estimator enjoys a guaranteed efficiency gain over the naive estimator, regardless of the
quality of Ŷ. This ensures valid and more informative inference for θ∗; see Appendix B for details.
The following theorem formalizes the adaptivity property of the SADA estimator and is proved in
Appendix F.

Theorem 2 (Adaptivity). (i) Suppose Ŷk ≡ Y for some k and Assumption 1 holds, then we have
Σg = Σnv, and the SADA estimator θ̂sada has the asymptotic representation

√
N(θ̂sada − θ∗)

d−→
N
(
0,H−1ΣnvH

−1
)
. More specifically, for its mean squared error, up to a negligible term, we have

E{(θ̂sada − θ∗)2} =
1

N
H−1ΣnvH

−1.

Note that this is the same as the oracle estimator who knows the ground truth of the unlabeled data;
(ii) Suppose n/N → π ∈ (0, 1) as n,N → ∞. Assume Ŷk = f̂k(X) for k = 1, . . . ,K. Then
the EIF for estimating θ∗, based on labeled data L = {(xi, yi), i = 1, . . . , n} and unlabeled data
U = {xi, i = n+ 1, . . . , N}, is

Φeif(r,x, y) = −H−1
[
rπ−1{s(x, y;θ∗)− µ(x)}+ µ(x)

]
,
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where µ(x) = E{s(x, Y ;θ∗) | x}. Suppose s(x, ŷk′ ;θ∗) = s(x, f̂k′(x);θ∗) ≡ µ(x) for some k′,

then we have
√
N(θ̂sada − θ∗)

d−→ N{0,E(ΦeifΦ
T

eif)}, which attains the semiparametric efficiency
bound.

5 EXPERIMENTS

5.1 SYNTHETIC DATASETS

We first conduct small-scale simulations to evaluate the performance of the proposed algorithm. We
generate Y ∼ N(θ∗, 1), and generate two predictions Ŷ1 = γY +(1−γ)ε1 and Ŷ2 = (1−γ)Y +γε2,
where γ is a tuning parameter and ε1, ε2 are independent white noises drawn from the standard normal
distribution. The true parameter θ∗ = 0.5. As γ increases from 0 to 1, the quality of the prediction
Ŷ1 improves in approximating the ground truth Y , while the prediction Ŷ2 becomes less accurate.
We generate a dataset of size N = 200, among which n = 60 are labeled. We perform 1000 Monte
Carlo replications.

Figure 2 reports the relative efficiency of different methods compared to the naive method, calculated
as the ratio of their standard deviations across replications, as γ increases from 0 to 1. Figure 2(a)
shows that the performance of the PPI estimator heavily depends on the accuracy of the predictionit
performs even worse than the naive estimator when the prediction is poor. Figure 2(b) demonstrates
that PPI++ provides protection against poor prediction quality, yielding a variance that is never greater
than that of the naive method. It reduces to the naive method when the prediction is noninformative.
Figure 2(c) illustrates that our proposed SADA estimator not only consistently maintains a standard
deviation lower than that of the naive estimator but also adaptively combines the strengths of Ŷ1 and
Ŷ2 in their respective regions, regardless of which performs better, resulting in the most stable overall
performance.
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Figure 2: Relative efficiency of different methods compared to the naive method under varying
prediction quality. Stars and triangles on the line indicate standard deviations over 1000 replications;
scatter points represent those from individual replications.

5.2 BENCHMARK DATASETS

Wine reviews In this section, we apply our proposed methods to the wine review data pub-
lished on WineEnthusiast: https://www.kaggle.com/datasets/mysarahmadbhat/
wine-tasting. The dataset includes characteristics of the wine such as country, price, and
region, along with reviews and ratings (from 80 to 100) from wine tasters. The goal is to estimate
the mean rating. We use three predictive models–GPT-4o, Llama-3-8B, and DeepSeek–to generate
predictions of the ratings based on the characteristics and the taster’s reviews. Appendix G provides a
step-by-step guidance of how to generate predictions using these LLMs. We sample 5000 instances
for our analysis, using 1500 of them as unlabeled data and varying the number of labeled samples n
from 600 to 3500. The ratings of all 5000 instances are treated as the ground truth.

Figure 3 reports the variation of standard deviations of different methods as the labeled data size
increases. The PPI and PPI++ methods in the subfigures are implemented using different single
LLMs. While the standard deviations of all methods generally decrease with more labeled data, the
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PPI estimator may perform worse than the naive method. In contrast, PPI++ guarantees improved
efficiency over the naive approach, but the gains are limited when prediction accuracy is low, as
seen in Figure 3(b). The SADA estimator, which integrates all predictions, consistently outperforms
both PPI and PPI++ methods. Notably, its performance closely matches the performance of the
best-performing PPI++ estimator using GPT-4o, highlighting its adaptive nature.

We also plot the oracle SADA estimator, SADAo, which includes the ground truth as one of its
predictions. As shown, SADAo performs almost identically to the oracle estimator, calculated as the
mean of the ground truth. This result verifies the desired adaptivity of the proposed method.
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Figure 3: Comparison of standard deviations of different methods leveraging various prediction
strategies. The estimand is the mean rating in the wine reviews dataset.

Politeness of online requests We also apply our method to study the relationship between politeness
and the use of indicative modal features, using the dataset from Danescu-Niculescu-Mizil et al. (2013).
From this dataset, we select 1000 requests from Stack Exchange and Wikipedia, each rated on a
politeness scale from 1 to 25, averaged across five human annotators. The parameter of interest is the
regression coefficient obtained by regressing the politeness score on the indicative modal features.
We randomly designate 300 of the requests as unlabeled data and increase the number of labeled
samples n from 50 to 700.

Figure 4 shows similar results as Figure 3. In this task, the PPI estimator performs significantly
worse than the naive method when predictions are inaccurate, as seen in Figure 4(a)-(b). Notably,
PPI++ does not guarantee a lower variance than the naive approach in this setting. In contrast, SADA
improves upon all other methods under different sample sizes.
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Figure 4: Comparison of standard deviations of different methods leveraging various prediction
strategies. The estimand is the regression coefficient of politeness score on indicative modal features.

6 CONCLUSIONS

To wrap up, we propose a novel algorithm that safely and adaptively aggregates multiple predictions
generated by different state-of-the-art ML models. Our method guarantees improved efficiency over
the naive approach and demonstrates data adaptivity in balancing predictions of varying quality.
Our method can be extended to the situations under distribution shift. In those settings, developing
methods that are robust to distribution shift is essential for enhancing the reliability and practical
effectiveness of semi-supervised learning.
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A SEMIPARAMETRIC EFFICIENCY BOUND

Here we briefly introduce the regular and asymptotically linear (RAL) estimator and influence
function. In general, given i.i.d. copies of the random sample {z1, . . . , zn} with sample size n, an
estimator for the parameter of interest β, β̂, is a RAL estimator if

√
n(β̂ − β) = n−1/2

n∑
i=1

φ (zi) + op(1),

where the zero-mean function φ(·) is called the influence function of β̂. Then, the central limit
theorem implies that

√
n(β̂−β)

d−→ N (0,E(φφT)), provided that E(φφT) is finite and nonsingular.
Among all RAL estimators for β, the influence function of the one with the smallest asymptotic
variance is called the efficient influence function (EIF), φeif, and the semiparametric efficiency bound
is E

(
φeifφ

T
eif

)
.

We provide a brief, non-technical overview of the derivation of influence functions. At first, the likeli-
hood can be decomposed into a parametric component and one or more nonparametric components.
For each nonparametric component, we can identify a corresponding nuisance tangent space. The
overall nuisance tangent space for the semiparametric model is then obtained by combining the indi-
vidual nuisance tangent spaces. A valid influence function must lie in the orthogonal complement of
this nuisance tangent space. Under suitable regularity conditions, an element from this perpendicular
space can be chosen as the influence function.

We refer readers to Bickel et al. (1993) and Tsiatis (2006) for further interpretations. In addition,
Kennedy (2023) provided several strategies for deriving the efficient influence function together with
many examples.

B PROCEDURE OF INFERENCE

The asymptotic normality of θ̂sada established in Theorem 1 enables us to construct confidence
intervals for θ∗ following standard procedure. Specifically, let Ĥ = n−1

∑n
i=1 ∂s(Xi, Yi; θ̂

sada)/∂θ,
Σ̂opt = Σ̂nv − (N − n)/N · Σ̂g , where

Σ̂nv =
1

n

n∑
i=1

s(Xi, Yi; θ̂
sada)s(Xi, Yi; θ̂

sada)T,

and

Σ̂g =

{
1

n

n∑
i=1

s(Xi, Yi; θ̂
sada)S(Xi, Ŷi; θ̂

sada)T

}

×

{
1

N

N∑
i=1

S(Xi, Ŷi; θ̂
sada)S(Xi, Ŷi; θ̂

sada)T

}−1

×

{
1

n

n∑
i=1

S(Xi, Ŷi; θ̂
sada)s(Xi, Yi; θ̂

sada)T

}
.
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Let Ω̂ = Ĥ−1Σ̂optĤ
−1. Then, a confidence region Cα of θ∗ with error level α is given by

Cα = {θ such that
√
nΩ̂−1/2(θ̂sada − θ) ∈ Rα},

where Rα is a region in Rp such that P(Zp ∈ Rα) = 1 − α for a p-dimensional standard normal
random vector Zp. For point-wise inference of jth component of θ∗, θ∗j , let Ω̂jj be the jth diagonal
entry of Ω̂. Then, a confidence interval Cj,α of θ∗ with error level α is given by

Cj,α = θ̂sada
j ± Ω̂

1/2
jj Z1−α/2/

√
n,

where Z1−α/2 is the 1− α/2 upper quantile of the standard normal distribution.

C PROOFS FOR THE MEAN ESTIMATION

We provide the proofs for the two cases of the adaptivity properties described in Section 3.

Proof of case 1 (the oracle case). Assume Ŷ1 ≡ Y . We denote Ŷ−1 = (Ŷ2, . . . , ŶK)T, and

var(Ŷ) =

(
var(Y ) cov(Ŷ−1, Y )T

cov(Ŷ−1, Y ) var(Ŷ−1)

)
=:

(
C11 CT

21
C21 C22

)
.

By the inversion formula of 2× 2 block matrix (Lu & Shiou, 2002, Theorem 2.1), we have

var(Ŷ)−1 =

(
C−1

11 + C−1
11 C21M

−1CT
21C

−1
11 −C−1

11 C21M
−1

−M−1CT
21C

−1
11 M−1

)
, (7)

and cov(Ŷ, Y ) = (C11,C
T
21)

T, where M = C22 −CT
21C

−1
11 C21. Then

ωopt =
N − n

N
var(Ŷ)−1 cov(Ŷ, Y ) =

N − n

N
(1, 0, . . . , 0)T.

Thus, we have θ̂sada = N−1
∑N

i=1 ŷ1,i, and

E{(θ̂sada − θ∗)2] =
1

N
var(Y ).

Proof of case 2 (Proposition 1). We derive the EIF for the general estimating equation (6) in the
proof of Theorem 2(ii). Since the mean estimation is a special case of (6), we omit its proof here.

Assume Ŷk = f̂k(X) for k = 1, . . . ,K, and Ŷ1 ≡ E(Y | X). Let f̂−1(x) = (f̂2(x), . . . , f̂K(x))T.
Then, we have

var(Ŷ) =

(
var{E(Y | X)} cov{f̂−1(X),E(Y | X)}T

cov{f̂−1(X),E(Y | X)} var{f̂−1(X)}

)
=:

(
D11 DT

21
D21 D22

)
,

and

cov(Ŷ, Y ) = cov

((
E(Y | X)

f̂−1(X)

)
, Y

)
= cov

((
E(Y | X)

f̂−1(X)

)
,E(Y | X)

)
=:

(
D11

D21

)
.

Similar to (7), by the inversion formula of 2× 2 block matrix, we obtain

ωopt =
N − n

N
var(Ŷ)−1 cov(Ŷ, Y ) =

N − n

N
(1, 0, . . . , 0)T.

Thus, we have θ̂sada = n−1
∑n

i=1{yi − E(Y | xi)}+N−1
∑N

i=1 E(Y | xi), and

√
N(θ̂sada − θ∗) =

√
N

n

n∑
i=1

{yi − E(Y | xi)}+
1√
N

N∑
i=1

E(Y | xi)} − θ∗

=
1√
N

N∑
i=1

φeif(ri,xi, yi) + op(1).

where n/N → π and

φeif(r,x, y) =
r

π
{y − E(Y | x)} − E(Y | x)− θ∗.
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D PROOF OF PROPOSITION 2

Recall W = (WT
1 ,WT

2 , . . . ,WT

K)T ∈ R(Kp)×p, S(x, ŷ; θ) = (s(x, ŷ1; θ)
T, · · · , s(x, ŷK ; θ)T)T,

and θ̂(W) solves

1

n

n∑
i=1

s(xi, yi;θ) +WT

{
1

N − n

N∑
i=n+1

S(xi, ŷi;θ)−
1

n

n∑
i=1

S(xi, ŷi;θ)

}
= 0.

Then the standard Taylor expansion yields that

0 =
1

n

n∑
i=1

s(xi, yi;θ
∗) +WT

{
1

N − n

N∑
i=n+1

S(xi, ŷi;θ
∗)− 1

n

n∑
i=1

S(xi, ŷi;θ
∗)

}

+

[
1

n

n∑
i=1

∂

∂θT
s(X, Y ;θ) +WT

{
1

N − n

N∑
i=n+1

∂

∂θT
S(xi, ŷi;θ)−

1

n

n∑
i=1

∂

∂θT
S(xi, ŷi;θ)

}]
× {θ̂(W)− θ∗},

where θ lies between θ̂(W) and θ∗. Then following uniform weak law of large number (Newey &
McFadden, 1994) under the regularity conditions, we have

θ̂(W)− θ∗ .
= −H−1

[
1

n

n∑
i=1

s(xi, yi;θ
∗) +WT

{
1

N − n

N∑
i=n+1

S(xi, ŷi;θ
∗)− 1

n

n∑
i=1

S(xi, ŷi;θ
∗)

}]
,

where H = E{∂s(X, Y ;θ∗)T/∂θ}. Then

E[{θ̂(W)− θ∗}⊗2]
.
=H−1

[
1

n
var{s(X, Y ;θ∗)}+ N

n(N − n)
WT var{S(X, Ŷ;θ∗)}W

− 1

n
E{s(X, Y ;θ∗)S(X, Ŷ;θ∗)T}W − 1

n
WTE{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}

]
H−1.

Let

Wopt =
N − n

N
var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}.

We next show that

E[{θ̂(Wopt)− θ∗}⊗2] � E[{θ̂(W)− θ∗}⊗2], ∀W ∈ R(Kp)×p, (8)

i.e., E[{θ̂(W) − θ∗}⊗2] − E[{θ̂(Wopt) − θ∗}⊗2] is a positive semi-definite matrix for any W ∈
R(Kp)×p. Note that

E[{θ̂(Wopt)− θ∗}⊗2] = H−1

[
1

n
var{s(X, Y ;θ∗)} −

(
1

n
− 1

N

)
E{s(X, Y ;θ∗)S(X, Ŷ;θ∗)T}

× var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}

]
H−1.

For any non-zero vector a ∈ Rp, let ã = H−1a, then we have

aT

(
E[{θ̂(W)− θ∗}⊗2]− E[{θ̂(Wopt)− θ∗}⊗2]

)
a

=
N

n(N − n)

(
Wã− N − n

N
var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}

)T

× var{S(X, Ŷ;θ∗)}

×
(
Wã− N − n

N
var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}

)
≥ 0.

Therefore, (8) holds by definition.
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E PROOF OF THEOREM 1

Following arguments similar to those in the proof of Proposition 2 in Appendix D, under assumption 1,
we have

θ̂sada − θ∗

.
= −H−1

[
1

n

n∑
i=1

s(xi, yi;θ
∗) + (Ŵopt)T

{
1

N − n

N∑
i=n+1

S(xi, ŷi;θ
∗)− 1

n

n∑
i=1

S(xi, ŷi;θ
∗)

}]

= −H−1

[
1

n

n∑
i=1

s(xi, yi;θ
∗) + (Wopt)T

{
1

N − n

N∑
i=n+1

S(xi, ŷi;θ
∗)− 1

n

n∑
i=1

S(xi, ŷi;θ
∗)

}]

−H−1(Ŵopt −Wopt)T

{
1

N − n

N∑
i=n+1

S(xi, ŷi;θ
∗)− 1

n

n∑
i=1

S(xi, ŷi;θ
∗)

}
=: T1 + T2, (9)

where H = E{∂s(X, Y ;θ∗)T/∂θ}. We next show that T2 = op(n
−1/2). Recall that

Wopt =
N − n

N
var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T} =:

N − n

N
W.

Then,

‖T2‖ ≤
∥∥H−1

∥∥× N − n

N

∥∥∥Ŵ −W
∥∥∥× ∥∥∥∥∥ 1

N − n

N∑
i=n+1

S(xi, ŷi;θ
∗)− 1

n

n∑
i=1

S(xi, ŷi;θ
∗)

∥∥∥∥∥
= O(1)× op

(
N − n

N

)
×Op

(√
1

N − n
+

1

n

)
= op(n

−1/2),

where the first equality is by Ŵopt p−→ Wopt, Chebyshev’s inequality and

E

∥∥∥∥∥ 1

N − n

N∑
i=n+1

S(xi, ŷi;θ
∗)− 1

n

n∑
i=1

S(xi, ŷi;θ
∗)

∥∥∥∥∥
2

=

(
1

N − n
+

1

n

)∥∥∥var{S(X, Ŷ;θ∗)}
∥∥∥ .

Moreover,

var(T1) = H−1

[
1

n
var{s(xi, yi;θ

∗)}+
(

1

N − n
+

1

n

)
(Wopt)T var{S(X, Ŷ;θ∗)}Wopt

− 2

n
cov{s(xi, yi;θ

∗),S(X, Ŷ;θ∗)}Wopt

]
H−1

=H−1

{
1

n
Σnv −

N − n

Nn
Σg

}
H−1,

where Σnv = var{s(xi, yi;θ
∗)} and

Σg = E{s(X, Y ;θ∗)S(X, Ŷ;θ∗)T} var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}.
By the central limit theorem and the Slutsky’s theorem, we have

√
n(θ̂sada − θ∗)

d−→ N
(
0,H−1

{
Σnv −

N − n

N
Σg

}
H−1

)
.

F PROOF OF THEOREM 2

Proof of (i). Without loss of generality, we assume Ŷ1 ≡ Y . We denote s ≡ s1(X, Ŷ1; θ
∗) ≡

s(X, Y ; θ∗) and s−1 ≡ (s(X, Ŷ2; θ
∗)T, · · · , s(X, ŶK ; θ∗)T)T. Then

var{S(X, Ŷ;θ∗)} =

(
var(s1) cov(s−1, s1)

T

cov(s−1, s1) var(s−1)

)
,
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and E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T} = (var(s1), cov(s−1, s1)
T)T. Similar to the proof in Appendix C,

by the inversion formula of block matrix, we have Wopt = (I,0, . . . ,0)T · (N − n)/N , and

Σg = E{s(X, Y ;θ∗)S(X, Ŷ;θ∗)T} var{S(X, Ŷ;θ∗)}−1E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T}
= var(s1) = Σnv.

Then by Theorem 2, we have

θ̂sada − θ∗ d−→ N
(
0,

1

N
H−1ΣnvH

−1

)
.

It is asymptotically equivalent to the oracle estimator who knows the ground truth of the unlabeled
data and solves

1

N

N∑
i=1

s(xi, yi;θ) = 0.

Proof of (ii). We first derive the EIF for estimating θ∗, based on labeled data L = {(xi, yi), i =
1, . . . , n} and unlabeled data U = {xi, i = n+1, . . . , N}. The joint density from one observation is

{πf(x)f(y | x)}r{(1− π)f(x)}1−r = πr(1− π)1−rf(x)f(y | x)r.

It’s straightforward to show the tangent space of this model is T = Λ1

⊕
Λ2, where

Λ1 = {rb(y,x) : E(b | x) = 0} , and Λ2 = {a(x) : E(a) = 0} .

Then, by the orthogonal conditions (Tsiatis, 2006, Theorems 4.2 and 4.3), we can obtain

Φeif(r,x, y) = −H−1
[ r
π
{s(x, y;θ∗)− µ(x)}+ µ(x)

]
,

where µ(x) = E{s(x, Y ;θ∗) | x}, r
π{s(x, y;θ

∗)− µ(x)} ∈ Λ1 and µ(x) ∈ Λ2.

Without loss of generality, we assume s(x, ŷ1;θ
∗) = s(x, f̂1(x);θ

∗) ≡ µ(x). We denote s−1(x) =

(s(x, f̂2(x);θ
∗)T, . . . , s(x, f̂K(x);θ∗)T)T. Then

var{S(X, Ŷ;θ∗)} =

(
var{µ(X)} cov{s−1(X),µ(X)}T

cov{s−1(X),µ(X)} var{s−1(X)}

)
,

and E{S(X, Ŷ;θ∗)s(X, Y ;θ∗)T} = (var{µ(X)}, cov{s−1(X),µ(X)}T)T. Similar to the proof in
Appendix C, by the inversion formula of block matrix„ we have Wopt = (I,0, . . . ,0)T · (N − n)/N .
Then, by (9), we have

√
N{θ̂sada − θ∗} = −H−1

[
1

n

n∑
i=1

s(xi, yi;θ
∗) +

N − n

N

{
1

N − n

N∑
i=n+1

s(xi, ŷ1,i;θ
∗)− 1

n

n∑
i=1

s(xi, ŷ1,i;θ
∗)

}]

= −H−1

[√
N

n

n∑
i=1

{s(xi, yi;θ
∗)− µ(xi)}+

1√
N

N∑
i=1

µ̂(xi)

]
+ op(1)

=
1√
N

N∑
i=1

Φeif(ri,xi, yi) + op(1),

due to n/N → π.

G GENERATING PREDICTIONS USING LARGE LANGUAGE MODELS

This paper used large language models, including GPT-4o, Llamma-3-8B, and DeepSeek, to generate
predictions as parts of the dataset in our empirical studies in Section 5. In this section, we provide
step-by-step guidance on how these models were used.

The input to the LLM consists of four components: a detail section (providing natural language
descriptions of each data column), a background (shared across all data points within a dataset), a
question (same across all data points), and a list of prompts (10 in total, each reflecting a distinct tone
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or inquiry style). Consequently, each data point yields 10 separate outputsone per promptand the final
prediction is computed by averaging these outputs. Section G.1 and G.2 present example prompts
used in the experiments of wine reviews and the politeness evaluation, respectively.

We recommend using at least 80 GB of RAM to run LLaMA-3-70B, though in our experiments, we
used Llamma-3-8B as a substitute due to limited resources, which requires approximately 20 GB
of RAM. For GPT-4o and DeepSeek-V3, we utilized API calls to improve efficiency and reduce
infrastructure requirements.

The approximate data generation speeds for each model in our experiments are as follows: (i) Llama-
3-8B: 1000 examples every 10 minutes; (ii) GPT-4o: 1000 examples every 100 minutes; and (iii)
DeepSeek-V3: 1000 examples every 15 hours.

G.1 EXAMPLE PROMPT FOR WINE REVIEWS

Details: The wine under review is called "Vermeil 2010 Luvisi Vineyard Zinfandel (Calistoga)".
This wine has a price of $42.0/bottle of Zinfandel (wine variety) from Calistoga, Napa. It is produced
by Vermeil and labeled as Luvisi Vineyard. The wine is described as: Gigantic, huge, enormously
extracted Zinfandel. So strong, it’s practically a food group. Offers tiers of raspberries, cherries,
blackberries, black currants, raisins, dark chocolate and spices. The alcohol level is very high, giving
it a hot finish. It’s a classic example of this old vine, superripe style.

Background: You are a professional wine taster with expertise in U.S. wines. Based on wine
descriptions, please evaluate the wine’s quality and assign a score from 80 (lowest score) to 100
(highest score), just like a sommelier would.

Question: Choose an integer between 80 (lowest acceptable quality) and 100 (exceptional quality)
to reflect your evaluation. No explanation is needed, and do not give any numbers other than the
rating. Your answer must be in JSON format with an integer only, without additional text.

Prompts:

• Given the wine’s description and background, how would you rate its overall quality?

• Considering the region, variety, and tasting notes, what score would you assign to this wine?

• Based on your expertise as a sommelier, where does this wine fall on the 80-100 quality
scale?

• Reflecting on the sensory cues and price point, how would you evaluate this wine?

• Taking all available details into account, what would be a fair score for this wine?

• From a wine critic’s perspective, how would you assess the quality of this U.S. wine?

• Using your tasting intuition and the provided features, what score best represents this wine’s
character?

• Judging from the varietal, region, and tasting profile, what rating would you give?

• As a seasoned wine evaluator, how would you numerically rate this wine’s craftsmanship?

• Given the flavor profile and winemaking context, what score reflects your impression of this
wine?

G.2 EXAMPLE PROMPT FOR POLITENESS EVALUATION

Details: The text under review is: "Doing a redundant ‘atoi‘ after you just did ‘strtol‘ is probably the
most twisted insult to the proper use of string-to-int conversion functions in C one can come up with.
Why do you see the need to "re-convert" the value using the broken function ‘atoi‘ when you already
have it as ‘val‘ from a proper function ‘strtol‘?" and is from the community: Stack Overflow.Please
evaluate its level of politeness based on linguistic features.

Background: This is a post from an online blog. Based on its linguistic featuressuch as word
choice and toneplease evaluate the level of politeness. Then, assign a score from 1(very impolite) to
25(extremely polite), just like a sommelier would.
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Question: Choose an integer between 1 (lowest) and 25 (highest) to reflect your evaluation. No
explanation is needed, and do not give any numbers other than the rating. Your answer must be in
JSON format with an integer only, without additional text.

Prompts:

• Given the writing style and overall tone of this blog post, how would you rate its level of
politeness?

• Taking into account the language used, the word choices, and the sentiment conveyed, what
politeness score would you assign?

• Imagine you’re an expert in online communication. Based on the phrasing and attitude in
this post, what number would you give for politeness?

• As someone who understands tone and subtext, how polite does this blog post feel to you?
• Just like a sommelier tasting wine, how would you score the politeness of this post, based

solely on its language?
• If you had to assign a politeness score between 1 and 25 to this writing sample, what would

it be?
• What’s your judgment on the tone of this blog posthow polite does it seem on a scale from 1

to 25?
• Considering the linguistic subtleties in this postformality, tone, and word choicehow would

you evaluate its politeness?
• Reflecting on how this post might come across to a casual reader, what politeness score

would you give it?
• Evaluate the post as if you were rating its etiquette. What score feels most appropriate?
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