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Abstract—This paper studies the rate-distortion-perception
(RDP) tradeoff for a Gaussian vector source coding problem
where the goal is to compress the multi-component source subject
to distortion and perception constraints. The purpose of imposing
a perception constraint is to ensure visually pleasing reconstruc-
tions. Without the perception constraint, the traditional reverse
water-filling solution for characterizing the rate-distortion (RD)
tradeoff of a Gaussian vector source states that the optimal rate
allocated to each component depends on a constant, called the
water-level. If the variance of a specific component is below the
water-level, it is assigned a zero compression rate. However, with
active distortion and perception constraints, we show that the
optimal rates allocated to the different components are always
positive. Moreover, the water-levels that determine the optimal
rate allocation for different components are unequal. We further
treat the special case of perceptually perfect reconstruction and
study its RDP function in the high-distortion and low-distortion
regimes to obtain insight to the structure of the optimal solution.

I. INTRODUCTION

The rate-distortion-perception (RDP) function is a general-
ization of Shannon’s rate-distortion function that incorporates
an additional perception loss function which measures the
distance between the distributions of the source and the recon-
struction. It has been observed that in the neural compression
framework [1]–[4], improving realism in the reconstruction
comes at the price of increased distortion. In this framework,
realism is controlled by a perception loss function between
the distributions of the source and the reconstruction, while
distortion is controlled via a standard distortion loss function
on the samples of the source and its reconstruction, e.g., in
terms of mean squared error. The RDP function introduced in
Blau and Michaeli [5] formalizes this tradeoff.

The extension of classical rate-distortion (RD) theory to
incorporate constraints on the distribution of the reconstruction
samples has been studied in various works in the information
theory literature; see e.g. [6] and references therein. More
recently, Theis and Wagner [7] present a one-shot coding
theorem by means of the strong functional representation
lemma (SFRL) [8] to establish the operational validity of
the RDP function [5]. In [9], the authors establish analytic
properties of the RDP function for the special case of (scalar)
Gaussian sources, with a quadratic distortion function and
a perception loss function of either Kullback–Leibler (KL)
divergence or Wasserstein-2 distance between the source and

the reconstruction distributions. The role of common random-
ness in the study of RDP function has been studied in [10],
[11]. Furthermore the distortion-perception tradeoff with a
squared error distortion and Wasserstein-2 perception loss,
but without an explicit compression rate constraint, has been
studied in [12], [13], where it is shown that the entire tradeoff
curve can be achieved by interpolating the two extremal
reconstructions based on a given representation. Other related
works include [14], [15].

This paper studies the RDP function of a Gaussian vec-
tor source under a squared error distortion and either KL
divergence or Wasserstein-2 distance as the perception loss
metric. Our result is thus an extension of prior work [9]
on scalar Gaussian source to the case of vector sources. We
note that without the perception constraint, the rate-distortion
function of a parallel Gaussian source model has a classical
reverse water-filling characterization [16, Thm 10.3], where
the optimal rate allocation across the components is computed
according to a distortion dependent parameter called water-
level. A positive rate is assigned to those components that
have a variance above this parameter. Any component whose
variance is below the water-level has a zero rate (see Fig. 1a).

In this work, we study the optimal rate allocation associated
with the Gaussian vector source model and compare the
result with the reserve water-filling solution. We observe a
qualitatively different solution as shown in Fig. 1(b). First,
unlike the case of reverse water-filling, the associated water-
level for each component can be different and is characterized
as a solution to a set of equations. Second, while reverse water-
filling assigns zero rate to those source components whose
variances are below the water-level, all components in the
RDP setting are assigned a non-zero rate as long as both
the distortion and perception constraints are active. We further
consider the special case of zero perception loss (so the source
and reconstruction distributions are identical) and establish
analytical results in this case. Moreover, we present asymptotic
results on high and low distortion cases with zero perception,
and shed additional insights into the difference between the
RDP function and the RD function.

II. SYSTEM MODEL AND PRELIMINARIES

Let X ∼ PX be an L-dimensional Gaussian vector source
with mean 0 and covariance matrix ΣX ≻ 0. Consider the
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Fig. 1. (a) Without a perception constraint, the traditional reverse water-filling solution for a parallel Gaussian source fixes a constant water-level. When
the variance of a specific component is less than the water-level, it is assigned zero rate. (b) With an active perception constraint, unequal water-levels are
assigned to different components. The variance of each component is always greater than the corresponding water-level. Every component has a positive rate.

eigenvalue decomposition of ΣX as follows:

ΣX = ΘTΛXΘ, (1)

where Θ is unitary and ΛX is a diagonal matrix of eigenvalues

ΛX = diagL(λ1, . . . , λL). (2)

We assume that there is unlimited common randomness
K ∈ K shared between the encoder and the decoder. Consider
the following one-shot encoding and decoding functions where
the source samples are encoded one at a time:

f : RL ×K → M, (3)
g : M×K → R

L. (4)

Here, M denotes the set of messages. Let PX̂ be the dis-
tribution of the reconstruction induced by the encoding and
decoding mechanisms. In this paper, we measure distortion
using a squared-error loss function d : RL × RL → R≥0

where d(x, x̂) := ∥x− x̂∥2. From a perceptual perspective, for
given probability distributions PX and PX̂ , we use ϕ(PX , PX̂)
to denote the perception loss function capturing the difference
between the two distributions. Notice that ϕ(PX , PX̂) = 0 if
and only if PX = PX̂ almost surely.

The above framework is referred to as the one-shot setting,
because it compresses one sample at a time. We can also
define an asymptotic setting of encoding n independently and
identically distributed (i.i.d.) samples Xn = (X1, . . . , Xn)
and reconstructing X̂n = (X̂1, . . . , X̂n), with n → ∞.

Definition 1 (Operational RDP Functions): Let X ∼ PX .
For given distortion-perception constraints (D,P ), a rate R
is said to be achievable if there exist encoder and decoder
satisfying

E[ℓ(M)] ≤ R, (5)
E[∥X − X̂∥2] ≤ D, (6)

ϕ(PX , PX̂) ≤ P, (7)

where ℓ(M) denotes the length of the message M for encoding
one sample. The infimum of all achievable rates R is called
one-shot rate-distortion-perception (RDP) function, denoted as
Ro(D,P ).

For the asymptotic setting, a rate R is said to be achievable
if there exist encoding and decoding functions such that

1

n

n∑
i=1

E[∥Xi − X̂i∥2] ≤ D, (8)

1

n

n∑
i=1

ϕ(PXi
, PX̂i

) ≤ P, (9)

with the message M that encodes Xn satisfying

lim
n→∞

1

n
E[ℓ(M)] ≤ R. (10)

The infimum of all achievable rates is called asymptotic RDP
function, denoted as R∞(D,P ).

Definition 2 (Information RDP Function): For given X ∼
PX , let PX̂|X(D,P ) be the set of all conditional distributions
PX̂|X such that for a fixed (D,P ), we have

E[∥X − X̂∥2] ≤ D, ϕ(PX , PX̂) ≤ P. (11)

The rate-distortion-perception (RDP) function is defined as

R(D,P ) = inf
PX̂|X∈PX̂|X(D,P )

I(X; X̂), (12)

Remark 1: Using the functional representation lemma as in
[8] and following similar steps to Theorem 2 in Appendix A.2
of [9], one can show that

R∞(D,P ) = R(D,P ), (13)

and

R(D,P ) ≤ Ro(D,P ) ≤ R(D,P ) + log(R(D,P ) + 1) + 5.

Consequently, the information RDP function R(D,P ) and the
one-shot operational RDP function Ro(D,P ) are asymptoti-
cally close to each other at high rate.

In the rest of the paper, the perception metric ϕ(PX , PX̂)
is assumed to be either the KL-divergence, i.e.,

D(PX̂∥PX) =

∫
x

PX̂(x) log
PX̂(x)

PX(x)
dx, (14)

or the Wasserstein-2 distance, i.e.,

W 2
2 (PX , PX̂) = inf E[∥X − X̂∥2], (15)

where the infimum is taken over all joint distributions of
(X, X̂) with marginals PX and PX̂ .



III. CLASSICAL REVERSE WATER-FILLING

The classical rate-distortion theory for a parallel Gaussian
source states that the optimal rate allocated to each component
depends on a constant parameter, called water-level. The
water-level also represents the distortion allowed at those
components whose variances are above the water-level. For a
given distortion D, let ν(D) to be the solution to the equation

L∑
ℓ=1

[λℓ − ν(D)]
+
=

[
L∑

ℓ=1

λℓ −D

]+
, (16)

where [x]+ := max{0, x}. Now, let

γℓ(D,∞) =

{
λℓ if ν(D) ≥ λℓ,
ν(D) if ν(D) < λℓ.

(17)

The rate-distortion function for the Gaussian vector source
with variance λℓ on each of its component is as follows.

Theorem 1 (Thm 10.3 in [16]): For a Gaussian vector
source, we have

R(D,∞) =
1

2

L∑
ℓ=1

log
λℓ

γℓ(D,∞)
. (18)

To simplify notation, we can redefine the water-level as
γℓ(D,∞) in order account for components whose variances
are below the water-level, If λℓ is below ν(D) for some ℓ, then
we set γℓ(D,∞) = λℓ and assign zero rate to this component.
Two special cases of the above theorem are interesting.

Proposition 1 (High-Distortion Compression): In the high-
distortion regime, we have that for sufficiently small ϵ > 0

R

(
L∑

ℓ=1

λℓ − ϵ,∞
)

=
ϵ

2λmax
+O(ϵ2), (19)

where λmax = maxℓ λℓ. Let Lmax denote the set of indices
where their corresponding eigenvalues are equal to λmax.
Then, the water-levels are given by

γℓ

(
L∑

ℓ=1

λℓ − ϵ,∞
)

= λℓ, ∀ℓ ∈ {1, . . . , L}\Lmax,

(20a)

γℓmax

(
L∑

ℓ=1

λℓ − ϵ,∞
)

= λmax − ϵ

|Lmax| , ∀ℓmax ∈ Lmax.

(20b)

The above proposition states that in the high-distortion com-
pression, a positive rate is only assigned to the components
with the largest eigenvalue.

Proposition 2 (Low-Distortion Compression): In the low-
distortion regime, we have that for a sufficiently small ϵ > 0

R(ϵ,∞) =
1

2

L∑
ℓ=1

log
Lλℓ

ϵ
, (21)

where the water-levels are given by

γℓ(ϵ,∞) =
ϵ

L
, ∀ℓ ∈ {1, . . . , L}. (22)

For low-distortion compression, according to the above propo-
sition, the same water-level is assigned to all components.

IV. RATE-DISTORTION-PERCEPTION FUNCTION

A. Generalized Reverse Water-Filling

We first state a result that says that for the two perception
metrics considered in this paper and for a Gaussian vector
source, jointly Gaussian reconstruction is optimal.

Theorem 2: If the perception metric is either the KL-
divergence or the Wasserstein-2 distance, without loss of
optimality, in the optimization problem (12), if the source is
Gaussian, we can restrict to a jointly Gaussian reconstruction,
i.e., the joint distribution of (X, X̂) should be Gaussian.

Proof: See [17].
A common property of the two perception metrics that

enables the above theorem is that both metrics depend only on
the second-order statistics of the source and the reconstruction,
if they are jointly Gaussian distributed.

We now present the RDP function with the KL-divergence
as the perception metric, i.e., ϕ(PX , PX̂) = D(PX̂∥PX).
Similar results for the Wasserstein-2 distance as the perception
metric can be found in [17] and are omitted here due to space
limitations.

First, we investigate Ro(D,P ) and provide a one-shot
coding strategy for achieving an (R,D,P ) tuple. This allows
an achievable (R,D,P ) region to be characterized in terms
of an optimization problem. The first step is to decompose the
source using eigenvalue decomposition as in (1) and define

Z = ΘX. (23)

The main idea is to construct a new Gaussian random variable
Ẑ and to use the channel simulation result of [8] to commu-
nicate Ẑ to the decoder at a rate of R. The new variable Ẑ
is designed to be correlated with Z in a very specific way
in order to satisfy the distortion and perception constraints
D and P , respectively. The correlation between Z and Ẑ is
controlled by two sets of parameters, {γℓ}Lℓ=1 and {λ̂ℓ}Lℓ=1,
such that 0 < γℓ ≤ λℓ and 0 < λ̂ℓ ≤ λℓ. The optimal values
of these parameters will be determined later.

In effect, instead of the classical rate-distortion setting
where Ẑ is chosen to minimize the distortion subject to the
rate constraint, here we choose Ẑ to satisfy both distortion
and perception constraints. We construct this noisy version of
Z at the decoder by taking advantage of the availability of
common randomness.

Specifically, Ẑ is a zero-mean Gaussian random vector with
independent components, jointly distributed with Z with

cov(Zℓ, Ẑℓ) =

 λℓ

√
λ̂ℓ(λℓ − γℓ)√

λ̂ℓ(λℓ − γℓ) λ̂ℓ

. (24)

With the above covariance structure, we can verify that γℓ is
the minimum mean-squared error (MMSE) of estimating Zℓ

based on Ẑℓ, i.e.,

γℓ = E[(Zℓ −E[Zℓ|Ẑℓ])
2]. (25)

We now use a consequence of the SFRL [8, Theorem 1] to
show that when common randomness K is available at both



the encoder and decoder, there exists a channel simulation
scheme that allows Ẑℓ to be reconstructed at the decoder at a
communication rate of

I(Zℓ; Ẑℓ) + log(I(Zℓ; Ẑℓ) + 1) + 5. (26)

After the reconstruction of Ẑℓ at the decoder, we use the same
unitary matrix to transform it into X̂ , i.e.,

X̂ = ΘT Ẑ. (27)

The above scheme leads to the rate, distortion, and percep-
tion loss for the ℓth component of Z as functions of λℓ, λ̂ℓ

and γℓ as follows:

Rℓ(λℓ, γℓ) =
1

2
log

(
λℓ

γℓ

)
+ log

(
1

2
log

(
λℓ

γℓ

)
+ 1

)
+5, (28)

Dℓ(λℓ, λ̂ℓ, γℓ) = λℓ − 2

√
λ̂ℓ(λℓ − γℓ) + λ̂ℓ, (29)

Pℓ(λℓ, λ̂ℓ) =
1

2

(
λ̂ℓ

λℓ
− 1 + log

λℓ

λ̂ℓ

)
. (30)

This would allow a characterization of an achievable one-shot
RDP function of a Gaussian vector source as an optimization
problem over λ̂ℓ and γℓ across its components.

For the asymptotic setting, the achievable scheme is iden-
tical, except that we compress a block of n samples together.
As n → ∞, the logarithm and the constant terms in (28)
can be neglected. This leads to a characterization of an
achievable region for R∞(D,P ), which is equal to R(D,P ).
This achievable region turns out to be optimal, i.e., a converse
can be proved. This gives the following characterization of
R(D,P ).

Theorem 3: The rate-distortion-perception function
R(D,P ) for a Gaussian vector source with parameters
defined by (1) and (2), and with KL-divergence as the
perception metric, is given by the solution to the following
optimization problem:

R(D,P ) = min
{λ̂ℓ,γℓ}L

ℓ=1

1

2

L∑
ℓ=1

log
λℓ

γℓ
(31a)

s.t. 0 < γℓ ≤ λℓ, (31b)
0 ≤ λ̂ℓ ≤ λℓ, (31c)
L∑

ℓ=1

Dℓ(γℓ, λ̂ℓ) ≤ D, (31d)

L∑
ℓ=1

Pℓ(λℓ, λ̂ℓ) ≤ P. (31e)

Proof: See [17].
An interpretation of the above is as follows. For given

(D,P ), let γ∗
ℓ (D,P ) and λ̂∗

ℓ (D,P ), ℓ ∈ {1, . . . , L}, be the
optimal solution to (31). Comparing this with (18), it can be
seen that γ∗

ℓ (D,P ) can be interpreted as the water-level for
the ℓ-th component, which determines the rate allocated to that
component according to (31a) (see Fig. 1b).

We now proceed to analyze the solution to the optimization
program in Theorem 3. It can be shown that the optimization
problem (31) is convex [17]. Let ν1, ν2, {ξℓ}Lℓ=1, {ηℓ, η′ℓ}Lℓ=1

be nonnegative Lagrange multipliers. For ℓ ∈ {1, . . . , L}, we
have the first-order conditions:

1

2γ∗
ℓ (D,P )

− ν1

√
λ̂∗
ℓ (D,P )

λℓ − γ∗
ℓ (D,P )

− ξℓ = 0, (32)

and

ν1

(
−
√

λℓ − γ∗
ℓ (D,P )

λ̂∗
ℓ (D,P )

+ 1

)
+

ν2
2

(
1

λℓ
− 1

λ̂∗
ℓ (D,P )

)
+ ηℓ − η′ℓ = 0, (33)

We focus on the most interesting regime where the distortion
and the perception constraints are both active so ν1, ν2 > 0,
and ξℓ = ηℓ = η′ℓ = 0 for all ℓ ∈ {1, . . . , L}. In this case,
(32) and (33) yield the following solutions

λ̂∗
ℓ (D,P ) =

λℓ(−bℓ +
√

b2ℓ + 8λℓν1ν2(2λℓν1 + ν2) + 2ν22)

2(2λℓν1 + ν2)2
,

(34)
γ∗
ℓ (D,P ) =

−2λℓν1(1 + 2λℓν1)− ν2 +
√
b2ℓ + 8λℓν1ν2(2λℓν1 + ν2)

8λℓν21(−1 + ν2)
,

where

bℓ = 2λℓν1 − 4λ2
ℓν

2
1 + ν2 − 4λℓν1ν2. (35)

The above expressions give us the following generalized
reverse water-filling interpretaton of the optimal RDP solution.
At given distortion constraint D and perception constraint P ,
each component of the source with variance λℓ is reconstructed
by Ẑℓ having variance λ̂∗

ℓ (D,P ). Because γ∗
ℓ (D,P ) is the

variance of the MMSE error for estimating Zℓ given Ẑℓ, this
requires a rate of 1

2 log
(

λℓ

γ∗
ℓ
(D,P )

)
. The parameters λ̂∗

ℓ (D,P )

and γ∗
ℓ (D,P ) are chosen to satisfy the distortion and per-

ception constraints. As already mentioned, γ∗
ℓ (D,P ) can be

thought of as the water-level, cf. (18).
When the distortion and perception constraints are active1,

i.e., ν1, ν2 > 0, based on (33) we have that in the finite-rate
regime (i.e., γ∗

ℓ (D,P ) > 0), the following must hold

λℓ > λ̂∗
ℓ (D,P ) > λℓ − γ∗

ℓ (D,P ). (36)

Together with (32), this implies that λℓ > γ∗
ℓ (D,P ), so every

component of the source is always allocated a non-zero rate
regardless of the distortion constraint—unlike the traditional
reverse water-filling solution, where a component may be
allocated zero rate if its variance is below the water-level.

B. Perceptually Perfect Reconstruction

In this section, we focus on the special case of perfect per-
ceptual quality, and study the properties of the RDP function
with P = 0. The proofs are deferred to [17].

1It is possible to prove that under the KL-divergence perception metric, at
a positive rate the perception constraint is always active.
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Fig. 2. Generalized reverse water-filling solution for the perceptually perfect reconstruction. The source is first compressed to get a representation whose
components have distortion levels γ∗

ℓ (D, 0), ℓ = 1, · · · , L. After compression, each component has a variance given by λℓ − γ∗
ℓ (D, 0). Each component is

then scaled to generate a reconstruction whose distribution matches that of the original source.

Corollary 1: The RDP function of a Gaussian vector source
with P = 0 is

R(D, 0) =
1

2

L∑
ℓ=1

log
1 +

√
1 + 16ν21λ

2
ℓ

2
, (37)

for some positive ν1 that satisfies

D =

L∑
ℓ=1

[
2λℓ − 2

√
λℓ(λℓ − γ∗

ℓ (D, 0))

]
, (38)

where

γ∗
ℓ (D, 0) =

2λℓ

1 +
√
1 + 16ν21λ

2
ℓ

, ℓ ∈ {1, . . . , L}. (39)

An interpretation of optimal rate allocation in this P = 0
case is as follows. By (37), the optimal rate allocated to the

ℓ-th component is controlled by the expression
1+

√
1+16ν2

1λ
2
ℓ

2 .
So, if a component has a larger variance, it is compressed at
a higher rate. Further, by (39) it also has a higher water-level.

The encoding and decoding scheme here can be thought
of as first compressing each component of the source (using
SFRL) at the individual rate given by (37) and distortion given
by (39); then, the decoder simply scales each component of
the compressed signal to match the variance of the source in
order to ensure zero perception loss, as shown in Fig. 2. The
resulting distortion after scaling is given by (38). Note that
this interpretation also applies to the arbitrary P case with
γ∗
ℓ (D,P ) as the distortion after compression, then scaling to

get a variance of λ̂∗
ℓ (D,P ). We further note that the compres-

sion in this case depends on P ; it may not be universal, unlike
the universal representations scenario presented in [9].

Proposition 3 (High-Distortion Compression): In the high-
distortion and perfect perception regime, we have that for
sufficiently small ϵ > 0,

R

(
2

L∑
ℓ=1

λℓ − ϵ, 0

)
=

ϵ2

8
∑L

ℓ=1 λ
2
ℓ

+O(ϵ4), (40)

where the water-levels are given by

γ∗
ℓ

(
2

L∑
ℓ=1

λℓ − ϵ, 0

)
= λℓ −

ϵ2λ2
ℓ

4
(∑L

ℓ=1 λℓ

)2 +O(ϵ4),

ℓ ∈ {1, . . . , L}. (41)

Here, we express R(D, 0) in term of deviation from the
maximum distortion at perfect perception at zero rate. This
maximum distortion can be shown to be twice of the variance
of the source [9], because at zero rate, the decoder should
simply generate an independent random variable with the same
variance. Comparing R

(
2
∑L

ℓ=1 λℓ − ϵ, 0
)

of Proposition 3

with R
(∑L

ℓ=1 λℓ − ϵ,∞
)

in Proposition 1, it is interesting to

see that the variances of the source enter R
(
2
∑L

ℓ=1 λℓ − ϵ, 0
)

as
∑L

ℓ=1 λ
2
ℓ which is the sum of the variances over all the

components. This is in contrast to the corresponding factor
in R

(∑L
ℓ=1 λℓ − ϵ,∞

)
in the traditional reverse water-filling

solution which is simply λmax. This is a consequence of the
perfect perception constraint, which requires all components
to be reconstructed with the same variances as the source at
the decoder.

Proposition 4 (Low-Distortion Compression): In the low-
distortion and perfect perception regime, we have that for
sufficiently small ϵ > 0,

R(ϵ, 0) =
1

2

L∑
ℓ=1

log
Lλℓ

ϵ
+

L∑
ℓ=1

ϵ

4Lλℓ
+O(ϵ2), (42)

where the water-levels are given by

γ∗
ℓ (ϵ, 0) =

ϵ

L
− ϵ2

2L2λℓ
+O(ϵ3), ℓ ∈ {1, . . . , L}. (43)

Comparing Proposition 4 with Proposition 2, we see that in
this high-rate low-distortion regime, the extra rate required to
satisfy zero-perception scales as

R(ϵ, 0)−R(ϵ,∞) =

L∑
ℓ=1

ϵ

4Lλℓ
+O(ϵ2), (44)

γ∗
ℓ (ϵ,∞)− γ∗

ℓ (ϵ, 0) =
ϵ2

2L2λℓ
+O(ϵ3), ℓ ∈ {1, . . . , L}.

(45)

V. CONCLUSIONS

This paper characterizes the RDP function for a Gaussian
vector source. In contrast to the traditional reverse water-
filling solution, with a perception constraint, the water-levels
assigned to different components should be unequal. This leads
to a positive rate allocation to every component of the source.
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