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Abstract

Satellite imagery has emerged as an important tool to analyse demographic, health,1

and development indicators. While various deep learning models have been built for2

these tasks, each is specific to a particular problem, with few standard benchmarks3

available. We propose a new dataset pairing satellite imagery and high-quality4

survey data on child poverty to benchmark satellite feature representations. Our5

dataset consists of 33,608 images, each 10 km × 10 km, from 19 countries in6

Eastern and Southern Africa in the time period 1997-2022. As defined by UNICEF,7

multidimensional child poverty covers six dimensions and it can be calculated from8

the face-to-face Demographic and Health Surveys (DHS) Program [25]. As part9

of the benchmark, we test spatial as well as temporal generalization, by testing10

on unseen locations, and on data after the training years. Using our dataset we11

benchmark multiple models, from low-level satellite imagery models such as12

MOSAIKS [20], to deep learning foundation models, which include both generic13

vision models such as Self-Distillation with no Labels (DINOv2) models [15] and14

specific satellite imagery models such as SatMAE [6]. We provide open source15

code for building the satellite dataset, obtaining ground truth data from DHS and16

running various models assessed in our work.17

1 Introduction18

Major satellites like the Landsat or Sentinel program regularly circle the globe, providing updated,19

publicly available, high-resolution imagery every 1-2 weeks. An emerging literature in remote sensing20

and machine learning points to the promise that these large datasets, combined with deep learning21

methods, hold to enable applications in agriculture, health, development, and disaster response. A22

cross disciplinary set of publications hint at the potential impact, showing how satellite imagery23

can be used to estimate the causal impact of electrification on livelihoods [18], to measure income,24

overcrowding, and environmental deprivation in urban areas [23] and to predict human population25

in the absence of census data [27]. Despite these successes, machine learning for satellite imagery26

is not yet a well-developed field [19], with current approaches overlooking the unique features of27

satellite images such as variation in spatial resolution over logarithmic scales (from < 1 meter to > 128

km) [19] and the heterogeneous nature of satellite imagery in terms of the number of bands available29

from 3 bands for RGB to multispectral to hyperspectral.30

Many areas of machine learning have advanced through the development of standardized datasets and31

benchmarks. Given the wide set of possible use cases for satellite imagery, there is no doubt room32

for multiple benchmarks. However there are only a few sources of up-to-date, high-quality satellite33

imagery, especially Landsat and Sentinel, so it is natural to construct publicly available datasets using34

these satellite programs.35
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Given the proven effectiveness of remote sensing for tasks that are naturally visible from space, such36

as land usage prediction, crop yield forecasting, and deforestation, we instead choose to focus on a37

more difficult task: multidimensional child poverty.38

Of the 8 billion people in the world, over 2 billion are children (aged < 18 years old, as defined in39

the UN Convention on the Rights of the Child [24]). Child poverty is not the same as adult poverty;40

children are growing and developing so they have specific nutrition, health, and education needs—if41

these needs are not met, there can be lifelong negative consequences [3]. Poverty cannot simply be42

assessed by measuring overall household resources, as households may be very unequal and some43

of the needs of children, such as vaccines or education, may be neglected in households that are44

non-poor. Instead, child poverty must be measured at the level of the child and their experience [25].45

Child poverty is based on the “constitutive rights of poverty” [25]. What this concept means is46

that child poverty includes important dimensions for children that require material resources to47

realize them, like education, health and nutrition, but exclude non-material dimensions such as48

neglect, violence, and lack of privacy. Crucially for the purposes of establishing a useful dataset and49

benchmark, the internationally agreed definition of child poverty was designed to enable cross-country50

comparisons [25].51

While other benchmarks exist, most notably SUSTAIN-BENCH [29] which covers a range of52

sustainable development indicators, our newly proposed benchmark has the following features:53

• We demonstrate the importance of fine-tuning transformer-based foundation vision models54

to tackle a challenging prediction task.55

• Child poverty is both a multidimensional outcome, appropriate for fine-tuning large models,56

and a univariate measure (percent of children experiencing severe deprivation ranging from57

0% and 100%) meaning that model performance can be intuitively grasped by policymakers.58

• The amount of both satellite and survey data appropriate for child poverty prediction will59

continue to increase in the future, as UNICEF is now releasing geocodes as part of their60

Multiple Indicator Cluster Survey (MICS) program.61

2 Related Work62

2.1 Existing Satellite Imagery Datasets63

With increased access to freely available high resolution satellite imagery through the Landsat and64

Sentinel programs, satellite image datasets have become very popular for training machine learning65

models. Models and datasets include functional map of the world (fMoW) [5], XView [14], Spacenet66

[26], and Floodnet [17] where the tasks are object detection, instance segmentation, and semantic67

segmentation. These are computer vision-specific tasks, rather than applied health and economic68

prediction problems, meaning the use of these datasets and models may be inappropriate for applied69

health and development researchers and practitioners.70

2.2 Satellite Imagery for Demographic and Health Indicators71

Machine learning models applied to satellite images are becoming more commonplace for analysing72

demographic, health, and development indicators as they can increase coverage by allowing for73

interpolation and faster analysis in under-surveyed regions. In an early work, satellite images were74

used to track human development at increasing spatial and temporal granularity [11]. Since then75

satellite images have been used to track development indicators which are clearly visible from space76

such as agriculture and deforestation patterns [2, 9, 28] but also more abstract quantities such as77

poverty levels [1], health indicators [7], and the Human Development Index [22].78

2.3 Foundation Satellite Image Models79

As increasing volumes of data become available, and with progress in self-supervised learning [10, 4],80

many foundation models are emerging. In computer vision, these large models are trained with81

self-supervised learning on hundreds of millions of images, serving as a “foundation” from which82

they can be fine-tuned for specific tasks. Popular examples of this are Vision transformers [8], CLIP83

[16], and DINO [15]. Recently, foundation models have been trained for satellite imagery specifically84
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on vast amounts of unlabelled satellite images. Examples of these are SatMAE [6] based on masked85

autoencoders, SatCLIP [13] based on CLIP [16], and DiffusionSat [12] which is a diffusion model86

[21] for generating satellite images. As it is not yet clear whether there is a benefit from training87

foundation models on more specific, but smaller datasets, we benchmark both generic foundation88

models for computer vision as well as satellite-specific foundation models.89

3 Dataset90

In this section, we introduce our unique dataset derived from the Demographic and Health Surveys91

(DHS) Program, combining high-resolution satellite imagery with detailed numerical survey data92

focused on demographic and health-related aspects in Eastern and Southern Africa. This dataset93

leverages the rigorous survey methodologies from DHS to offer high-quality data on health and94

demographic indicators, complemented by satellite images of the surveyed locations. The rich95

information embedded in the satellite images enables the application of advanced deep learning96

methods to estimate key poverty indicators in unsurveyed locations.97

3.1 Satellite Images98

This study utilizes high-resolution satellite imagery from two primary sources: Sentinel-2 and Landsat99

5, 7, and 8. These satellite programs are chosen for their public accessibility, their specific advantages100

in computer vision applications, and their long history.101

Landsat 5, 7, and 8: Part of a series managed by the United States Geological Survey (USGS),102

Landsat 5,7, and 8 together provide imagery with varying resolutions covering the time span from103

1984 to the present (2024). Specifically, Landsat 8 captures data in 11 bands, including visible,104

near-infrared (NIR), and short-wave infrared (SWIR) at 30 meters resolution, panchromatic at 15105

meters, and thermal infrared (TIRS) bands at 100 meters. This lower resolution for RGB bands106

contributes to space efficiency in data storage and processing, making it suitable for large-scale studies107

over extensive geographical areas. Additionally, the Landsat program, with missions dating back to108

1972, provides an extensive historical archive of Earth imagery. This long timespan is particularly109

advantageous for our study as it allows the analysis of regions with survey data dating back to 1997.110

Sentinel-2: Operated by the European Space Agency (ESA), Sentinel-2 features a multispectral111

imager with 13 spectral bands. The resolution varies by band: 10 meters for RGB and NIR, 20 meters112

for red edge and SWIR bands, and 60 meters for atmospheric bands. This high resolution in RGB113

bands provides richer information, which is valuable for large vision models requiring detailed visual114

data for accurate analysis. However, processing such high-resolution imagery can be computationally115

expensive, especially when dealing with large window sizes, posing challenges in terms of processing116

time and resource allocation. Additionally, Sentinel-2 only started collecting data in June 2015, which117

limits its use for analyzing events or changes that occurred before this date.118

For each specified survey coordinate, we extract a 10 km × 10 km window of imagery using Google119

Earth Engine (GEE). Selection criteria for the imagery include the designation of a specific year and120

prioritization based on the least cloud cover within that year. This approach ensures that the images121

used are of the highest quality and most suitable for accurate analysis.122

Both Sentinel-2 and Landsat series satellites include RGB bands, crucial for standard object recogni-123

tion tasks in computer vision. Beyond the RGB spectrum, these satellites offer additional bands that124

are instrumental for advanced remote sensing analysis. This rich assortment of spectral data allows125

for sophisticated remote sensing techniques and predictive modeling, such as estimating vegetation126

density and water bodies, which are integral to our study on regional poverty estimation.127

3.2 Demographic Health Surveys and Child Poverty128

Dating back to 1984, the Demographic and Health Surveys (DHS) Program1 has conducted over129

400 surveys in 90 countries, funded by the US Agency for International Development (USAID) and130

undertaken in partnership with country governments. These nationally representative cross-sectional131

household surveys, with very high response rates, provide up-to-date information on a wide range132

of demographic, health and nutrition monitoring indicators. Sample sizes range between 5,000 and133

1http://www.dhsprogram.com
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30,000 households, and are collected using a stratified, two-stage cluster design, with randomly134

chosen enumeration areas (EAs) called “clusters” forming the sampling unit for the first stage. In135

each EA, a random sample of households is drawn from an updated list of households. DHS routinely136

collects geographic information in all surveyed countries. Cluster locations are released, with random137

noise added to preserve anonymity with this ’jitter’ being different for rural and urban EAs.138

The DHS data include both continuous and categorical variables, each requiring a different approach139

for aggregation to ensure accurate ecological analysis at the cluster level. For continuous variables,140

we calculated the mean of all responses associated with a particular spatial coordinate. Min-max141

scaling was applied after aggregation to normalise the data, ensuring that all values were on a scale142

from 0 to 1. Categorical variables were processed using one-hot encoding, which converts categories143

into binary indicator variables. Similarly, the mean of these binary representations was computed for144

each category at each cluster location.145

Child poverty was assessed using a methodology formulated by UNICEF that evaluates child poverty146

across six dimensions: housing, water, sanitation, nutrition, health, and education. Each child was147

classified as moderately or severely deprived for each dimension based on a set of 17 variables in148

total [25]. An overall classification of moderate or severe deprivation is made if the child experi-149

ences moderate or severe deprivation on any of the six dimensions. Our target quantity of interest,150

severe_deprivation, was calculated as the percentage of children experiencing severe deprivation151

within a cluster. The detailed definition of moderate and severe deprivation and implementation of152

poverty calculation can be found in the supplementary material.153

4 Benchmark154

4.1 Spatial155

We use 5-fold spatial crossvalidation at the cluster level across countries in Eastern and Southern156

Africa, spanning data collected from 1997 to 2022. We train our models on 80% of the clusters and157

evaluate its performance using the mean absolute error (MAE) of the severe_deprivation variable158

on the held-out 20% of clusters. This benchmark is designed to evaluate the model’s capability to159

estimate poverty or deprivation levels at any given location based solely on satellite imagery data,160

quantifying the model’s generalization capabilities to unsurveyed locations within surveyed countries.161

4.2 Temporal162

The temporal benchmark employs a historical data training approach, where we use data collected163

from 1997 to 2019 as the training set to develop our models. The objective is to predict poverty164

in 2020 to 2022. Model performance is evaluated using the MAE of the severe_deprivation165

variable. This benchmark tests the model’s ability to capture temporal trends and forecast poverty166

based on satellite imagery data, assessing its forecasting accuracy. This capability is crucial for,167

e.g. nowcasting poverty before survey data becomes available.168

4.3 Models to be Compared169

We consider both baseline models (Gaussian process regression, mean prediction) and a range of170

more advanced computer vision models, both unsupervised and semi-supervised, with and without171

fine-tuning. Each model represents a distinct strategy in handling and processing satellite imagery:172

MOSAIKS [20] is a generalisable feature extraction framework developed for environmental and173

socio-economic applications. We obtain MOSAIKS features from IDinsight, an open-source package174

that utilizes the Microsoft Planetary Computer API. The framework leverages satellite imagery to175

extract meaningful features from the Earth’s surface. For our purposes, we used its Sentinel service,176

querying with specific coordinates, survey year, and a window size of 10 km × 10 km.177

DINOv2 [15] Initially designed for self-supervised learning from images, DINOv2 excels in generat-178

ing effective vector representations from RGB bands alone. For our study, we selected the pre-trained179

base model with the vision transformer architecture as the backbone of our foundational model. We180

fine-tuned this foundational model with DHS variables to enhance its capability for predicting poverty.181

DINOv2 is evaluated in both its raw and fine-tuned forms using RGB imagery for both spatial and182

temporal benchmarks.183
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SatMAE [6] was originally developed for landmark recognition from satellite imagery. We fine-tuned184

with DHS variables to enhance its performance for predicting poverty. SatMAE has 3 variants:185

RGB, RGB+temporal, and multi-spectral. For benchmarking, we use the RGB variant for the spatial186

benchmark, and RGB+temporal for the temporal benchmark. The RGB+temporal variant takes 3187

images of different timestamps from the same location; however, to facilitate a direct comparison188

with the other methods which use only a single image, we provide SatMAE with the same image189

three times. Additionally, it takes in Year, Month, and Hour, but since a DHS survey spans up to190

years, we only provide the Year variable, with Month and Hour set to January 00:00.191

4.3.1 Evaluation and Fine-tuning192

In our fine-tuning pipeline, we start from DINOv2’s and SatMAE’s original checkpoints with an193

uninitialised head and train it against 17 selected DHS variables to minimize mean absolute error194

(MAE). We then evaluate the model by replacing the head with a cross-validated ridge regression195

model mapping satellite features to the severe_deprivation variable and calculate the MAE loss196

on a test set that was neither seen by the fine-tuned model nor the Ridge Regression. For the spatial197

task, we perform a 5-fold cross-validation on the whole dataset, and for the temporal benchmark, we198

take the training set as the data before the year 2020 and evaluate on the data from 2020 to 2022.199

For the spatial benchmark, we randomly split the data into five train-test splits using a reproducible200

script. For the temporal benchmark, we divided the data into a single fold, using data from before201

2020 for training and data from 2020 onward for testing.202

For DINOv2, we used a batch size of 8 for Landsat imagery and a batch size of 1 for Sentinel imagery,203

with L1 loss and an Adam optimiser of learning rate and weight decay both set to 1e-6. We trained the204

model for 20 epochs with Landsat imagery and 10 epochs with Sentinel imagery, selecting the model205

with the minimum validation loss on predicting the 17 DHS variables. Each task was trained on a206

single Nvidia V100 32GB GPU, with an average training time of 1 hour per epoch for Landsat and 2207

hours per epoch for Sentinel imagery. For SatMAE, we resize the input to 224× 224 and use a batch208

size of 64 for the spatial task and 32 for the temporal task. Training is done with Adam optimiser with209

learning rate 1e-5 and weight decay 1e-6, for at most 20 epochs with the early stopping of patience 5210

and delta 5e-4. Each task is trained on a single Nvidia L4 GPU, taking, for Landsat and Sentinel, 1211

and 2 hours for the first epoch and 15 and 10 minutes for each subsequent ones with data caching.212

5 Results213

The performance of the child poverty prediction models is summarized in Table 1.214

5.1 Spatial Benchmark215

In the spatial benchmarking, Gaussian Process regression with geographic coordinates resulted in a216

mean absolute error (MAE) that is 0.04 lower than that achieved by the baseline mean prediction217

model. Notably, regressions using outputs from foundational vision models outperformed both218

the baseline and GP regression. The MOSAIKS features based on Sentinel-2 imagery achieved219

0.2356 MAE on predicting the severe_deprivation variable. Utilising Landsat imagery, the220

DINOv2 and SatMAE achieved MAEs of 0.2260 and 0.2341 respectively. Further enhancements221

through fine-tuning with Demographic and Health Surveys (DHS) variables led to reduced prediction222

errors, with DINOv2 and SatMAE recording MAEs of 0.2042 and 0.2125 respectively. When using223

Sentinel-2 imagery, the SatMAE architecture achieved errors of 0.2347 and 0.2093 before and after224

the fine-tuning, while DINOv2 further lowered the errors to 0.2013 and 0.1836 respectively.225

5.2 Temporal Benchmark226

In the temporal benchmark, models faced greater challenges in forecasting poverty. Gaussian Process227

regression was substantially worse than the mean prediction. Using Sentinel-2 imagery, MOSAIKS228

recorded an MAE of 0.2588, with DINOv2 and SatMAE achieving MAEs of 0.2597 and 0.3067229

respectively. Additional fine-tuning with DHS variables led to increased prediction errors, with230

DINOv2 and SatMAE resulting in MAEs of 0.2858 and 0.3139. Employing Landsat imagery,231

the pre-trained DINO v2 and SatMAE model achieved worse initial MAEs of 0.2704 and 0.3453;232
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Table 1: Comparison of MAE on severe_deprivation across Benchmarks and Imagery Sources.
In the spatial task, random clusters are heldout, while the temporal task is a more difficult forecasting
task, with the years 2020-2022 held out. Fine-tuning consistently gives better results. While SatMAE
is a foundation model trained on satellite imagery, it is outperformed by the more generic DINOv2
foundation model.

Model Benchmark Type MAE ± SE (Spatial) MAE (Temporal)

Mean Prediction - 0.2930± 0.0018 0.3183
Gaussian Process Regression - 0.2436± 0.0002 0.5656
MOSAIKS Sentinel-2 0.2356± 0.0114 0.2588
DINOv2 (Raw) LandSat 0.2260± 0.0005 0.2704
DINOv2 (Raw) Sentinel-2 0.2013± 0.0019 0.2597
DINOv2 (Fine-tuned) LandSat 0.2042± 0.0015 0.2574
DINOv2 (Fine-tuned) Sentinel-2 0.1836± 0.0036 0.2858
SatMAE (Raw) LandSat 0.2341± 0.0017 0.3453
SatMAE (Raw) Sentinel-2 0.2347± 0.0027 0.3067
SatMAE (Fine-tuned) LandSat 0.2125± 0.0019 0.3376
SatMAE (Fine-tuned) Sentinel-2 0.2093± 0.0039 0.3139

nevertheless, additional fine-tuning on DHS variables resulted in relative equal performance for both233

models, with MAEs of 0.2574 and 0.3376 respectively.234

5.3 Interpretation of Results235

The performance of various poverty prediction models is shown in Table 1. Our prediction task is236

the percentage of a location’s children who are experiencing severe deprivation, so a MAE on the237

order of 0.20 is equivalent to 20 percentage points of error, which policymakers may consider to238

be too high to be useful. The spatial benchmark demonstrates the advantage of using foundational239

vision models over the baseline mean prediction model and GPR. Models like MOSAIKS, DINOv2,240

and SatMAE, particularly when improved through fine-tuning with DHS variables, show a further241

reduction in mean absolute error (MAE). This implies that spatial features extracted from satellite242

imagery are comparably more effective than GP modelling in estimating poverty indicators in regions243

where surveys have not been conducted.244

The temporal benchmark, which evaluated a forecasting task (predict 2020-2022 using data from245

before 2020), was more difficult than the spatial benchmark. Satellite imagery is at best a proxy246

for multidimensional child poverty, and this finding suggests it is a better proxy for quantifying247

spatial as opposed to temporal variation. Satellite imagery models performed worse on the temporal248

as compared to spatial benchmark, and the fine-tuned models, particularly those using Sentinel-2249

imagery as the source input, showed increased MAE compared to the raw output from both DINOv2250

and SatMAE models. This suggests that the models overfit the historical data, and struggled to251

generalise to data collected after 2020. Gaussian process regression based on spatial coordinates had252

no way of predicting changes over time, explaining its very poor performance.253

6 Discussion and Future Work254

6.1 Satellite Imagery Sources255

As compared to Landsat, models utilising Sentinel-2 imagery, such as the fine-tuned versions of256

DINOv2 and MOSAIKS, demonstrated improved performance in both spatial benchmarks. These257

models benefited from the rich spectral information provided by Sentinel-2, which enabled more258

precise predictions of deprivation levels across diverse geographical regions.259

Additionally, the computational demands associated with processing high-resolution Sentinel-2 data260

present substantial challenges. For instance, large versions of vision transformers could not be261

accommodated within the memory constraints of a 32 GB GPU when processing the full Sentinel-2262

data. In contrast, these larger models could be deployed with Landsat data, which offers lower263

resolution but requires less computational resources. Under the spatial setting, this scenario highlights264
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a critical trade-off in model deployment: the choice between employing lightweight models to retain265

the high resolution of Sentinel-2 imagery or opting for more powerful models that necessitate a266

reduction in image resolution to ensure feasibility.267

6.2 Modeling Choices268

We considered a representative set of models: MOSAIKS is unsupervised, DINOv2 is a generic269

foundation model trained on images, and SatMAE is a foundation model trained on satellite imagery.270

6.2.1 MOSAIKS271

MOSAIKS is designed to provide general-purpose satellite encodings and is notably accessible272

through Microsoft’s Planetary Computer service. This model generates a large output vector, typi-273

cally around 4000 dimensions, which, while comprehensive, can lead to significant computational274

costs when methods beyond simple linear regression are employed. Furthermore, although MO-275

SAIKS is well-suited for broad applications, integrating online feature acquisition into a fine-tuning276

process tailored specifically to poverty prediction presents challenges. This limitation can hinder277

its effectiveness when adapting to specific tasks where dynamic feature updates are crucial. We278

also note that MOSIAKS’ API at times returned no-features, even after implementing rate-limiting279

mechanisms. This random behaviour combined with unavailability of features before 2013 limits the280

use of MOSAIKS considerably.281

6.2.2 DINOv2282

DINOv2 stands out as a state-of-the-art foundational model that excels in generating effective vector283

representations from RGB bands alone, achieving comparable performance to models that utilize284

additional spectral bands. Its flexibility in model sizing allows users to select the optimal model scale285

for specific training needs, enhancing its utility across various computational settings. The availability286

of pre-trained weights simplifies the process of fine-tuning for specialized tasks such as poverty287

prediction. However, DINOv2’s reliance solely on RGB bands means it does not leverage the broader288

spectral information available in other satellite imagery bands, which may limit its application scope289

to scenarios where such data could provide additional predictive insights.290

6.2.3 SatMAE291

SatMAE demonstrates respectable results, surpassing baseline models even with only its raw, pre-292

trained configuration. Its architecture inherently supports the integration of multispectral and temporal293

analysis, making it well-suited for handling complex datasets typically encountered in satellite294

imagery analysis. Despite these strengths, the pre-trained SatMAE model is configured to process295

images of 224 × 224 pixels, constraining its ability to utilize higher-resolution imagery, such as the296

1000 × 1000 pixel images from Sentinel-2. This limitation restricts its performance, particularly297

in comparison to models that can fully exploit high-resolution data, thereby failing to match the298

effectiveness of other advanced models in our analysis. Another limitation is that with our simple299

benchmarking setup, we have not made full use of SatMAE’s temporal and multi-spectral capabilities.300

In the temporal setup, we are providing only one image-timestamp pair with only the Year variable,301

while the model is capable of taking up to 3 pairs, along with Month and Hour variables. We are also302

exclusively using the RGB bands, while the multi-spectral version of SatMAE is capable of taking in303

other bands of the satellite images in our dataset.304

6.3 Further Discussion305

The ability to accurately measure poverty across a vast number of geolocations is crucial for under-306

standing and addressing the disparities that exist in different regions. The extensive and high-quality307

poverty measurement is valuable for researchers and policymakers. It allows for the analysis of308

poverty trends and the effectiveness of current policies, thereby facilitating more informed decision-309

making to reduce global poverty.310

Traditional surveys, while rich in data, are limited by geographical and logistical constraints. Conduct-311

ing extensive on-the-ground surveys is not only costly but also time-consuming—from data collection312

to processing and harmonisation. In regions lacking detailed survey data, traditional methods like313
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GPR or nearest-neighbor approaches are typically used to estimate poverty levels. However, these314

methods can be unreliable, particularly when extrapolating data to locations far from surveyed areas315

or data with temporal dependencies, leading to high uncertainty.316

On the other hand, satellite imagery, which was made widely available by organizations such as317

the European Space Agency and the United States Geological Survey, can be accessed from any318

geographic location. Recent advancements in the field of computer vision have made it possible to319

infer meaningful information from this imagery, which can effectively improve poverty prediction.320

By demonstrating the capabilities of large vision models and satellite imagery in this context, we aim321

to inspire and encourage others in the field to further develop and refine these methods, thus driving322

changes in sociology research and policy making.323

6.4 Limitation and Future Directions324

Our study had a number of limitations. While high-quality household survey data is expensive325

to acquire, it is an irreplaceable source of ground truth; machine learning can complement and326

enhance, but never replace, these datasets. We highlighted the difficulty of the temporal benchmark,327

suggesting that future research could explore time series methods for forecasting or ways of better328

encoding temporal information into the foundation models. Another limitation of our study is329

that, in our goal of learning general representations of satellite imagery, we fine-tuned the large330

vision models to predict DHS variables important to calculating the severe_deprivation variable331

rather than directly optimising the models on the severe_deprivation variable itself. While this332

approach could lead to better generalisation by leveraging a broader range of demographic and333

health indicators, it may not be the most effective strategy for minimising the MAE specifically334

for severe_deprivation. This indirect optimisation can result in sub-optimal performance for335

the target variable. Future work could explore the extent of benchmark improvement with direct336

optimisation techniques for severe_deprivation. Additionally, future work could also evaluate337

the performance of various models on the six components of child poverty separately, on moderate as338

opposed to severe deprivation. While we evaluated spatial generalisation by leaving out clusters, a339

stricter evaluation would have considered a leave-one-country out evaluation.340

7 Conclusion341

In conclusion, our study demonstrates the potential of satellite imagery combined with large vision342

models to estimate child poverty across spatial and temporal settings. We introduced a new dataset343

pairing publicly accessible satellite images with detailed survey and child poverty data based on the344

Demographic and Health Surveys Program, covering 19 countries in Eastern and Southern Africa over345

the period 1997-2022. By benchmarking multiple models, including foundational vision models like346

MOSAIKS, DINOv2, and SatMAE, we assessed their performance in predicting child poverty. Our347

results show that advanced models with satellite imagery have the potential to outperform baseline348

methods, offering more accurate and generalisable poverty estimates. This work highlights the349

importance of integrating remote sensing data with machine learning techniques to address complex350

socio-economic issues, providing a scalable and cost-effective approach for poverty estimation and351

policy-making.352
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