
Towards Medical Complex Reasoning with LLMs
through Medical Verifiable Problems

Anonymous ACL submission

Abstract

The breakthrough of OpenAI o1 highlights the001
potential of enhancing reasoning to improve002
LLM. Yet, most research in reasoning has fo-003
cused on mathematical tasks, leaving domains004
like medicine underexplored. The medical do-005
main, though distinct from mathematics, also006
demands robust reasoning to provide reliable007
answers, given the high standards of health-008
care. However, verifying medical reasoning009
is challenging, unlike those in mathematics.010
To address this, we propose Medical Verifi-011
able Problems with a medical verifier to check012
the correctness of model outputs. This veri-013
fiable nature enables advancements in medi-014
cal reasoning through a two-stage approach:015
(1) using the verifier to guide the search for a016
complex reasoning trajectory for fine-tuning017
LLMs, (2) applying reinforcement learning018
(RL) with verifier-based rewards to enhance019
complex reasoning further. Finally, we intro-020
duce HuatuoGPT-o1, a medical LLM capable021
of complex reasoning, which outperforms gen-022
eral and medical-specific baselines using only023
40K verifiable problems. Experiments show024
complex reasoning improves medical problem-025
solving and benefits more from RL. We hope026
our approach inspires advancements in reason-027
ing across medical and other specialized do-028
mains.029

1 Introduction030

The release of OpenAI o1 has marked a significant031

milestone in large language model (LLM) devel-032

opment, showcasing impressive capabilities (Guan033

et al., 2024; Xie et al., 2024; Zhong et al., 2024).034

This breakthrough highlights the potential of scal-035

ing Chain-of-Thought (CoT) and reinforcement036

learning to enhance LLM performance (Qin et al.,037

2024; Zeng et al., 2024; Wang et al., 2024a). While038

subsequent research efforts attempt to replicate039

these advancements, they often remain limited to040

mathematical reasoning tasks (Team, 2024b; Lu- 041

ong et al., 2024; Zhang et al., 2024a; Wang et al., 042

2024a). The application of o1-like methods to spe- 043

cialized fields, such as medicine, remains largely 044

underexplored. 045

Medical tasks often involve deeper reason- 046

ing (Saab et al., 2024; Patel et al., 2005; Chen 047

et al., 2024a). In real-world medical diagnoses or 048

decisions, doctors often deliberate carefully. Such 049

a life-critical field necessitates meticulous thinking 050

to ensure more reliable answers (Xu et al., 2024b; 051

Temsah et al., 2024). Thus, enabling LLMs to per- 052

form extended reasoning and reflection to provide 053

more reliable medical responses holds significant 054

value for the future applications of LLMs in health- 055

care. We term this extended and reflective think- 056

ing process as complex reasoning (Jaech et al., 057

2024). Moreover, medical reasoning closely re- 058

sembles real-world applications in domains like fi- 059

nance, law and education, making advancements in 060

this area readily transferable (Cheng et al., 2023). 061

However, a key challenge for medical reasoning 062

is verifying the thought process, which often lacks 063

clear steps. Inspired by mathematical problems 064

that allow verification through their outcomes, we 065

construct 40K Medical Verifiable Problems refor- 066

matted from challenging, closed-set medical exam 067

questions. These verifiable problems are character- 068

ized as open-ended with unique, objective ground- 069

truth answers that allow an LLM verifier to check 070

solution correctness. Such verifiability enable a 071

two-stage method for medical complex reasoning: 072

Stage 1: Learning from Verified Reason- 073

ing Trajectories The verifier feedback can guide 074

LLMs to search for a long CoT with reflection. The 075

LLM first initializes a CoT and an answer. When 076

the verifier rejects the answer, the LLM extends 077

by applying a strategy sampled from Backtracking, 078

Exploring New Paths, Verification, and Correction 079

to refine its answer until it reaches a correct answer. 080

Successful trajectories, involving iterative refine- 081
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    Medical Verifiable Problem (x): A 30-year-old woman recently
traveled to India and now presents with shaking, chills, fevers, headaches,
pallor, and jaundiced sclera. Vital signs: Temp 38.9°C, RR 19/min, BP 120/80
mm Hg, Pulse 94/min. Labs: Hct 30%, Total bilirubin 2.6 mg/dL, Direct
bilirubin 0.3 mg/dL. What is the most severe complication of this condition?

x

    Ground-true Answer (y*): Cerebral edemay*

Exam Question: A 30-year-old woman recently traveled to India and now presents with
shaking, chills, fevers, headaches, pallor, and jaundiced sclera. Vital signs: Temp 38.9°C,
RR 19/min, BP 120/80 mm Hg, Pulse 94/min. Labs: Hct 30%, Total bilirubin 2.6 mg/dL,
Direct bilirubin 0.3 mg/dL. What is the most severe complication of this condition?
Options:   A. Heart block   B. Facial paralysis    C. Cerebral edema  D. Aplastic crisis
Exam Answer: C

Select suitable and
challenging questions

x y*
Verifier

(2) Medical Verifier(1) Medical Verifiable Problems

Close-set Questions
(MedQA and MedMCQA

Training Set)

challenging
Close-set Questions

x

y*Verifiable Problem

Verify whether the
reasoning is correct.

LLM

y == y*?

CoT Answer

Filter and
Transfer

Figure 1: Left: Constructing Medical Verifiable Problems using challenging close-set exam questions. Right: The
verifier checks the model’s answer against the ground-truth answer.

ments, are then used to fine-tune the LLM with082

complex reasoning skills.083

Stage 2: Reinforcement Learning with Ver-084

ification Rewards After acquiring complex rea-085

soning skills, reinforcement learning (RL) further086

enhances this ability using verification-based re-087

wards. The verification feedback enables the model088

to spontaneously explore optimal long CoT strate-089

gies without human preset guidance.090

Using this approach, we present HuatuoGPT-091

o1, a medical LLM that performs extended and092

reflective thinking before answering. Experiments093

demonstrate that our method (using only 40K data094

points) yields an 8-point improvement on medical095

benchmarks with an 8B model. Furthermore, our096

70B model outperforms other general and medical-097

specific LLMs of similar parameter scale on med-098

ical benchmarks. The experiments further reveal099

the effectiveness and domain compatibility of our100

method.101

Our contributions are as follows:102

• To the best of our knowledge, this is the first103

work to build o1-like LLMs in the medical do-104

main using Medical Verifiable Problems.105

• We propose a two-stage training framework106

based on Medical Verifiable Problems.107

• We introduce HuatuoGPT-o1, a medical LLM108

capable of complex reasoning, which outper-109

forms other baselines on medical benchmarks.110

• Our experiments reveal that complex reason-111

ing is effective for medical problem-solving112

and benefits more from RL enhancements. We113

also validate the effectiveness of our approach114

across different languages (e.g., Chinese) and115

domains (e.g., chemistry).116

2 Medical Verifiable Problems 117

2.1 Philosophy of Verifiability 118

Solving complex problems often requires long 119

reasoning trajectories. Many approaches (Muen- 120

nighoff et al., 2025; Guo et al., 2025) integrate 121

pre-defined, high-quality trajectories from expert 122

examples or distilled models into training. While 123

beneficial, these fixed paths can introduce biases 124

from either humans or LLMs, thereby limiting 125

reasoning diversity. To address this, AlphaGo 126

Zero (Silver et al., 2017) uses result verification 127

(e.g., win/loss) instead of human game records, 128

reducing path dependency and enabling the poten- 129

tial to surpass human-level performance. More 130

recently, DeepSeek R1 (Guo et al., 2025) lever- 131

aged the inherent verifiability of mathematics and 132

code to facilitate advanced mathematical reasoning. 133

This underscores the pivotal role of verifiability in 134

incentivizing LLMs toward stronger reasoning. 135

Inspired by this, we introduce Medical Verifi- 136

able Problems, which are open-ended yet have 137

with unique, objective ground-truth answers, as 138

illustrated in Figure 1. This brings verifiability to 139

the medical domain, akin to mathematics, enabling 140

a result-driven verification process. 141

2.2 Constructing Medical Verifiable Problems 142

Sourcing from Medical Exam Questions To 143

achieve this, we utilize closed-set real-world exam 144

questions for two key reasons: 1) a large number of 145

medical exam questions are available; and 2) these 146

real-world exam questions are typically objective 147

and accurate. Specifically, we collected 192K med- 148

ical multiple-choice exam questions from the train- 149

ing sets of MedQA-USMLE (Jin et al., 2021) and 150

MedMcQA (Pal et al., 2022a). 151
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So, when placing the finish line of a  ...
But let me pause here. I've read that  ...
Instead, it might actually make more  ...
Then again, it's also important to revi...
When I really think about it, there’s  ...
All these considerations make me  ....
Wait, actually, this may not help us ...
...

Whew, after going through that, it seems
like cerebral edema, often linked  ...

The clinical presentation and laboratory
findings suggest the patient is suffering
from malaria ... 
The most severe complication that can
arise from this particular condition is
cerebral malaria ...

Stage 2. RL with Verification Rewards 

Onpolicy Learning
(RL)

x
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Figure 2: Demonstration of training LLMs for medical complex reasoning with Medical Verifiable Problems. Left
(Stage 1): Searching for verified reasoning trajectories to fine-tune LLMs. Right (Stage 2): Using the verifier to
enhance complex reasoning via reinforcement learning.

Constructing Verifiable Problems However,152

these medical questions are closed-set (multiple-153

choice), making it easy for models to guess the154

correct option. Additionally, some questions are155

not suitable due to they may lack a unique correct156

answer for verification or are too simple to require157

reasoning. We address this by selecting and pro-158

cessing questions as follows:159

1. Selecting Challenging Questions We re-160

moved questions that three small LLMs161

(Gemma2-9B (Team et al., 2024), LLaMA-162

3.1-8B (Dubey et al., 2024), Qwen2.5-7B163

(Team, 2024a)) all answered correctly and164

discarded short questions to retain those re-165

quiring more reasoning.166

2. Ensure Unique Answers: We excluded ques-167

tions asking for “incorrect options” or with168

multiple correct answers. A LLM (GPT-4o) is169

further employed to remove questions where170

the correct answer might not be unique or171

could be ambiguous.172

3. Reformatting to Open-Ended Formal: Us-173

ing LLMs (GPT-4o), We reformatted each174

closed-set question into open-ended problem175

an open-ended problem x and a ground-truth176

answer y∗, as shown in Figure 1.177

The prompt used for filtering and processing178

can be found in Appendix K. After this filtering179

and processing, we ultimately constructed a dataset180

of 40K Medical Verifiable Problems denoted as181

D = {(x, y∗)}, where x is a verifiable problem182

and y∗ the ground-truth answer.183

Medical Verifier With these verifiable problems,184

we propose a verifier to assess the correctness of185

model outputs. Given a medical verifiable problem 186

x, the model generates a Chain-of-Thought (CoT) 187

e and a result y. The verifier checks y against 188

the ground-truth answer y∗ and provides binary 189

feedback as: 190

Verifier(y, y∗) ∈ {True,False} 191

Unlike mathematical problems, we use LLMs 192

(GPT-4o) as the verifier, prompting it to perform 193

verification with the detailed prompt provided in 194

Appendix L. Due to the prevalence of aliases in 195

the medical domain, exact match methods (Luong 196

et al., 2024; Gandhi et al., 2024), which are com- 197

monly applied in mathematics, are not feasible. 198

Experiments in Section 4.2 confirm this and demon- 199

strate the reliability of the LLM-based verifier. 200

3 Methodology 201

In this section, we describe the method for train- 202

ing LLMs to perform medical complex reason- 203

ing. Complex reasoning refers to longer Chains-of- 204

Thought (CoT) coupled with reflective behaviors. 205

The formal definition of complex reasoning is pro- 206

vided in Appendix I. As shown in Figure 1, the 207

method consists of two stages based on the Medi- 208

cal Verifiable Problems. 209

3.1 Stage 1: Learning from Verified 210

Reasoning Trajectories 211

Searching for Verified Trajectories Given a
verifiable medical problem as a tuple (x, y∗), i.e.
(question, ground-true answer), the LLM (GPT-4o)
generates an initial CoT e0 and answer y0:

e0, y0 = LLMinit(x)
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     Medical  Verifiable Problem (x): A 51-year-old man experiences progressively worsening dyspnea on exertion and fatigue over two months.
Examination and test results include cardiac exam without murmurs, coarse crackles at lung bases, an ECG with an irregularly irregular rhythm and
absent p waves, a chest x-ray showing globular cardiac shadow enlargement with prominent hila and bilateral fluffy infiltrates, and echocardiography
indicating a dilated left ventricle with an ejection fraction of 40%. What is the most likely cause of this patient's cardiac condition?
    Ground-true Answer (y*): Chronic supraventricular tachycardia 

Our Model Response (   ,   )Init CoT ( e0 , y0 )
## CoT ( e0 )
Identify Key Clinical Features: The 51-year-old man is experiencing ...
Analyze Chest X-ray Findings:  The chest x-ray shows a globular cardiac ...
Evaluate Potential Causes of Heart Failure: Heart failure in this context can ...
...
## Conclusion (y0)
The most likely cause of this patient's cardiac condition is alcohol-induced dilated
cardiomyopathy.

Search with Verification Strategy  ( e1 , y1 )
## CoT ( e1 )
Re-evaluate Key Clinical Features: Re-examining the patient's symptoms, we ...
Assess Chest X-ray and Pulmonary Findings:  The chest x-ray findings ...
...
## Conclusion (y1)
Although alcohol-induced cardiomyopathy was initially considered, ischemic
cardiomyopathy is more likely the cause of this patient's condition ...

Search with Correction Strategy  ( e2 , y2 )

## CoT ( e2 )
Reassess the Potential Causes of Dilated Cardiomyopathy: Re-examining the ...
Focus on Patient History and Lifestyle:  Explore elements from the patient's  ..
...
## Conclusion (y2)
The most likely cause of this patient's cardiac condition is alcoholic cardiomyopathy...

Search with Exploring New Paths Strategy  ( e3 , y3 )
## CoT ( e3 )
Consider Effects of Atrial Fibrillation: Atrial fibrillation can lead to a reduced ...
Review Cardiac Presentation:  Globular cardiac shadow and absence of  ...
...
## Conclusion (y3)
... the most likely cause of the patient's cardiac condition is chronic supraventricular
tachycardia (atrial fibrillation)-induced cardiomyopathy.

## Thinking (   )
Hmm, let's look at the clinical picture here. We have a 51-year-old man with
progressively worsening dyspnea, fatigue, an irregularly irregular heart ...
...
Now, let’s think about dilated cardiomyopathy. The combination of a ...The most likely
cause of this patient's condition is alcohol-induced dilated cardiomyopathy ...

But wait — let's pause and re-evaluate this. Are we jumping to conclusions here?
Let's go over the symptoms and findings again to see if we missed anything ...
...
Could there be other causes of dilated cardiomyopathy? Viral myocarditis, genetic
factors, or nutritional deficiencies could also be responsible ... Maybe ischemic
cardiomyopathy is a better explanation.  

But hold on — the patient hasn’t mentioned typical angina symptoms, and there's
no clear evidence of coronary artery disease in the findings provided. Hmm ...
Then again, the globular cardiac shadow on the chest x-ray is interesting ... Hmm,
this supports a non-ischemic etiology.
...
Alright, back to alcohol-induced cardiomyopathy. It fits the demographic and clinical
picture, even if we don’t have explicit evidence of alcohol use. 

Not so fast, what if the atrial fibrillation itself is the cause? Chronic atrial fibrillation
can lead to tachycardia-induced cardiomyopathy ...
...
Hmm, let’s connect the dots. Persistent high heart rates from atrial fibrillation could
explain the dilated left ventricle and reduced ejection fraction.... Maybe the primary
issue here is tachycardia-induced cardiomyopathy due to chronic atrial fibrillation ...  
...
Yes, I think this is it. The most likely diagnosis is chronic supraventricular
tachycardia-induced cardiomyopathy.

## Response (   )
The clinical presentation and investigation findings suggest that this 51-year-old man is
experiencing heart failure with reduced ejection fraction, likely due to tachycardia-induced
cardiomyopathy. His irregularly irregular ECG rhythm with absent p waves indicates chronic ...

Long CoT with reflection (Total 1565 tokens)

stop

Complex CoT (758 tokens) & Response (155 tokens)

Figure 3: Example of data synthesis. Left: Strategy search on medical verifiable problems until the answer is
verified. Right: Transfer the entire search process into complex CoTs to mimic human complex thinking. The
complex CoTs and responses are used to train the model to adopt thinks-before-it-answers behavior akin to o1.

The verifier checks if y0 matches y∗. If incorrect,
the model iteratively refines the answer by apply-
ing a randomly selected search strategy k ∈ K on
prior thoughts [e0, y0, . . . , ei−1, yi−1], producing
new reasoning ei and new answer yi:

ei, yi = LLMki(x, [e0, y0, . . . , ei−1, yi−1])

where i denotes the i-th iteration. We define four212

search strategies K to guide the refinement process:213

• Exploring New Paths The LLM explores214

a new approach ei , distinct from prior215

e0, . . . , ei−1, to derive a new answer yi.216

• Backtracking The LLM revisits a previous rea-217

soning process ej , yj , where j < i−1, and con-218

tinues reasoning from there. Note that Back-219

tracking is sampled only if i ≥ 2.220

• Verification The LLM evaluates the current221

reasoning ei−1and result yi−1, providing a vali-222

dation process ei and the verified result yi.223

• Corrections The LLM critiques and corrects224

the current reasoning ei−1, yielding a revised225

reasoning ej and answer yi.226

The process iterates until yi is verified as correct.227

If the maximum iteration count N = 3 are reached,228

the search restarts. Each data point (x, y∗) is given229

up to T = 3 attempts; if all fail, the data point 230

is discarded. The prompts for search reasoning 231

trajectories and search statistics can be found in 232

Appendix M and Appendix D. 233

Constructing SFT Training Data When a suc- 234

cessful trajectory [e0, y0, . . . , ei, yi] is found, it is 235

reformatted into a coherent, natural language rea- 236

soning process ê (Complex CoT): 237

ê = LLMReformat([e0, e1, . . . , ei, yi]) 238

As shown in Figure 3, this reformatting avoids
rigid structures to reduce token usage and employs
smooth transitions (e.g., “hmm,” “also,” “wait”) to
mimic human reasoning processes. Additionally, ê
preserves the entire self-reflective thinking process
of [e0, e1, . . . , ei, yi]. This Complex CoT (ê) indi-
cates the thinking process of complex reasoning.
The model then generates a formal response ŷ for
question x using the conclusion of ê:

ŷ = LLMResponse(x, ê)

The prompt used for constructing SFT data can be 239

found in Appendix N. 240

Supervised Fine-Tuning (SFT) Finally, we syn- 241

thesize 20K SFT data DSFT = {(x, ê, ŷ)} from the 242

4



Algorithm 1: Training LLMs for Medical Complex
Reasoning

Require: Medical Verifiable Problems
D = {(x,y∗)}, a Verifier, an LLM (GPT-4o) for
synthesizing reasoning trajectories, search strategies
K, max search depth N , max search attempts T ,
and initial policy πθ .

DSearch,DRL ← Split(D)
DSFT ← ∅
// Stage 1: Learning Complex Reasoning
for (x,y∗) ∈ DSearch do

for j ← 1 to T do
e0,y0 ← LLMinit(x)
i← 0
if not Verifier(y0,y

∗) then
for i← 1 to N do

ki ∼ K
ei,yi ←
LLMki(x, [e0,y0, ..., ei−1,yi−1])

if Verifier(yi,y
∗) then

break

if Verifier(yi,y
∗) then

ê← LLMReformat([e0,y0, ..., ei,yi])
ŷ ← LLMResponse(ê)
DSFT ← DSFT ∪ {(x, ê, ŷ)}
break

// SFT
for (x, ê, ŷ) ∈ DSFT do
LSFT(θ)← − logπθ(ê, ŷ | x)
θ ← UpdateParameters(LSFT (θ),θ)

// Stage 2: Enhance Reasoning with RL
πref ← πθ

for (x,y∗) ∈ DRL do
ê, ŷ ∼ πθ(x)
// Reward
r ← Rule (Verifier (ŷ,y∗))−
βKL (πθ (· | x) || πref (· | x))

θ ←
UpdateParameters (LRL (x, ê, ŷ, r,πref ,πθ) ,θ)

return πθ

Medical Verifiable Problems D = {(x, y∗)} using243

GPT-4o. DSFT is used to fine-tune LLMs to gener-244

ate a complex CoT ê followed by a formal response245

ŷ, behaving similarly to OpenAI-o1 and DeepSeek-246

R1. This fine-tuning serves as a warm-up to train247

the model to perform complex reasoning.248

3.2 Stage 2: RL with Verification Rewards249

In this stage, we further enhance the complex rea-250

soning skills using reinforcement learning (RL).251

While the LLM learns successful reasoning trajec-252

tories in Stage 1, these paths, derived via search,253

may not be optimal. On-policy learning in Stage254

2 refines complex reasoning through verification255

feedback.256

Verification Rewards The verification of Medi-257

cal Verifiable Problems provides an important re-258

ward for LLMs to optimize their reasoning trajec- 259

tories. Given a verifiable problem x and the gen- 260

erated response (ê, ŷ), the reward is assigned as 261

follows: 262

r′(x, ŷ, y∗) =

{
1 if verifier(ŷ, y∗) = True
0.1 if verifier(ŷ, y∗) = False
0 if ŷ = null

263

Following (Riedmiller et al., 2018; Trott et al., 264

2019; Luong et al., 2024), correct answers receive 265

a reward of 1, incorrect answers receive 0.1, and re- 266

sponses that lack think-before-answering behavior 267

receive 0. Additionally, following related works, 268

the total reward combines this function score with 269

the Kullback-Leibler (KL) divergence between the 270

learned RL policy πθ and the initial policy πref, 271

scaled by a coefficient β: 272

r(x, ŷ, y∗) = r′(x, ŷ, y∗)− βKL(θ) 273

to stabilize training with sparse rewards (Luong 274

et al., 2024). 275

Reinforcement Learning For RL, We use the 276

Proximal Policy Optimization (PPO) (Schulman 277

et al., 2017) algorithm with a clipped objective. 278

The fine-tuned model serves as the policy model πθ. 279

Training is conducted on the remaining Medical 280

Verifiable Problems DRL = {(x, y∗)}. The policy 281

samples responses (ê, ŷ) for input x, computes the 282

reward, and updates parameters θ. 283

The full training process for both stages is sum- 284

marized in Algorithm 1. 285

4 Experiments 286

4.1 Experimental Setup 287

Training Data We constructed a 40K Medical 288

Verifiable Problems D = {(x, y∗)} from the train- 289

ing sets of MedQA-USMLE (Jin et al., 2021) and 290

MedMCQA (Pal et al., 2022b). Of this, 20K is 291

used for SFT in stage 1 and 20K for RL in stage 2. 292

Additionally, 4K unconverted data (close-set ques- 293

tions with option answers) from D are included 294

to enhance generalization. In line with prior work 295

that integrates general-domain data to support med- 296

ical adaptation (Chen et al., 2023b; Zhang et al., 297

2024b), we add 5K general verification questions 298

sourced from MMLU-Pro (Wang et al., 2024c) 299

outside the medical-related tracks. All data were 300

strictly screened to avoid contamination with the 301

evaluation data using the filtering method of Med- 302

PaLM2 (Singhal et al., 2023b) (filtering overlaps 303

of 64 consecutive characters). 304

5



MedQA MedMCQA PubMedQA

MMLU-Pro GPQA

Avg.
Health Biology Genetics Molecular

Biology

∼ 8B Large Language Models
BioMistral-7B 45.0 40.2 66.9 27.4 49.2 28.6 38.5 42.3
OpenBioLLM-8B 57.7 54.1 74.1 38.4 52.4 43.7 39.6 51.4
UltraMedical-8B 71.1 58.3 77.4 55.1 66.7 41.2 48.4 59.7

Mistral-7B-Instruct 48.2 44.6 59.5 33.7 53.6 30.0 46.1 45.1
Yi-1.5-9B-Chat 50.8 48.7 69.8 43.4 65.6 42.5 48.1 52.7
LLaMA-3.1-8B-Instruct 58.7 56.0 75.2 52.7 64.6 33.8 46.8 55.4
GLM-4-9B-Chat 58.9 49.8 73.5 45.5 65.4 53.8 41.6 55.5

DeepSeek-R1-Distill-Llama-8B 54.4 49.5 74.4 45.2 66.4 41.2 59.0 55.8
Qwen2.5-7B-Instruct 57.0 55.6 72.7 50.6 70.2 36.2 49.7 56.0
Gemma2-9B 61.8 55.9 63.3 55.1 74.9 35.0 57.4 57.6

HuatuoGPT-o1-8B 72.6 60.4 79.2 58.7 68.2 48.8 59.7 63.9
w/o Stage2 (RL) 69.0 57.9 77.7 53.5 66.1 41.2 53.5 59.8

10B to 100B Large Language Models
UltraMedical-70B 82.2 71.8 78.4 64.8 71.1 33.8 62.9 66.4
OpenBioLLM-70B 76.1 74.7 79.2 68.8 76.7 38.8 54.8 67.0

DeepSeek-67B-Chat 57.1 51.7 76.1 46.9 66.2 40.0 51.0 55.6
Yi-1.5-34B-Chat 59.5 56.7 74.3 52.8 71.0 32.5 56.8 57.7
Gemma2-27B 65.4 60.2 72.6 61.1 76.2 32.5 61.6 61.4
Qwen2.5-72B-Instruct 72.7 66.2 71.7 65.3 78.8 41.2 56.8 64.7

QwQ-32B-Preview 72.3 65.6 73.7 62.0 78.1 37.5 64.5 64.8
Llama-3.1-70B-Instruct 78.4 72.5 78.5 68.2 80.8 52.5 61.6 70.3

DeepSeek-R1-Distill-Llama-70B 85.6 74.3 80.0 70.7 80.6 43.8 65.2 71.4
HuatuoGPT-o1-70B 88.1 77.6 80.6 71.0 82.8 56.2 66.5 74.7

w/o Stage2 (RL) 83.7 73.3 78.9 70.2 79.8 54.2 63.9 73.3

Table 1: Main Results on Medical Benchmarks. LLMs with are specifically trained for the medical domain, and
indicates LLMs training for long chain-of-thought reasoning. "w/o" means "without". Within each segment, bold

highlights the best scores, and underlines indicate the second-best.

Model Training Using the proposed method,305

we train our models HuatuoGPT-o1-8B and306

HuatuoGPT-o1-70B based on LLaMA-3.1-8B-307

Instruct and LLaMA-3.1-70B-Instruct, respectively.308

In Stage 1, the models are fine-tuned on the DSFT309

for 3 epochs with a learning rate of 5e-6 and a310

batch size of 128. In Stage 2, we employ PPO for311

RL with a learning rate of 5e-7, a batch size of312

128, and β set to 0.03. The PPO parameters are set313

as: 3 PPO epochs, a discount factor 1.0, a value314

coefficient 1.0, and a clip range 0.2.315

Baselines We compare our models with three316

types of open-source LLMs: 1) General LLMs:317

Qwen-2.5 (Yang et al., 2024), LLaMA-3.1 (Dubey318

et al., 2024), Gemma 2 (Team et al., 2024), Yi319

(Young et al., 2024), Mistral (Jiang et al., 2023),320

GLM-4 (Zeng et al., 2023); 2) o1-like LLMs:321

DeepSeek-R1-Distill (Guo et al., 2025) and QwQ322

(Team, 2024b); and 3) Medical-Specific LLMs:323

UltraMedical (Zhang et al., 2024b), OpenBioLLM324

(Pal and Sankarasubbu, 2024), and BioMistral325

(Labrak et al., 2024).326

Benchmarks We evaluate on standard medi-327

cal benchmarks: MedQA (USMLE test set) (Jin328

et al., 2021), MedMCQA (validation set) (Pal et al., 329

2022a), and PubMedQA (test set) (Jin et al., 2019). 330

Aditionally, we evaluated the medical sections of 331

some challenging LLM benchmarks, including the 332

health and biology tracks of MMLU-Pro (Wang 333

et al., 2024c), and the genetics and molecular biol- 334

ogy tracks of GPQA (Rein et al., 2023), using the 335

main set with the multiple-choice setting. Due to 336

the limited number of GPQA questions, we ran this 337

evaluation 5 times and averaged the results. 338

4.2 Experimental Results 339

Main Results We evaluated LLMs with similar 340

parameter sizes on medical benchmarks, as shown 341

in Table 1. The results indicate that prior medical- 342

specific LLMs, like UltraMedical, excel on tradi- 343

tional medical benchmarks (MedQA, MedMCQA, 344

PubMedQA) but perform moderately on the more 345

challenging datasets (GPQA and MMLU-Pro). Fur- 346

thermore, o1-like models demonstrate superior 347

performance (e.g., Deepseek-R1-Distill-70B out- 348

performs LLaMA-70B, and QwQ-32B surpasses 349

Qwen-72B), suggesting that enhancing reasoning 350

capabilities improves medical capabilities. 351

Overall, our model, HuatuoGPT-o1, excels 352
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MedQA MedMCQA PubMedQA MMLU-Pro
(Med )

GPQA
(Med )

Baseline LLMs
LLaMA-3.1-8B-Instruct 58.7 56.0 75.2 58.2 44.1

Fine-Tuned Baseline
SFT w/ Original Exam Data of D 60.0 55.5 74.1 54.3 46.9

Effectiveness of Complex Chain-of-Thought (CoT)
SFT w/o���CoT (only ŷ) 65.2 58.1 75.4 58.5 48.7
SFT w/ Simple CoT (x0, y0) 66.6 59.2 75.4 57.0 46.7
SFT w/ Complex CoT (x̂, ŷ) 69.0 57.9 77.7 59.4 51.0

Effectiveness of RL
SFT w/o���CoT + RL w/ PPO 66.4 58.6 76.3 60.1 49.8
SFT w/ Simple CoT + RL w/ PPO 68.7 58.4 77.5 60.2 53.1
SFT w/ Complex CoT + RL w/ PPO 72.6 60.4 79.2 63.1 57.5

Comparison of Different RL Algorithms
SFT w/ Complex CoT + RL w/ DPO 72.2 58.4 77.3 60.4 52.5
SFT w/ Complex CoT + RL w/ RLOO 71.1 60.1 78.1 60.9 58.2
SFT w/ Complex CoT + RL w/ PPO 72.6 60.4 79.2 63.1 57.5

Table 2: The results of ablation experiments on HuatuoHPT-o1-8B. (Med ) indicates that only the medical-related
parts are evaluated. "w/o" and "w/" denote "without" and "with". "Original Exam Data" refers to original multiple-
choice questions used for medical verifiable problems D. Bold highlights the best scores in each segment.

across all datasets. The 8B version outperforms the353

base model (LLaMA-3.1-8B-Instruct) by 8 points354

in overall evaluation. Moreover, our 70B model355

surpasses other compared LLMs, clearly demon-356

strating the effectiveness of our approach. This em-357

phasizes the value of domain-specific optimization358

over basic distillation methods, as seen in models359

like Deepseek-R1-Distill.360

Ablation Study We conducted an ablation study361

on the 8B model to analyze the impact of Complex-362

CoT and RL. The results, shown in Table 2, reveal363

the following insights:364

1. Fine-tuning with Complex CoT Helps We365

examined the impact of different types of Chain-of-366

Thought (CoT). The results show that direct learn-367

ing of the response (ŷ) performs the worst, while368

simple CoT (y0, e0) provides only minimal bene-369

fits. In contrast, Complex CoT (ê, ŷ) significantly370

improves performance by an average of 4.3 points.371

This highlights the importance of teaching models372

long, reflective reasoning processes.373

2. LLMs with Complex Reasoning Benefit374

More Than Vanilla LLMs We compared the RL375

improvements under different CoT strategies, as376

shown in Table 3. The results reveal that Com-377

plex CoT, which involves much longer reasoning378

paths (averaging 712 tokens), yields a significantly379

greater performance gain (3.6 points) compared380

# Avg. Generated
Tokens

∆ Avg. Gain
from RL

Direct Response (ŷ) 82 1.1
Simple CoT (x0, y0) 281 2.6
Complex CoT (x̂, ŷ) 712 3.6

Table 3: Comparison of RL improvement. "# Avg. To-
kens" indicates the average number of response tokens.
∆ represents the gain from RL, as detailed in Table 1.

to simple CoT (2.6) and no CoT (1.1). This sug- 381

gests that longer self-play reasoning paths provide 382

richer thought processes and feedback, enabling 383

the model to discover higher-reward solutions. 384

3. PPO Outperforms DPO and RLOO Using 385

the same reward function, we further compared 386

different RL-related algorithms, including the pref- 387

erence learning algorithm DPO (Rafailov et al., 388

2024) and the REINFORCE-style algorithm RLOO 389

(Ahmadian et al., 2024). Detailed implementation 390

information is provided in Appendix H. Comparing 391

PPO, RLOO, and DPO, we find that PPO performs 392

best, followed by RLOO and DPO. The weaker 393

performance of DPO is likely due to its off-policy 394

nature, while PPO benefits from its use of value 395

models, despite higher memory consumption. 396

Reliability of the Verifier The verifier plays a 397

critical role in our methods. To evaluate its relia- 398

bility, we manually verified 200 scoring instances 399
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MedQA MedMCQA PubMedQA MMLU-Pro
(Med)

GPQA
(Med) Avg. Gain

Training on LLaMA-3.1-8B-Instruct
LLaMA-3.1-8B-Instruct 58.7 56.0 75.2 58.2 44.1 (0.0)
HuatuoGPT-o1-Llama-8B 72.6 60.4 79.2 63.1 57.5 (↑ 8.1)

Training on Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct 58.7 55.6 72.7 60.3 46.9 (0.0)
HuatuoGPT-o1-Qwen-7B 72.0 62.5 78.6 68.3 54.4 (↑ 8.3)

Table 4: Performance improvement on different backbones using the proposed method.

sampled from Stage 1 and Stage 2. As shown in400

Figure 4, the GPT-4o (we used) achieved 96.5%401

accuracy in Stage 1 and 94.5% in Stage 2, demon-402

strating its reliability. In contrast, the Exact Match403

method (Luong et al., 2024), which is rule-based404

and widely used in mathematical verification, per-405

formed significantly worse, with accuracies of only406

70.5% in Stage 1 and 74.5% in Stage 2. This407

underscores the critical role of LLM-based veri-408

fiers. Furthermore, we fine-tuned an 8B verifier409

on LLaMA-3.1-8B with 20K scoring samples for410

low-cost verification for the research community.411

The fine-tuned verifier also demonstrated reliability,412

achieving over 90% accuracy.413

Verifier In Stage 1 Verifier In Stage 2
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ac
cu

ra
cy

 (
%

) 96.5% 94.0%94.5% 91.0%

70.5%
74.5%

GPT-4O Verifier
Fine-tuned Verifier (8B)

Exact Match

Figure 4: Accuracy of verifiers. Accuracy is based on
200 manually annotated samples.

MedQA
(Chinese) CMExam CMMLU

(Med )

HuatuoGPT2-7B 73.7 67.4 58.4
Yi-1.5-9B-Chat 75.8 70.4 70.5
GLM-4-9B-Chat 75.6 70.5 69.1

DeepSeek-R1-Distill-Qwen-7B 83.2 77.8 75.3
Qwen2.5-7B-Instruct 83.9 77.0 77.2

HuatuoGPT-o1-7B-Chinese 87.4 81.5 81.6

Table 5: Cross-lingual adaptation (Chinese) results on
Chinese medical benchmarks. (Med ) indicates that
only the medical portion is evaluated.

Domain Compatibility Our approach uses veri-414

fiable questions to enhance domain reasoning and415

is theoretically applicable across languages and416

fields. To validate this, we conducted experi-417

ments in the Chinese medical and chemistry do-418

mains. For Chinese adaptation, we built 40K Chi-419

nese Medical Verifiable Problems from the CMB420

ChemBench MMLU-Pro
(Chem )

GPQA
(Chem )

LLaMA-3.1-8B-Instruct 55.1 42.2 29.9
DeepSeek-R1-Distill-Llama-8B 56.4 33.8 37.2

Gemma2-9B-it 58.0 45.5 42.6
Qwen2.5-7B-Instruct 58.3 65.4 37.4

HuatuoGPT-o1-8B-Chem 61.4 68.5 44.8

Table 6: Cross-domain adaptation (Chemistry) results
on chemistry benchmarks. (Med ) indicates that only
the chemistry portion is evaluated.

(Wang et al., 2023c) and trained HuatuoGPT-o1- 421

7B-Chinese on Qwen2.5-7B-Instruct. For chem- 422

istry adaptation, we created 15K Chemistry Ver- 423

ifiable Problems from SciKnowEval (Feng et al., 424

2024), mixed them with 20K medical questions, 425

and trained HuatuoGPT-o1-8B-Chem on LLaMA- 426

3.1-8B-Instruct. Implementation details are in Ap- 427

pendix J. As shown in Table 5 and Table 6, both 428

models achieved notable improvements, highlight- 429

ing our method’s adaptability for other domains. 430

Experiments with Other Backbones In addi- 431

tion to the LLaMA-3.1 series, we also trained on 432

Qwen2.5-7B-Instruct to assess the effectiveness of 433

our method across different backbones. The results, 434

presented in Table 8, demonstrate that our approach 435

transfers effectively to other backbone LLMs. 436

5 Conclusion 437

This study advances the medical reasoning capa- 438

bilities of LLMs. Firstly, we construct the medical 439

verifiable problems and a medical verifier. This 440

enabled a two-stage training process: (1) learning 441

complex reasoning and (2) enhancing it through RL. 442

We developed HuatuoGPT-o1, a medical LLM with 443

thinks-before-it-answers behavior, achieving out- 444

standing performance in medical benchmarks. Ex- 445

periments show that complex reasoning improves 446

medical problem-solving and benefits obviously 447

from RL. Additional validation in Chinese med- 448

ical contexts shows the method’s adaptability to 449

other fields. We believe our approach can enhance 450

domain-specific reasoning beyond mathematics. 451

8



Limitations452

Lack of Scalable Reinforcement Learning Ap-453

pendix C outlines our RL training process. How-454

ever, we did not attempt to scale RL training,455

as seen in in OpenAI-o1 (OpenAI, 2024) and456

Deepseek-R1 (Guo et al., 2025). The reason for457

this is the limited availability of verifiable problems.458

Additionally, we found that further training steps459

could degrade the model’s performance. Therefore,460

scaling verifiable problems and stabilizing RL is461

an important direction, which we leave for future462

research.463

API Costs for Verification This work utilizes464

GPT-4o as the verifier, which could incur signifi-465

cant API costs, making reproducing our work ex-466

pensive. In response, we conducted an additional467

experiment to verify that a fine-tuned smaller ver-468

ifier can achieve similar verification performance.469

We are also open-sourcing this smaller verifier to470

support research within the community.471

Dependence on Exam Questions Our approach472

relies on exam questions to construct verifiable473

datasets, which requires collecting a large number474

of such questions. We have not yet explored synthe-475

sizing verifiable questions from other sources. For476

some non-medical domains, exam questions may477

be scarce. In the future, incorporating alternative478

sources for question synthesis could enhance the479

adaptability of our method.480
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A Ethical Statement1019

Although the proposed model is a medical LLM1020

with complex reasoning capabilities, it may still1021

produce content that includes hallucinations or in-1022

accuracies. Therefore, the current model is not1023

suitable for real-world applications. Consequently,1024

we will impose strict limitations on the use of our1025

model. The models are not permitted for use in clin-1026

ical or other industry applications where such in-1027

accuracies could lead to unintended consequences.1028

We emphasize the ethical responsibility of users to1029

adhere to these restrictions in order to safeguard1030

the safety and integrity of their applications.1031

B Related Work1032

Research on o1 Recent studies have extensively1033

analyzed the roadmap and core techniques of Ope-1034

nAI’s o1 (Qin et al., 2024; Wang et al., 2024a; Zeng1035

et al., 2024), offering foundational insights into its1036

architecture and methodology. Extensions such as1037

LLaMA-Berry (Zhang et al., 2024a), LLaVA-o11038

(Xu et al., 2024a), o1-Coder (Zhang et al., 2024c),1039

and Marco-o1 (Zhao et al., 2024) have explored o1-1040

like reasoning in various domains, including math-1041

ematics, vision-language integration, and open-1042

ended problem-solving. However, these efforts1043

have yet to address applications in medical or other1044

highly specialized fields. In contrast, research fo-1045

cused on medicine (Xie et al., 2024; Nori et al.,1046

2024; Temsah et al., 2024) highlights o1’s potential1047

for deliberate, chain-of-thought reasoning in health-1048

care contexts. Meanwhile, several o1-inspired mod-1049

els, such as DeepSeek-R1-Lite-Preview (Bi et al.,1050

2024), QwQ (Team, 2024b), and Gemini-2.0 Flash1051

Thinking (Team et al., 2023), have emerged. De-1052

spite their promise, most of these models remain1053

closed-source, leaving substantial opportunities for1054

further exploration and application of o1’s capabil-1055

ities across diverse fields.1056

Medical LLMs The success of generalist LLMs1057

has spurred interest in developing medical-specific1058

LLMs to excel in the medical domain. Notably, the1059

MedPaLM series (Singhal et al., 2023a,b) achieved1060

over 60% accuracy on the MedQA benchmark, re-1061

portedly surpassing human experts. Previous med-1062

ical LLMs typically follow two main approaches1063

(Zhang et al., 2024b): (1) Prompting Generalist1064

LLMs (Nori et al., 2023; Saab et al., 2024; Li et al.,1065

2024; OpenAI, 2023; Chen et al., 2024a): This1066

method employs task-specific prompts to adapt gen-1067

eralist models for medical applications. While ef- 1068

ficient and training-free, it is inherently limited by 1069

the capabilities of the original LLMs. (2) Further 1070

Training with Medical Data (Xu, 2023; Wang 1071

et al., 2023a; Han et al., 2023; Wu et al., 2024; Pal 1072

and Sankarasubbu, 2024; Labrak et al., 2024; Bao 1073

et al., 2023; Zhang et al., 2023; Chen et al., 2024b; 1074

Wang et al., 2024b; Zheng et al., 2024a; Christophe 1075

et al., 2024): This involves training LLMs on med- 1076

ical pretraining corpora or medical instructions to 1077

embed medical knowledge and expertise. How- 1078

ever, this always requires significant computational 1079

resources, such as the 1.4 billion and 3 billion train- 1080

ing tokens used for Meditron (Chen et al., 2023c) 1081

and HuatuoGPT-II (Chen et al., 2023b). In contrast, 1082

our approach emphasizes enabling LLMs to excel 1083

in medical reasoning, offering a distinct solution. 1084

Enhancing Reasoning in LLMs Chain-of- 1085

Thought (CoT) prompting enhances the reason- 1086

ing capabilities of LLMs (Wei et al., 2022; Wang 1087

et al., 2023d), but scaling expert-labeled reason- 1088

ing paths remains costly, especially for complex 1089

problems (Min et al., 2022; Song et al., 2023). To 1090

mitigate this, model-generated reasoning paths fil- 1091

tered through external supervision offer a partial 1092

solution (Zelikman et al., 2022; Huang et al., 2023), 1093

yet scalability challenges persist (Shumailov et al., 1094

2023; Alemohammad et al., 2024). Reinforcement 1095

learning-based methods leveraging reward models 1096

or oracle functions show potential but often suf- 1097

fer from slow processing, high costs, and supervi- 1098

sion bottlenecks (Lightman et al., 2024; Luo et al., 1099

2023). 1100

Complex Reasoning Developing models with 1101

reflective abilities like critique and self-correction 1102

has shown success in reasoning, planning, and cod- 1103

ing tasks (Gandhi et al., 2024; Madaan et al., 2023; 1104

Chen et al., 2023a; Welleck et al., 2023; Xi et al., 1105

2023; Paul et al., 2024), though underexplored in 1106

specialized domains like medicine. While prompt- 1107

ing techniques can generate self-critical reasoning 1108

(Bai et al., 2022; Madaan et al., 2023), they struggle 1109

without reliable reward functions or verifiers, par- 1110

ticularly in complex domains (Huang et al., 2024; 1111

Xu et al., 2024c). Fine-tuning and reinforcement 1112

learning methods offer solutions but require ex- 1113

tensive human annotations or intricate reward de- 1114

signs (Wang et al., 2023b; Gao et al., 2024; Zhou 1115

et al., 2024; Havrilla et al., 2024). Additionally, 1116

self-training methods present a promising direction 1117

for developing self-correction capabilities (Welleck 1118
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Figure 5: The average verification rewards and response length of HuatuoGPT-o1-8B PPO training.

Model MedQA MedMCQA MMLU-Pro
(Med)

LLaMA-3.1-8B (Backbone) 58.7 56.0 58.2
LLaMA-3.1-8B + 20K SFT 69.0 57.9 59.4

Adding 20K fine-tuning data
LLaMA-3.1-8B + 40K SFT 69.6 58.1 59.8

Reinforcement learning with 20K data
LLaMA-3.1-8B + 20K SFT + 20K RL 72.6 60.4 63.1

Table 7: Performance comparison with increasing amounts of SFT data.

MedQA MedMCQA PubMedQA MMLU-Pro
(Med)

GPQA
(Med) Avg. Gain

Training on LLaMA-3.1-8B-Instruct
LLaMA-3.1-8B-Instruct 58.7 56.0 75.2 58.2 44.1 (0.0)
HuatuoGPT-o1-Llama-8B 72.6 60.4 79.2 63.1 57.5 (↑ 8.1)

Training on Qwen2.5-7B-Instruct
Qwen2.5-7B-Instruct 58.7 55.6 72.7 60.3 46.9 (0.0)
HuatuoGPT-o1-Qwen-7B 72.0 62.5 78.6 68.3 54.4 (↑ 8.3)

Table 8: Performance improvement on different backbones using the proposed method.

et al., 2023; Zheng et al., 2024b; Kumar et al.,1119

2024).1120

C Reinforcement Learning Training1121

The PPO training process of HuatuoGPT-o1-8B1122

is shown in Figure 5. As the training progresses,1123

the accuracy of the verification gradually increases,1124

and the response length also increases (mainly be-1125

cause the reasoning process takes longer). The rise1126

in accuracy is likely attributed to a deeper reason-1127

ing process, involving more reflection and iteration.1128

However, we also observe that after a certain num-1129

ber of steps, the model’s performance begins to1130

deteriorate, often producing responses that either1131

fail to terminate or output disorganized, garbled1132

content.1133

D Success Rate of Search Depth and 1134

Search Attempts 1135

We analyze the distribution of search depths in the 1136

SFT dataset, as shown in Table 10. It can be ob- 1137

served that nearly 40% of the data requires reflec- 1138

tion to obtain the correct answer. This highlights 1139

the significance of reflection, which can be further 1140

leveraged to fine-tune models for better compre- 1141

hension of reflective reasoning. 1142

Search Depth i # Data Points Proportion

0 12,677 62%
1 3,884 19%
2 2,494 12%
3 1,411 7%

Table 9: Distribution of search depths in the SFT dataset.

Despite this, failures can still occur even when 1143

the search depth reaches N = 3. To address this 1144

issue, we adopt a strategy where, upon reaching the 1145

16



maximum depth without finding the correct answer,1146

the search restarts from scratch. This approach1147

improves search efficiency and reduces computa-1148

tional costs. Our findings indicate that setting a1149

reasonable number of search attempts significantly1150

enhances the success rate of data construction, with1151

only 4% of the data ultimately failing.1152

• 85% of data succeeds on the first attempt.1153

• 8% on the second attempt.1154

• 3% on the third attempt.1155

• Only approximately 4% is discarded.1156

Notably, increasing the search depth leads to1157

longer input data, thereby increasing construction1158

costs. Therefore, a balance between search depth1159

and computational efficiency should be carefully1160

considered.1161

E Experiments with Other Backbones1162

In addition to the original experiments based on1163

the LLaMA-3.1 series, we further validate our ap-1164

proach on Qwen2.5-7B, a different but comparable1165

backbone, using the same training settings. The1166

results are shown in Table 8. These results confirm1167

that our method transfers well to other backbones.1168

Additionally, all models based on both the LLaMA1169

and Qwen series have been open-sourced.1170

F Does More SFT Data Matter?1171

Our experiments demonstrate the effectiveness of1172

RL training, even with different SFT datasets. A1173

natural question arises: can increasing the amount1174

of SFT data achieve similar effects? We provide1175

results using additional SFT data (40K, the full1176

set of verifiable questions) as Table 7. The re-1177

sults indicate that increasing SFT data alone does1178

not significantly improve performance. In con-1179

trast, the gain from RL remains substantial. We1180

believe this is due to the inherent limitations of syn-1181

thetic data—search-based augmentation does not1182

necessarily yield the optimal solution. Meanwhile,1183

self-learning via RL enables the model to discover1184

better reasoning pathways.1185

G Increasing Search Depth1186

The search depth is adjustable, and users can set it1187

to 11 iterations or more using our provided code.1188

It is important to note that we employ a stream1189

search approach (Gandhi et al., 2024), not a tree1190

search. This means that each search iteration re-1191

quires the complete history of previous searches as1192

input, making the computational cost proportional 1193

to the search depth. To reduce costs, we set the 1194

depth to 3 while employing multiple resampling 1195

attempts. 1196

Nonetheless, we tested 4K examples with differ- 1197

ent synthesis lengths: 1198

Iteration Depth
(4K Data)

Thinking
(Length)

MedQA
(SFT result)

Default (3) 564 64.6
6 977↑ 67.1↑

Table 10: Effect of increasing search depth on inference
length and fine-tuning performance.

The results show that increasing search depth 1199

leads to longer inference chains, which in turn im- 1200

proves fine-tuning performance. 1201

H Settings of other RL training 1202

we further compared different RL-related algo- 1203

rithms with PPO. Specifically, we employed 1204

the preference-learning algorithm DPO and the 1205

REINFORCE-style algorithm RLOO. 1206

DPO For DPO, we had the model generate five 1207

answers for each question offline and used a verifier 1208

to identify pairs of one correct and one incorrect 1209

answer. If no such pairs were found, the data was 1210

discarded. Verified correct answers were used as 1211

positive examples, while failed verifications served 1212

as negative examples for training DPO. The hyper- 1213

parameters for DPO training were set as follows: 1214

learning rate of 1e-6, batch size of 128, and a regu- 1215

larization parameter of 1. 1216

RLOO For RLOO, we used the same reward 1217

function as PPO. The parameters were also identi- 1218

cal to those of PPO, with an additional parameter 1219

rloo_k set to 2. 1220

I Definition of Complex Reasoning 1221

In this paper, complex reasoning refers to the pro- 1222

cess of generating long chains of thought (CoT) 1223

to replicate human-like thinking processes, such 1224

as reflection (Jaech et al., 2024; Xu et al., 2025). 1225

Reflection, in this context, means that LLMs as- 1226

sess their own generated answers and refine them 1227

if necessary (Dou et al., 2024). LLMs equipped 1228

with complex reasoning will perform such human- 1229

like thinking processes before providing their fi- 1230

nal response, such as models like OpenAI-o1 and 1231

DeepSeek-R1. 1232
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J Domain Adaptation Beyond English1233

Medical Domains1234

J.1 Chinese Domain Adaptation1235

Model Training For the Chinese medical do-1236

main, we replaced the exam questions in the CMB1237

training set with verifiable medical questions in1238

Chinese. Following the same training process used1239

for the English version of HuatuoGPT-o1, we devel-1240

oped HuatuoGPT-o1-7B-Chinese, which is based1241

on the Qwen2.5-7B-Instruct model.1242

Chinese Medical Evaluation To evaluate the1243

model’s performance in the Chinese medical do-1244

main, we assessed it using three Chinese medical1245

benchmarks: the Chinese test set from MedQA1246

(MCMLE) (Jin et al., 2021), the CMExam test set1247

(Liu et al., 2024), and the medical section of the1248

Chinese general benchmark CMMLU (Li et al.,1249

2023). The CMMLU benchmark includes tracks1250

such as clinical knowledge, agronomy, college1251

medicine, genetics, nutrition, Traditional Chi-1252

nese Medicine, and virology.1253

Comparison Models We compared the perfor-1254

mance of our model with three general-purpose1255

Chinese language models of similar size: Qwen2.51256

(Team, 2024a), GLM-4 (Zeng et al., 2023), and Yi-1257

1.5 (Young et al., 2024). Additionally, we included1258

a comparison with a specialized Chinese medical1259

model, HuatuoGPT-2-7B (Chen et al., 2023b).1260

J.2 Chemistry Domain Adaptation1261

To validate the effectiveness of our approach in1262

non-medical domains, we focused on the chemistry1263

domain.1264

Model Training For the chemistry domain, we1265

obtained 20,000 chemistry-related questions from1266

the SciKnowEval dataset (Feng et al., 2024) and1267

selected challenging problems to build 15,000 ver-1268

ifiable chemistry questions. Due to the limited1269

number of chemistry questions, we supplemented1270

them with 20,000 existing medical verifiable ques-1271

tions to develop HuatuoGPT-o1-7B-Chem, built on1272

the LLaMA-3.1-8B-Instruct model.1273

Chemistry Domain Evaluation To assess the1274

chemistry capabilities, we evaluated the models1275

on three chemistry benchmarks: 1) ChemBench1276

(Mirza et al., 2024), a comprehensive evaluation1277

of chemistry capabilities, reporting the accuracy1278

across all questions; 2) the chemistry track of the1279

MMLU-Pro test set; 3) the high-level chemistry1280

track of GPQA, where we used the main set and re- 1281

ported the accuracy for its multiple-choice formal. 1282

Comparison Models We primarily compared 1283

the performance of advanced LLMs with similar 1284

parameters, including Gemma2-9B-it, Qwen2.5- 1285

7B-Instruct, Deepseek-R1-Distll-Llama-8B, and 1286

Llama-3.1-8B-Instruct. 1287

K Constructing Medical Verifiable 1288

Problems 1289

To construct Medical Verifiable Problems, we be- 1290

gin by employing small models and rule-based 1291

methods to identify challenging questions. Sub- 1292

sequently, we leverage GPT-4o to perform data 1293

filtering, isolating questions that have been suit- 1294

ably transformed. The prompt used for this data 1295

filtering process is illustrated in Figure 6. After 1296

selecting appropriate data, we reformat multiple- 1297

choice medical exam questions into open-ended 1298

verifiable problems using the prompt provided in 1299

Figure 7. 1300

The prompt for filtering Multiple-choice Ques-
tions

<Multiple-choice Question>
{Question}
{Options}
Correct Answer: {Answer}
</Multiple-choice Question>

You are an expert in filtering and evaluating multiple-
choice questions for advanced reasoning tasks. Your job
is to evaluate a given question and determine whether it
meets the following criteria:
1. **Depth of Reasoning:** The question should require
deeper reasoning. If the question appears too simple, mark
it as "Too Simple."
2. **Unambiguous Correct Answer:** The question must
have a unique and unambiguous correct answer. If the
question asks for "incorrect options" or allows for multiple
correct answers, mark it as "Ambiguous Answer."
3. **Open-Ended Reformulation Feasibility:** The
question should be suitable for reformatting into an
open-ended format. If the question cannot be easily
reformulated into an open-ended problem and a clear
ground-truth answer, mark it as "Not Reformulatable."

For each question, provide one of the following evalua-
tions:
- "Pass" (The question meets all the criteria.)
- "Too Simple"
- "Ambiguous Answer"
- "Not Reformulatable"

1301
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Figure 6: The prompt for filtering Multiple-choice Ques-
tions. Here, {Question} and {Options} represents
the multiple-choice question and options, and {Answer}
represents the correct option for the multiple-choice
question.

The prompt for reformatting multiple-choice
questions to open-ended verifiable problems

I will provide you with a multiple-choice question, and
your task is to rewrite it into an open-ended question,
along with a standard answer. The requirements are:

1. The question must be specific, targeting the point being
tested in the original multiple-choice question. Ensure it is
open-ended, meaning no options are provided, but there
must be a definitive standard answer.
2. Based on the correct answer from the original question,
provide a concise standard answer. The answer should
allow for precise matching to determine whether the
model’s response is correct.

Here is the multiple-choice question for you to rewrite:
<Multiple-choice Question>
{Question}
{Options}
Correct Answer: {Answer}
</Multiple-choice Question>

Please output the result in the following JSON format:
“‘json
{{
"Open-ended Verifiable Question": "...",
"Standard Answer": "..."
}}
“‘

1302

Figure 7: The prompt for reformatting multiple-choice
questions to open-ended verifiable problems. Here,
{Question} and {Options} represents the multiple-
choice question and options, and {Answer} represents
the correct option for the multiple-choice question.

L The Prompt of Verifier1303

GPT-4o serves as the verifier to assess the correct-1304

ness of model-generated outputs. Using the prompt1305

depicted in Figure 8, we present GPT-4o with both1306

the model’s output and the ground-truth answer to1307

evaluate the correctness of the response. The veri-1308

fier returns a Boolean value: True if the response1309

is accurate and False otherwise.1310

M Prompts for Searching Trajectories1311

This section outlines the prompts used for con-1312

structing complex Chain-of-Thought (CoT) reason-1313

ing pathways. Initially, a question x is presented to1314

GPT-4o, which generates an initial CoT response1315

using the prompt shown in Figure 9. If the verifier1316

determines the response to be incorrect, GPT-4o1317

employs one of several search strategies to itera-1318

The Prompt for Verifier

<Model Response>
{Model Response}
</Model Response>

<Reference Answer>
{Ground-true Answer}
</Reference Answer>

You are provided with a model-generated response
(<Model Response>) and a reference answer (<Reference
Answer>). Compare the model response with the refer-
ence answer and determine its correctness. Your task is to
simply output "True" if the response is correct, and "False"
otherwise.

Figure 8: The prompt for the GPT-4o verifier. {Model
Response} represents the output of the model to be ver-
ified. {Ground-true Answer} represents the ground-
truth answer for medical verifiable problems.

tively refine the output until it is accurate. The 1319

prompts for these four search strategies — Back- 1320

tracking, Exploring New Paths, Correction, and 1321

Verification — are detailed in Figures 11, 11, 12, 1322

and 13, respectively. 1323

The prompt for initial CoT

<question>
{Question}
</question>

Please respond to the above question <question> using the
Chain of Thought (CoT) reasoning method. Your response
should consist of multiple steps, each of which includes
three types of actions: **"Inner Thinking"**, **"Final
Conclusion"**, and **"Verification"**:

- **’Inner Thinking’**: This is the step where thinking
is done. Note that multiple ’Inner Thinking’ steps are
required to describe thorough reasoning. Each step should
first generate a brief title.
- **’Final Conclusion’**: At this stage, you summarize
the correct reasoning from previous ’Inner Thinking’ steps
and provide the final answer. No title is required here.
- **’Verification’**: At this stage, you verify the
conclusion from the "Final Conclusion" step. If the
conclusion holds, end the process. If not, return to "Inner
Thinking" for further reasoning. No title is required here.

The output format must strictly follow the JSON structure
below:
“‘json
{
"CoT": [
{"action": "Inner Thinking", "title": "...", "content": "..."},
...,
{"action": "Final Conclusion", "content": "..."},
{"action": "Verification", "content": "..."}
]
}

1324
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Figure 9: The prompt for initial CoT. {Question} rep-
resents the input question, i.e., the question x of the
medical verifiable problems.

The Prompt for Backtracking Breask Search
Strategy

<question>
{Question}
</question>

<previous reasoning>
{Previous_CoT}
<previous reasoning>

<response requirements>
Your response must include the following steps, each
composed of three types of actions: **"Inner Thinking"**,
**"Final Conclusion"**, and **"Verification"**:

1. **Inner Thinking**: Break down the reasoning process
into multiple concise steps. Each step should start with a
brief title to clarify its purpose.
2. **Final Conclusion**: Summarize the correct
reasoning from all previous ’Inner Thinking’ steps and
provide the final answer. No title is needed for this section.
3. **Verification**: Verify the accuracy of the "Final
Conclusion". If it holds, conclude the process. Otherwise,
return to "Inner Thinking" for further refinement.
</response requirements>

<question> represents the question to be answered, and
<previous reasoning> contains your prior reasoning. Your
task is to continue from the current ’Verification’ step. I
have manually reviewed the reasoning and determined
that the **Final Conclusion** is false. Your ’Verification’
results must align with mine. Proceed to refine the
reasoning using **backtracking** to revisit earlier points
of reasoning and construct a new Final Conclusion.

### Output Format
Strictly follow the JSON structure below. You do not need
to repeat your previous reasoning. Begin directly from the
next ’Verification’ stage.

“‘json
{
"CoT": [
{"action": "Verification", "content": "..."},
{"action": "Inner Thinking", "title": "...", "content": "..."},
...,
{"action": "Final Conclusion", "content": "..."},
{"action": "Verification", "content": "..."}
]
}
“‘

1326

Figure 10: The prompt for Backtracking search strat-
egy. Here, {Question} represents the problem x of
the medical verifiable problems, and {Previous_CoT}
represents the previous chain of thought process, i.e.,
[e0, y0, . . . , ei−1, yi−1].

The Prompt for Exploring New Paths Breask
Search Strategy

<question>
{Question}
</question>

<previous reasoning>
{Previous_CoT}
<previous reasoning>

<response requirements>
Your response must include the following steps, each
composed of three types of actions: **"Inner Thinking"**,
**"Final Conclusion"**, and **"Verification"**:

1. **Inner Thinking**: Break down the reasoning process
into multiple concise steps. Each step should start with a
brief title to clarify its purpose.
2. **Final Conclusion**: Summarize the correct
reasoning from all previous ’Inner Thinking’ steps and
provide the final answer. No title is needed for this section.
3. **Verification**: Verify the accuracy of the "Final
Conclusion". If it holds, conclude the process. Otherwise,
return to "Inner Thinking" for further refinement.

</response requirements>

<question> represents the question to be answered, and
<previous reasoning> contains your prior reasoning.
Your task is to continue from the current ’Verification’
step. I have manually reviewed the reasoning and
determined that the **Final Conclusion** is false. Your
’Verification’ results must align with mine. Proceed to
refine the reasoning by exploring new approaches to
solving this problem and construct a new Final Conclusion.

### Output Format
Strictly follow the JSON structure below. You do not need
to repeat your previous reasoning. Begin directly from the
next ’Verification’ stage.

“‘json
{
"CoT": [
{"action": "Verification", "content": "..."},
{"action": "Inner Thinking", "title": "...", "content": "..."},
...,
{"action": "Final Conclusion", "content": "..."},
{"action": "Verification", "content": "..."}
]
}
“‘
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Figure 11: The prompt for Exploring New Paths search
strategy. Here, {Question} represents the problem x of
the medical verifiable problems, and {Previous_CoT}
represents the previous chain of thought process, i.e.,
[e0, y0, . . . , ei−1, yi−1].

The Prompt for Correction Breask Search Strat-
egy

<question>
{Question}
</question>

1328
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<previous reasoning>
{Previous_CoT}
<previous reasoning>

<response requirements>
Your response must include the following steps, each
composed of three types of actions: **"Inner Thinking"**,
**"Final Conclusion"**, and **"Verification"**:

1. **Inner Thinking**: Break down the reasoning process
into multiple concise steps. Each step should start with a
brief title to clarify its purpose.
2. **Final Conclusion**: Summarize the correct
reasoning from all previous ’Inner Thinking’ steps and
provide the final answer. No title is needed for this section.
3. **Verification**: Verify the accuracy of the "Final
Conclusion". If it holds, conclude the process. Otherwise,
return to "Inner Thinking" for further refinement.

</response requirements>

<question> represents the question to be answered, and
<previous reasoning> contains your prior reasoning. Your
task is to continue from the current ’Verification’ step. I
have manually reviewed the reasoning and determined
that the **Final Conclusion** is false. Your ’Verification’
results must align with mine. Proceed to refine the
reasoning by making precise **corrections** to address
prior flaws and construct a new Final Conclusion.

### Output Format
Strictly follow the JSON structure below. You do not need
to repeat your previous reasoning. Begin directly from the
next ’Verification’ stage.

“‘json
{
"CoT": [
{"action": "Verification", "content": "..."},
{"action": "Inner Thinking", "title": "...", "content": "..."},
...,
{"action": "Final Conclusion", "content": "..."},
{"action": "Verification", "content": "..."}
]
}
“‘
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Figure 12: The prompt for Correction search strat-
egy. Here, {Question} represents the problem x of
the medical verifiable problems, and {Previous_CoT}
represents the previous chain of thought process, i.e.,
[e0, y0, . . . , ei−1, yi−1].

The Prompt for Verification Breask Search
Strategy

<question>
{Question}
</question>

<previous reasoning>
{Previous_CoT}
<previous reasoning>

<response requirements>
Your response must include the following steps, each

1330

composed of three types of actions: **"Inner Thinking"**,
**"Final Conclusion"**, and **"Verification"**:

1. **Inner Thinking**: Break down the reasoning process
into multiple concise steps. Each step should start with a
brief title to clarify its purpose.
2. **Final Conclusion**: Summarize the correct
reasoning from all previous ’Inner Thinking’ steps and
provide the final answer. No title is needed for this section.
3. **Verification**: Verify the accuracy of the "Final
Conclusion". If it holds, conclude the process. Otherwise,
return to "Inner Thinking" for further refinement.

</response requirements>

<question> represents the question to be answered, and
<previous reasoning> contains your prior reasoning. Your
task is to continue from the current ’Verification’ step. I
have manually reviewed the reasoning and determined
that the **Final Conclusion** is false. Your ’Verification’
results must align with mine. Proceed to refine the
reasoning by conducting a thorough **validation**
process to ensure validity and construct a new Final
Conclusion.

### Output Format
Strictly follow the JSON structure below. You do not need
to repeat your previous reasoning. Begin directly from the
next ’Verification’ stage.

“‘json
{
"CoT": [
{"action": "Verification", "content": "..."},
{"action": "Inner Thinking", "title": "...", "content": "..."},
...,
{"action": "Final Conclusion", "content": "..."},
{"action": "Verification", "content": "..."}
]
}
“‘

1331

Figure 13: The prompt for Verification search strat-
egy. Here, {Question} represents the problem x of
the medical verifiable problems, and {Previous_CoT}
represents the previous chain of thought process, i.e.,
[e0, y0, . . . , ei−1, yi−1].

N Prompts for Constructing SFT 1332

Training Data 1333

When a successful trajectory [e0, y0, . . . , ei, yi] is 1334

found, it is reformatted into a coherent, natural lan- 1335

guage reasoning process ê (Complex CoT) using 1336

the prompt shown in Figure 14. This reformatting 1337

avoids rigid structures, using smooth transitions 1338

(e.g., “hmm,” “also,” “wait”) to streamline reason- 1339

ing and reduce token usage. The model then gen- 1340

erates a formal response ŷ for for question x using 1341

the conclusion of ê with the prompt in Figure 14. 1342
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The prompt for reformatting a reasoning trajec-
tory to complex CoT

<Thought Process>
{Thought_Process}
</Thought Process>

<Question>
{Question}
</Question>

The <Thought Process> above reflects the model’s
reasoning based on the <Question>. Your task is to rewrite
the <Thought Process> to resemble a more human-like,
intuitive natural thinking process. The new version should:

1. Be presented as step-by-step reasoning, with each
thought on a new line separated by a line break.
2. Avoid structured titles or formatting, focusing on
natural transitions. Use casual and natural language for
transitions or validations, such as "hmm," "oh," "also," or
"wait."
3. Expand the content, making the reasoning richer,
more detailed, and logically clear while still being
conversational and intuitive.

Return directly the revised natural thinking in JSON
format as follows:
“‘json
{
"NaturalReasoning": "..."
}
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Figure 14: The prompt for reformatting a reasoning tra-
jectory to complex CoT ê. Here, {Thought_Process}
represents the successful reasoning trajectory of
[e0, y0, . . . , ei, yi], and {Question} represents the ques-
tion x.

The prompt for generating a formal response
with complex CoT

<Internal Thinking>
{Complex_CoT}
</Internal Thinking>

<Question>
{Question}
</Question>

The <Internal Thinking> represents your internal thoughts
about the <Question>. Based on this, generate a rich and
high-quality final response to the user. If there is a clear
answer, provide it first. Ensure your final response closely
follows the <Question>. The response style should resem-
ble GPT-4’s style as much as possible. Output only your
final response, without any additional content.
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Figure 15: The prompt for generating a formal response
ŷ with complex CoT ê. Here, {Complex_CoT} repre-
sents the complex CoT ê, and {Question} represents
the question x.
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