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ABSTRACT

We explore how we can endow robots with the ability to learn correspondences
between its own skills, and those of morphologically different robots in different
domains, in an entirely unsupervised manner. Our insight and premise is that mor-
phologically different robots use similar strategies (high-level skills sequences) to
solve similar tasks. Based on this insight, we frame learning skill correspondences
as a problem of matching distributions of sequences of skills across robots. We
then present an unsupervised objective that encourages a learnt skill translation
model to match these distributions across domains inspired by recent advances in
unsupervised machine translation. Our approach is able to learn semantically mean-
ingful correspondences between skills across 3 robot domain pairs despite being
completely unsupervised. Further, the learnt correspondences enable the transfer
of task strategies across robots and domains. Dynamic visualization of our results
can be found here: https://sites.google.com/view/translatingrobotskills/home

1 INTRODUCTION

Humans have a remarkable ability to efficiently learn to perform tasks by watching others demonstrate
similar tasks. For example, children quickly learn the skills needed to play a new sport by watching
their parents perform skills such as kicking a ball. Notably, they are able to learn from these visual
demonstrations despite significant differences between themselves and the demonstrator, including
visual perspectives, environments, kinematic and dynamic properties, and morphologies. This ability
may be attributed to two factors; firstly, humans have well-developed basic motor skills that we can
execute with little effort. Second, we can recognize the sequence of skills (or the high-level strategy)
the demonstrator uses, and understand a corresponding set of skills that we can execute ourselves
(Meltzoff & Moore, 1977).

In this paper, we explore how we can endow robots with this ability - i.e., to adopt task strategies
from morphologically different robot demonstrators, and then execute corresponding skills to solve
similar tasks. Key to solving this problem is for the robot to identify how its owns skills correspond
to those of the demonstrator, which is tremendously powerful. First, it allows the robot to adopt
the demonstrator’s strategies for solving various tasks. Second, by adopting and adapting these

Figure 1: Sample skill correspondences learnt by our unsupervised approach, across three different morphologi-
cal robots. We visualize a reaching skill on the Baxter left hand (top), translated to the Sawyer (middle) and the
Baxter right hand (bottom) respectively.
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strategies for itself, the robot can efficiently learn to solve a variety of tasks previously outside its
repertoire. Finally, it allows us to understand the task strategies used by various robots in a unified
manner, enabling robots to learn from data collected with a heterogeneous collection of tasks and
robot morphologies. Skills provide a natural framework to facilitate such concise knowledge transfer
across robots compared to low-level robot controls; skills inherently abstract away low-level details
that may differ across the demonstrator and the learner, and instead focus on the commonalities
between them, such as the task strategy. For example, skills such as reaching and placing on robot
manipulators abstract away differences in morphologies or configuration, and are thus well grounded
across robots, while there may not be obvious correspondence in their low-level actions.

How can one acquire correspondences between skills? Stated more formally, given morphologically
different robots, a set of unlabelled demonstrations of each robot solving a variety of tasks, and a
method for extracting skills from those demonstrations, how can one learn correspondences between
the skills of the different robots? Learning such correspondences is straightforward when supervised
pairs of skills or trajectories are available. However, collecting and annotating such data is time-
consuming and tedious, and requires a high degree of human expertise, particularly at the scale
necessary to successfully learn correspondences across a diverse set of skills. In contrast, we explore
whether we can learn such skill correspondences in an unsupervised manner, i.e., without access to
supervised skill or trajectory pairs. Learning unsupervised skill correspondences potentially allows
for learning a broad scope of correspondences from the diverse unlabelled and unsegmented data
newly available in robotics (Sharma et al., 2018; Mandlekar et al., 2018). Unfortunately, learning
unsupervised correspondences is a difficult problem to solve - without supervision, it is difficult to
guide learning towards the right correspondences. While this may be alleviated to some extent by
incorporating unsupervised constraints (Zhu et al., 2017; Ganin et al., 2016; Zhou et al., 2019), there
are many spurious correspondences that satisfy these constraints.

How can one then go about learning such skill correspondences in an unsupervised manner? We
propose leveraging the two following insights to do so. Our first insight is that different morphological
robots use similar task strategies (in terms of sequences of skills) to solve similar tasks; in other
words, the sequences of skills executed by different robots to solve similar tasks ought to belong to
similar distributions. We observe that this is generally true; for example, a robot pouring out a cup
of tea would likely first reach for the kettle, grasp it, move it appropriately over the cup, and then
begin to pour the tea, irrespective of its exact morphology. Our second insight is that learning skill
correspondences without access to supervised data closely mirrors unsupervised machine translation
(UMT), where the objective is to learn a translation between representations in different languages
(such as between word embeddings across languages), without access to parallel data (Conneau et al.,
2017; Lample et al., 2018). Inspired by these two insights, we derive an unsupervised objective to
guide our learning towards meaningful skill correspondences.

We approach the problem of learning unsupervised skill correspondences by learning a translation
model to map from the skill space on one “source” robot to the skill space on another “target” robot.
We construct an unsupervised objective that encourages the translation model to respect our first
insight - i.e., to preserve the sequences of skills observed across both the (translated source) and
target robots. To do this, we take inspiration from our second insight, and specifically from Zhou
et al. (2019), and construct explicit probability density models over the sequences of skills observed
on the source and target robots, and then train the translation model to match these distributions.

We evaluate the ability of our approach to learn unsupervised skill correspondences across three
different robots, the Sawyer robot, and the left and right hands of the Baxter robot. Our approach is
able to learn semantically meaningful correspondences across each of the 3 pairs of robots, despite
being completely unsupervised, as depicted in fig. 1. The learnt correspondences facilitate transferring
task strategies across across domains, as we demonstrate on a set of downstream tasks. Our results
are visualized at https://sites.google.com/view/translatingrobotskills/home.

2 RELATED WORK

Skill Learning: Eysenbach et al. (2019); Sharma et al. (2020) both address unsuperivsed skill
learning from interaction data, by constructing information theoretic approaches. Fox et al. (2017);
Krishnan et al. (2017); Shankar et al. (2020); Sharma et al. (2018); Shankar & Gupta (2020); Kipf
et al. (2019); Gregor et al. (2019); Kim et al. (2019) instead learn skills or abstractions from unlabelled

2

https://sites.google.com/view/translatingrobotskills/home


Under review as a conference paper at ICLR 2022

demonstration data by performing latent variable inference. These frameworks all learn skills in the
context of a single domain, while we seek to learn correspondences of skills across domains.

Unsupervised Correspondence Learning: Our problem bears a close resemblance with unsuper-
vised machine translation (Conneau et al., 2017; Zhou et al., 2019), and unpaired image translation
(Zhu et al., 2017; Park et al., 2020). Specifically, they all share the notion of learning correspondences
across representations learnt from unpaired, “monolingual” data:

• Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation:Unsupervised Correspondence in Machine Translation: Conneau et al. (2017) leveraged domain-
adversarial training (Ganin et al., 2016) to align word embeddings of two languages. Sennrich et al.
(2016); Lample et al. (2018) use the idea of back-translation to constraint the learnt translation
models across languages. Zhou et al. (2019) learn bilingual word embeddings by matching explicit
density functions over the word embedding spaces across languages.

• Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation:Unsupervised Correspondence in Image Translation: The vision community has similarly ex-
plored the unpaired image-to-image translation setting (Zhu et al., 2017; Park et al., 2020),
using cycle-consistency losses (Zhu et al., 2017) or contrastive losses (Park et al., 2020).

• Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video:Unsupervised Correspondence in Video: Bansal et al. (2018); Wang et al. (2019) extend Cycle-
GAN (Zhu et al., 2017) to the video domain, by incorporating temporal consistency losses.

Domain Transfer in Robotics and Graphics: The robotics and graphics communities have taken
interest in cross-domain transfer of policies in recent years:

• Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data:Policy Transfer with Paired Data: Gupta et al. (2017); Sermanet et al. learn morphology and
viewpoint invariant feature spaces for policy transfer respectively, but require paired data to do so.

• Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity:Policy Transfer via Modularity: Hejna et al. (2020); Devin et al. (2017); Sharma et al. (2019)
address morphological transfer by modularity in their policies. Hejna et al. (2020); Sharma et al.
(2019) adopt modularity in a hierarchical sense, but leverage common grounding of subgoals
across morphologies to perform transfer. We do not assume access to such common grounding.

• State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer:State based Policy Transfer: Liu et al. (2020); Schroecker & Isbell (2017); Ammar et al. (2015)
address cross-morphology transfer by state based imitation learning.

• Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting:Motion Retargetting: The graphics community has addressed transferring behaviors across mor-
phologically different characters (Hecker et al., 2008; Aberman et al., 2020; Villegas et al., 2018;
Abdul-Massih et al., 2017), using carefully handcrafted kinematic models. These works transfer
behaviors by imitating joint positions, and performing inverse kinematics to retrieve the full
character state, which is often infeasible for widely different morphological characters.

• Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence:Unsupervised Action Correspondence: Zhang et al. (2021); Kim et al. (2020); Smith et al. (2020)
address learning low-level state and action correspondences from unpaired, unaligned interaction
and demonstration data respectively. While similar in spirit, our work argues that learning high-
level skill correspondence instead is a more natural choice, as mentioned in the introduction.

Applicability to learning skill correspondences: While successful in their respective problem
domains, existing approaches are not trivially applicable to our problem. The adversarial training
used in most of these approaches is notoriously difficult to train, and is prone to the mode dropping
problem (Li & Malik, 2019). They require strong constraints such as pixel-wise or joint-wise
identity losses (Zhu et al., 2017; Zhang et al., 2021), or inherent similarity of the spaces to be
aligned, such as word embeddings across languages (Conneau et al., 2017; Zhou et al., 2019). Learnt
skill representations do not possess this property in general. Shortcomings notwithstanding, these
approaches provide insight into how we may pursue learning unsupervised skill correspondences.

3 APPROACH

3.1 PRE-REQUISITES

We begin by first reviewing an important prerequisite - the skill learning pipeline of Shankar &
Gupta (2020), which provides us a learnt representation of robotic skills given an unlabelled robot
demonstration dataset. Their method first represents robotic skills as continuous latent variables z, and
introduce a Temporal Variational Inference (TVI) to infer these skills or latent variables. TVI trains a
variational encoder q(z|τ) that takes as input a robot trajectory τ = {s1, a1, ...sn−1, an−1, sn}, and
outputs a sequence of skill encodings z = {z1, z2, ...zn}. Note that these skill encodings repeat over
time for the duration of a given skill. TVI also trains a latent conditioned policy π(a|s, z) that takes as
input robot state s, and the chosen skill encoding z, and predicts the low-level action a that the robot
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Figure 2: Overview of our approach. We translate the original learnt skill space to the target domain. We then
construct explicit density estimates over the original target and translated source skill-tuple spaces. We train
our translation model to maximize the likelihood of randomly sampled translated source and original target
skill-tuples under these densities respectively, affording meaningful skill-correspondences across both robots.

should execute. We direct the reader to Shankar & Gupta (2020) for a more thorough description of
their skill learning approach.

3.2 PROBLEM SETTING

Consider two robots with potentially differing morphologies and environments (or “domains”),
represented as source and target domains, or MS and MT respectively. Associated with each domain
is an unlabelled and unsegmented dataset of demonstrations of the robot performing various tasks
represented as D

S
and D

T
respectively. D

S
and D

T
are collected independently, on an intersecting

(but not identical) set of tasks. This is equivalent to the setting in machine translation without parallel
data, with access only to monolingual corpora.

We also assume access to a skill-learning pipeline, that can take in such an unlabelled demonstration
dataset D of a robot M performing various tasks, and learns a representation Z of skills on a given
robot. We specifically use TVI (Shankar & Gupta, 2020), but we believe our approach is compatible
with any unsupervised skill-learning approach that affords a continuous representation space. We
train the skill-learning pipeline independently on each of the domain datasets D

S
and D

T
. This

affords us skill encoders q
S

and q
T

, and latent conditioned policies π
S

and π
T

for each domain. We
may then encode trajectories in both domains τ

S
∈ D

S
and τ

T
∈ D

T
into their constituent skills

{zt
S
}|τS |t=1 and {zt

T
}|τT |t=1 , via qS and qT respectively. We represent the space of skills learnt on the entire

dataset in each of the two domains as Z
S

and Z
T

respectively.

Our goal is to learn semantically meaningful correspondences between skills in the source domain,
zS ∈ ZS , and those in the target domain, zT ∈ ZT , that helps solve tasks in the target domain
MT . We specify these correspondences by learning a “translation” function TS→T : ZS → ZT , that
maps skills in the source domain zS , to translated skills in the target domain zS→T . This mirrors the
word translation models present in Conneau et al. (2017); Zhou et al. (2019). Learning meaningful
skill-correspondences thus amounts to learning a good translation model T . We can also translate the
entire source space Z

S
to the target domain, to retrieve the translated source space, Z

S→T
.

3.3 USING SEQUENTIAL INFORMATION OF SKILLS

Our first insight is that different morphological robots follow similar strategies to address similar
tasks - in other words, sequences of skills executed by two different robots ought to belong to
similar distributions. It is important to consider sequences of skills here rather than skills in isolation,
since the ordering of skills gives us additional information to bias our learning towards the right
correspondences. Constraining correspondences based on individual skills alone could lead to
incorrect results. For example, learning that “reaching” skills in one domain correspond to “grasping”
skills in the other domain is evidently incorrect, and is an error that sequential information could bias
learning away from, since grasping skills are systematically executed after reaching skills.
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However, processing entire sequences of skills is computationally infeasible for arbitrarily long
trajectories. Instead, we draw inspiration from the simple yet powerful bigram models in the NLP
community, and consider consecutive pairs, or tuples of skills. While less expressive than the
full skill-sequences, these tuples retain enough information of the ordering of skills to guide the
correspondence learning towards the right solution, and are far more computationally tractable. We
thus construct a skill-tuple space, which represents the various transitions between skills observed in
a given domain. Each consecutive pair of skills (zt, zt+1) in the original space Z of a given domain
is represented as a single point xt in the skill-tuple space X of that domain. For initial and terminal
skills zt=0 and zt=|τ |, we pad these tuples, and treat the preceeding and succeeding skill encodings
as appropriately dimensioned 0’s respectively.

The skill-tuple spaces for source and target domains are represented as X
S

and X
T

respectively, and
are implemented as a set of skill-tuples from each domain, i.e. X

S
= {x

S,i}
N

S
i=1,XT

= {x
T,i}

N
T

i=1.
The procedure to construct these spaces is presented in the sub-routine of algorithm 1. We also
construct a translated skill-tuple space, X

S→T
, that is simply the translation of all skills present in X

S
,

i.e. X
S→T

= {x
S→T ,i}

N
S

i=1. Translating a skill-tuple xt
S
= (zt

S
, zt+1

S
) from source to target is done by

translating the individual skills zt
S

and zt+1
S

to the target domain,zt
S→T

and zt+1
S→T

, and constructing
the translated skill-tuple as xt

S→T
= (zt

S→T
, zt+1

S→T
).

3.4 DISTRIBUTIONAL PERSPECTIVE ON LEARNING TRANSLATION FUNCTIONS

We would like our translation model to exhibit two properties - first, to translate source skills z
S

such
that they belong to the distribution of target skills, and second, to capture all modes of skills that
exist in the target domain. Dropping modes of skills limits the set of skills the target robot can use,
reducing its capabilities. GANs (Goodfellow et al., 2014) and domain-adversarial approaches (Ganin
et al., 2016) satify the first property since they optimize for how realistic the generated samples are
(or how indistinguishable source and target domain features are (Ganin et al., 2016)), but often drop
modes of the “real” data (Li & Malik, 2019).

Instead, we approach this problem from an explicit distribution perspective, and maintain explicit
probability density estimates over the translated source and target skill-tuple spaces, X

S→T
and X

T
,

p(x
S→T

) and p(x
T
) respectively. Following our insight that sequences of skills on different robots

ought to belong to similar distributions, we would like these distributions p(x
S→T

) and p(x
T
) to

match. We can optimize our translation model to enforce this, by maximizing the likelihood of
translated skill-tuples xS→T under the target skill-tuple distribution p(xT), and the likelihood of
target skill-tuples xT under the translated skill-tuple distribution p(xS→T). This is similar in spirit to
optimizing both the forward and reverse KL between two distributions. We formalize this objective
and provide intuition for it below.

Consider constructing an explicit probability density function p
T
(x), over the target domain skill-

tuple space X
T

. We follow Zhou et al. (2019)’s choice of representing p
T
(x) using a Gaussian

Mixture Model (GMM), owing to its expressive power and efficiency in low-dimensional spaces, but
note that a wide variety of explicit density estimators may be used here. Here, pT(x) is a GMM with
NT Gaussian kernels, each centered at a target skill-tuple x′

T,i
∼ XT :

p
T
(x) =

NT∑
i=1

p(x′
T,i) p(x|x

′
T,i) =

NT∑
i=1

p(x|x′
T,i) (1)

Zhou et al. (2019) use kernel weights p(x′
T,i

) proportional to the frequency of the word the kernel
represents. In our setting, each kernel is simply one of the skill-tuples in the continuous target skill
space XT , motivating our choice of equal mixture weights over all kernels (i.e. skill-tuples), i.e.
p(x′

T,i
) = 1/NT . The mixture components p(x|x′

T,i
) are specified by a fixed variance Gaussian

centered at x′
T,i

, i.e. p(x|x′
T,i

) = N (x|x′
T,i
, σ2), where σ specifies the standard deviation of the

Gaussian kernel. We can train a translation model to translate skills in such a way that the translated
skill tuples x

S→T
belong to the distribution of target skill-tuples p

T
(x), or that they are realistic with

respect to the target distribution. We do this by maximizing the “forward” likelihood Lf of the
translated skill-tuples x

S→T
, under the target density p

T
(x):

Lf = Ex
S
∼p(x

S
),x

S→T
∼ T

S→T
(.|x

S
)

[
log p

T
(x

S→T
)
]

(2)

5



Under review as a conference paper at ICLR 2022

Algorithm 1 Translating Robot Skills

Input: D
S
, D

T
, q

S
, q

T
, π

S
, π

T

. Require demonstration datasets, trained skill encoders & decoders for source & target domains
Output: T

S→T
( . |z

S
) . Output translation model

1: Initialize TS→T( . |zS) . Initialize translation model
2: XS ← BUILDSKILLTUPLESPACE(Source) . Construct source skill-tuple space
3: XT ← BUILDSKILLTUPLESPACE(Target) . Construct target skill-tuple space
4: p

T
(x)←

∑NT

i=1 p( . |x′T,i) . Update target GMM density via eq. (1)
5: for i ∈ [1, 2, ..., Niterations] do
6: XS→T ← TS→T( . |XS) . Update translated-source skill-tuple space
7: p

S→T
(x)←

∑NS

i=1 p( . |x′S→T,i
) . Update translated-source GMM density via eq. (3)

8: x
S
∼ X

S
, x

T
∼ X

T
. Get batch of source and target skill-tuples

9: x
S→T
∼ T

S→T
( . |x

S
) . Translate source skill-tuple to target domain

10: Lf ← log pT(xS→T) . Evaluate forward objective
11: Lb ← log pS→T(xT) . Evaluate backward objective
12: L ← Lf + Lb . Evaluate full objective
13: Update T

S→T
via ∇L . Update translation model with gradient ascent

Sub-routine: Build Skill-Tuple Space

Input: Domain M
Output: Skill-Tuple space X

M

14: function BUILDSKILLTUPLESPACE(Domain M )
15: X

M
← {} . Initialize empty skill-tuple space

16: for i ∈ [1, 2, ..., NM ] do
17: τM,i ∼ DM . Retrieve batch of trajectories from domain dataset
18: {zt

M
}|τ |t=1 ∼ qM( . |τM,i) . Encode trajectories as sequence of skills via domain encoder

19: {xt
M
}|τ |−1t=1 ← {(zt

M
, zt+1

M
)}|τ |−1t=1 . Assemble skill tuples

20: X
M
← X

M
∪ {xt

M
}|τ |−1t=1 . Add skill-tuples to skill-tuple space

21: return X
M

To encourage the second mode-covering property in the translation model, we can also optimize
the likelihood of the target skill-tuples under the translated source skill-tuple space. To do so, we
first construct an explicit probability density function p

S→T
(x) over the translated source skill-tuple

space, X
S→T

, that is equivalent to p
T
(x). p

S→T
(x) is also similarly represented as a GMM, with

NS→T equally weighted Gaussian kernels, each centered at a translated skill-tuple x′
S→T,i

∼ XS→T :

pS→T(x) =

N
S→T∑
i=1

p(x′
S→T,i) p(x|x

′
S→T,i) =

N
S→T∑
i=1

p(x|x′
S→T,i) (3)

As before, the conditional p(x|x′
S→T,i

) = N (x|x′
S→T,i

, σ2). We may then optimize the “backward”
likelihood Lb of a set of target skill-tuples x

T
under p

S→T
(x):

Lb = Ex
T
∼p(x

T
)

[
log pS→T(xT)

]
(4)

By combining these two objectives we may construct our final objective L for training the translation
model, by simply combining these two objectives, L = Lf + Lb:

L = Ex
S
∼p(x

S
),x

S→T
∼ T

S→T
(.|x

S
)

[
log p

T
(x

S→T
)
]
+ Ex

T
∼p(x

T
)

[
log p

S→T
(x

T
)
]

(5)

Parsing the objective: In contrast with adversarial training methods, which require alternating
training phases and stability tricks such as gradient penalties, our objective amounts to simple
maximum likelihood (albeit in two directions). It is hence simpler, more stable, and quicker to
converge.Intuitively, Lf captures how “realistic” each translated skill-tuple looks with respect to the
target skill-tuple distribution, while Lb captures how well the translated skills cover the modes of the
target skill-tuple space. We present our full approach for learning unsupervised skill correspondences
in algorithm algorithm 1, and a pictorial representation of it in fig. 2.
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4 EXPERIMENTS

Robots: We evaluate our approach’s ability to learn skills correspondences across the following
robots - the Sawyer robot, the Baxter left hand, and the Baxter right hand. Our choices of robots are
dictated by the availability of demonstration datasets for these respective robots. We consider 3 of the
possible 6 unique domain pairs - Baxter Right-Hand to Baxter Left-Hand (Bax-R to Bax-L), Baxter
Left-Hand to Sawyer (Bax-L to Saw), Baxter Right-Hand to Sawyer (Bax-R to Saw).

Datasets: For the Sawyer robot, we make use of the Roboturk dataset (Mandlekar et al., 2018),
which consists of roughly 2000 demonstrations across 8 different tasks. For the Baxter robot, we
utilize the MIME dataset (Sharma et al., 2018). We partition the MIME dataset into two disjoint sets
with solely left-handed and right-handed trajectories respectively. Each single-handed dataset also
roughly contains 2000 demonstrations across 16 tasks. We treat each single-handed dataset as the
respective dataset for the Baxter left-hand robot and the Baxter right-hand robot.

Skill Representation: We learn skill-representations for each of the 3 robots independently from
their respective datasets, using TVI (Shankar & Gupta, 2020). We use a 16-dimensional skill-
representation space for each robot, that is learnt from robot joint-states and joint velocities. We then
freeze these learnt skill representations for all of our experiments. We follow the preprocessing steps
and training parameters specified by (Shankar & Gupta, 2020). We also manually annotate 50 skills
in each domain with one of 6 semantic labels of what type of skills they were. We emphasize that our
approach is not trained with these labels, but rather is only evaluated against them.

4.1 LEARNING MEANINGFUL SKILL CORRESPONDENCES

The first question we would like to answer is - “Can our unsupervised method learn meaningful
skill-correspondences between skill spaces?” We first present qualitative results towards this.

Translating Individual Skills and Entire Trajectories: We present two sets of visualizations;
individual skills and their translations, as well as entire trajectories (or sequences of skills) and
their translations. We first visualize a set of source domain trajectories τS , obtained by rolling out
their skill encodings {zt

S
}|τ |t=1 via the source domain policy π

S
. We then translate these sequences

of skill encodings to the target domain, i.e. {zt
S→T
}|τ |t=1, and visualize rollouts of the target policy

π
T

conditioned on these translated skills. We present visualizations of individual skills and their
translations, as well as visualizations of entire trajectories and their translations in fig. 1 and at
https://sites.google.com/view/translatingrobotskills/home.

Analysing Qualitative Skill Translations: Despite being learned in a purely unsupervised manner,
we observe our translation model is able to learn good semantically meaningful coarse skill cor-
respondences between semantic clusters of skills that emerge in the original spaces, across all 3
domain pairs. For example, from fig. 1, we see source domain reaching skills correspond to target
domain reaching skills across all 3 domain pairs, as do placing and pushing / sliding skills to the
left or to the right, and returning skills to their rest configuration. However, our model is unable to
guarantee learning perfect finer correspondences (such as between twisting or grasping skills), or
between variations of skills that belong to the same semantic cluster in the original skill spaces (such
as reaching with different arm shapes, as in fig. 1). We emphasize that our method is unsupervised,
and instead exploits similar contexts of skills across domains to learn correspondences; these results
are understandable and expected as a result. Finer skills and intra-cluster variations of such skills
are often executed in similar contexts, such as after reaching or before placing skills, making them
difficult to disambiguate. We note that despite this, our model often does translate finer skills (such
as twisting and grasping) correctly, suggesting its potential for improvement via techniques such as
iterative refinement (Conneau et al., 2017), or via additional inductive biases.

Using the learnt correspondences, we are able to transfer the source domain trajectory’s overall
structure, and sequence of skills executed, remarkably well to the target domain. Our model does so
despite variations in the precise shape of the robot arms, or start and end positions of these respective
skills. This provides further evidence that the learnt correspondences are indeed semantically
meaningful, and additionally suggests these learnt correspondences would be useful in transferring
task strategies across domains. We believe this is a powerful result, especially so considering approach
does so in a completely unsupervised manner.

7
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Table 1: Evaluating Skill-Tuple Distribution Matching via our approach against various baselines, across all
domain pairs. Baselines are adapted from (1): Ganin et al. (2016), (2): Zhu et al. (2017), (3): Liu et al. (2020).
Lower is better for all metrics except the label accuracy.

Domain
Pair Approach: Lf Lb

Chamfer
Distance

Cycle
Error

Label
Accuracy

Supervised
Z Error

Bax-R
to Bax-L

DomAd [1] 38.1 43.4 20.1 17.4 10.3% 15.2
Cycle GAN [2] 32.1 39.8 17.0 9.2 14.2% 14.9

State Im [3] 45.3 49.1 31.0 24.8 32.8% 12.3
Ours 14.3 20.1 8.2 10.2 73.8% 8.1

Bax-L
to Saw

DomAd [1] 50.9 60.1 24.2 21.3 9.8% 14.9
Cycle GAN [2] 38.5 53.7 17.1 8.8 12.0% 15.4

State Im [3] 66.5 73.1 38.9 22.4 19.3 % 36.8
Ours 16.8 33.9 7.8 9.0 68.7% 9.0

Bax-R
to Saw

DomAd [1] 54.8 80.2 21.2 24.8 11.1% 19.1
Cycle GAN [2] 47.3 78.5 16.7 10.3 16.8% 20.1

State Im [3] 72.5 85.4 33.9 27.7 20.1% 23.0
Ours 15.4 36.5 7.2 10.1 64.6% 12.1

Quantitative Evaluation of Skill-Tuple Distribution Matching: To quantitatively measure how
well our approach can match the distributions of skill-tuples across robots, we evaluate the following
unsupervised metrics. We first evaluate the forward and backward GMM densities Lf and Lb. We
also compute the Chamfer distance (Fan et al., 2017) between the skill-tuple spaces, which represents
the nearest neighbor distances across two point sets. Together, these three metrics specify how close
the skill-tuple distributions across domains are. We also evaluate the following supervised metrics,
using the manually annotated semantic labels associated with 50 skills in each domain. We reiterate
these labels are only used for evaluation purposes, and are unseen at train time. First, we evaluate
how accurately the learnt correspondences capture semantics of skills across domains, by measuring
how well the semantic labels associated with a set of skills in the source domain match with those
in the target domain upon translation, reported as the label accuracy in table 1. We also evaluate a
supervised Z error - i.e. the average distance in latent space between the translated source domain
skills, and the nearest target domain skills with the same semantic label.

We compare our approach against the following alignment baselines, and present the results in table 1.
Our first baseline is Domain-adversarial training (Ganin et al., 2016), where we match skill-tuple
distributions by training the translation model to fool a discriminator network trained to identify
domains given skill-tuples. We also compare against Cycle-GAN (Zhu et al., 2017), where we train
two translation models between skills from source and target domains to be cycle-consistent with
one another, while also optimizing a domain-adversarial style objective (Ganin et al., 2016). Finally,
we also compare against a State-based Imitation approach (Liu et al., 2020), where we transfer
trajectories across domains by copying end-effector states across robots, using inverse kinematics to
retrieve the closest feasible joint state.

Analysis of Qualitative Results of Skill-Tuple Distribution Matching: From table 1, we observe
that our approach is notable able to learn correspondences that achieves a much higher semantic label
transfer accuracy, consistent with our approach learning good coarse correspondences. The baseline
approaches in contrast, are only able to achieve random-level label transfer accuracy, indicating their
inability to learn correct correspondences. For example, the domain adversarial baseline ends up
mapping several different types of skills in the target domain to single modes of skills in the target
domain, across all 3 domain pairs. The Cycle-GAN baseline somewhat mitigates this approach,
but takes a shortcut in the learning and simply places a single source skill nearby every mode of
target skill. In contrast, our approach explicitly optimizes for distribution matching, and achieves
significantly better unsupervised distribution matching metrics than the implicit baseline approaches.
The state based imitation approach requires careful engineering to match end-effector states, and
even so often fails to find feasible joint configurations while imitating trajectories.

8
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Table 2: Evaluating Task-Strategy Transfer: Evaluating average rewards over 10 episodes obtained via our
approach with and without finetuning against a hierarchical RL baseline, adapted from Kulkarni et al. (2016),
across 3 tasks. Source domain results are shared across approaches, and are trained via Kulkarni et al. (2016).

Domain
Pair Approach: Downstream Task

Reach
(Source)

Reach
(Target)

Push
(Source)

Push
(Target)

Slide
(Source)

Slide
(Target)

Bax-R
to Bax-L

HRL [1]
16.4

12.2
30.1

12.6
21.3

10.7
Ours (Zero Shot) 19.2 17.2 13.4
Ours (Fine-tune) 20.1 19.1 18.9

Bax-L
to Saw

HRL [1]
14.6

13.2
33.4

11.3
20.4

17.2
Ours (Zero Shot) 18.6 34.5 24.6
Ours (Fine-tune) 19.1 37.1 38.1

Bax-R
to Saw

HRL [1]
16.4

15.2
30.1

12.6
21.3

10.7
Ours (Zero Shot) 20.8 28.5 29.1
Ours (Fine-tune) 29.7 32.5 30.5

4.2 TRANSFERRING TASK STRATEGIES ACROSS DOMAINS

If our learnt correspondences capture our first insight, i.e. that different robots use similar skill
sequences to address similar tasks, it follows that we can transfer task strategies across these robots
by translating the skill sequence that specifies the task strategy. We evaluate how well the learnt
correspondences help transfer task strategies across robots as follows.

Task Strategy Transfer Setup: We consider a set of tasks adapted from Mandlekar et al. (2018),
described in the appendix. We then train high-level policies (Kulkarni et al., 2016) in the source
domain to predict sequences of skills (i.e., the task strategy) to execute on each of these tasks. We then
evaluate how well the translation of this task strategy performs on the same tasks in the target domain,
both without fine-tuning (i.e., in a zero-shot manner), and after fine-tuning for 50 episodes. We evalu-
ate this transfer against a hierarchical RL baseline, i.e. a high-level policy trained in the target domain
over 500 episodes, and report our results in table 2. We also provide visualizations of the rollouts from
the original and translated strategies in https://sites.google.com/view/translatingrobotskills/home.

Analysing results on task strategy transfer: We observe that the task strategies translated by our
method are able to achieve appreciable task performance across all domain pairs and tasks, even
without fine-tuning these strategies. Without fine-tuning, we see that the translated task strategies
follow a semantically reasonable sequence of skills given the target task, achieving an appreciable task
reward, but often reach slightly differing goal states than desired. Given our translation model only
observes skill encodings, and no additional state information, this is expected. Upon fine-tuning these
translated task strategies in the target domain, we observe a consistent increase in task performance,
since fine-tuning allows for picking slightly different (but semantically similar) skills that reach
more appropriate goal locations, etc. In contrast, hierarchical RL on the target domain is often slow
to converge, and must randomly explore appropriate skill sequences. Even with fine-tuning, our
approach needs roughly 10 times less training episodes to superior performance than that of the
hierarchical baseline. These results suggest that our approach does indeed learn correspondences that
facilitate transferring task strategies across robots.

5 CONCLUSION

We introduce a purely unsupervised approach to learn skill correspondences across different morpho-
logical robots from different domains. Our approach learns semantically meaningful correspondences
across 3 robot domain pairs, and helps transfer task-strategies across domains, without the need
for any fine-tuning, despite being completely unsupervised. We believe our approach could enable
learning of correspondences across more general temporal abstractions, such as between skills and
language instructions, or between skills and human video demonstrations. We hope this work helps
enable robots learn from data from heterogenous robots in different domains, and helps further the
state of robot learning from demonstration.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 NETWORK ARCHITECTURES

We parameterize the various functions involved, namely the source and target domain encoders and
low-level policies q and π respectively, and the learnt translation model T

S→T
as neural networks,

with following specific architectures.

1. Variational encoders q: In each domain, the variational encoder q is parameterized as a 4 layer
LSTM network, with a hidden size of 48 and ReLu activation layers. We further use an input
layer from the appropriate input dimensions prior to the LSTM, and two output layers to predict
a Gaussian mean and variance of the skill encodings predicted by the variational encoders.

2. Low-level policies π: In each domain, the low level policies π are parameterized as 3 layer LSTM
networks, with hidden sizes of 48 and ReLu activation layers. As above, we use appropriately
sized input layers prior to the LSTM, and two output layers after the LSTM to predict a Gaussian
mean and variance of the low-level actions output by the policy.

3. Translation model T
S→T

: The translation model is parameterized as a simple 4 layer MLP, with
a hidden size of 48 units, and ReLu activation layers. We similarly use two output layers to
predict a Gaussian mean and variance of the translated skill encodings z

S→T
.

4. Latent Skill Encoding Dimension: We use a skill encoding dimension of 16 across all domains /
robots.

5. RL High-level policy: While training RL, we parameterize the high-level policy as a 4 layer
MLP, with a hidden size of 48 units, and ReLu activation layers. As above, we use two output
layers to predict a Gaussian mean and variance of the predicted skill encodings, in whichever
domain we train the policy in.

A.1.2 TRAINING DETAILS

While training the variational encoders and low-level policies, we follow the training procedure
specified by Shankar & Gupta (2020). We then freeze the variational encoders and low-level policies
obtained, before training our translation models. While training our translation models, we simply
optimize L = Lf + Lb using the Adam optimizer (Kingma & Ba, 2014), implemented in Pytorch.
We use the default parameters of Adam, i.e. a learning rate of 10−4.

A.1.3 RL TRAINING DETAILS

While training the downstream RL, we implement a hierarchical version of Proximal Policy Opti-
mization (Schulman et al., 2017), by adapting Achiam (2018). This mirrors the hierarchical RL setup
of Kulkarni et al. (2016). We fix the low-level policies provided to the algorithm, and only train the
high-level policies that predict the skill encodings fed into the low-level policies. The hierarchical RL
baseline Kulkarni et al. (2016) is trained for 500 episodes, which we found to be sufficient for the
algorithm’s performance to saturate. The fine-tuning approach was allowed a budget of 50 episodes
to adapt the translated task strategy. The results were evaluated against a fixed random seed of 0.

A.1.4 RL TASKS

We train on the following set of tasks adapted from Mandlekar et al. (2018). In particular, we
create instances of these tasks on each of the 3 different robots. The only differences between the
environments across different robots comes in the form of different initialization states for the objects
concerned,

1. Reach: The robot must execute a sequence of skills to reach a block placed on the table. The
robot gets a shaped reward based on the distance from the block, and a binary reward upon
reaching within a threshold distance of the block.

2. Push: The robot must execute a sequence of skills to push a red block and a green block together.
The reward received has a shaped component based on the distances of the end effector from the
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red block, as well as a binary reward based on whether the blocks are within a threshold distance
of one another.

3. Slide: The robot must execute a sequence of skills to push a red block within a threshold distance
of a green block placed farther away. The reward received is based on the distance of the end
effector from the red block, as well as a binary reward based on whether the blocks are within a
threshold distance of one another.

A.1.5 HYPERPARAMETERS

We provide a list of the various hyperparameters use during training of the translation model itself,
and the downstream RL training.

1. Number of GMM Kernels N
S

and N
T

: For each of the forward and backward GMMs, we use
500 kernels to parameterize the GMM.

2. GMM Kernel variance σ2: For both forward and backward GMMs, we use a Gaussian Kernel
variance of 0.5.

3. Relative weighting of forward and backward losses: We weight the forward and backward losses
equally during training.

4. Learning Rate: For training our translation model, we use the Adam optimizer with a learning
rate of 10−4.

5. Batch Size: For our training, we use a batch size of 32.
6. Number of iterations: We train our translation models over 8000 epochs for each domain pair.
7. Random Seed: We set the random seed for our training to 0 manually.
8. Epsilon Noise: We add in epsilon noise to our training during sampling from the learnt networks.

Here, we use an initial epsilon value of 0.3, and decay the epsilon value to 0.1 over 200 epochs.

While training downstream RL, we adopt the following hyperparameters:

1. Random Seed: When training downstream RL, we report results across 3 different seed values,
0, 1, 2.

2. Epsilon Noise: We follow an epsilon-greedy exploration process during RL training, and use an
initial epsilon value of 0.7, and decay the epsilon value to 0.3 over 200 epochs.

3. PPO Parameters: We follow the default PPO parameters used in Achiam (2018).

A.2 ASSUMPTIONS OF LEARNING

1. Assumptions of datasets: As stated in our main paper, our choice of robots is dictated by the
availability of demonstration datasets on a particular robot. Further, the demonstration datasets
ideally also exhibit the following traits. The demonstration datasets need to be directed., i.e.
they need to contain demonstrations of the robots solving a set of tasks, rather than containing
random play data in an environment. While it is possible to learn skills from such play data,
learning correspondences of skills from such play data is difficult. This is because our approach
relies on directed sequences of skills to learn correspondences. Random play data often contains
random sequences of skills, and so observe skills in contexts that they do not originally occur.
This misleads our approach, which seeks to exploit context to learn correspondences.

2. Assumptions about learnt skill spaces: As stated in the analysis of our methods translations of
skills, our model is able to learn good coarse correspondences, between clusters of skills in the
original skill spaces. One trait of the original skill spaces that allows for this is the disentangled
representation of the skills afforded by the skill-learning pipeline. Since similar semantic skills
that occur in similar contexts are placed in similar clusters in the original skill space, this allows
our approach to learn correct correpsondences between clusters of skills.

A.3 ABLATION STUDIES

To accurately assess our contribution, we would also like to quantify how much each of the following
components in our approach contribute to successfully learning correspondences:
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1. The forward objective, Lf .
2. The backward objective, Lb.
3. The use of sequential information, i.e. matching skill-tuple distributions as opposed to matching

skill distributions.
4. Learning a translation model across frozen skill spaces, as opposed to directly optimizing the

skill representation itself.

We do so by removing each of these components individually, while keeping the rest of the method
as is, and train our approach on all 3 domain pairs. We observe the following.

1. Without forward objective Lf , i.e., only optimizing the backward objective Lb, we observe the
translation model is able to cover each of the modes of the target skill-tuple by translated source
skills. However, since there is no objective that encourages how realistic the translated source
skills are, we observe that there are several modes of translated skills that are not observed in
the target skills space. This results in spurious correspondences. For example, this translation
model learns to map reaching skills to z’s that are decoded into random jerky motions on the
target robot, that are out of distribution for the target robot decoder.

2. Without backward objective Lb: While only optimizing the forward objective Lf , we observe
that each of the translated skills appear very realistic with respect to the target domain, i.e. each
of the translated skills look like a skill in the target domain. However, these models end up
suffering from the same issue as the GAN based approaches or the domain adversarial style
training, where several modes of the target skill space go unrepresented by target skills. This
limits the ability of the learnt correspondences to effectively transfer strategies or represent
source motions, since many of the target robot skills are never chosen by the translation model.
Together, these ablations indicate the importance of both directions of our approach in learning
successful correspondences.

3. Without sequential information: We can also optimize our objective defined in terms of skills
themselves, rather than skill-tuples. While matching skill distributions, as opposed to skill-tuple
distributions, we observe that the densities of skill distributions can be matched well by our
objective. However, without access to sequential information, the model learns correspondences
that are often wrong. For example, it learns to map reaching skills on the Baxter right hand to
returning skills on the Baxter left hand, and vice versa. Skills in different contexts are often
mapped to each other, since there is no contrary sequential information that the model has access
to to suggest otherwise. This suggests that as described in our main paper, learning with access
to sequential information and matching skill tuple distributions is also key to the success of our
approach.

4. By directly optimizing the skill-representations, rather than training a translation model with
fixed skill spaces: Instead of freezing the source and target skill spaces, we can also directly
optimize the skill representations based on our objective. One may also think of this as maintain-
ing a translation model that is simply an identity function. When allowing either or both of the
source or target skill spaces to be finetuned, we must also optimize the original reconstruction
style objective that is used in Shankar & Gupta (2020). Despite this, we observe a collapse of
the skill space into a unimodal distribution, that is both unable to reconstruct skills in either
domain, and be mapped across domains. This suggests freezing the representations and training
a separate translation model is key to our approach.
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