
Decompose, Analyze and Rethink:
Solving Intricate Problems with Human-like

Reasoning Cycle

Shangzi Xue1 Zhenya Huang1,2∗ Jiayu Liu1 Xin lin1 Yuting Ning1
Binbin Jin1 Xin Li1 Qi Liu1,2

1: State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China
2: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

{xueshangzi,jy251198,linx,ningyt,bb0725}@mail.ustc.edu.cn;
{huangzhy,leexin,qiliuql}@ustc.edu.cn

Abstract

In this paper, we introduce DeAR (Decompose-Analyze-Rethink), a framework that
iteratively builds a reasoning tree to tackle intricate problems within a single large
language model (LLM). Unlike approaches that extend or search for rationales,
DeAR is featured by 1) adopting a tree-based question decomposition manner to
plan the organization of rationales, which mimics the logical planning inherent
in human cognition; 2) globally updating the rationales at each reasoning step
through natural language feedback. Specifically, the Decompose stage decom-
poses the question into simpler sub-questions, storing them as new nodes; the
Analyze stage generates and self-checks rationales for sub-questions at each node
level; and the Rethink stage updates parent-node rationales based on feedback
from their child nodes. By generating and updating the reasoning process from
a more global perspective, DeAR constructs more adaptive and accurate logical
structures for complex problems, facilitating timely error correction compared to
rationale-extension and search-based approaches such as Tree-of-Thoughts (ToT)
and Graph-of-Thoughts (GoT). We conduct extensive experiments on three reason-
ing benchmarks, including ScienceQA, StrategyQA, and GSM8K, which cover a
variety of reasoning tasks, demonstrating that our approach significantly reduces
logical errors and enhances performance across various LLMs. Furthermore, we
validate that DeAR is an efficient method that achieves a superior trade-off between
accuracy and reasoning time compared to ToT and GoT.

1 Introduction

Learning to perform intricate reasoning, including commonsense reasoning [23], knowledge reason-
ing [28], and mathematical reasoning [8], is a crucial step towards achieving general artificial intelli-
gence [49, 20, 25, 26, 21, 24]. The tasks always present a significant challenge as they require many
human-like intricate problem-solving abilities, such as abstract thinking and logical inference, which
could consolidate many decision-making applications in real-world scenarios [38, 36, 15, 34, 53, 55].

Recent advances have witnessed remarkable performances of scaled-up large language models
(LLMs) in various reasoning tasks, including GPT [5], LLaMA [40], and ChatGLM [9]. They
could enable several state-of-the-art prompting approaches like Chain-of-Thought (CoT) [45], Tree-
of-Thoughts (ToT) [49], Graph-of-Thoughts (GoT) [3], etc., to enhancing reasoning capabilities.
They not only improve problem-solving performance but also reveal their intrinsic reasoning steps

∗Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every

day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make

every day at the farmers' market?
Answer: 18 (√)

She makes 9 * $2 = $18 per

day.

q1: What is the

selling price of one

egg?

q2: How many eggs

does Janet have per

day?

q3: How many eggs

does the ducks lay

daily?

q4: How many eggs

does Janet eat for

breakfast every day?

q5: How many eggs

does Janet use to bake

muffins every day?

Question

The money she earns

each day is equal to

the number of eggs

per day multiplied by

$2.

Janet's ducks lay 16 eggs

per day. After she eats

three for breakfast every

morning, she has 16 – 3 +

4 = 17 eggs. (×)

Janet's ducks lay

16 eggs per day.

She sells for $2

per fresh duck egg.

She sells for $2 per fresh

egg, so the total number

she earns every day is 17

* 2 = $34. (×)

She makes 17 *2 =

$34.

She makes 16

*2 = $32.

Answer: 34 (×)

(a) The simulation of ToT Reasoning (b) The simulation of DeAR Reasoning

Question

Each egg is sold

for $2.

She has 16-(3+4) =

9 eggs per day.

The ducks lay 16

eggs per day.

She eats 3 eggs for

breakfast.

She uses 4 eggs to

bake muffins.

Figure 1: Comparison between Tree-of-Thoughts (ToT) Reasoning and our DeAR (Decompose-
Analyze-Rethink) Reasoning on a reasoning-based problem. (a) The simulation of Tree-of-Thoughts
(ToT) (branch = 3). (b) The simulation of DeAR (Decompose-Analyze-Rethink) Reasoning.

(i.e., rationales) [47] through linear, tree-based, or graph-based structures. For example, in Figure 1
(a), given a math problem “Janet’s ducks . . . in dollars . . . market?”, ToT maintains a tree of
thoughts with intermediate nodes to generate the rationales step by step. Specifically, through several
operations including exploration, termination, and traceback on the nodes, ToT ultimately identifies
the complete reasoning path, highlighting two-step rationales (green nodes) leading to the answer.
However, although ToT and its variants [27, 35] perform the reasoning process explicitly, such a
rationale-extension and search-based reasoning paradigm is still far from human-like intelligence
and limits problem-solving abilities to some extent: On one hand, this tree-like structure is rigid and
sometimes illogical. The ToT approaches often require setting a fixed number of thought branches
(“3” branches in Figure 1 (a)) each time it expands, which can result in either missing information
or redundancy. Its reasoning process essentially extends previous rationales at each step, but falls
short of the logical planning inherent in human thinking [33, 42]. On the other hand, ToT generates
rationale paths sequentially, and errors along the path, such as incorrectly calculating “she has
16-3+4=17 eggs”, cannot be promptly corrected. This allows mistakes to propagate to subsequent
steps, ultimately leading to an incorrect final outcome (e.g., “34”).

To address these challenges, we propose a novel reasoning paradigm DeAR (Decompose-Analyze-
Rethink), which enhances LLMs’ capacity for complex problem-solving by emulating human
reasoning (Figure 1 (b)). This approach is inspired by several theories in cognitive science [43, 30].
Specifically, reasoning simplification theory [33] suggests that when confronted with an intricate
question, humans tend to break it down into simpler ones, which help in organizing thoughts and
solving problems more logically. Referring back to Figure 1 (b), we can break down the logic by
first solving two sub-questions (q1 and q2). Upon examining q2, we find it can be further divided into
three additional sub-questions (q3, q4, and q5). By sequentially resolving these sub-questions and
using their results as feedback to update answers for previously generated sub-questions (q1 and q2),
we ultimately arrive at the final answer (“18”).

To implement such a human-like problem-solving process, we introduce a Decompose-Analyze-
Rethink cycle. This involves gradually constructing a reasoning tree guided by sub-questions,
following a top-to-bottom reasoning process as illustrated in Figure 1 (b). The process begins with
the Decompose stage (black arrows in Figure 1 (b)), where a prompt-based method breaks down
the question into simpler sub-questions at subsequent nodes. Then, the Analyze stage (green box at
each node) takes charge of problem-solving at the node level. The stage also introduces a self-check
module to ensure the quality of the generated rationales, thus refines the reasoning process. Last, in
the Rethink stage (indicated by green arrows), the result at the current node is evaluated to determine if
the reasoning in parent nodes requires further updates, providing a global perspective. After multiple
cycles, the answer can be summarized from the root node.

Compared to ToTs [49, 27, 35] and GoT [3], our approach presents the following highlights. First,
unlike ToT/GoT methods which directly generate rationales as branches from the original question,

2

DeAR breaks it into sub-question tree nodes to guide the generation. Second, our tree structure
is more flexible and adaptable, as each node is generated and updated autonomously by the large
language model based on the problem’s logic, without relying on predefined settings. Third, DeAR
enables timely correction of rationales, ultimately ensuring the correctness of the root node’s answer.

We conduct extensive experiments on three complex reasoning benchmarks including ScienceQA [28],
StrategyQA [12], and GSM8K [8]. Experimental results show that our approach enhances the reason-
ing performance with different backbones such as GPT-3.5 [1], LLaMA2 [40], and ChatGLM3 [9].
Compared to state-of-the-art methods such as Tree-of-Thoughts (ToT) and Graph-of-Thoughts (GoT),
DeAR demonstrates a significant improvement in reasoning accuracy across all backbone LLMs,
validating its generalizability and scalability. Additionally, by measuring the relationship between
reasoning accuracy and reasoning time across different datasets, DeAR exhibits greater efficiency,
further underscoring its advantages in practical applications.

2 Related Work

2.1 Prompt-based Approaches in LLM Reasoning

There has been a growing interest in LLM reasoning research, with various prompting schemes
applied in areas such as commonsense [23], mathematical [8] and knowledge reasoning [29], etc.
Early methods appends examples on top of the input question (few-shot prompting [5] or performs
in-context learning (ICL) [37]), or includes no examples at all (zero-shot prompting) [44].

Recent research has sought to enhance the capabilities of large language models (LLMs) by intro-
ducing intermediate reasoning steps into the prompting process, epitomized by methods such as
the Chain-of-Thought (CoT) [45]. By prompting LLMs to solve problems step by step, the CoT
method demonstrates outstanding performance in multi-step reasoning tasks. Self-consistency [41] is
a significant improvement upon CoT, where multiple CoT paths are initially generated, and the best
one is selected as the final result, thereby improving the reliability of the outputs. In parallel, other
prompting methods design search-based schemes for LLMs, such as Tree-of-Thoughts (ToT) [49]
and Graph-of-Thoughts (GoT) [3] which innovate by structuring the reasoning process into tree or
graph structures. These structures are created to take advantage of the many reasoning paths that
LLMs can generate, greatly expanding the range and depth of exploration for any given question.
More recently, Reasoning via Planning (RAP) [16] repurposes the LLM as both a world model and a
reasoning agent to conduct reasoning. These methods expand the reasoning space of LLMs, which
can fully leverage the diverse thinking paths generated by LLMs.

2.2 Question Decomposition

Question decomposition, which decomposes complex questions into multiple sub-ones, has been
shown to largely improve models’ reasoning ability. Early works [4] decompose questions with
hand-crafted rules and lexicon-syntactic features. These works heavily rely on human efforts, which
are hard to extend to general domains and tasks. Recently, researchers utilize neural network models
to decompose questions [39, 18, 52]. For example, Min et al. [32] focused on directly training a
model to produce sub-questions using question spans; BREAK [46] followed an alternative paradigm
of collecting full question decomposition meaning representations (QDMR) annotations. However, a
primary challenge lies in the scarcity of annotations for training a decomposition model [32].

More recently, in the era of LLMs, there are a lot of work exploring LLMs for question decomposi-
tion [50, 19, 17, 10, 7, 22, 51]. For example, ToT [49] prompts the LLM to decompose the rationales
by searching intermediate steps. Least-to-most prompting [56] leverages a few examples to teach
LLMs to decompose each problem into a series of simpler sub-problems. These prompting-based
question decomposition methods serve as an important step in reasoning and planning with LLMs.

3 Problem Formulation and Preliminaries

3.1 Problem Definition

In this paper, we focus on the intricate reasoning task. The input of the task is the question Q (e.g.,
“Janet’s ducks ... market?” in Figure 1). The output is a rationale R = (r1, r2, ..., rk) with k word

3

Question: Janet's ducks lay

16 eggs per day. She eats

three for breakfast every

morning and bakes muffins

for her friends every day

with four. She sells the

remainder at the farmers'

market daily for $2 per fresh

duck egg. How much in

dollars does she make every

day at the farmers' market?

Decompose Rethink

Analyze

r1
1: Each egg is sold for $2. r1

2: She has 16-(3+4) = 9

eggs per day.

𝒒𝟏
𝟐 : How many eggs does

Janet have per day?

Q

𝑟0 : She makes 9*2=$18 per day.

𝒒𝟏
𝟏: What is the selling

price of one egg?

r2
1: The ducks

lay 16 eggs per

day.

r2
2:She eats 3

eggs for

breakfast.

r2
3:She uses 4

eggs to bake

muffins.

𝒒𝟐
𝟏 : How many

eggs does Janet

have per day?

𝒒𝟐
𝟐 : How

many eggs

does Janet

have per day?

𝒒𝟐
𝟑 : How many

eggs does Janet

have per day?

Reasoning

Tree 𝑇

Answer: 18

…

𝒒𝟏
𝟐 : How many

eggs does Janet

have per day?

Q

𝑟0: She makes

9*3=$27 per day.

𝒒𝟏
𝟏: What is the

selling price of

one egg?

r1
1: Each egg is sold

for $2 (√)
r1

2: She has 9 eggs

per day.

Self-check

r1
1: Each egg is sold

for $3 (×)

𝒒𝟏
𝟐 : How many

eggs does Janet

have per day?

Q

𝑟0: She makes

9*3=$27 per day.

𝒒𝟏
𝟏: What is the

selling price of

one egg?

r1
1: Each egg is

sold for $2

r1
2: She has 9 eggs

per day.

𝒒𝟏
𝟐 : How many

eggs does Janet

have per day?

Q

𝑟′0: She makes

9*2=$18 per day.

𝒒𝟏
𝟏: What is the

selling price of

one egg?

Decompose Analyze Rethink

Update

Figure 2: A demonstration of the DeAR (Decompose-Analyze-Rethink) cycle.

tokens (“She makes 9× $2 = $18 per day.”), and the answer A (“18”) derived from R. Given the
input question Q, we aim to design a reasoning framework with LLM backbone pθ to generate the
rationale R and answer A as outputs.

3.2 Reasoning Tree

Motivated by the reasoning simplification theory [33], we propose a novel reasoning structure for
LLMs, named Reasoning Tree T , as shown in Figure 1(b). Overall, this Reasoning Tree decomposes
and resolves sub-questions using a top-down approach, while concurrently updating existing solutions
through a bottom-up process. Formally, the Reasoning Tree T can be defined as T = (N,E) where
N is the set of tree nodes and E is the edge set. Each node n = (q, r, s) ∈ N contains a question q
as a sub-question of the target Q (e.g., q2 “How many eggs does Janet have per day?”), a rationale r
to q (“She has 16-(3+4) = 9 eggs per day.”), and a score s evaluating the logical coherence of r. Each
directed edge e = (np, nc) ∈ E means that the upper-level sub-question qp in the parent node np is
decomposed into a lower-level one qc in the child node nc (e.g., the parent q2 “How many eggs ...
have per day” is decomposed into three children q3 “How many eggs ... lay”, q4 “How many eggs ...
breakfast”, and q5 “How many eggs ... muffins”).

Our Reasoning Tree is progressively constructed and updated. The target question Q in the root node
is decomposed into sub-questions step by step, from sub-questions in the higher levels to the ones in
the lower levels (i.e., the black directed edges in Figure 1). For example, Q is first decomposed into
q1 and q2, then q2 is further decomposed into q3, q4 and q5. Furthermore, humans could also rethink
the rationales generated earlier (in the higher nodes) based on the ones generated later (in the lower
nodes). For example, the rationales for q4 (“She eats 3 eggs for breakfast”) could be used to update
rationales for q2 (“She has 16-(3+4) = 9 eggs per day”) through the dashed lines in green.

3.3 Framework Overview

To construct the aforementioned Reasoning Tree T , which imitates human-like reasoning, we propose
a novel DeAR (Decompose-Analyze-Rethink) cycle as the core of our framework, as illustrated in
Figure 2. The cycle is composed of three stages: Decompose, Analyze and Rethink. Specifically,
in the Decompose stage, one upper-level question is decomposed into several lower-level ones. In
the Analyze stage, the framework solves the newly generated sub-questions by generating and self-
checking rationales. In the Rethink stage, the newly generated rationales are used to update existing
ones in the parent nodes. The three stages work in a cycle to build the reasoning tree T .

4

4 DeAR (Decompose-Analyze-Rethink) Cycle

In this section, we will demonstrate how the reasoning tree T is constructed with the Decompose-
Analyze-Rethink cycle, as demonstrated in Figure 2.

Initially, the target question Q is set as the question q0 in the root node n0. The framework selects
an existing edge node nt = (qt, rt, st) (t is the level of the node) from T (e.g., n0 with Q “Janet’s
ducks ... market?”) to start the cycle. First, in the Decompose stage (4.1), we prompt LLMs to
decompose the question qt in the node into sub-questions qt+1 if possible, and store them in nodes
nt+1 at level t + 1 (e.g., q11 “What is ... one egg?”, and q21 “How many ... per day?”). Then, in
the Analyze stage (4.2), we conduct reasoning and answers the newly generated questions qt+1 by
generating rationales rt+1 for them (r11 “Each egg is sold for $2” for q11 , and r21 “She has 16 eggs per
day” for q21), checking their correctness and evaluating the coherence scores st+1 (Eq. (5)). Next, in
the Rethink stage (4.3), we use the newly generated rt+1 to update rationales in existing upper-level
nodes ri(i ≤ t) (e.g., use r11 and r21 to update r0 into r′0). After that, the framework selects another
edge node and returns to the Decompose stage (e.g., decompose q21 into q12 , q22 and q32). The cycle
continues until the LLMs determine that no further decomposition is possible, thereby forming the
reasoning tree T for Q.

As Q is the question q0 for the root node n0, after the tree-construction process, we consider the
rationale r0 in the root node as the overall solution for Q and extract the answer A from r0. The
whole procedure is described in Algorithm 1. In the following sections, we will technically describe
the three stages in the cycle and make detailed analyses.

4.1 Decompose Stage Algorithm 1 Decompose-Analyze-Rethink
Input: Question Q
Parameters: LLM pθ , natural language prompts
(c1 ∼ c6), threshold ϵ1 for Decompose, threshold
ϵ2 for Rethink
Output: Rationale R, Answer A
Create an empty node queue N
Enqueue n0(q0 = Q, r0 = None, s0 = 1) into N
while N is not empty and current level < max deptha

do
Dequeue current node nt(qt, rt, st) from N
if nt is an end node nend then

continue
else if st > ϵ1 then

// Stage 1: Decompose
{qjt+1} ← Decompose(pθ, h1, lhQ, qt) (2)
// Stage 2: Analyze
rjt+1 ← Solve(pθ, h2, q

j
t+1) (3)

r̂jt+1 ← Self_Check(pθ, h3, q
j
t+1, r

j
t+1) (4)

sjt+1 ← Score(pθ, h4, q
j
t+1, r̂

j
t+1) (5)

Set nj
t+1 ← (qjt+1, r̂

j
t+1, s

j
t+1) (6)

Enqueue nj
t+1 into N

// Stage 3: Rethink
if sjt+1 > ϵ2 then

Lk ← Extract(pθ, h5, L, q
j
t+1) (7)

r′ ← Update(pθ, h6, ne(q, r, s), r̂
j
t+1) (8)

ne(q, r
′, s)← ne(q, r, s) (6)

else
Enqueue nend into N

end if
end while
R← r0
Extract answer A from R
return R, A

aSee 5.1.2 for max depth and branch settings.

According to the Analogical Reasoning the-
ory [2], when humans conduct reasoning, they
often analogize the logical processes of new
questions to those of similar questions. There-
fore, to make the decomposition logic of sub-
questions qt at each level t more closely re-
semble that of humans, we first use human-
annotated question decomposition examples
(Appendix A.1) as a demonstration pool P . Then
we calculate the cosine similarity of the repre-
sentations between Q and each Qd

i in P and
select top-K nearest neighbors in the vector
space. After that, we concatenate each Qd

i with
its human-annotated sub-questions subqsi =
(subqi1, subq

i
2, ..., subq

i
n) to form K question-

decomposition examples (Appendix A.1)

lhQ = (Qd
i , subqs

i)(i = 1, 2, ...,K). (1)

These examples are regarded as “logic heuristics”
that inspire the model to decompose questions in
a manner closely aligned with human reasoning.

After obtaining lhQ, we utilize them to decom-
pose the sub-question qt at level t into multi-
ple sub-questions at level t + 1. Specifically,
given question qt, if its coherence score st
(Eq. (5)) is higher than a threshold ϵ1, We ask
the LLM whether it needs to be further decom-
posed. If qt requires decomposition, we then
prompt the LLM to autonomously break it down
into several sub-questions {qjt+1, j = 1, ..., J}.
It is worth noting that in our decomposition ap-
proach, we do not pre-specify the number J of
sub-questions; instead, we allow LLMs to adap-

5

tively determine it based on the logic of each question. However, the number of sub-questions is
capped at a predefined maximum branch limit to ensure computational efficiency and manageabil-
ity 5.1.2. This enhances adaptability and more closely aligns with human logical characteristics when
compared to existing methods like ToT [49] and GoT [3], etc. To facilitate this process, we design a
heuristic-enhanced prompt that consists of a prompt head h1 and “logic heuristics” lhQ. The prompt
head describes the question decomposition task in natural language. This process is formulated in
Eq. (2). Additionally, we validate the effectiveness of using logic heuristics, and provide detailed
explanations and templates in Appendix A.1.

{qjt+1, j = 1, ..., J} ← Decompose(pθ, h1, lhQ, qt). (2)

After decomposition, each qjt+1 is added as a new node nj
t+1 at level t + 1, with a directed edge

from nt to nj
t+1 (denoted as ej = (nt, n

j
t+1)). If the LLM determines that qt does not require further

decomposition, we create a leaf node nend as a child of nt.

4.2 Analyze Stage

In Analyze stage, we reason the answers for all the sub-questions {qjt+1} at level t+1. To be specific,
we first prompt the LLM to generate the essential rationale rjt+1 for each sub-question qjt+1:

rjt+1 ← Solve(pθ, h2, q
j
t+1). (3)

Here, h2 denotes the prompt head, which is a natural language sentence that asks the model to
generate detailed solutions (see Appendix A.2).

After obtaining the rationales for the sub-questions, we evaluate and correct them, as large language
models (LLMs) often tend to hallucinate during problem-solving [54]. Using generated rationales
without verification can propagate errors, leading to incorrect outcomes. To address this issue, we
develop a self-check method that promptly identifies and corrects these errors while providing a
coherence score (Eq. (5)) for each node.

Specifically, we first instruct the LLM to perform a self-check on the rationale rjt+1 generated for
the sub-question qjt+1 (see Appendix A.2 for the prompt head h3) to identify any potential errors. If
the LLM detects errors in the original rationale rjt+1, it modifies the rationale to r̂jt+1; otherwise,
the rationale is output unchanged. Take the case in Figure 2 as an example, we expect the LLM to
identify the error “Each egg is sold for $3” in r11 , and correct it to “Each egg is sold for $2”. This
process is denoted as:

r̂jt+1 ← Self_Check(pθ, h3, q
j
t+1, r

j
t+1). (4)

Then, we prompt the LLM to evaluate the logical coherence between the refined rationale r̂jt+1 and
the question qjt+1, by generating a coherence score sjt+1 (see Appendix A.2 for prompt head h4):

sjt+1 ← Score(pθ, h4, q
j
t+1, r̂

j
t+1). (5)

The score sjt+1 can also be obtained through voting or classification methods. Here, we specifically
investigate the effectiveness of directly prompting LLMs to generate numerical values as scores.

At the end of the Analyze stage, we fill the obtained rationales and scores into nodes nj
t+1(j ≥ 1):

nj
t+1 = (qjt+1, r̂

j
t+1, s

j
t+1). (6)

where sjt+1 can support the current or subsequent cycles in Rethink (4.3) and Decompose (4.1).

4.3 Rethink Stage

According to self-reflection theories [11, 13, 6] in cognitive science, humans constantly update and
reflect on their previous reasoning results based on the current information. This allows us to correct
past mistakes and ultimately achieve a consistent and stable answer. For example in Figure 2, a person
might initially answer question Q (“Janet’s ducks ... How much ... market?”) with the rationale r0
“She makes 9× 3 = $27 per day”. However,after considering responses to sub-questions q11 (“What

6

is the selling price of one egg?”) and q21 (“How many eggs does Janet have per day?”), he/she realizes
an error in r0. The correct calculation, using the values “2” for the price per egg and “9” for the daily
number of eggs, should be “2× 9 = $18”.

Nevertheless, existing methods like ToT [48] search reasoning paths based solely on preceding steps,
lacking the ability to retrospectively update earlier content based on the influence of later steps. To
address this, we introduce a Rethink stage that mirrors the human reflective process.

Specifically, during the rethinking process, humans first identify which existing reasoning steps may
require revision. We aim to automate this by using LLMs to detect logical connections between
ancestral and newly generated nodes, updating ancestral nodes based on insights from the rationales
of new nodes. In our proposed “Reasoning Tree”, we essentially use information from lower-level
nodes to “rethink” higher-level nodes, closely mirroring the human cognitive simplification process
in problem-solving [33].

To achieve this, after obtaining node nj
t+1 in Analyze Stage, we first check its coherence score sjt+1

(Eq. (5)). If sjt+1 exceeds the threshold ϵ2, we then examine the correlation between qjt+1 and all
sub-questions above level t, specifically, {ql, l ≤ t}. Next, we extract a subset of k most related
nodes Lk from L ≜ {nl, l ≤ t} (the specific nodes to be extracted are determined by the LLM):

Lk ← Extract(pθ, h5, L, q
j
t+1), Lk ⊆ L. (7)

where h5 is a prompt head (Appendix A.3). Next, we use the rationale r̂jt+1 of sub-question qjt+1 to
update the rationale r of each extracted node ne in Lk:

r′ ← Update(pθ, h6, ne(q, r, s), r̂
j
t+1). (8)

Finally, we replace r with the updated rationale r′:

ne(q, r
′, s)← ne(q, r, s). (9)

5 Experiments

In this section, we demonstrate the generality and effectiveness of DeAR by applying it to a wide
range of tasks, including knowledge reasoning, logical reasoning and mathematical reasoning. The
results across these tasks validate DeAR’s adaptability and highlight its capability to effectively tackle
a diverse range of challenging reasoning tasks.

5.1 Experimental Setup

5.1.1 Datasets and Baselines

We employ the ScienceQA [28] dataset for the knowledge reasoning task. And we use Strate-
gyQA [12] for logical reasoning that requires multiple reasoning steps. We also verify the mathemati-
cal reasoning ability of our framework by applying it to GSM8K dataset [8]. The details of these
datasets are available in Appendix B.1.1.

In our main results, we compare DeAR with multiple prompt-based methods including Few-shot
prompting [5], Chain-of-Thoughts (CoT) prompting [45], and state-of-the-art Tree-of-Thoughts
(ToT) [49] and Graph-of-Thoughts (GoT) [3] prompting. Besides, we also list extra comparison
results with another two state-of-the-art prompt-based methods Least-to-most Prompting [56] and
SelfCheck [31] (see Appendix B.1.2 for all baseline details).

5.1.2 Implementation Details

We conduct experiments with three LLM backbones GPT-3.5 [1], LLaMA2-7B [40] and ChatGLM3-
6B [9]. For GPT-3.5, we use the OpenAI API to invoke the “gpt-3.5-turbo-1106” model. For LLaMA2-
7B and ChatGLM3-6B, we load the checkpoints from huggingface23 and use the models directly

2https://huggingface.co/THUDM/chatglm3-6b
3https://huggingface.co/meta-llama/Llama-2-7b

7

Table 1: Overall results of our DeAR Framework on three intricate reasoning datasets. (∗ : p < 0.05).
ScienceQA StrategyQA GSM8K

GPT-3.5 LLaMA2 ChatGLM3 GPT-3.5 LLaMA2 ChatGLM3 GPT-3.5 LLaMA2 ChatGLM3

Few-shot 73.97 66.35 42.46 67.71 61.21 54.41 74.26 72.25 51.02
CoT 75.17 67.58 46.35 69.26 63.86 57.18 79.55 74.04 53.85
ToT 82.52 69.01 49.58 71.89 66.52 59.21 83.42 75.22 55.88
GoT 82.34 68.86 49.26 72.02 66.61 59.88 84.77 75.95 56.01

DeAR 83.68* 70.57* 51.08* 73.36* 68.33* 61.02* 86.82* 78.01* 58.54*

Least-to-most 76.61 68.02 47.45 70.55 64.43 58.36 81.25 74.67 54.21
SelfCheck 75.81 69.33 49.23 68.87 66.35 61.22 79.88 75.28 56.72

without fine-tuning as the backbone.4. For each dataset, we randomly sample 10% of its training
set as a validation set to select different combinations of thresholds ϵ1 and ϵ2. The combination that
achieves the best performance on the validation set is then used for inference on the test set. We
observe that the threshold combinations obtained through this method also yield optimal inference
results on the test set. In Section 5.6, we visualize the inference accuracy on the test sets across
different datasets based on GPT-3.5, using diffenrent threshold combinations. The implementation
and prompting templates (i.e., natural language prompts h1 ∼ h6 for Decompose, Analyze and
Rethink) are shown in Appendix A. To ensure computational efficiency, we set the maximum depth to
4 and the maximum number of branches to 3 during the construction of the reasoning tree in DeAR.
This prevents the tree from becoming excessively deep and avoids redundancy in sub-questions. For
baselines, the settings used in the experiments are consistent with those described in the original
papers. For a concise description of baselines, please refer to Appendix B.1.2.

5.2 Experimental Results

We conduct experiments to verify the effectiveness of our framework DeAR, and report the results
in Table 1. We use the accuracy (ACC) as metric for all three datasets. We statistically test the
improvement over baselines with paired t-test, and find the improvement to be significant with
p < 0.05 (marked with “∗”). We get the following observations. First, DeAR performs better than all
baselines, which indicates it is more effective in enhancing LLMs’ reasoning ability. Second, the
improvements over ToT highlight the advantage of Decompose stage which adaptively decomposes
questions based on their characteristics rather than extending a fixed number of thought branches.
Third, DeAR performs better than GoT which lacks rationale updating. This reflects the superiority
of the Rethink stage to identify correlations between reasoning steps and update previous rationales.
Besides, the accuracy increase on GSM8K is greater than ScienceQA and StrategyQA. That is
probably because problems in GSM8K require longer rationales to be solved (Table 2). Furthermore,
DeAR outperforms the Least-to-most [56] and SelfCheck [31] methods across all datasets. The Least-
to-most method sequentially solves sub-problems derived from the decomposition without updating
content that has already been generated; SelfCheck updates rationales but it does not decompose
the original question. In contrast, DeAR not only generates rationales based on decomposed sub-
questions but also updates existing rationales in each cycle. This further underscores the necessity of
the Decompose and Rethink phase in DeAR for enhancing the reasoning capabilities of LLMs.

We have also validated that DeAR enhances stronger LLMs (e.g., GPT-4) on complex reasoning tasks
(e.g., MATH), as shown in Appendix. Appendix B.3 includes an ablation study on the self-check
method in the Analyze stage, as its removal does not structurally impact the other stages.

5.3 Analyses of the Reasoning Tree Table 2: Characteristics of T in different datasets.

ScienceQA StrategyQA GSM8K

Avg Branch 1.58 2.43 2.06
Avg Depth 3.62 1.96 2.55

Avg Length of R 66.34 61.55 85.27

For each question Q, DeAR constructs a reason-
ing tree T to represent the reasoning process,
as shown in Figure 1 (b). The structure of T
provides insights into the complexity of Q. To
analyze the nature of questions across datasets,
we examine reasoning trees from three datasets
using three metrics: “Avg Branch,” “Avg Depth,” and “Avg Length of R.” “Avg Branch” indicates
the average branching factor of T , “Avg Depth” reflects the average depth of T , and “Avg Length

4Our code is available at: https://github.com/ShangziXue/DeAR

8

https://github.com/ShangziXue/DeAR

Table 3: ROSCOE evaluation results of ratio-
nales generated by Tree-of-Thoughts (ToT),
Graph-of-Thoughts (GoT) and DeAR on dif-
ferent datasets. SC = Source-Consistency; RA
= Reasoning Alignment.

ScienceQA StrategyQA GSM8K

SC RA SC RA SC RA

ToT 0.44 0.31 0.47 0.33 0.56 0.41
GoT 0.42 0.35 0.44 0.38 0.53 0.45

DeAR 0.48 0.42 0.52 0.43 0.58 0.50

ScienceQA StrategyQA GSM8K

46
51

66

30
25 2324 24

11

DeAR
GoT
ToT

Figure 3: The distributions of annotators’ se-
lections. More annotators considered DeAR’s
rationales to be more logical.

of R” represents the length of rationale R derived from the root node n0 upon tree completion, e.g.,
R = r0:“She makes 9*2=$18 per day” in Figure 2.

Using GPT-3.5 as the backbone, results in Table 2 reveal the following: ScienceQA questions have
the highest “Avg Depth” and lowest “Avg Branch,” indicating fewer sub-questions per Decompose
stage but more rounds required. StrategyQA questions have the lowest “Avg Branch” but the highest
“Avg Depth,” suggesting fewer Decompose rounds but more sub-questions per round. For GSM8K,
the root node n0 has longer rationales R, suggesting that these questions require more extensive
explanations than those in the other datasets.

5.4 Logical Coherence of the Generated Rationales

We assess the logical coherence of rationales generated by DeAR using both automatic and human
evaluation methods. For automatic metrics, we apply the Source-Consistency” (SC) and Reasoning
Alignment” (RA) from the ROSCOE evaluation suite [14]. SC measures logical entailment between
question and rationale, while RA evaluates alignment with ground truth. As shown in Table 3, DeAR
outperforms ToT and GoT on all datasets. For human evaluation, 100 questions were sampled from
each dataset, with annotators selecting the most logical rationale among those generated by ToT, GoT,
and our method (details in Appendix B.4). Results in Figure 3 confirm that DeAR (using GPT-3.5)
produces rationales with superior logical coherence compared to ToT and GoT.

5.5 Effectiveness of Rethink
Table 4: Comparisons between different portions
of “Random Update” and DeAR.

Random Update ScienceQA StrategyQA GSM8K

0% 82.77 72.84 85.09
20% 81.77 72.21 83.96
40% 82.59 73.03 84.35
60% 82.06 72.29 85.07
80% 81.49 72.04 86.01

100% 81.16 71.79 85.32

DeAR 83.68 73.36 86.82

In Rethink stage, our DeAR employs the same
backbone LLMs to determine which nodes’ ra-
tionales need to be updated. To validate its ef-
fectiveness, based on GPT-3.5, we compare our
method with “Random Update” method which
randomly selects nodes to update at different
proportions. The results in Table 3 demonstrate
that, compared to “Random Update”, our method performs better in terms of accuracy. Additionally,
unlike approaches that require a 100% update of all generated rationales, DeAR’s targeted updates
allow the model to autonomously select nodes that need refinement, thus minimizing unnecessary
inference.

5.6 Combinations of Thresholds

0.2
0.4

0.6
0.8

0.6

0.4

0.2

81

0.8

83
ACC

82

ScienceQA

0.2
0.4

0.6
0.8

0.6

0.4

0.2

0.8

72ACC

70

StrategyQA

0.2
0.4

0.6
0.8

0.6

0.4

0.2

0.8

86

ACC

84

GSM8KVal:

ε1 = 0.4

ε2 = 0.6

Val:

ε1 = 0.4

ε2 = 0.6

Val:

ε1 = 0.4

ε2 = 0.4

Figure 4: Combinations of threshold values (ϵ1, ϵ2) and
corresponding ACCs on test sets (GPT-3.5 backbone).

In this subsection, we visualize the
impact of different combinations of
threshold values ϵ1 and ϵ2 on the in-
ference accuracy of DeAR (with GPT-
3.5 backbone) across the test sets of
all three datasets. ϵ1 and ϵ2 are set for
the Decompose stage (Section 4.1)
and Rethink stage (Section 4.3), respectively, with their value combinations selected based on

9

b=2,d=3

b=2,d=4

b=2,d=3

b=1.58,d=3.62

b=3,d=4

b=2,d=4

b=2,d=2
b=2,d=3

b=2,d=2

b=2.43,d=1.96

b=3,d=3

b=2,d=3

b=2,d=2

b=2,d=3

b=2,d=2

b=2.06,d=2.55

b=2,d=3

b=3,d=3

Figure 5: Efficiency comparison between DeAR and variants of ToT/GoT.

performance on the validation set (Section 5.1.2). We observe from Figure 4 that, DeAR achieves the
highest accuracy when setting ϵ1 = 0.4 and ϵ2 = 0.6 for ScienceQA and StrategyQA. For GSM8K,
the highest accuracy is obtained with ϵ1 = 0.4 and ϵ2 = 0.4. The threshold combinations that
optimize DeAR’s performance on the test set are consistent with those obtained from the validation
set (e.g., Val: ϵ1 = 0.4; ϵ2 = 0.6 for ScienceQA), demonstrating the validity of the value selection
method. Additionally, the smaller optimal ϵ2 value for GSM8K suggests that tackling GSM8K prob-
lems requires a more frequent or active rethinking process compared to ScienceQA and StrategyQA.
This difference highlights the varying nature of reasoning demands across different tasks, where the
threshold tuning helps adapt DeAR’s reasoning process accordingly.

5.7 Efficiency

Compared to the rationale extension in ToT and GoT, DeAR incorporates question decomposition
and rationale updating. Thus, will the efficiency of reasoning be affected? To investigate this, we
use ChatGLM3-6B as the backbone model and measure the average inference time per question
(seconds/question) and accuracy (ACC) for each method. The results are in the form of scattered
points as shown in Figure 5. We set the fixed branch numbers and depths for these variants of
ToT and GoT (e.g., b=3, d=4), and compare them with DeAR. In ToT/GoT, we set “b” and “d”
(integers) as close to DeAR’s average values as possible to ensure fairness. We can observe that points
closer to the upper-left corner, and farther away vertically from the diagonal, represent methods that
achieve a better trade-off between reasoning accuracy and time. The points corresponding to DeAR
clearly exhibit this characteristic, hence we can conclude that it has higher efficiency. Moreover, in
Appendix B.5, to further validate this conclusion, we measured the average number of API calls
made by DeAR, ToT, and GoT per question in the ScienceQA dataset using GPT-3.5, as well as their
reasoning accuracy. DeAR consistently requires fewer API calls on average to solve a question, while
simultaneously achieving higher accuracy.

6 Conclusion

In this paper, we introduced DeAR (Decompose-Analyze-Rethink), a framework designed to mimic
human reasoning patterns in tackling intricate problems by constructing a reasoning tree in a top-
down, iterative manner.This approach is coupled with a Decompose-Analyze-Rethink cycle, in which
the rationale at each node is generated, evaluated, and refined through feedback loops. Specifically,
the Decompose stage applies logic heuristics to decompose the original question, the Analyze stage
produces and self-checks rationales, and the Rethink stage integrates these insights by updating
parent nodes based on child-node feedback. Extensive experiments demonstrate that DeAR not only
improves reasoning performance across different large language models (LLMs) but also surpasses
current state-of-the-art methods like Tree-of-Thoughts (ToT) and Graph-of-Thoughts (GoT) in logical
coherence and accuracy. DeAR’s rationale update mechanism enhances logical consistency by
iteratively refining previously generated rationales, achieving more accurate and interpretable results.
Additionally, compared to ToT and GoT, DeAR strikes a better balance between reasoning accuracy
and inference time, further improving efficiency. Case studies also demonstrate that DeAR produces
more interpretable reasoning process (Appendix B.6).

10

Acknowledgments and Disclosure of Funding

This research was partially supported by grants from the National Natural Science Foundation of
China (No.62106244, 62337001), and the Key Technologies R&D Program of Anhui Province
(No.202423k09020039).

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Paul Bartha. Analogy and analogical reasoning. 2013.

[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al.
Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687, 2023.

[4] BK Boguraev. Fact-based question decomposition in deepqa. IBM Journal of Research and
Development, 56(3.4):13–1, 2012.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Tyler Burge. Cognition Through Understanding: Self-Knowledge, Interlocution, Reasoning,
Reflection: Philosophical Essays, Volume 3, volume 3. Oxford University Press, USA, 2013.

[7] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks. arXiv
preprint arXiv:2211.12588, 2022.

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[9] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang.
Glm: General language model pretraining with autoregressive blank infilling. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 320–335, 2022.

[10] Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt Gardner. Successive prompting for
decomposing complex questions. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 1251–1265, 2022.

[11] Shane Frederick. Cognitive reflection and decision making. Journal of Economic perspectives,
19(4):25–42, 2005.

[12] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies.
Transactions of the Association for Computational Linguistics (TACL), 2021.

[13] Alex Gillespie. Becoming other: From social interaction to self-reflection. IAP, 2006.

[14] Olga Golovneva, Moya Peng Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam
Fazel-Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step
reasoning. In The Eleventh International Conference on Learning Representations, 2022.

[15] Zheng Gong and Ying Sun. Graph reasoning enhanced language models for text-to-sql. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 2447–2451, 2024.

11

[16] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhit-
ing Hu. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023.

[17] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In International
Conference on Machine Learning, pages 9118–9147. PMLR, 2022.

[18] Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. Answering complicated question intents
expressed in decomposed question sequences. arXiv preprint arXiv:1611.01242, 2016.

[19] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In
The Eleventh International Conference on Learning Representations, 2023.

[20] Xin Lin, Zhenya Huang, Hongke Zhao, Enhong Chen, Qi Liu, Defu Lian, Xin Li, and Hao Wang.
Learning relation-enhanced hierarchical solver for math word problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

[21] Xin Lin, Zhenya Huang, Hongke Zhao, Enhong Chen, Qi Liu, Hao Wang, and Shijin Wang.
Hms: A hierarchical solver with dependency-enhanced understanding for math word problem.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 4232–4240,
2021.

[22] Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao
Su. Deductive verification of chain-of-thought reasoning. Advances in Neural Information
Processing Systems, 36, 2024.

[23] Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi,
and Hannaneh Hajishirzi. Generated knowledge prompting for commonsense reasoning. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3154–3169, 2022.

[24] Jiayu Liu, Zhenya Huang, Xin Lin, Qi Liu, Jianhui Ma, and Enhong Chen. A cognitive solver
with autonomously knowledge learning for reasoning mathematical answers. In 2022 IEEE
International Conference on Data Mining (ICDM), pages 269–278. IEEE, 2022.

[25] Jiayu Liu, Zhenya Huang, Zhiyuan Ma, Qi Liu, Enhong Chen, Tianhuang Su, and Haifeng
Liu. Guiding mathematical reasoning via mastering commonsense formula knowledge. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 1477–1488, 2023.

[26] Jiayu Liu, Zhenya Huang, Chengxiang Zhai, and Qi Liu. Learning by applying: A general frame-
work for mathematical reasoning via enhancing explicit knowledge learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pages 4497–4506, 2023.

[27] Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291,
2023.

[28] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. Advances in Neural Information Processing Systems,
35:2507–2521, 2022.

[29] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models
of code are few-shot commonsense learners. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pages 1384–1403, 2022.

[30] Kenneth Ian Manktelow. Reasoning and thinking. Psychology press, 1999.

[31] Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their
own step-by-step reasoning. In The Twelfth International Conference on Learning Representa-
tions, 2023.

12

[32] Sewon Min, Victor Zhong, Luke Zettlemoyer, and Hannaneh Hajishirzi. Multi-hop reading
comprehension through question decomposition and rescoring. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 6097–6109, 2019.

[33] Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume 104. Prentice-
hall Englewood Cliffs, NJ, 1972.

[34] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020.

[35] Leonardo Ranaldi and Fabio Massimo Zanzotto. Empowering multi-step reasoning across
languages via tree-of-thoughts. arXiv preprint arXiv:2311.08097, 2023.

[36] Revant Gangi Reddy, Xilin Rui, Manling Li, Xudong Lin, Haoyang Wen, Jaemin Cho, Lifu
Huang, Mohit Bansal, Avirup Sil, Shih-Fu Chang, et al. Mumuqa: Multimedia multi-hop news
question answering via cross-media knowledge extraction and grounding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 11200–11208, 2022.

[37] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633, 2021.

[38] Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. Stepgame: A new benchmark for robust multi-
hop spatial reasoning in texts. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pages 11321–11329, 2022.

[39] Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex
questions. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 641–651, 2018.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[41] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[42] Yingxu Wang and Vincent Chiew. On the cognitive process of human problem solving. Cognitive
systems research, 11(1):81–92, 2010.

[43] Peter Cathcart Wason and Philip Nicholas Johnson-Laird. Psychology of reasoning: Structure
and content, volume 86. Harvard University Press, 1972.

[44] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

[45] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[46] Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and
Jonathan Berant. Break it down: A question understanding benchmark. Transactions of the
Association for Computational Linguistics, 8:183–198, 2020.

[47] Shangzi Xue, Zhenya Huang, Xin Lin, Jiayu Liu, Longhu Qin, Tianhuang Su, Haifeng Liu,
and Qi Liu. Enhancing the completeness of rationales for multi-step question answering.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, pages 2753–2763, 2024.

[48] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

13

[49] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

[50] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language
models are versatile decomposers: Decomposing evidence and questions for table-based rea-
soning. In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’23, page 174–184, New York, NY, USA, 2023.
Association for Computing Machinery.

[51] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algo-
rithmic reasoning with language models by composing decompositions. Advances in Neural
Information Processing Systems, 36:31466–31523, 2023.

[52] Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang. Complex question decomposition
for semantic parsing. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4477–4486, 2019.

[53] Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. Ratt:
Athought structure for coherent and correct llmreasoning. arXiv preprint arXiv:2406.02746,
2024.

[54] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo
Zhao, Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on hallucination in
large language models. arXiv preprint arXiv:2309.01219, 2023.

[55] Hongke Zhao, Songming Zheng, Likang Wu, Bowen Yu, and Jing Wang. Lane: Logic alignment
of non-tuning large language models and online recommendation systems for explainable reason
generation. arXiv preprint arXiv:2407.02833, 2024.

[56] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, 2022.

14

A More Details and Prompt Templates of DeAR

A.1 Prompts for Decompose Stage

Table 5: An example of Heuristic-enhanced Prompt c1 in the Decomposition Stage.
Example A.1: Prompts for Decompose Stage
Prompt Head h1: Your task is to decompose the given question Q into sub-questions. You
should based on the specific logic of the question to determine the number of sub-questions
and output them sequentially. If you consider the question Q to be sufficiently simple and no
further decomposition is needed, then output “End.” I will provide you with three questions
similar to q, along with their decomposed sub-questions as examples. You can learn from these
examples on how to decompose such questions, and then apply what you’ve learned to
decompose Q.
Logic Heuristics lhQ:

Example question 1: Will Queen Elizabeth be buried in the Pantheon?
Decomposition: (1): The Panthéon is reserved as a mausoleum for citizens of which country?
(2): Is Queen Elizabeth from (1)?

Example question 2: Was Elizabeth II the Queen during the Persian Gulf War?
Decomposition: (1): When did Elizabeth II become the Queen? (2): When was the Persian
Gulf War? (3): Was Elizabeth II alive in (2)? (4): Is (2) after (1)?
(5): Are the answers to (3) and (4) both yes?

Example question 3: Does Elizabeth II reign over the Balearic Islands?
Decomposition: (1): What are all the areas Queen Elizabeth II rules over? (2): What country
owns the Balearic Islands? (3): Is (2) included in (1)?
The given question Q : Does the actress who played Elizabeth II speak fluent Arabic?
Please note that: If Q can be decomposed, you should output multiple sub-questions as shown
in the above Logic Heuristics. Otherwise please output “End”.
The decomposed sub-questions for Q is:

In the Decompose stage (4.1), we design a heuristic-enhanced prompt to facilitate the question
decomposition process. The prompt consists of a prompt head h1 and “logic heuristics” lhQ. The
prompt head h1 describes the question decomposition task in natural language and “logic heuristics”
lhQ are K (K = 3 in this paper) demonstrations of how similar questions are decomposed.

For the lhQ,we specifically outline the process for obtaining these. We begin by constructing the
question decomposition demonstration pool P . For GSM8K and StrategyQA, we directly utilize the
existing question decomposition annotations from the training sets as P . In the case of ScienceQA,
we generate question decomposition data from a portion of its training set using annotations produced
by GPT-4, which are subsequently verified through manual checks. Next we employ a BERT encoder
Eξ to transform target question Q and questions Qd

i (i = 1, 2, ...M) from decomposition pool P
into vector representations zi and z, respectively. Then we calculate the cosine similarity of the
representations between Q and Qd

i , and select top-K nearest neighbors in the vector space:

Id = argTopK
zT zi
∥z∥∥zi∥

, (i = 1, 2, ...,M). (10)

where Id is an index set of the top-K similar questions of Q in the demonstration pool. Fi-
nally, We concatenate each Qd

i (i ∈ Id) with its human-annotated sub-questions subqsi =
(subqi1, subq

i
2, ..., subq

i
n) to form K question-decomposition examples.

lhQ = (Qd
i , subqs

i)(i = 1, 2, ...,K). (11)

In this paper, we use the SentenceTransformers5 as Eξ to transform questions into embeddings, and
set K = 3.

5https://www.sbert.net/

15

Table 5 displays the prompt used in the Decomposition stage for a particular question in StrategyQA
dataset.

We also conducted experiments demonstrating that incorporating logic heuristics effectively enhances
the overall performance of the Decompose Stage. As shown in the table 6, on the ScienceQA dataset,
DeAR w/o logic heuristics indicates the removal of logic heuristics from the prompts used in the
Decompose Stage. This adjustment results in lower ACC compared to DeAR, highlighting the
necessity of constructing heuristic-enhanced prompts for improved performance.

Table 6: Performance comparison of DeAR with and without logic heuristics on the ScienceQA
dataset.

GPT-3.5 LLaMA2-7B ChatGLM3-6B
DeAR w/o logic heuristics 83.06 69.85 50.17
DeAR 83.68 70.57 51.08

A.2 Prompts for Analyze Stage

For the generated sub-questions, in the Analyze stage 4.2, we use the Solve method to prompt the
LLM to generate rationales for them. The prompt used for this purpose is h2. For Self_Check, we
use h3 to correct the errors in the generated rationales. For Score, we use h4 to prompt the LLM to
score the logical coherence of rationales. Examples in Table 7 demonstrate h2, h3 and h4.

Table 7: Demonstrations of h2, h3 and h4 in the Analyze Stage.
Example A.2: Prompts for Analyze Stage
Solve prompt:
h2: Answer the following question and provide a detailed reasoning process.

Question: How many eggs does Janet have per day?

Your reasoning process:
Self_Check prompt:
h3: There might be some errors in the rationale for the following question.
If you believe there are errors, please correct them and provide the accurate
reasoning process. Otherwise, output the original reasoning process.

Question: How many eggs does Janet have per day?
Rationale: Janet has 16 eggs per day.

Your output:
Score prompt:
h4: Please rate the overall correctness and logic of the following rationale on a
scale from 1 to 10, where 1 is the lowest score and 10 is the highest score. Divide
the chosen integer by 10 and output it as the final score.

Rationale: Janet has 16 eggs per day.

Your score:

A.3 Prompts for Rethink Stage

In the Rethink Stage 4.3, we first extract previous sub-questions that are relevant to the newly
generated one by using the prompt c5, then we use the newly generated rationale to update rationales
of these previous sub-questions by using c6. Examples are shown in Table 8.

16

Table 8: Demonstrations of h5 and h6 in the Rethink Stage.
Example A.3: Prompts for Rethink Stage
Extract prompt:
h5: Please extract questions from the following list that might use the answer of q to
update their rationales.

Question list:
1. What is the selling price of one egg?
2. How many eggs does Janet have per day?

q: How many eggs does the ducks lay daily?
The answer of q: The ducks lay 16 eggs per day.

Your extracted questions:
Update prompt:
h6: Please update the answer to question b based on the answer to question a.

Question a: How many eggs does Janet eat for breakfast every day?
The answer to question a: She eats 3 eggs for breakfast.
Question b: How many eggs does Janet have per day?
The answer to question b: She has 16 eggs per day.

The updated answer to question b is:

B Appendix for Experiments

B.1 Datasets and Baselines

B.1.1 Datasets

Here, we introduce the three datasets used in our experiments in detail. For each dataset, it has
publicly released training/validation/test set partitions. Following established practices in previous
works, we adopt the same partitions to fairly compare our performance.

• ScienceQA [28] is a benchmark for science question answering, which requires machines to
reason on a diverse range of science topics. It is collected from elementary and high school
science curricula, and contains 21,208 multiple-choice science questions. Most questions are
annotated with grounded lectures (83.9%) and detailed explanations (90.5%). The lecture
and explanation provide general external knowledge and specific reasons, respectively, for
arriving at the correct answer.

• StrategyQA [12] is a question-answering benchmark focusing on open-domain questions
where the required reasoning steps are implicit in the question and should be inferred using
a strategy. StrategyQA includes 2,780 examples, each consisting of a strategy question, its
decomposition, and evidence paragraphs. To guide and evaluate the question answering
process, each example in StrategyQA was annotated with a decomposition into reasoning
steps for answering it, and Wikipedia paragraphs that provide evidence for the answer to
each step.

• GSM8K [8] is a dataset of 8.5K high quality linguistically diverse grade school math word
problems created by human problem writers. The dataset is segmented into 7.5K training
problems and 1K test problems. These problems take between 2 and 8 steps to solve, and
solutions primarily involve performing a sequence of elementary calculations using basic
arithmetic operations to reach the final answer. A bright middle school student should be
able to solve every problem. It can be used for multi-step mathematical reasoning.

B.1.2 Baselines

In this subsection, we introduce the baselines used in our experiments, including Few-shot prompting,
Chain-of-Thoughts (CoT) prompting, Tree-of-Thoughts (ToT) and Graph-of-Thoughts (GoT).

17

• Few-shot prompting [5]. Few-shot prompting is a paradigm where the language model is
provided with a limited number of examples for a specific task, allowing it to generalize and
generate the desired output when presented with new instances of the task. This approach
leverages a small amount of task-specific information to guide the language model’s behavior
and enable it to perform effectively on novel examples.

• Chain-of-thoughts (CoT) [45]. CoT prompts the language model to generate intermediate
explanations during the reasoning process preceding the final answer. This deliberate
emphasis on providing a step-by-step rationale enhances the model’s capacity to produce
more accurate and contextually grounded results. The inclusion of reasoning explanations
contributes to a more robust and insightful generation of answers by guiding the language
model through a thoughtful and systematic thinking process.

• Tree-of-Thoughts (ToT) [49]. ToT extends the capabilities of language models by enabling
deliberate decision-making through the exploration of multiple reasoning paths. It incor-
porates various search algorithms, allowing the model to traverse diverse routes during the
decision-making process. This approach enhances the model’s ability to consider alternative
perspectives and reasoning strategies, contributing to more nuanced and informed outputs.

• Graph-of-Thoughts (GoT) [3]. GoT is an innovative framework that builds upon the
advancements introduced by ToT, pushing the boundaries of prompting capabilities in Large
Language Models (LLMs). Unlike ToT, GoT represents the information generated by
an LLM as an arbitrary graph, introducing a more flexible and comprehensive structure.
Furthermore, GoT incorporates an expanded set of thought transformation operations,
allowing for a richer and more diverse modeling of the underlying thought processes within
the language model.

• Least-to-most [56]. The term least-to-most prompting is borrowed from educational
psychology, where it is used to denote the technique of using a progressive sequence of
prompts to help a student to learn a new skill. The key idea in Least-to-most strategy is to
break down a complex problem into a series of simpler subproblems and then solve them
in sequence. Solving each subproblem is facilitated by the answers to previously solved
subproblems.

• SelfCheck [31]. SelfCheck is a zero-shot step-by-step checker for self-identifying errors
in LLM reasoning chains. SelfCheck uses the LLM to individually check the conditional
correctness of each step in the chain based on the preceding steps, in a manner similar to a
human going back to check their working. The results of these individual checks are then
integrated to form an overall correctness estimation for the whole reasoning chain.

Table 9: Performance comparison of more baseline methods on MATH dataset.

Methods (with GPT-4 backbone) ACCs on MATH datasets
CoT 56.99
CoT+SC (sample 5 solutions each time) 57.24
ToT 57.18
ToT-variant 57.02
GoT 58.78
DeAR 62.25

B.2 Comparison with More Strong Baselines

In this subsection, we present comparison results with additional strong baselines, including one
variant of ToT (“ToT-variant”) [27] and CoT with self-consistency (“CoT + SC”) [41].We conduct
experiments on the more challenging MATH dataset, using GPT-4 as the backbone model, to further
demonstrate the effectiveness of our DeAR approach. The MATH dataset is specifically designed
to assess the mathematical reasoning and problem-solving abilities of AI models. It consists of
12,500 complex competition-level problems across diverse topics such as algebra, geometry, calculus,
number theory, and combinatorics. For our experiments, we use the “gpt-4-0125-preview” version
of the GPT-4 model. The results are summarized in Table 9. From the results, we can see that
our DeAR method achieves significant improvements over the two newly added baseline methods,

18

demonstrating the effectiveness of our approach in further enhancing the reasoning capabilities of
GPT-4 on more complex reasoning tasks. Moreover, we observe that, based on GPT-4, GoT performs
better than both ToT and CoT methods. Although CoT has the lowest ACC, when combined with
self-consistency sampling, its performance surpasses that of ToT.

B.3 Ablation Study of the Self-Check Method in the Analyze Stage

Table 10: Performance comparison of DeAR with and without self-check on the ScienceQA dataset.

GPT-3.5 LLaMA2-7B ChatGLM3-6B
DeAR w/o self-check 82.76 69.44 50.35
DeAR 83.68 70.57 51.08

The construction of the reasoning tree relies on the indispensable interplay of DeAR’s three stages:
Decompose, Analyze, and Rethink. An ablation study omitting any of these stages would disrupt
the entire process. For instance, removing the Decompose stage would prevent both the Analyze
and Rethink stages from functioning, as they depend on analyzing and updating the sub-questions
generated during decomposition. Similarly, eliminating the Analyze stage would hinder the generation
of rationales for each node, rendering the Rethink stage infeasible. Without the Rethink stage, the first
two stages would lose their purpose, reducing the entire framework to a zero-shot approach, where
the problem is directly solved at the root node without any further reasoning.

The only reasonable point for ablation is the self-check method within the Analyze stage (Section 4.2),
as removing it does not structurally affect Decompose stage and Rethink stage. Therefore, we
have included an ablation study on the self-check method using the ScienceQA dataset, as shown
in Table 10. The results demonstrate that across various LLM backbones, DeAR consistently
outperforms its counterpart without the self-check, confirming the method’s effectiveness.

B.4 Human Evaluation

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her

friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in

dollars does she make every day at the farmers' market?

Options:

(A)Determine the total daily egg production of Janet's ducks, which is 16. Subtract the eggs consumed for breakfast (3)

and those used for baking muffins (4). Multiply the remaining eggs by the selling price of $2 per egg to find the daily

income at the farmers' market. The answer is $18.

(B) Janet’s ducks lay 16 eggs per day. She uses 3 + 4 = <<3+4=7>>7 eggs per day for breakfast and muffins. She sells 16

- 7 = <<16-7=9>>9 eggs at the farmers‘ market. She earns $2 for each egg sold, so she makes 9 * $2 =

$<<9*2=18>>18 per day. Answer: 18。
(C) Let's start by calculating the total number of eggs Janet's ducks lay per day: Janet's ducks lay 16 eggs per day. Next,

let's calculate how many eggs she uses every morning for breakfast: She eats 3 eggs for breakfast every morning.

Now, let's determine how many eggs she uses for baking muffins: She uses 4 eggs to bake muffins for her friends

every day. Now, we'll find out the number of eggs that are left to sell at the farmers' market: Total eggs laid - (Eggs

eaten for breakfast + Eggs used for baking) = Remaining eggs to sell Remaining eggs to sell = 16 - (3 + 4) Remaining

eggs to sell = 16 - 7 Remaining eggs to sell = 9. Now, we know she sells each egg for $2: Total money made =

Number of remaining eggs * Price per egg. Total money made = 9 * $2. Total money made = $18. Answer: 18.

Please select the one that has the best logical coherence.

Figure 6: The interface of our Human Evaluation method.

In Section 5.4, we analyze the logical coherence of rationales generated by our framework. We
randomly sampled 100 questions from each of the three datasets, and for each question, we used ToT,
GoT, and DeAR to generate three distinct rationales. Each question, along with the rationales from
ToT, GoT, and DeAR, was presented to 10 well-educated annotators (all with at least a bachelor’s
degree). To ensure impartiality, we did not disclose the model that generated each rationale, and
the order of the rationales was randomized. The annotators were asked to select the rationale they
found most logical, following a majority-vote approach: each question was annotated by all 10
annotators, with the rationale receiving the highest vote count chosen as the final result. Figure 6
shows the template used for annotation. The annotation achieved a Kappa score of 0.70, indicating
good agreement among annotators.

19

Table 11: Comparison of Avg API calls and ACC between DeAR, ToT, and GoT on ScienceQA.

DeAR ToT (b=2, d=4) GoT (b=2, d=4)
Avg API calls 9.82 11.35 13.74

ACC 0.837 0.826 0.831

B.5 More Discussion about Efficiency

In Section 5.7, we compared the reasoning time and accuracy of DeAR with ToT and GoT across
different datasets based on ChatGLM3-6B, concluding that DeAR achieves a better trade-off between
time and accuracy. To further validate this conclusion, we measure the average number of API calls
made by DeAR, ToT, and GoT for each question in ScienceQA based on GPT-3.5, along with their
reasoning ACCs, as shown in Table 11. It’s clear that DeAR makes fewer API calls on average, which
implies less time under the same conditions, while simultaneously achieving higher ACCs.

B.6 Case Study

Question: The film whose director is younger, Zakhm

or Telefono Rosso, is produced by which country?

Step 1：“Zakhm” is an Indian film, and it was

released in 1998. On the other hand, “Telefono

Rosso” is an Italian film, and it was released in

1986 (×)

These films likely represent

different cultural and cinematic

contexts, reflecting the diversity

of the global film industry.

Step 2：Considering the release years,

“Zakhm” was released earlier in 1986, making

 it the film whose director is younger (×)

"Zakhm," directed by Mahesh

Bhatt, is a Bollywood film

known for its poignant

narrative and emotional depth.

The chronological order of

release indicates that "Telefono

Rosso" predates "Zakhm" by

12 years.

This chronological difference

in release years provides

insights into the temporal

context of these two films

Step 3：“Zakhm” is an Indian film. Therefore,

the answer is India. (×)

Figure 7: Case of ToT (GPT-3.5)’s reasoning process.

We conduct case study to demonstrate that our framework’s reasoning process aligns more with
human logic, effectively reduces logical errors, and is more interpretable. We present one typical
intricate reasoning case from StrategyQA with GPT-3.5 backbone in Figure 7 and Figure 8. As shown
in Figure 7, ToT generates a fixed number of thoughts at each level (3 in this case), and it stops
generating at a depth of 3. It searches for an optimal path (“Step 1”, “Step 2” and “Step 3”) from the
tree structure as the reasoning process and discards other thoughts. However, in this example, the
logical relationships between the generated thoughts are not clear (e.g., “Question” and “Step1”) and
there are logical errors in intermediate step “Step 1” leading to errors in the subsequent step (“Step 2”
and “Step 3”).

In contrast, DeAR establishes a clear logical structure through Decompose stage (black directed
arrows). For example, to answer the comparison question “#2”: Which of these two directors has a
smaller age?”, DeAR decomposes it into more fine-grained sub-questions “#3”: What is the age of
Zakhm’s director?” and “#4”: What is the age of Telefono Rosso’s director?”. Then, with Analyze
stage, we obtain the rationales (texts in the green dashed box) for each sub-question, which are then
utilized in the Rethink stage to update the existing upper-level rationales (green dashed arrows). For
example, the rationale “Nanni Moretti directed Telefono Rosso.” for sub-question “#6” is used to
update the rationales of “#2”,“#1” and the original “Question”. The three-stage cycle iterates until no
questions can be further decomposed and we get the tree structure as shown in Figure 8. Finally, we

20

Question: The film whose director is younger, Zakhm

or Telefono Rosso, is produced by which country?
Mahesh Bhatt directed Zakhm, he is 76 years old now; Nanni Moretti

directed Telefono Rosso, he is 71 years old now. Nanni Moretti has a

smaller age 71, and he directed Telefono Rosso. Telefono Rosso is

produced by Italy, so the answer is Italy.

#1: Which film does the smaller age

correspond to in terms of the director?
Nanni Moretti has a smaller age 71, and he

directed Telefono Rosso.

#2: Which of these two directors has

 a smaller age?

Nanni Moretti has a smaller age 71.

#3: What is the age of Zakhm's director?
Mahesh Bhatt was born in 1948, he is 76 years old

now.

#4: What is the age of Telefono Rosso's

director?
Nanni Moretti was born in 1953, he is 71 years old

now.

#5: Who is the director of the film

Zakhm?
Mahesh Bhatt was born in 1948, he is 76 years old

now.

#6: Who is the director of the film

Telefono Rosso?
Nanni Moretti directed Telefono Rosso.

Answer: Italy (√)

Figure 8: Case of DeAR (GPT3.5)’s reasoning process.

can extract the answer “Italy” (correct in this case) from the rationale of the original question at the
root node. Our reasoning structure effectively avoids the errors generated by ToT, while being more
logical and interpretable.

We further demonstrate the error correction process in the reasoning during the Rethink stage for
previously generated nodes, as illustrated in Figure 9. The left part shows the state of the reasoning
tree when solving sub-question “#2”. At this point, the original question and the answers to “#1” and
“#2” are incorrect (marked in red). The right part shows the state after decomposing “#2” into sub-
questions “#3” and “#4”, solving them, and updating the reasoning tree. The purple text represents
the rationales obtained from solving the newly decomposed sub-questions “#3” and “#4”, which
are subsequently used to update the rationale for “#2”, correcting the wrong answer “Mahesh Bhatt
has a smaller age 70” to “Nanni Moretti has a smaller age 71”. This correction also impacts earlier
nodes, replacing the original wrong answer with the correct one (with the correct parts shown in
blue). Without using the newly obtained rationale to update the previous nodes in DeAR, the above
errors would not have been corrected. Therefore, the Rethink stage is crucial for DeAR to achieve
accurate results in reasoning.

Question: The film whose director is younger, Zakhm or Telefono

Rosso, is produced by which country?

Mahesh Bhatt directed Zakhm, he is 70 years old now; Nanni Moretti

directed Telefono Rosso, he is 71 years old now. Mahesh Bhatt has a

smaller age 70, and he directed Zakhm. Zakhm is produced by India, so

the answer is India.

#1: Which film does the smaller age correspond to in

terms of the director?

Mahesh Bhatt has a smaller age 70, and he directed

Zakhm.

#2: Which of these two directors has a smaller age?

Mahesh Bhatt has a smaller age 70.

#3: What is the age of Zakhm's director?

Mahesh Bhatt was born in 1948, he is 76

years old now.

Question: The film whose director is younger, Zakhm or Telefono

Rosso, is produced by which country?

Mahesh Bhatt directed Zakhm, he is 76 years old now; Nanni Moretti

directed Telefono Rosso, he is 71 years old now. Nanni Moretti has a

smaller age 71, and he directed Telefono Rosso. Telefono Rosso is

produced by Italy, so the answer is Italy.

#1: Which film does the smaller age correspond to in

terms of the director?

Nanni Moretti has a smaller age 71, and he directed

Telefono Rosso.

#2: Which of these two directors has a smaller age?

Nanni Moretti has a smaller age 71.

#4: What is the age of Telefono Rosso's director?

Nanni Moretti was born in 1953, he is 71 years

old now.

Figure 9: Case of DeAR (GPT3.5)’s error correction process in the Rethink stage.

21

C Broader Impacts

This work endeavors to advance the field of natural language processing through the introduction of a
novel DeAR (Decompose-Analyze-Rethink) reasoning framework, leveraging LLMs for enhanced
reasoning capabilities. The potential broader impact of our research lies in its implications for natural
language understanding and reasoning systems. By dynamically generating and updating rationales,
our framework contributes to the development of more effective and interpretable language models.

The societal consequences of our work include the potential improvement in the interpretability
and reliability of machine-generated reasoning, which can have positive implications across various
domains, such as education, decision support systems, and natural language processing applications.
However, it is essential to approach these advancements with a critical lens, considering the ethical
implications and societal impact of widespread deployment.

D Limitations and Future Work

While the DeAR framework can significantly enhance reasoning capabilities for large language
models, several limitations merit attention. First, as shown in Figure 5, although DeAR achieves
a better trade-off between time and accuracy, the reasoning time for complex problems remains
relatively long. This is due to the significant overhead associated with the iterative cycles of the
Decompose, Analyze, and Rethink stages. Therefore, there is still room for improvement in enhancing
reasoning efficiency for practical applications in the future. Second, in the Decompose Stage, while
logic heuristics contribute to overall performance improvement (as illustrated in Table 6), constructing
these heuristics requires additional annotation. For the datasets used in this paper, most of the training
data already includes annotated question decompositions, saving considerable time in preparation.
However, extending DeAR to other datasets may necessitate the development of more efficient
methods to reduce or eliminate the need for the annotation. Third, while DeAR outperforms existing
methods like ToT and GoT in flexibility and error reduction, its real-world applicability requires
further validation across a broader range of datasets to fully assess the framework’s versatility and
robustness, as well as to explore the potential of more LLMs for complex reasoning. In the future, we
may consider exploring methods to enhance LLMs’ reasoning capabilities on more complex tasks,
such as those in STEM fields and programming. Recent studies, including OpenAI’s o1 model, utilize
large-scale reinforcement learning algorithms to teach the model how to think productively through
its chain of thought. Based on these advancements, a promising approach would be to investigate how
to integrate similar methods with the model’s self-thinking capabilities to enhance adaptive learning
and facilitate continuous improvement in reasoning.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We made claims about our contributions and scope in the Abstract and the fifth
paragraph of 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to space limit, we present the Limitations section in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

23

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present implementation details and prompting exemplars in Section 5.1.2
and Appendix A. We also include our code and describe the setups needed to reproduce the
experimental results at https://github.com/ShangziXue/DeAR.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

https://github.com/ShangziXue/DeAR

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our dataset and code is available at https://github.com/ShangziXue/
DeAR.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details are described in Section 5.1.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We analyze the significance of our experimental results in Section 5.2 with
paired t-test. This paper also evaluates the quality of DeAR’s rationales by human annotators.
In order to ensure the consistency of annotators, we calculate the Kappa score and the result
is 0.70, which ensures the credibility of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://github.com/ShangziXue/DeAR
https://github.com/ShangziXue/DeAR
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We present time of execution information. We conduct efficiency experiments
about the inference time in Section 5.7 and Appendix B.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We present a “Broader Impact” section in Appendix C to discuss the potential
positive/negative impacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

26

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets including data and baseline models used in this paper are properly
cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification:We include the full template given to the human annotators in Appendix B.4.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: In this paper, we invite human annotators only to assess LLMs’ outputs
(i.e.,make choices). The annotators themselves are not the subjects of the evaluation and are
not being tested. Besides, as shown our annotation template in Appendix B.4, this evaluation
process does not collect personal information or privacy of the annotators, and the annotators
are fully aware of the purpose of the evaluation and have consented to its use.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Prompt-based Approaches in LLM Reasoning
	Question Decomposition

	Problem Formulation and Preliminaries
	Problem Definition
	Reasoning Tree
	Framework Overview

	DeAR (Decompose-Analyze-Rethink) Cycle
	Decompose Stage
	Analyze Stage
	Rethink Stage

	Experiments
	Experimental Setup
	Datasets and Baselines
	Implementation Details

	Experimental Results
	Analyses of the Reasoning Tree
	Logical Coherence of the Generated Rationales
	Effectiveness of Rethink
	Combinations of Thresholds
	Efficiency

	Conclusion
	More Details and Prompt Templates of DeAR
	Prompts for Decompose Stage
	Prompts for Analyze Stage
	Prompts for Rethink Stage

	Appendix for Experiments
	Datasets and Baselines
	Datasets
	Baselines

	Comparison with More Strong Baselines
	Ablation Study of the Self-Check Method in the Analyze Stage
	Human Evaluation
	More Discussion about Efficiency
	Case Study

	Broader Impacts
	Limitations and Future Work

