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ABSTRACT

Computing the Nash Equilibrium (NE) is a fundamental yet computationally chal-
lenging problem in game theory. Although recent approaches have incorporated
deep learning techniques to tackle this intractability, most of them still struggle
with scalability when the number of players increases, due to the exponential
growth of computational cost. Inspired by the efficiency of classical learning dy-
namics methods, we propose a deep learning-augmented Nash equilibrium solver,
named Deep Iterative Nash Equilibrium Solver (DINES), based on a novel frame-
work that integrates deep learning into iterative algorithms to solve Nash Equilib-
ria more efficiently. Our approach effectively reduces time complexity to a poly-
nomial level and mitigates the curse of dimensionality by leveraging query-based
access to utility functions rather than requiring the full utility matrix. Experi-
mental results demonstrate that our approach achieves better or comparable ap-
proximation accuracy compared to existing methods, while significantly reducing
computational expense. This advantage is highlighted in large-scale sparse games,
which is previously intractable for most existing deep-learning-based methods.

1 INTRODUCTION

The problem of computing Nash equilibria (NE) is one of the most fundamental challenges in game
theory, and has profound implications in artificial intelligence fields, including multi-agent systems,
reinforcement learning, and strategic decision-making. Nash equilibria provide a way to predict
and understand how multiple rational agents interact and make decisions in competitive or coop-
erative environments, making it highly relevant for applications ranging from autonomous systems
to multi-agent reinforcement learning. The computation of NE gains increasing importance as AI
systems increasingly operate in complex, multi-agent settings, such as autonomous driving, market
simulations, and resource allocation.

Despite its importance, finding NE in general games faces significant computational challenges, and
over the past few decades, extensive research has focused on developing efficient algorithms to ad-
dress this problem. It is known that the computation complexity of this problem is PPAD-complete
(Daskalakis et al., 2006; Chen & Deng, 2006), meaning that any algorithm that computes NE exactly
must take exponential time, unless PPAD = P. To circumvent this complexity, polynomial-time al-
gorithms for approximate Nash equilibria have been developed, but improving approximation guar-
antees remains challenging. Moreover, these algorithms are mostly restricted to two-player games,
and do not easily scale to multi-player settings. On the other hand, heuristic methods, especially
the class of learning dynamics like Fictitious Play (Brown, 1951) and Regret Matching (Hart &
Mas-Colell, 2000), are effectively applied in various practical scenarios, including decentralized en-
vironments. Despite their practical success, these methods lack guarantees of convergence to NE,
and may fail to converge in worst-case situations. This divide between theoretical algorithms and
heuristic methods reflects the constant conflict between computational efficiency and solution qual-
ity when computing Nash equilibria.

Inspired by advances in deep learning, recent works have developed new approaches to solve Nash
equilibrium by leveraging neural networks, mitigating the computational limitations of traditional
solvers. For example, Duan et al. (2023a) firstly proposed to approximate equilibrium strategies
with a multilayer perceptron (MLP), trained based on approximation error. Goktas et al. (2024)
introduced a generative adversarial network (GAN)-based solver for games with continuous strategy
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spaces. Liu et al. (2024) employed attention mechanism over joint actions to compute equilibria with
improved accuracy and equivariant property.

However, these methods still face significant challenges. Firstly, they are computationally costly due
to the large model size required to achieve reasonable approximation of the equilibrium. Secondly,
they struggle with the exponential growth in the size of the utility matrix as the number of players in-
creases, because their model take as input the whole utility matrix, which leads to scalability issues.
Moreover, due to the black-box nature of neural networks, these methods lack the interpretability
and generalization ability compared with classical algorithms.

In this paper, we propose a deep learning-augmented Nash equilibrium solver, named Deep Iterative
Nash Equilibrium Solver (DINES), which combines the strengths of classical learning dynamics
with modern deep learning techniques. Our approach replaces the iterative update rules in learning
dynamics methods with optimizable deep neural networks, leveraging player-wise and action-wise
attention mechanisms to balance expressive power and computational efficiency in the decision of
strategies. By optimizing the solver’s convergence rate and reducing the complexity of utility access,
we achieve significant improvements over existing methods in terms of both speed and scalability.

Our contributions are threefold:

1. We introduce a general framework of learning-augmented iterative NE solver, and propose
Deep Iterative Nash Equilibrium Solver (DINES) based on this framework. This frame-
work retains the structural advantages of classical learning dynamics, while leveraging the
expressive power of deep learning to enhance convergence performance. We design the
model architecture of DINES by incorporating efficient attention-based neural networks,
achieving a polynomial computational complexity in the number of players and actions.

2. We demonstrate through experimental results that our method achieves equilibrium approx-
imations superior to or comparable with those of state-of-the-art deep learning methods,
while significantly reducing computational costs. Compared to classical learning dynam-
ics, our approach achieves notable improvements in both accuracy and convergence.

3. We conduct further experiments to demeonstrate the scalability and adaptability of our
approach in large-scale multi-player succinct games, such as polymatrix games, which
have been intractable for most existing methods due to the curse of dimensionality.

2 LITERATURE REVIEW

Extensive research has focused on developing a wide range of methods to either solve or approximate
Nash equilibria, broadly categorized into three major approaches: theoretical algorithms, heuristic
algorithms, and deep-learning approachs. In this section, we review these approaches, summarizing
their strengths and limitations. We refer the reader to a recent survey (Li et al., 2024) for a detailed
review.

Theoretical algorithms. It is well-known that the Nash equilibrium in zero-sum two-player games
can be solved efficiently through linear programming, but the problem become PPAD-complete in
general-sum games (Daskalakis et al., 2006; Chen & Deng, 2006). Various algorithms have been
designed to solve Nash equilibrium in general normal-form games exactly or near-exactly (Lipton
et al., 2003; Kontogiannis & Spirakis, 2007; Lemke & Howson, 1964; Laan et al., 1987; Govindan
& Wilson, 2003; Porter et al., 2008). All these methods take super-polynomial running time due to
the PPAD-complete computational complexity. To circumvent this intractability, polynomial time
algorithms for approximate Nash equilibrium are designed (Kontogiannis et al., 2009; Daskalakis
et al., 2009; 2007; Bosse et al., 2010; Tsaknakis & Spirakis, 2008; Deligkas et al., 2023). However,
this line of research faces significant challenge in improving the approximation guarantees: The cur-
rent best algorithm by Deligkas et al. (2023) guarantees a 1/3-approximation, offering only a slight
improvement over the 0.3393-approximation achieved by Tsaknakis & Spirakis (2008) decades ago.
The applicability of these approximate algorithms in practical scenarios is limited for two main rea-
sons: firstly the guaranteed approximation ratio remains too large to be meaningful, and secondly
they are restricted to two-player bimatrix games, without easy generalization to multi-player games.

Heuristic algorithms and learning dynamics. Heuristic algorithms, especially in the form of
learning dynamics, have emerged as practical solutions for computing Nash equilibria in games in-
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volving multiple players. Based on the heuristic idea that players can reach the equilibrium through
repeated interactions, in these dynamics, agents adapt their strategies based on observed outcomes in
each round, forming a iterative learning process. The class of learning dynamics includes fictitious
play (Brown, 1951), best response dynamics (Cournot, 1838), and no-regret learning algorithms
such as regret matching (Hart & Mas-Colell, 2000), Hedge (Auer et al., 1995), and multiplicative
weight update methods (Arora et al., 2012). The main advantage of these methods lies in their
scalability owing to the simplicity and efficiency of the updating rules. Additionally, many learn-
ing dynamics can operate in a decentralized manner, requiring no communication between agents
beyond the strategic interaction, which makes these methods particularly suitable for distributed
scenarios. However, learning dynamics in general have no theoretical guarantees for convergence
rate to NE, and can even fail to converge in worst cases. Nonetheless, a wide range of weaker con-
vergence results have been derived. In specific cases like two-player zero-sum games and potential
games, fictitious play is known to converge in terms of the empirical distribution of actions over time
(Robinson, 1951; Monderer & Shapley, 1996). For general games, it is proved that any no-regret
dynamics converges to coarse correlated equilibrium (CCE), while any no-swap-regret dynamics
converges to correlated equilibrium (CE) (Cesa-Bianchi & Lugosi, 2006; Blum & Mansour, 2005).

Deep-learning approaches. To avoid the theoretical barriers and pursue better accuracy and eff-
ciency in practical scenarios, a series of deep-learning-based methods have been developed to solve
the Nash equilibrium. Duan et al. (2023a) firstly proposes to approximate Nash equilibrium with
neural networks, and derive generalization bound and agnostic PAC learnability results. Marris et al.
(2022) proposes a deep-learning framework for equilibrium solving and selection, mainly focusing
on CE and CCE. Goktas et al. (2024) utilizes generative adversarial learning to solve equilibria in
general game-theoretic settings with continuous strategy spaces. Liu et al. (2024) is the most related
to our work. They achieve the state-of-the-art approximation accuracy through attention operations
with equivariant property. However, their proposed model is computationally expensive due to the
self-attention operation on all TN joint actions, resulting in a Θ(T 2N ) time complexity, hindering
its application to scenarios with larger number of players. This curse of dimensionality is also faced
by most existing methods due to direct access to the whole utility table. While our work also uti-
lizes the attention mechanism, we effectively reduce the computational complexity through query
access of utilities and decomposed attention operations, obtaning significantly improved efficiency
and scalability.

3 GAME-THEORETIC PRELIMINARIES

3.1 NORMAL-FORM GAME

A normal-form game G is specified by the tuple (N,T, (Gp(·))p∈[N ]), indicating that there are N
players indexed as [N ] = {1, · · · , N}, with each player p having T actions1 a1p . . . a

T
p respectively.

We denote Ap = {a1p . . . aTp } as the action space of player p and A = A1 × · · · × AN as the
joint action space of all players. When each player plays an action ap ∈ Ap, a joint action a =
(a1, . . . , aN ) ∈ A is formed, and each player p receives a utility of Gp(a), where Gp : A → R is
called the utility function of player p.

A mixed strategy of player p is defined as a distribution on Ap, represented by a vector xp =

(xp,1, · · · , xp,T ) ∈ ∆T . Here ∆T := {(x1, · · · , xT ) ∈ [0, 1]T :
∑T

j=1 xj = 1} is the standard
(T − 1)-dimensional simplex. We write ap ∼ xp when player p follows the mixed strategy xp,
meaning that she chooses action ajp with probability xp,j for each j ∈ [T ]. Given a mixed strategy
profile x = (x1, · · · ,xN ), with a slight abuse of notation, we denote player p’s expected utility
under x by

Gp(x) := Eai∼xi, ∀i∈[N ][Gp(a)],

and denote player p’s utility playing each action ajp by

Gp(a
j
p,x−p) := Eai∼xi, ∀i̸=p[Gp(a

j
p,a−p)].

1For convenience and without loss of generality, we assume all players have the same number of actions
throughout the paper.
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Definition 1 (Nash Equilibrium). In a normal-form game G, a mixed strategy profile x =
(x1, · · · ,xN ) is a Nash equilibrium, if for all p ∈ [N ], it holds that

Gp(x) ≥ max
j∈[T ]

Gp(a
j
p,x−p).

For any ϵ > 0, a mixed strategy profile x is an ϵ-approximate Nash equilibrium, if for all p ∈ [N ],
it holds that

Gp(x) ≥ max
j∈[T ]

Gp(a
j
p,x−p)− ϵ.

Definition 2 (Nash Approximation). In a normal-form game G, for any mixed strategy profile x =
(x1, · · · ,xN ), we define its Nash approximation as

NashAppr(x) := max
p∈[N ]

max
j∈[T ]

(Gp(a
j
p,x−p)−Gp(x)).

One can see that x is an ϵ-approximate Nash equilibrium (or an Nash equilibrium, respectively) if
and only if NashAppr(x) ≤ ϵ (or NashAppr(x) = 0, respectively).

3.2 GAME REPRESENTATION

From a computational perspective, the representation of the utility functions Gp(·) in a normal-form
game determines how the algorithm can access it. Below we introduce several kinds of representa-
tions:

Tabular Game In a tabular game, the utility functions are explicitly represented as a N -
dimensional payoff table that lists the players’ utility values under every joint action.

Polymatrix Game A polymatrix game can be decomposed into bimatrix games (i.e., two-player
tabular game) between every pair of players. The utility of a player is obtained by summing
up her utility in all the N − 1 bimatrix games involving her. The utility functions are
represented by N(N −1) matrices indicating the payoff tables of all these bimatrix games.

Succinct Game A succinct game refers to any game with a succinct representation of the utility
functions that is feasible under large number of players and actions, including the polyma-
trix game. Most generally, each utility function Gp(·) is represented by a polynomial-sized
circuit that can be evaluated on the joint action profiles.

When a game has specific structures such as decomposable or sparse interactions, representing it as
a succinct game can significantly reduce the size of the representation compared to the tabular form,
bringing advantages in computational efficiency.

3.3 PERMUTATION EQUIVARIANCE

The concept of Nash equilibrium possesses a natural property of permutation equivariance: When
the players and actions are reordered, the Nash equilibria are reordered in the same way. Con-
sequently, it is reasonable for a Nash equilibrium solver to also satisfy permutation equivariance.
It is also suggested in Duan et al. (2023b) that permutation equivariance can improve the solver’s
generalization ability. We formally define this property as follows.

Definition 3 (Permutation Equivariance). Let GN,T denote the space of all normal-form games G
with given N and T . An isomorphism Isoρ on GN,T is specified by ρ = (π, τ1, . . . , τN ), where π
is a permutation on the player set [N ], and each τp is a permutation on the action set Ap. Such a
isomorphism maps a game G ∈ GN,T to a new game G′ = Isoρ(G) where the utility functions are
given by

G′
π(p)(τπ(1)(aπ(1)), . . . , τπ(N)(aπ(N))) = Gp(a1, . . . , aN ).

Consider a mapping ϕ = (ϕp,j)p∈[N ],j∈[T ] : GN,T → Ω[N ]×[T ], which produces an output
ϕp,j(G) ∈ Ω for each action ajp. Here Ω denotes the output space. We define ϕ to be permuta-
tion equivariant, if for any isomorphism ρ = (π, τ1, . . . , τN ), it holds for allG ∈ GN,T and p ∈ [N ],
j ∈ [T ] that

ϕπ(p),τπ(p)
(Isoρ(G)) = ϕp,j(G).
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Similarly, consider a mapping ϕ = (ϕp)p∈[N ] : GN,T → Ω[N ], which produces an output ϕp(G) ∈ Ω
for each player p, with Ω denoting the output space. We define ϕ to be permutation equivariant if
for any isomorphism ρ = (π, τ1, . . . , τN ), it holds for all G ∈ GN,T and p ∈ [N ], j ∈ [T ] that

ϕπ(p)(Isoρ(G)) = ϕp(G).

We say a deterministic algorithm is permutation equivariant, if it can be viewed as a permutation
equivariant mapping from the game to a strategy profile. For a randomized algorithm, we can simi-
larly define it to be permutation equivariant if the output distribution is permutation equivariant.

4 DEEP ITERATIVE NASH EQUILIBRIUM SOLVER (DINES)

4.1 MOTIVATION AND GENERAL FRAMEWORK

Algorithm 1 Common Structure of Learning Dynamics
Require: number of players n, number of actions T , utility functions G1(·), · · · , Gn(·).

Initialize inner states: y(0) = (y
(0)
p,j )p∈[N ],j∈[T ].

k ← 0.
repeat
k ← k + 1.
Generate mixed strategy profile: x(k)

p ← ϕ(y
(k−1)
p,: ; k), ∀p ∈ [N ].

Query utility of each action: u(k)p,j ← Gp(a
j
p,x

(k)
−p), ∀p ∈ [N ], j ∈ [T ].

Update inner states: y(k)p,: ← ψ(y
(k−1)
p,: ,

(
u
(k)
p,j

)
j∈[T ]

; k), ∀p ∈ [N ].
until reaching maximum iteration or convergence condition
Generate output mixed strategy profile: x̂p ← ϕ̂(y

(k)
p,: ), ∀p ∈ [N ].

return x̂ = (x̂1, · · · , x̂N ).

In scenarios with large number of players and actions, the growth in computational cost becomes the
main challenge for most existing algorithms in solving the Nash equilibrium. Learning dynamics
methods are often favored due to their efficiency and adaptability, largely owing to their iterative na-
ture. This motivates us to combine the structural advantage of learning dynamics with the expressive
power of deep learning models.

Most learning dynamics methods for NE computation follow a common iterative structural frame-
work, as presented in Algorithm 1. Under this framework, players interact iteratively, each maintain-
ing a internal state, which is typically a vector, such as the player’s current evaluation of the actions.
In each iteration, each player first determines their current strategy (either pure or mixed) based on
their states, as represented by the mapping ϕ in the algorithm. Subsequently, players calculate the
utility of their each action given the current strategy profile of other players. At the end of each
iteration, players update their internal states based on these utilities, as represented by the mapping
ψ. The iteration process continues until a convergence condition is satisfied or a predefined number
of iterations is reached. Finally, the output strategy profile is generated and output according to the
players’ inner states at the final round, as represented by the mapping ϕ̂.

Inspired by this common structure of learning dynamics, we propose a framework of deep-learning
augmented iterative algorithms for solving the Nash equilibrium, as presented in Algorithm 2. The
framework unfolds the iteration process into a fixed number of K rounds, and implement the func-
tions ϕ and ψ in each round as deep neural networks Φ and Ψ, where Φ is for generating the mixed
strategies, and Ψ is for updating the inner states. They are parametered by θ

(1)
Φ , · · · , θ(K)

Φ and
θ
(1)
Ψ , · · · , θ(K)

Ψ , respectively. Additionally, ϕ̂ is also computed by Φ with parameter θ̂Φ. Different
from Algorithm 1, here we allow a centralized update of all inner states in this framework to enhance
expressive power. Assuming the game instance is generated from a certain distribution, all these pa-
rameters can be trained with data samples. In the next subsection, we will describe the architecture
of the neural networks Φ and Ψ, which constitutes our proposed DINES model.

This framework brings the following advantages:
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Algorithm 2 A Framework of Deep-learning Augmented Iterative Algorithm

Require: number of players n, number of actions T , number of rounds K, initial embeddings y(0),
utility functions G1(·), · · · , Gn(·), weight parameters θ(1)Φ , · · · , θ(K)

Φ , θ̂Φ and θ(1)Ψ , · · · , θ(K)
Ψ .

Initialize inner states: y(0) = (y
(0)
p )p∈[N ].

for k ← 1, · · · ,K do
Generate mixed strategy profile: x(k)

p ← Φ(y
(k−1)
p ; θ

(k)
Φ ), ∀p ∈ [N ].

Query utility of each action: u(k)p,j ← Gp(a
j
p,x

(k)
−p), ∀p ∈ [N ], j ∈ [T ].

Update inner states: y(k) ← Ψ(y(k−1), (u
(k)
p,j )p∈[N ],j∈[T ]; θ

(k)
Ψ )

end for
Generate output strategy profile: x̂p ← Φ(y

(k)
p ; θ̂Φ), ∀p ∈ [N ].

return x̂ = (x̂1, · · · , x̂N ).

• Computational efficiency and scalability. Most existing algorithms for Nash equilibrium,
aside from the class of learning dynamics methods, require a direct access to the whole
utility matrix, especially deep-learning approaches. Therefore, they unavoidably suffers
from the curse of dimensionality, as the size of the utility matrix grows exponentially in the
number of players. In contrast, under our framework, the utility is accessed through queries
to the utility functions. Throughout the execution of our framework, only KnT utility
queries are made, where nT queries happens in each round, and the total number of rounds
K is typically not too large. Moreover, as long as the game has a succinct representation,
each query of utility function can be efficiently computed, or at least unbiasedly estimated.
This establishes the polynomial computational cost of our framework, making it applicable
to games involving a much larger number of players.

• Improved convergence. Due to the expressive power and data-driven optimization, the
convergence of iterative process can be largely accelerated compared to traditional learning
dynamics.

• Permutation equivariance. As long as the functions Φ and Ψ satisfy permutation equiv-
ariance, and the inner states are initialized identically (or from identical distribution), the
resulted algorithm will preserve permutation equivariance.

• Structural explanability. As the expressive power of deep learning models can easily repre-
sent the updating rules in classical learning dynamics, the resulted algorithm can be inter-
preted as a strengthened version of learning dynamics, inheriting the heuristic explanability.

4.2 MODEL ARCHITECTURE

In this subsection, we describe our proposed model architecture of Deep Iterative Nash Equilibrium
Solver (DINES), building on the general framework introduced in the last subsection. Our design
focuses on achieving two key properties: computational efficiency and permutation equivariance,
which motivate the use of player-wise and action-wise attention mechanisms.

STRUCTURE OF INNER STATES

In DINES, the inner state y(k)p of each player is separated into three parts: a record of the latest
chosen mixed strategy x

(k)
p , the player embedding β(k)

p ∈ RD, and the action embeddings α(k)
p,j ∈

RD for each j ∈ [T ]. Here D is a hyper-parameter representing the dimension of the embedding
space. Recording the last mixed strategy allows a residual updating of strategies, which is described
later. The player embedding β(k)

p of player p captures her overall characteristics and her global
information acquired from the centralized updates. The action embedding α(k)

p,j represent the player’s
fine-grained evaluation and belief about each available action ajp, affecting her strategic decision in
each round.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

INITIALIZATION

Instead of using a deterministic initialization value, we initialize the inner states y(0) randomly for
DINES. Each embedding β(0)

p and α(0)
p,j is drawn independently from the D-dimensional standard

Gaussian distribution ND. The initial recorded mixed strategy is generated by firstly drawing x̃p,j
iid from U [0, 1], and then normalizing to x(0)p,j =

x̃p,j∑
j′∈[T ] x̃p,j

.

Notably, this randomized initialization allows DINES to find asymmetric equilibria in games with
symmetric players or symmetric actions, while retaining the permutation equivariance. In com-
parison, if a algorithm is both deterministic and permutation equivariant, then its output must be
symmetric for symmetric players (or symmetric actions). Although symmetric equilibria are guar-
anteed to exist in symmetric games, Duan et al. (2023b) have shown that the restriction to symmetric
output can result in arbitrarily large loss in social welfare compared with the asymmetric equilibria.
By identically and independently initializing the embeddings of players and actions, our model nat-
urally breaks the symmetry, while the output distribution still guarantees permutation equivariance.

GENERATION OF MIXED STRATEGY

The function Φ for generating the mixed strategies from the inner states is simply implemented as
a feed forward network (FFN) which maps each action embedding to a logit, which is then turned
into a distribution on action space by the softmax operator. This can be represented as follows:

x(k)
p = Φ(y(k−1)

p ; θ
(k)
Φ ) = softmax(FFN(α

(k−1)
p,1 ; θ

(k)
Φ ), · · · ,FFN(α

(k−1)
p,T ; θ

(k)
Φ )).

UPDATING OF EMBEDDINGS

The updating of all embeddings in each round, i.e. the function Ψ, is decomposed into four phases,
mainly consisting of attention operations. For the ease of notation, here we omit the superscript of
(k) on intermediate embeddings. We also omit the weight parameters and feed forward networks in
attention operations.

Action-wise self-attention. The first phase updates the action embeddings for each player individ-
ually, given the result of utility quries u(k)p,j . This is done through a self-attention:

(α′
p,j)j∈[T ] = selfAttention

((
concat(α

(k−1)
p,j , u

(k)
p,j )

)
j∈[T ]

)
.

Player-action attention. In the second phase, we update the player embedding for each player
individually, aggregating the updated information of her actions through a single-query attention:

β′
p = Attention

(
β(k−1)
p ,

(
concat(β(k−1)

p , α′
p,j)

)
j∈[T ]

)
.

Player-wise self-attention. In the third phase, we update the player embeddings globally through a
player-wise self-attention, obtaining the final player embeddings for this round:

(β(k)
p )p∈[N ] = selfAttention

(
(β′

p)p∈[N ]

)
.

Action-player update. In the fourth phase, we update the action embeddings with, obtaining the
final action embeddings for this round:

α
(k)
p,j = FFN

(
concat(α′

p,j , β
(k)
p )

)
.

Notably, since all operations in the updating of embeddings satisfies permutation equivariance, the
output distribution of DINES is also permutation-equivariant. Moreover, this decomposed updating
procedure prevents the potentially high computational cost incurred by the attention operation while
effectively preserving the expressive power. Consequently, the total time complexity of DINES in
each round is substantially reduced to Θ(NT 2 +N2). In comparison, a self-attention on all player-
action pairs incurs Θ(N2T 2) time complexity, and the state-of-the-art method (Liu et al., 2024) has
a Θ(T 2N ) complexity due to self-attention operations on all TN joint action profiles.
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LOSS FUNCTION

After K rounds of iteration, the output mixed strategy x̂ is generated by the function Φ similarly
as before. Following the prevailing approach in machine learning-based methods solving Nash
Equilibria, we utilize the Nash approximation NashAppr(x̂) as the loss function.

5 EXPERIMENTS

In this section, we present our experimental results, evaluating the performance of our DINES model
on tabular games and polymatrix games. The goal of our empirical study is threefold. Firstly, we
compare our model with baseline deep learning methods on tabular games, to demonstrate the su-
periority of our model in terms of the accuracy-efficiency trade-off. Secondly, we compare the
performance of our model under different number of iteration rounds, showing a improved conver-
gence performance compared with classical learning dynamics. Thirdly, we evaluate our model on
poly-matrix games with large number of players, highlighting the scalability and adaptivity of our
model in large-scale succinct games.

Model Tabular Game
N = 2
T = 16

N = 2
T = 64

N = 3
T = 8

N = 3
T = 16

DINES (K = 15) 0.0296 0.0618 0.0431 0.0510
DINES (K = 30) 0.0242 0.0509 0.0373 0.0442
DINES (K = 60) 0.0229 0.0501 0.0364 0.0432
NFG-Transformer 0.0243 0.0502 0.0412 0.0297

MLP 0.2422 0.1729 0.1143 0.0713

Table 1: Experimental results in tabular games

Model Polymatrix Game
N = 3
T = 16

N = 4
T = 8

N = 8
T = 4

N = 20
T = 4

DINES (K = 15) 0.0642 0.0589 0.0511 0.1201
DINES (K = 30) 0.0572 0.0515 0.0463 0.1187
DINES (K = 60) 0.0546 0.0497 0.0425 0.1150

Table 2: Experimental results in polymatrix games

5.1 DATA GENERATION AND EXPERIMENT SETUP

For tabular games with N players and T actions, the utility functions are denoted as N tables each
of size TN . Following existing works, we generate each entry in the table independently from the
uniform distribution U [−1, 1].
For polymatrix games with N players and T actions, we generate N(N − 1) payoff matrices, each
is T × T with entries independently following U [−1, 1].
The experiments are done on a NVIDIA TITAN V GPU. We select a embedding dimension of
D = 32 for our model throughout all experiments.

5.2 TABULAR GAMES

The experimental results on tabular games is presented in Table 1. The methods in Duan et al.
(2023a) and Liu et al. (2024) are taken as baselines.2 Across all evaluated settings, DINES con-
sistently achieves the highest accuracy or performs comparably to the best. Given the significantly

2We report that the training process for Liu et al. (2024) using the official code fails to converge in more
than 106 seconds. Therefore, the results presented are sourced directly from their published paper.
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reduced time complexity, these results demonstrate the superiority of our model in terms of the
accuracy-efficiency trade-off.

Comparing the performance of DINES with different number K of total rounds, one can find that
the approximation improves as K increases, but not too much. This means selecting K = 30 is
enough for a good concentration performance. In comparison, traditional learning dynamics require
typically 105 rounds of iterations to achieve good approximation in average (Li et al., 2024). This
implies the improved concentration performance of our DINES model.

5.3 POLYMATRIX GAMES

The experimental results of DINES on polymatrix games of various sizes is presented in Table 2.
For existing deep-learning methods, these games are intractable as the utility functions must be
represented in tabular form, which has an exponential size of NTN . In contrast, DINES is able
to solve these games with affordable running time, and achieves sufficiently good approximations3.
This clearly demonstrate the scalability of DINES, enabling it to be applied in large scale succinct
games.

6 CONCLUSION

In this paper, we propose Deep Iterative Nash Equilibrium Solver (DINES), built on a novel frame-
work incorporating deep learning into the iterative structure of classical learning dynamics. Our
approach significantly reduce the time complexity to a polynomial level, resulting in enhanced scal-
ability in games with large number of players and actions, especially in large-scale succinct form
games. Experimental results on tabular games and polymatrix games demonstrate the superiority of
our approach in terms of the accuracy-efficiency trade-off.
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