
CVPR
#36

CVPR
#36

CVPR 2025 Submission #36. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

LATTE: Learning to Reason with Vision Specialists

Anonymous CVPR submission

Paper ID 36

Abstract

While open-source vision-language models perform well on001
simple question-answering, they still struggle with com-002
plex questions that require heterogeneous vision capabili-003
ties. Unfortunately, we have yet to develop methods that004
infuse fine-grained recognition, visual grounding, depth es-005
timation, and 3D reasoning into a single vision-language006
model. Instead of forcing smaller models to learn both per-007
ception and reasoning, we propose LATTE, a family of008
vision-language models that have LeArned to Think wiTh009
vision spEcialists. By offloading perception to state-of-the-010
art vision models, our approach enables vision-language011
models to focus solely on reasoning over high-quality per-012
ceptual information. To train LATTE, we create and fil-013
ter a large dataset of 273K high-quality synthetic reasoning014
traces over perceptual outputs of vision specialists. LATTE015
trains on this data and brings significant gains across 6016
benchmarks covering both perception and reasoning abil-017
ities, compared to baselines instruction-tuned with direct018
answers. On the other hand, models trained by distill-019
ing both perception and reasoning from larger models lead020
to smaller gains or even degradation on some perception021
tasks. Further, our method results in a 2% to 5% improve-022
ment on average across all benchmarks over the vanilla023
instruction-tuned baseline regardless of model backbones,024
with gains up to 16% in MMVet.025

1. Introduction026

The landscape of real-world vision-language tasks is vast,027
spanning from basic visual question answering [1] and fine-028
grained object recognition to complex multi-step geomet-029
ric reasoning [8]. These tasks demand both perception and030
reasoning. For instance, a user might photograph a gas031
price panel and ask how much fuel they can afford within032
a given budget (Figure 1). Solving this requires a vision-033
language model with strong perception—localizing prices034
via OCR—and multi-step reasoning to compute the answer.035
While large proprietary models like GPT-4o excel due to036
extensive data and model size scaling, smaller open-source037
models still struggle [22].038

To narrow the gap between large proprietary models and 039
smaller open-source counterparts within a reasonable bud- 040
get, researchers have explored distilling both perception and 041
reasoning from larger vision-language models [25, 28] or 042
specialized vision models [9]. Despite these efforts, open- 043
source models continue to lag behind. 044

We argue that the primary reason for this lag is the per- 045
ception limitations of open-source vision-language models. 046
While open-source language models have largely caught up 047
with their proprietary counterparts [2, 13], vision remains 048
a complex fusion of heterogeneous capabilities. The com- 049
puter vision community has historically tackled these ca- 050
pabilities separately—e.g., DepthAnything [29] for depth 051
estimation and GroundingDINO [19] for object recogni- 052
tion—while unified models still lag behind [20]. Simi- 053
larly, the human brain dedicates distinct regions to cat- 054
egorical recognition (ventral stream) and spatial reason- 055
ing (dorsal stream)[6], with the reasoning and language- 056
processing frontal and temporal lobes occupying a smaller 057
volume[12]. By contrast, vision-language models remain 058
heavily skewed toward language, treating visual encoders 059
as an afterthought [4]. 060

We depart from the learning to perceive and reason 061
paradigm to propose a new approach: learning to rea- 062
son with vision specialists. Rather than expecting a small 063
model to master both perception and reasoning, we lever- 064
age decades of advancements in computer vision by relying 065
on specialized vision models to provide perceptual informa- 066
tion. This allows the vision-language model to focus exclu- 067
sively on acquiring perceptual information from vision spe- 068
cialists and reasoning over them—enabling it to ‘see further 069
by standing on the shoulders of giants.’ Such a paradigm re- 070
duces the burden on models to extract low-level perceptual 071
signals, allowing them to concentrate on higher-level rea- 072
soning while benefiting from the robust capabilities of ded- 073
icated vision specialists, which is particularly important for 074
small open-source models because of their limited capacity 075
to effectively learn both perception and reasoning. 076

To implement this paradigm, we curate high-quality 077
training data in the form of multi-step reasoning traces that 078
integrate perceptual information from vision specialists. We 079
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Mantis-LLaVA-7B: 3.6

LLaVA-OV: 5.2

Mantis-LLaVA: (A) 

LLaVA-OV: A. The boy can reach the book.

Q: How many gallons of supreme gasoline can 
I get with $50?

A: 13.7

t0: I need to extract the price of supreme gasoline from the image.

a0: OCR(image-0)


t1: The price of supreme gasoline is $3.65 per gallon...I need to 
divide $50 by $3.65.

a1: Calculate(“50 / 3.65”)


t2: The calculation shows that you can get approximately 13.7 
gallons of supreme gasoline with $50.

a2: Terminate(“13.7”)

o0: “Gasoline - Self Serve - Regular - 3.49 9/10 - Plus - 3.55 9/10 - 
Supreme - 3.65 9/10 - Diesel No. 2 - 3.60 9/10”



o1: 13.6986



LATTE  LATTE
t0: To determine if the boy can reach the highest book, I need to analyze the image for 
the boy's height and the height of the bookshelf.


Q: Can the boy reach the highest book? 

(A) Yes, (B) No

A: (B)    

a0: LocalizeObjects(image-0, ["boy", "bookshelf"])

o0: [{'label': 'boy', 'bbox': [0.07, 0.48, 0.18, 0.95], 
'score': 0.89}, 

{'label': 'bookshelf', 'bbox': [0.13, 0.01, 0.32, 0.72], 
'score': 0.72}]


t1: The boy's height is below the bookshelf, 
indicating he cannot reach the highest book.

a1: Terminate(“B”)

Figure 1. Example outputs of LATTE vs. SoTA multi-modal large language models. Our LATTE model is able to answer challenging
visual questions by reasoning over perceptual information output by vision specialists.

formulate the multi-step reasoning traces as LATTE-trace,080
where each step consists of: (1) a thought for verbalized081
reasoning; (2) an action to retrieve perceptual information082
from a specific vision specialist; and (3) an observation of083
the returned data. Since obtaining these traces at scale with084
human annotators is costly, we develop two data engines085
for synthetic data generation. First, we leverage GPT-4o’s086
strong multimodal reasoning and state-of-the-art vision spe-087
cialists’ precise perception to generate large-scale synthetic088
reasoning traces across diverse image sources, applying ag-089
gressive filtering and mixing techniques. Second, we gen-090
erate reasoning traces using Python programs and struc-091
tured reasoning templates, comparing them against GPT-092
generated traces to evaluate reasoning quality. In total, we093
produce over 1M reasoning traces across 31 datasets with094
GPT-4o and handcrafted programs.095

With this data, we finetune small multi-modal language096
models to reason with vision specialists and evaluate our097
models on 6 benchmarks covering both perception and rea-098
soning skills. We compare our model to two types of base-099
lines: (1) multi-modal language models trained with vanilla100
instruction tuning with only direct answers; and (2) models101
trained by distilling both perception and reasoning.102

Finally, we highlight four major takeaways from our ex-103
periments: First, learning to reason with vision specialists104
enables our model to outperform vanilla instruction-tuned105
baseline by significant margins on both perception and rea-106
soning benchmarks, with an overall average gain of 6.4%.107
By contrast, the other distillation methods lead to smaller108
gains or even degradation in the perception performance.109
This trend holds as we scale the training data. Second,110
our method consistently outperforms the vanilla instruction-111
tuned baseline by 2 − 5% on average across all bench-112
marks regardless of model backbones, with staggering per-113
formance gains of 10 − 20% on MMVet. Third, through114
data ablations, we confirm that the quality of LATTE-trace115
matters more than quantity: our best data recipe consists of116
only 293K LATTE-trace which GPT-4o generated and an-117

swered correctly, and it leads to larger performance gains 118
than all other data recipes of larger scales (up to 2x larger or 119
more). Finally, programmatically-generated LATTE-trace 120
can hurt model performance as a result of the worse reason- 121
ing quality, suggesting that again that high-quality reason- 122
ing is crucial to the model’s performance. 123

2. Learning to Think with Vision Specialists 124

Our goal is to train vision-language models to reason about 125
complex multi-modal tasks with the help of vision special- 126
ists. To train such models, we need reasoning traces that in- 127
volve (1) invoking vision specialists and (2) reasoning over 128
their outputs. We refer to such data as LATTE-trace. One 129
LATTE-trace T is a sequence of steps Si, where each step 130
consists of thought ti, action ai and observation oi: 131

T = (S0, S1, ..., Sn) = (Si)
n
i=0 (1) 132

Si = (ti, ai, oi), ti ∈ L, ai ∈ A (2) 133

where L represents language space, and A is the action 134
space consisting of vision specialists. Note that the model 135
only generates ti and ai, which the training loss is applied 136
on, whereas oi is obtained from the vision specialists. 137
Action space. The action space A of our model consists 138
of vision tools that are either specialized vision models or 139
image processing tools. Concretely, these include OCR 140
[10], GETOBJECTS [33], LOCALIZEOBJECTS [19], ES- 141
TIMATEOBJECTDEPTH [29], ESTIMATEREGIONDEPTH 142
[29], DETECTFACES [17], CROP, ZOOMIN, GETIMAGE- 143
TOTEXTSSIMILARITY [23], GETIMAGETOIMAGESSIMI- 144
LARITY [23], GETTEXTTOIMAGESSIMILARITY [23]. In- 145
spired by prior works on multi-modal tool use [7, 8, 18, 146
22, 26], we include a few additional tools to help with 147
reasoning: QUERYLANGUAGEMODEL, QUERYKNOWL- 148
EDGEBASE, CALCULATE, and SOLVEMATHEQUATION. 149
We also include TERMINATE as a tool for the model to out- 150
put a final answer in the same action format. Our final ac- 151
tion space consists of 15 tools, and their full implementation 152
details can be found in the Appendix. 153
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t1: Then, I can extract the 

numbers on the motorcycles.

a1: OCR(image-1)


t2: The motorcyclist wearing a yellow suit is the 
middle one with 16 on the motorcycle.

a2: Terminate(“16”)

o1: “17, 9, 16, 2, 23”



Model-based generation

Programmatic generation

Parse

Direct Answer (Direct) 
t0: After inspecting the image closely, I can 
conclude that the answer is 16.

a0: Terminate(“16”)

Q: Between {obj1.name} and {obj2.name}, which is 
closer to the camera?  

A. {obj1.name}  B. {obj2.name}

A: B

t0: I need to first get the depth of {obj1.name}.

a0: EstimateObjectDepth(image-0, {obj1.name})

o0: depth: {obj1.depth}



t1: Then, I need to estimate the depth of {obj2.name}.

a1: EstimateObjectDepth(image-0, {obj2.name})

o1: depth: {obj2.depth}



t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

t0: I need to first get the depth of the ...

a0: EstimateObjectDepth(image-0, )

o0: depth: 

t1: Then, I need to estimate the depth of the .

a1: EstimateObjectDepth(image-0, )

o1: depth:

t2: I’ve gather enough information to answer...

a2: Terminate(“B”)

motorcyclist
“motorcyclist...”

5.91



grass
“grass”

 5.44



Generate

Generate

Q: What is the number on the 
motorcycle of the motorcyclist 
wearing a yellow suit?

A: 16

Annotate

Q: Between the  
and the , which is closer to the camera?  

A.    B. 
A: B

 motorcyclist wearing a yellow suit

motorcyclist
grass

grass


obj1
 name: 

 depth: 
obj2:

 name: 
 depth: 

motorcyclist 
wearing a yellow sui

5.91


gras
5.44


t0: I need to first identify the motorcyclist wearing 
a yellow suit. 

a0: LocalizeObjects(image-0, “motorcyclist 
wearing a yellow suit”)

o0: image-1

Verify

LATTE-trace

Templates Generated QA and LATTE-trace

MLM

t0: There are two motorcyclists in yellowish suits, 
but one is more neon-green than yellow. The other 
motorcyclist has number 16 on their motorcycle. 

a0: Terminate(“16”)

Chain-of-Thought (CoT) 

OR

Figure 2. Data generation. We illustrate our model-based data generation (top) and programmatic generation (bottom) pipelines.

2.1. LATTE-trace generation154
We generate synthetic LATTE-trace data with two auto-155
matic approaches: Model-based generation and Program-156
matic data generation.157

Model-based generation. The model-based data genera-158
tion pipeline consists of three steps (Figure 2 top):159

1. GENERATE. First, we leverage images and QA ex-160
amples in existing visual instruction tuning datasets and161
generate LATTE-traces to solve the questions with GPT-162
4o (2024-08-06). We include diverse questions on both163
single-image and multi-image examples from two large-164
scale instruction tuning datasets, Cauldron and Mantis-165
Instruct [11, 14]. We feed the images and questions to GPT-166
4o and prompt it to answer the questions by following a167
LATTE-trace or just CoT when it is not necessary (e.g., the168
question is straightforward) or helpful (e.g., the question re-169
quires domain-specific knowledge out of the scope of avail-170
able tools) to call specialized vision tools (Figure 2).171
2. VERIFY. Second, we verify GPT-4o’s generated an-172
swers against the ground-truth. We force GPT-4o to always173
end with TERMINATE(answer) and compare its prediction174
to the ground-truth. If the final answer following a reason-175
ing trace is correct, we move this LATTE-trace to the next176
stage. Otherwise, we convert this example into the direct177
answer (Direct) format with the ground-truth (Figure 2).178
3. PARSE. Finally, we check the JSON syntax of each step179
of the LATTE-trace. Similar to the previous stage, we again180
keep the LATTE-traces free of syntax errors and turn the181
others into the Direct format with ground-truth answers.182

Programmatic data generation. While model-based data183
generation distills reasoning from proprietary models, we184
are curious if reasoning with vision specialists can be185
learned in another manner without reliance on proprietary186
models. To study this perspective, we implement a pro-187

grammatic data generation engine for synthesizing LATTE- 188
traces (Figure 2 bottom). This pipeline involves two steps: 189

1. ANNOTATE. First, we gather existing dense annotations 190
of images. We adopt Visual Genome (VG) as it contains 191
rich human annotations of objects, attributes, and relation- 192
ships of the images. In addition, we obtain depth maps of 193
the VG images with Depth-Anything-v2 [29]. 194
2. GENERATE. Next, we programmatically generate both 195
the QA pairs and the corresponding LATTE-traces with 196
manually written templates and the dense annotations of the 197
images. We reuse the pipeline from [31, 32] for generating 198
diverse QA pairs that cover various vision capabilities such 199
as counting and spatial understanding. To generate LATTE- 200
traces, we define templates for thoughts, actions, and obser- 201
vations across all steps. See Appendix for more details. 202

3. Experiments 203

We perform extensive experiments with small multi-modal 204
models and 9 data recipes on 6 benchmarks. 205

Models. We adopt models that support multi-image inputs 206
as our data includes reasoning traces with multiple images. 207
For most of our experiments, we use Mantis-8B-SigLIP- 208
LLaMA-3 as the base model. We additionally experiment 209
with Mantis-8B-CLIP-LLaMA-3, and LLaVA-OneVision- 210
7B (Qwen2-7B and SigLIP) in our ablations. 211

Baselines. We compare our model to two types of 212
baselines: (1) vanilla instruction-tuning (Vanilla IT) – 213
instruction-tuning data with only direct answers – and (2) 214
distillation methods that train small models by distilling 215
both perception and reasoning from larger models, includ- 216
ing VPD [9], VisCoT [25], and LLaVa-CoT[28]. 217

Evaluation setup. We select 6 multi-modal benchmarks 218
covering both perception and reasoning. The perception- 219
focused benchmarks include RealWorldQA, CV-Bench and 220
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Table 1. LATTE vs. Baselines on Perception and Reasoning Benchmarks. Our method LATTE brings substantial gains over the
vanilla instruction-tuned (Vanilla IT) baseline on both perception and perception + reasoning benchmarks.

Method
Perception Perception + Reasoning Overall

BLINK CV-Bench RealWorldQA Avg MathVista MMStar MMVet Avg Avg

Vanilla IT 44.1 49.2 41.4 44.9 31.0 39.7 27.8 32.8 38.9
VPD 41.6 48.8 44.8 45.1 (+0.2) 33.0 41.1 32.8 35.7 (+2.8) 40.4 (+1.5)
LLaVa-CoT 42.2 40.4 38.0 40.2 (-4.7) 36.7 44.6 40.2 40.5 (+7.7) 40.4 (+1.5)
LATTE 46.4 54.0 42.0 47.5 (+2.6) 36.9 44.2 47.9 43.0 (+10.2) 45.2 (+6.4)

Table 2. LATTE vs. Vanilla IT with Different Models. We learn that LATTE leads to performance gains over Vanilla IT regardless of
the base models. The gains are 2-5% on average across all 6 benchmarks and up to 16% on MMVet.

Language / Vision Starting
checkpoint Method Perception Perception + Reasoning Overall

CV-Bench BLINK RealWorldQA Avg MathVista MMStar MMVet Avg Avg

LLaMA3-8B / CLIP Mantis
Pretrained

Vanilla IT 52.6 45.8 52.3 50.2 33.1 36.7 28.9 32.9 41.6
LATTE 56.9 49.6 51.1 52.6 36.6 40.8 45.2 40.8 46.7 (+5.1)

LLaMA3-8B / SigLIP

Vanilla IT 52.3 43.7 51.8 49.3 31.1 40.5 33.0 34.9 42.1
LATTE 57.2 47.8 53.7 52.9 34.9 44.6 45.2 41.6 47.2 (+5.2)

Mantis
Instruct-tuned

Vanilla IT 50.6 46.7 54.8 50.7 36.2 40.7 29.7 35.5 43.1
LATTE 51.7 47.6 56.5 51.9 36.3 42.5 45.7 41.5 46.7 (+3.6)

Qwen2-7B / SigLIP LLaVa-OV
Stage 1.5

Vanilla IT 56.8 50.3 57.8 55.0 42.4 50.1 39.3 43.9 49.5
LATTE 60.2 49.9 58.8 56.3 41.9 51.0 50.9 48.0 52.1 (+2.7)

BLINK [5, 15, 24, 27], and the perception + reasoning ones221
are MathVista, MMStar, and MMVet [3, 21, 30]. Additional222
details can be found in the Appendix.223

3.1. Main results224
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Figure 3. Performance of LATTE vs. Baselines across Train-
ing Data Scales. We find that our method leads to consistent gains
across varying training data sizes – 98K, 200K and 293K.

Our method leads to substantial gains compared to225
vanilla instruction-tuning on both perception and rea-226
soning benchmarks, whereas other distillation baselines227
result in smaller gains or even degradation on some per-228
ception tasks. We find that learning to reason with vision229
specialists enables our model to achieve consistent gains230
on perception-focused VQA benchmarks as well as bench-231
marks that require both perception and reasoning, with av-232
erage gains of 2.6% and 10.2% respectively (Table 1). By233
contrast, both distillation baselines VPD and LLaVa-CoT234
bring much smaller gains, with an average of 1.5% across235
all benchmarks, compared to ours (6.4%). Further, we ob-236
serve that the same trend holds as we scale the training237
data size from 98K to 200K and 293K, where our method238
consistently brings larger gains on both perception and per-239
ception + reasoning benchmarks (Figure 3). Interestingly,240
LLaVa-CoT even hurts the model’s performance on percep-241

tion benchmarks, even though it increases the performance 242
on the perception + reasoning benchmarks (Table 1). This 243
result suggests that GPT4-o might still be inferior to vision 244
specialists on some perception tasks, as LLaVa-CoT distills 245
purely from GPT4-o. 246

Our method beats the vanilla instruction-tuning base- 247
line on average across all benchmarks regardless of the 248
base model and checkpoint, with significant gains of 10- 249
16% on MMVet. We fine-tune 3 different multi-modal 250
models with all 293K LATTE-traces starting from different 251
checkpoints. We observe that our method leads to consis- 252
tent gains of 2-5% in the model’s average accuracy across 253
6 benchmarks compared to the baselines instruction-tuned 254
with the same examples in the Direct format (Table 2). We 255
note that our method results in staggering gains of 10-16% 256
on MMVet, which covers a wide range of perceptual and 257
reasoning capabilities. Moreover, we find that our data re- 258
sults in larger gains on earlier pretrained checkpoints than 259
on later-stage instruction-tuned checkpoints, likely due to 260
the relatively small size of our data compared to Mantis’ 261
and LLaVa-OV’s instruction-tuning data (1.2M and 4.5M) 262
and some overlap in the images and questions [11, 16]. 263

4. Conclusion 264
We propose to learn multi-modal language models to rea- 265
son with vision specialists instead of becoming both vision 266
specialists and reasoning experts. 267

Limitations and Future Work. First, our method requires 268
customized implementations of the specialized vision tools. 269
Second, reasoning with the vision specialists also requires 270
additional compute at inference time. Future work can opti- 271
mize and enhance the implementations of vision specialists. 272
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