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Abstract001

Large language models (LLMs) consistently002
demonstrate superior performance in vari-003
ous natural language processing (NLP) tasks.004
However, research on their abilities to process005
visual and spatial information, which is essen-006
tial for understanding visually-rich documents007
(VRDs), is limited. This paper presents a pi-008
oneering study and benchmark specifically de-009
signed to evaluate the spatial competencies of010
LLMs in the context of VRDs. Our assessment011
covers a comprehensive range of dimensions,012
including spatial perception, positional predic-013
tion, information extraction, and layout gener-014
ation. The results show that despite the lack015
of inherent visual perception mechanisms in016
LLMs, these models can effectively infer spa-017
tial relationships within VRDs. In addition, we018
propose a layout-aware learning strategy with019
off-the-shelf LLMs that can significantly im-020
prove their performance. Our results indicate021
a significant contribution to the field of docu-022
ment intelligence, confirming the effectiveness023
of our methodology and pointing the way for024
future research in document analysis.025

1 Introduction026

Large Language Models (LLMs) exhibit remark-027

able capabilities in understanding and generating028

natural language text across diverse applications029

(Brown et al., 2020; Liu et al., 2024). In cog-030

nitive linguistics, language not only serves as a031

bridge for communicating thoughts and emotions,032

but also acts as a semantic proxy for the physical033

world, inherently reflecting the entities and pro-034

cesses within it (OKeefe and Dostrovsky, 1971;035

Lakoff, 1993). This intrinsic linkage between036

language and reality offers LLMs a distinct van-037

tage point to engage with the world through tex-038

tual analysis, enabling a nuanced and comprehen-039

sive understanding of real-world phenomena and040

even fundamental concepts, e.g., color (Abdou041

et al., 2021), direction (Patel and Pavlick, 2022),042

To determine the location of point A relative to point B, you need to
compare the x-coordinates and y-coordinates of the two points.
Comparing x-coordinates: The x-coordinate of point A is 1, and the x-
coordinate of point B is 4. Since 1 < 4, we know that point A is to
the left of point B. Comparing y-coordinates: The y-coordinate of
point A is 2, and the y-coordinate of point B is 5. Since 2 < 5, we
know that point A is below point B.
Therefore, point A is located to the left and below point B.

Instruction: The coordinates of the lower left corner of the
coordinate system are (0, 0), and the coordinates of the upper right
corner are (1000, 1000).
Input: Now the A coordinate point is (1, 2), and the B coordinate
point is (4, 5), where is point A at point B?

Please draw their location.

Here is a visual representation of the locations of
point A and point B on the coordinate system: In this
diagram, the x-axis runs horizontally, increasing from
left to right, and the y-axis runs vertically, increasing
from bottom to top. Point A is located to the left
and below point B.

Wow!😲

Figure 1: GPTs have a strong proficiency in understand-
ing and generating document layouts.

shape (Yamada et al., 2023), tabular structures 043

(Tang et al., 2023) and geography (Roberts et al., 044

2023). These capabilities underscore the versatil- 045

ity of LLMs in interacting with the world through 046

the lens of language and highlight their versatility 047

and applicability across diverse domains. 048

The example, as shown in Figure. 1, demon- 049

strates that LLMs have remarkable abilities to 050

comprehend content and generate layouts within 051

a document page. While recent advancements 052

in leveraging LLMs for information retrieval (He 053

et al., 2023; Liu et al., 2024) and visual ground- 054

ing (Chen et al., 2024; Zhang et al., 2024), a com- 055

prehensive systematic framework addressing the 056

spatial understanding capabilities of LLMs within 057

visually-rich documents (VRDs) remains absent. 058

Unlike recent layout-aware document AI models 059

(Xu et al., 2020, 2021; Huang et al., 2022; Li et al., 060

2021; Yu et al., 2023; Lee et al., 2023) that can 061

utilize multimodal information, LLMs encounter 062

considerable challenges in recognizing named en- 063

tities and their relationships without direct visual 064

input. Therefore, this limitation underscores the 065

necessity for further exploration and development 066

in this research direction. 067
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Figure 2: Proposed framework for evaluating LLMs’ spatial understanding. S: text segment, L: label, P: position.

In light of these considerations, we introduce an068

evaluation framework to systematically assess the069

spatial comprehension capabilities of LLMs in the070

context of VRDs. Our proposed tasks are meticu-071

lously crafted to progress from elementary to ad-072

vanced, thereby providing a thorough exploration073

of LLMs’ capacity to understand, extract, reason,074

and generate spatial information. Furthermore, we075

introduce a novel layout-aware approach building076

upon recent advancements in contextual learning077

(Wei et al., 2023; Bang et al., 2023). This ap-078

proach empowers LLMs with the capability to ef-079

fectively incorporate layout features into their pro-080

cessing, thereby bolstering their spatial compre-081

hension on VRDs. This achievement is crucial as082

it provides deep insights into how LLMs can effec-083

tively navigate and connect information in such an084

information-sparse artificially virtual environment,085

ultimately broadening their applicability in the fu-086

ture unexplored research.087

The contributions can be summarized as fol-088

lows: 1) We present an evaluation framework that089

assesses the spatial and generative competencies090

of LLMs in VRDs across multi-dimensions. 2)091

We perform an exhaustive analysis of prevalent092

LLMs, elucidating their spatial and generative per-093

formance in VRDs. 3) We introduce a layout-094

aware learning strategy to integrate spatial features095

and patterns, markedly enhancing LLMs’ perfor-096

mance.097

2 Framework098

Figure. 2 illustrates the proposed evaluation frame-099

work, which encompasses four distinct schemes:100

1) Basic spatial perception (BSP) is designed to101

evaluate whether LLMs comprehend coordinate 102

systems and accurately interpret the spatial seman- 103

tics of directional terms, thereby assessing their 104

“sense of direction.” We evaluate LLMs’ capac- 105

ity to comprehend coordinates and relative posi- 106

tions through two tiered experiments: 1) pixel- 107

to-pixel (P2P) for pinpointing relative pixel posi- 108

tions, and 2) bbox-to-bbox (B2B) for ascertaining 109

positions between bounding boxes. This evalua- 110

tion includes both coarse-grained and fine-grained 111

tasks to probe the depth of LLMs’ spatial under- 112

standing: relaxed and exact. Relaxed to predict 113

the basic four directions (top, bottom, left, right), 114

while exact pinpointing the eight extended direc- 115

tions (e.g., top-left, bottom-left, top-right, bottom- 116

right). 2) Page location prediction (PLP) func- 117

tions as a regression task that predicts the spa- 118

tial coordinates of a current text field by utilizing 119

the semantics of spatially proximate fields and the 120

broader layout context. In VRD images, text seg- 121

ments, such as named entities, often follow dis- 122

cernible positional arrangement patterns, includ- 123

ing vertical or horizontal alignments. PLP in- 124

volves obscuring specific field positions during 125

testing and challenging LLMs to deduce the miss- 126

ing coordinates of a specified text segment, which 127

answers: “Where should this text content appear 128

in the document?” This mimics real-world con- 129

ditions where documents may be incomplete or 130

poorly structured, necessitating the use of contex- 131

tual and logical inference to interpret document 132

architecture. 3) Document information extrac- 133

tion (DIE) involves two phases: Semantic En- 134

tity Recognition (SER) and Relation Extraction 135

(RE). SER aims to identify and categorize enti- 136
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ties within a document, with a distinction between137

coarse-grained (bbox) and fine-grained (token) ap-138

proaches. While coarse-grained SER identifies en-139

tity types such as key and value, fine-grained SER140

classifies entities into category-specific types. RE141

furthers this by predicting relationships between142

entities. 4) Document layout generation (DLG)143

focuses on whether LLMs can produce layouts144

aligned with category-specific probability distri-145

butions. We ask LLMs to generate layouts for146

VRDs, employing probability distributions of two-147

dimensional variables to gauge their layout gen-148

eration prowess. The task hinges on comparing149

LLMs’ predicted x- and y-directional distributions150

with actual ones to evaluate the accuracy of layout151

generation. Thus, this task examines the capac-152

ity of LLMs to harness prior layout design knowl-153

edge for logical entity positioning from a holis-154

tic viewpoint. Therefore, BSP and PLP are de-155

signed to evaluate the models’ ability to under-156

stand local and global positional information, re-157

spectively. Concurrently, DIE and DLG are tasked158

with assessing the models’ grasp of semantic re-159

lationships among entities, both on a local and a160

holistic level. To construct our benchmark, we col-161

lect and re-annotate data from the existing FUNSD162

(Jaume et al., 2019) and SEAB (Wang et al., 2023)163

datasets, which finally contains 466 documents.164

Following He et al. (2023), we standardize to fa-165

cilitate subsequent data processing and evaluation166

from LLMs’ output. We meticulously construct167

instructions that contains: 1) task description: a168

clear and concise explanation of the task expected169

to perform, which outlines the objective and pro-170

vides any necessary background information; 2)171

label mapping/constraint: it involves defining the172

set of possible labels or categories that the LLM173

can predict and are guided within a specific scope;174

3) formatting: the structure and presentation of the175

input and output data; 4) demonstration: the inclu-176

sion of examples or demonstrations that illustrate177

how the task should be performed, especially for178

the few-shot learning scenario. More details refer179

to Appx. A.180

3 Experimental Results181

We primarily utilize the GPT3.5 (gpt3.5-turbo)182

and GPT4 (gpt4-0125-preview) models for our183

experiments, as they are the only two capable of184

successfully executing the full range of our exper-185

imental protocols.186

3.1 BSP: Does the LLM sense direction? 187

Table 1 shows that both GPT3.5 and GPT4 ex- 188

cel in pixel-level perception. It suggests that with 189

the right enhancements, both models could signifi- 190

cantly improve their spatial reasoning capabilities 191

in two-dimensional contexts. However, GPT4 un-

EXACT RELAXED

P % R % F1 % P % R % F1 %

P2
P GPT3.5 58.99 62.33 60.61 98.64 92.27 95.35

GPT4 99.33 98.40 98.86 99.53 98.60 99.06

B
2B GPT3.5 65.72 43.47 52.33 89.55 68.67 77.73

GPT4 87.91 62.70 73.20 89.90 64.10 74.84

Table 1: Evaluation results of exact and relaxed po-
sition predictions for LLMs with zero-shot inference
(w/o demonstration). Bold indicates the better results.

192
derperforms in B2B prediction for relaxed direc- 193

tions. See Appx. 3 for visualization. 194

3.2 PLP: Can LLMs fill in the gaps? 195

We challenge LLMs to leverage their inherent 196

knowledge of key-value pair layouts and seman- 197

tic similarities to deduce the spatial locations of 198

omitted fields in VRDs, devoid of visual cues 199

(only text input provided; no images.) We eval- 200

uate the results utilizing the reversed normalized 201

Euclidean distance. Table 2 shows that LLMs 202

equipped with a visual channel, such as GPT4 and 203

CogVLM (Wang et al., 2024), outperform purely 204

textual models as expected. Notably, GPT3.5 still 205

scores above 80 on average, indicating that textual 206

LLMs, when guided by effective prompts, can ac- 207

curately deduce the spatial locations of semantic 208

entities despite lacking a visual channel.

V
IS

IO
N

T1 T1
-V

T2 T2
-V

T3 T3
-V

AV
G

COGVLM7B ✓ 85.8 81.3 63.9 58.2 67.0 66.3 70.4

GPT3.5 × 83.9 80.5 89.8 84.0 76.4 80.0 82.4
GPT4 ✓ 92.4 83.9 88.1 89.9 95.7 86.0 89.3

Table 2: Scores of page location prediction . Note: T1,
T2, T3 represent three typical types; “-v” denotes value
types, with higher scores indicating greater precision.

209

3.3 DIE: Does information extraction need 210

spatial information? 211

Results in Table 4 indicate that GPT4 signifi- 212

cantly outperforms the average in fine-grained 213

SER task, underscoring GPT4’ domain-agnostic 214

strengths. Moreover, GPT3.5 adeptly categorizes 215
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MODEL METHODS
OUT-OF-DOMAIN IN-DOMAIN (w/o Other) IN-DOMAIN (w Other)

P % R % F1 % ∆F1 P % R % F1 % ∆F1 P % R % F1 % ∆F1

GPT3.5
ZERO-SHOT 52.52 51.33 51.92 76.00 47.88 58.75 53.63 53.16 53.39
LAYOUT-AWARE (our) 70.36 71.22 70.79 20.43↑ 88.98 771.33 79.18 20.43↑ 70.36 71.22 70.79 17.40↑

GPT4
ZERO-SHOT - - - 88.58 74.46 80.91 65.76 65.52 65.64
LAYOUT-AWARE (our) - - - 94.55 85.49 89.79 8.88↑ 78.71 78.10 78.40 12.76↑

Table 3: DIE using layout-aware learning upon GPTs surpasses the baseline systems by a large margin. In ‘out-of-
domain’ column, GPT4 outputs serve as ground truths for assessing GPT3.5’s capabilities.

60.52% of out-of-domain entities (bbox), evidenc-216

ing their proficiency in knowledge transfer and cre-217

ativity. Although performance decreases in the RE218

task, in-domain improvements remained substan-219

tial. GPT4 notably outpaced GPT3.5, especially220

in grasping relationships.

IN-DOMAIN OUT-OF-DOMAIN

P% R% F1% P% R% F1%

SE
R

co
ar

se GPT3.5 79.31 48.93 60.52 79.31 48.93 60.52
GPT4 91.18 64.83 75.78 - - -

fin
e GPT3.5 90.98 57.28 70.28 59.17 57.84 58.50

GPT4 92.70 77.92 84.67 - - -

R
E GPT3.5 76.11 47.88 58.75 52.22 51.33 51.92

GPT4 88.58 74.56 80.91 - - -

Table 4: Results of SER and RE using GPTs. The term
“Out-of-domain” refers to predictions made by GPTs
for instances categorized under Other. Conversely,
“In-domain’ excludes the Other category and focuses
solely on predefined labels.

221

3.4 DLG: Are LLMs good layout designer?222

Both GPTs excel in overall prediction accuracy,223

with their distributions closely matching the actual224

ones. Table. 5 details our quantitative assessment225

using KL divergence and JS divergence against the226

benchmark distribution. GPTs show robust gen-

KL JS

COGVLM7B 42.03 85.83
GPT3.5 69.32 93.28
GPT4 77.02 95.15

Table 5: Higher scores indicate that the prediction dis-
tributions are closer to the true distributions.

227
eration skills without any reference or guidance,228

with GPT4 outperforming, compared to CogVLM229

which equipped with visual perception. The re-230

sult suggesting that semantic reasoning is essen-231

tial for comprehensive layout generation. Appx. 9232

illustrates GPTs adherence to prior principles, i.e.,233

key-value alignments or spatial patterns, affirming234

LLMs’ proficiency in VRD layout generation.235

3.5 Does layout-aware learning benefit 236

LLM-based IE? 237

Drawing from our findings in the aforementioned 238

tasks, we propose a layout-aware learning ap- 239

proach that harnesses spatial prior knowledge via 240

strategic prompting using ten-shots. This method 241

adopts a dual-strategy, seamlessly merging spa- 242

tial features with key-value patterns. Spatial fea- 243

tures are adeptly represented through x- and y- 244

coordinates, utilizing ten-shot instances presented 245

in the demonstration section of our instructions. 246

This approach facilitates the LLMs’ comprehen- 247

sion of the coordinate system. Concurrently, key- 248

value patterns, defined as key-value pairs accom- 249

panied by descriptive cues, are employed to delin- 250

eate up to eight distinct directional patterns, cater- 251

ing to both precise and generalized directional un- 252

derstanding. Notably, the layout-aware approach 253

has led to a substantial performance improvement 254

of GPTs in relationship extraction tasks, surpass- 255

ing zero-shot baseline systems (see Table 3.) In a 256

nutshell, this approach significantly enhances the 257

capability of LLMs to understand VRDs. 258

4 Conclusion 259

This study delves into the remarkable spatial rea- 260

soning abilities of large language models within 261

the context of visually-rich documents, a do- 262

main that traditionally demands visual percep- 263

tion. Through a meticulously crafted experimental 264

framework, we have uncovered that LLMs, devoid 265

of inherent visual channel, are nonetheless adept at 266

discerning and inferring complex spatial relation- 267

ships. Our findings pivot on the innovative integra- 268

tion of a layout-aware learning approach, signifi- 269

cantly amplifies LLMs’ capacity to comprehend, 270

reason, and generate spatially coherent document 271

layouts. By demonstrating that these models can 272

effectively perform tasks traditionally within the 273

purview of visually-aware systems, we open av- 274

enues for rethinking the boundaries of document 275

intelligence. 276
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5 Limitations277

As we reflect on the advancements made, we also278

acknowledge the limitations and the fertile ground279

for future exploration. The current work serves as280

a foundation upon which more sophisticated mod-281

els can be developed, datasets expanded, and meth-282

ods refined. Our study is a stepping stone towards283

a future where LLMs are not only arbiters of lan-284

guage but also interpreters of the spatial constructs285

that underpin our world.286

• Expanding Dataset Diversity: Our study is287

informed by a current dataset that requires ex-288

pansion to encompass a wider array of docu-289

ment structures and sources. Broadening the290

dataset will allow for a more robust assess-291

ment of model performance across diverse292

document types.293

• Inclusion of Diverse LLMs: The research294

primarily targets prevalent LLMs, yet the in-295

tegration of a more extensive range of models,296

is necessary to advance our understanding of297

their capabilities and applications.298

• Refinement of Methodologies: While our299

layout-aware approach has yielded promising300

outcomes, there is ample room for the devel-301

opment of advanced techniques. Future re-302

search should concentrate on incorporating303

explicit structural information and enhancing304

models’ capacity to learn structural patterns305

efficiently.306

• Development of Domain-Specific Bench-307

marks: Although progress has been made308

in establishing benchmarks for structured text309

generation, there is a clear advantage to creat-310

ing benchmarks tailored to specific domains.311

Tailoring benchmarks to unique domain re-312

quirements will bolster the applicability and313

precision of models within specialized con-314

texts.315
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Basic Spatial Perception in Section 3.1

TASK DESCRIPTION You are now an expert in determining relative positions with a strong sense of
direction, proficient in understanding the Cartesian coordinate system. Your
task is to determine the relative position of the second point, point2, with re-
spect to the first point, point1. The origin (0,0) is at the top left, with the x-
axis positive direction to the right and the y-axis positive direction downward.
You will now receive two points, point1 and point2, along with their respec-
tive coordinates (x1,y1) and (x2,y2). The algorithm is as follows: 1. If the
x-coordinates or y-coordinates of the two points are equal, choose from ‘top,’
‘bottom,’ ‘left,’ or ‘right.’ 2. Otherwise, calculate the coordinates to determine
the relative position of point2 with respect to point1, choosing from ‘top-left,’
‘top-right,’ ‘bottom-left,’ or ‘bottom-right.’

LABEL MAPPING Use the following algorithm to identify the region in which point2 is located
relative to point1, and output the relative position as one of eight directions:
{top-left, top, top-right, left, right, bottom-left, bottom, or bottom-right.}

FORMATTING Here are the coordinates of the given two points:""item": "point1": "position":
[x1, y1], "point2": "position": [x2, y2], "relative-position": Y

QUERY Please predict the direct positional relationship between these two items
"item11": "position": [142.5,800.5],"item12":"position": [357.5,974.5]

ANSWER "item": "point1": "position": [x1, y1], "point2": "position": [x2, y2], "relative-
position": left

Table 6: Prompt template for the basic spatial perception task.

Page Location Prediction in Section 3.2

TASK DESCRIPTION You are an expert in interpreting formatted documents. You excel in annotating
the coordinates of text. A bill of lading is a document used to describe and
record the shipment of goods by sea. It has a standardized format template
where similar types of semantic entities usually have similar visual and layout
attributes, with keys and values distributed horizontally or diagonally. Now,
you are given an entire bill of lading, including the text value of each text box,
the position value of the text, and the text category label. Based on the given
text value, position value, and text category label of each text box, predict
the approximate position coordinates of the text box labeled ‘shipper’ with
position null based on the distribution structure of key-value pairs in the bill of
lading.

LABEL MAPPING It contains key information such as the ‘shipper’, ‘consignee’, ‘mode of trans-
port’, ‘port of origin’, and ‘destination port’.

FORMATTING Provide the answer in the following format without explanation: [‘position’:
[x1,y1,x2,y2]]. Do not return an empty position;

QUERY Here is the text content of the document:“ XXXX“. Please predict the approx-
imate coordinates of the ‘shipper’ text box based on related semantic entities.

ANSWER Position:[778, 288, 791, 309]

Table 7: Prompt template for the page location prediction task.
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Document Information Extraction in Section 3.3

TASK DESCRIPTION Hello, you are an experienced form-reading expert who has reviewed many
forms and understands the key-value distribution and logical layout structure
within them. Your task now is to generate a more perfect layout for a bill of
lading based on the given template. Your task is to learn the key-value distri-
bution and overall layout structure from the given template and use your prior
knowledge to create a more perfect template layout. Ensure that the arrange-
ment of each category follows a logical order and is easy to read, considering
the positional relationships between different text segments.

LABEL MAPPING The generated layout should include at least the following categories:
[‘Consignee-value’, ‘Pieces-value’, ‘0’, ‘Receiver-value’, ‘Shipper’, ‘Shipper-
value’, ‘Receiver’, ‘Customer Order Number’, ‘Shipping Company’, ‘Ship-
ping Company-value’, . . .].

FORMATTING You will receive a sample bill of lading document, including text segments
and their coordinates in the format ‘id’: xxx, ‘text’: ‘xxx’, ‘position’: [x1, y1,
x2, y2]. Here, ‘position’ provides coordinates representing the top-left and
bottom-right corners of the text box in x and y values.” Provide the answers
in the following JSON format: [‘idx’: xxx, ‘position’: [x1, y1, x2, y2],‘label’:
‘predicted label’].

QUERY Here is the text content of the document:“ XXXX“. Please fill in the specific
content appropriately according to the entity category.

ANSWER
“text”: “Details”, “position”: [310, 60, 410, 95], “label”: “title”,
“text”: “Form”, “position”: [420, 60, 460, 95], “label”: “title”,
“text”: “SHIPPER:”, “position”: [60, 110, 130, 130], “label”: "shipper”,
“text”: “Acme Export Co.”, “position”: [60, 140, 310, 160], “label”: “shipper-
value”...

Table 8: Prompt template for the document layout generation task.
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Document Layout Generation in Section 3.4

TASK DESCRIPTION Hello, you are an experienced form-reading expert who has reviewed many
forms and understands the key-value distribution and logical layout structure
within them. Your task now is to generate a more perfect layout for a bill of
lading based on the given template. Your task is to learn the key-value distri-
bution and overall layout structure from the given template and use your prior
knowledge to create a more perfect template layout. Ensure that the arrange-
ment of each category follows a logical order and is easy to read, considering
the positional relationships between different text segments.

LABEL MAPPING The generated layout should include at least the following categories:
[‘Consignee-value’, ‘Pieces-value’, ‘0’, ‘Receiver-value’, ‘Shipper’, ‘Shipper-
value’, ‘Receiver’, ‘Customer Order Number’, ‘Shipping Company’, ‘Ship-
ping Company-value’, . . .].

FORMATTING You will receive a sample bill of lading document, including text segments
and their coordinates in the format ‘id’: xxx, ‘text’: ‘xxx’, ‘position’: [x1, y1,
x2, y2]. Here, ‘position’ provides coordinates representing the top-left and
bottom-right corners of the text box in x and y values.” Provide the answers
in the following JSON format: [‘idx’: xxx, ‘category’: ‘predicted category’,
‘position’: [x1, y1, x2, y2]].

QUERY Please generate a perfect layout information for the sea waybill based on the
layout you just learned and your prior knowledge. Please fill in the specific
content appropriately according to the entity category.

ANSWER
“text”: “Details”, “position”: [310, 60, 410, 95], “label”: “title”,
“text”: “Form”, “position”: [420, 60, 460, 95], “label”: “title”,
“text”: “SHIPPER:”, “position”: [60, 110, 130, 130], “label”: "shipper”,
“text”: “Acme Export Co.”, “position”: [60, 140, 310, 160], “label”: “shipper-
value”...

Table 9: Prompt template for the document layout generation task.
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Layout-Aware Learning in Section 3.5

TASK DESCRIP-
TION

Hello, you are an expert specializing in semantic relationship understanding
and information extraction. Your current task is to extract information from a
bill of lading. Based on the given text value, position value, and text category
label of each text box, predict the approximate position coordinates of the text
box labeled ’shipper’ with position null based on the distribution structure of
key-value pairs in the bill of lading. For each text segment, you need to predict
a corresponding category from the given set. If no suitable category exists,
choose the category label ’0’.

DEMONSTRATION

EXAMPLES

Now, here are some important entities, their positions, and their categories.
These examples are provided for you to learn the category of key texts and
their corresponding positions:

• {"text":"Consignee","position":[179,342,268,365],"label":"Consignee"}

• {"text":"New York, NY","position":[424,380,615,403],"label":"Consignee-
value"}

• {"text":"PORT OF DISCHARGE","position":[280,580,430,600],"label":"port-
of-discharge"}

• {"text":"Boston","position":[280,610,380,630],"label":"port-of-
discharge-value"}

• {"text":"MARKS AND NUMBERS","position":[100,650,200,670],"label":"shipping-
mark"}

DEMONSTRATION

PATTERNS

Additionally, here are three typical key-value pair layouts commonly found in
bills of lading:

1. Vertical Layout:

• "text":"Shipper","position":[65,340,99,352]
• "text":"ROAD, SHANGHAI 200135,

CHINA","position":[65,411,297,427]

2. Diagonal Layout:

• “text”:“Port of Loading”,"position”:[320,781,390,793]
• “text”:“SHANGHAI”,“position”:[351,805,452,826]

3. Horizontal Layout:

• “text”:“Consignee”,“position”:[179,342,268,365]
• “text”:"New York, NY 10016 USA”,“position”:[173,342,262,365]

These three layouts are common key-value pair structures in a bill of lading.
When choosing a category, consider the positional information of the text seg-
ment, as nearby segments may be related. For example, ‘Marks-value’ repre-
sents the specific content of marks and numbers and is usually located near
the ‘Marks’ category. The category ‘Shipper-value’ represents specific infor-
mation about the shipper, which is also usually nearby.

Table 10: Prompt template for the document layout generation using layout-aware task. (Part 1)
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Layout-Aware Learning in Section 3.5

LABEL MAPPING The category set is as follows: [‘Consignee-value’, ‘Pieces-value’, ‘0’,
‘Receiver-value’, ‘Shipper’, ‘Shipper-value’, ‘Receiver’, ‘Customer Order
Number’, ‘Shipping Company’, ‘Shipping Company-value’, ‘Container Type
and Quantity’, ‘Freight Terms’, ‘Freight Terms-value’, ‘Shipping Terms’,
‘Shipping Terms-value’, . . .].

FORMATTING You will receive OCR information from the bill of lading, including text
segments and their coordinates in the format ‘id’: xxx, ‘text’: ‘xxx’, ‘posi-
tion’: ‘xxx’. Here, ’position’ provides coordinates representing the top-left
and bottom-right corners of the text box in x and y values. Provide the an-
swers in the following JSON format: [‘specific idx’: ‘predicted label’]

QUERY Here is the text content of the document:“ XXXX“. Please predict the category
to which the above entities belong.

ANSWER
“text”: “Details”, “position”: [310, 60, 410, 95], “label”: “title”,
“text”: “Form”, “position”: [420, 60, 460, 95], “label”: “title”,
“text”: “SHIPPER:”, “position”: [60, 110, 130, 130], “label”: "shipper”,
“text”: “Acme Export Co.”, “position”: [60, 140, 310, 160], “label”: “shipper-
value”...

Table 11: Prompt template for the document layout generation using layout-aware task.(Part 2)

Model Visual Encoder BSP PLP DIE DLG

LLAMA7B × ✓ × × ×
BAICHUAN7B × ✓ × × ×
BAICHUAN13B × ✓ × × ×
VICUNA7B × ✓ × × ×
COGVLM ✓ ✓ ✓ × ×

Table 12: While we also tried other LLMs, due to their small scale of model parameters, they failed to yield results.
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Figure 3: Visualization of GPT3.5 on the basic spatial prediction task. The direction of the blue arrow indicates
the relative position of the second bounding box to the first bounding box, with the arrow direction labeled as the
result given by the GPT3.5.
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Figure 4: Euclidean distances of the positions of different categories of bounding boxes predicted by LLMs in
page location prediction task. Sorted from smallest to largest. The first column shows results for T1 (shipper) and
T1-v (shipper-value), the second column for T2 (port_of_origin) and T2-v (port_of_origin-value), and
the third column for T3 (marks) and T3-v (marks-value).

Figure 5: Scatter plot distribution of LLMs predicting the entity positions. Top: T1 (shipper) and Bottom: T1-v
(shipper-value).
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Figure 6: Scatter plot distribution of LLMs predicting the entity positions. Top: T2 (port_of_origin) and
Bottom: T2-v (port_of_origin-value) (bottom).

Figure 7: Scatter plot distribution of LLMs predicting the entity positions. Top: T3 (marks) and Bottom: T3-v
(marks-value).
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Figure 8: LLMs predict the probability distribution of entity positions in the x and y directions for the “Shipper",
“Shipper-value", and “Port" categories.
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Data

GPT3.5 Generate Next Attempt

OCR Result

GPT3.5 Generate First Attempt

GPT4 Generate First Attempt GPT4 Generate First Attempt

Figure 9: Visualization examples of layout generation in visually-rich documents by GPT3.5. The red and blue
bounding boxes represent the generated keys and values, respectively. The text within the bounding boxes repre-
sents the generated text content, and the black font represents the generated categories.
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Figure 10: This radar chart illustrates the comparative performance of LLMs in the domain of spatial reasoning
tasks. The metrics include spatial perception, learning potential, location inference, layout generation, and in-
formation extraction. The chart highlights the strengths and weaknesses of models such as GPT3.5, GPT4, and
CogVLM across these dimensions, providing a visual summary of their spatial reasoning capabilities.
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