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Abstract

Large language models (LLMs) consistently
demonstrate superior performance in vari-
ous natural language processing (NLP) tasks.
However, research on their abilities to process
visual and spatial information, which is essen-
tial for understanding visually-rich documents
(VRDs), is limited. This paper presents a pi-
oneering study and benchmark specifically de-
signed to evaluate the spatial competencies of
LLMs in the context of VRDs. Our assessment
covers a comprehensive range of dimensions,
including spatial perception, positional predic-
tion, information extraction, and layout gener-
ation. The results show that despite the lack
of inherent visual perception mechanisms in
LLMs, these models can effectively infer spa-
tial relationships within VRDs. In addition, we
propose a layout-aware learning strategy with
off-the-shelf LLMs that can significantly im-
prove their performance. Our results indicate
a significant contribution to the field of docu-
ment intelligence, confirming the effectiveness
of our methodology and pointing the way for
future research in document analysis.

1 Introduction

Large Language Models (LLMs) exhibit remark-
able capabilities in understanding and generating
natural language text across diverse applications
(Brown et al., 2020; Liu et al., 2024). In cog-
nitive linguistics, language not only serves as a
bridge for communicating thoughts and emotions,
but also acts as a semantic proxy for the physical
world, inherently reflecting the entities and pro-
cesses within it (OKeefe and Dostrovsky, 1971;
Lakoff, 1993). This intrinsic linkage between
language and reality offers LLMs a distinct van-
tage point to engage with the world through tex-
tual analysis, enabling a nuanced and comprehen-
sive understanding of real-world phenomena and
even fundamental concepts, e.g., color (Abdou
et al., 2021), direction (Patel and Pavlick, 2022),
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Figure 1: GPTs have a strong proficiency in understand-
ing and generating document layouts.

shape (Yamada et al., 2023), tabular structures
(Tang et al., 2023) and geography (Roberts et al.,
2023). These capabilities underscore the versatil-
ity of LLMs in interacting with the world through
the lens of language and highlight their versatility
and applicability across diverse domains.

The example, as shown in Figure. 1, demon-
strates that LLMs have remarkable abilities to
comprehend content and generate layouts within
a document page. While recent advancements
in leveraging LLMs for information retrieval (He
et al., 2023; Liu et al., 2024) and visual ground-
ing (Chen et al., 2024; Zhang et al., 2024), a com-
prehensive systematic framework addressing the
spatial understanding capabilities of LLMs within
visually-rich documents (VRDs) remains absent.
Unlike recent layout-aware document Al models
(Xuetal., 2020, 2021; Huang et al., 2022; Li et al.,
2021; Yu et al., 2023; Lee et al., 2023) that can
utilize multimodal information, LL.Ms encounter
considerable challenges in recognizing named en-
tities and their relationships without direct visual
input. Therefore, this limitation underscores the
necessity for further exploration and development
in this research direction.
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Figure 2: Proposed framework for evaluating LLMs’ spatial understanding. S: text segment, L: label, P: position.

In light of these considerations, we introduce an
evaluation framework to systematically assess the
spatial comprehension capabilities of LLMs in the
context of VRDs. Our proposed tasks are meticu-
lously crafted to progress from elementary to ad-
vanced, thereby providing a thorough exploration
of LLMs’ capacity to understand, extract, reason,
and generate spatial information. Furthermore, we
introduce a novel layout-aware approach building
upon recent advancements in contextual learning
(Wei et al., 2023; Bang et al., 2023). This ap-
proach empowers LLMs with the capability to ef-
fectively incorporate layout features into their pro-
cessing, thereby bolstering their spatial compre-
hension on VRDs. This achievement is crucial as
it provides deep insights into how LLMs can effec-
tively navigate and connect information in such an
information-sparse artificially virtual environment,
ultimately broadening their applicability in the fu-
ture unexplored research.

The contributions can be summarized as fol-
lows: 1) We present an evaluation framework that
assesses the spatial and generative competencies
of LLMs in VRDs across multi-dimensions. 2)
We perform an exhaustive analysis of prevalent
LLMs, elucidating their spatial and generative per-
formance in VRDs. 3) We introduce a layout-
aware learning strategy to integrate spatial features
and patterns, markedly enhancing LLMs’ perfor-
mance.

2 Framework

Figure. 2 illustrates the proposed evaluation frame-
work, which encompasses four distinct schemes:
1) Basic spatial perception (BSP) is designed to

evaluate whether LLMs comprehend coordinate
systems and accurately interpret the spatial seman-
tics of directional terms, thereby assessing their
“sense of direction.” We evaluate LLMs’ capac-
ity to comprehend coordinates and relative posi-
tions through two tiered experiments: 1) pixel-
to-pixel (P2P) for pinpointing relative pixel posi-
tions, and 2) bbox-to-bbox (B2B) for ascertaining
positions between bounding boxes. This evalua-
tion includes both coarse-grained and fine-grained
tasks to probe the depth of LLMs’ spatial under-
standing: relaxed and exact. Relaxed to predict
the basic four directions (top, bottom, left, right),
while exact pinpointing the eight extended direc-
tions (e.g., top-left, bottom-left, top-right, bottom-
right). 2) Page location prediction (PLP) func-
tions as a regression task that predicts the spa-
tial coordinates of a current text field by utilizing
the semantics of spatially proximate fields and the
broader layout context. In VRD images, text seg-
ments, such as named entities, often follow dis-
cernible positional arrangement patterns, includ-
ing vertical or horizontal alignments. PLP in-
volves obscuring specific field positions during
testing and challenging LLMs to deduce the miss-
ing coordinates of a specified text segment, which
answers: “Where should this text content appear
in the document?” This mimics real-world con-
ditions where documents may be incomplete or
poorly structured, necessitating the use of contex-
tual and logical inference to interpret document
architecture. 3) Document information extrac-
tion (DIE) involves two phases: Semantic En-
tity Recognition (SER) and Relation Extraction
(RE). SER aims to identify and categorize enti-



ties within a document, with a distinction between
coarse-grained (bbox) and fine-grained (token) ap-
proaches. While coarse-grained SER identifies en-
tity types such as key and value, fine-grained SER
classifies entities into category-specific types. RE
furthers this by predicting relationships between
entities. 4) Document layout generation (DLG)
focuses on whether LLMs can produce layouts
aligned with category-specific probability distri-
butions. We ask LLMs to generate layouts for
VRDs, employing probability distributions of two-
dimensional variables to gauge their layout gen-
eration prowess. The task hinges on comparing
LLMSs’ predicted z- and y-directional distributions
with actual ones to evaluate the accuracy of layout
generation. Thus, this task examines the capac-
ity of LLMs to harness prior layout design knowl-
edge for logical entity positioning from a holis-
tic viewpoint. Therefore, BSP and PLP are de-
signed to evaluate the models’ ability to under-
stand local and global positional information, re-
spectively. Concurrently, DIE and DLG are tasked
with assessing the models’ grasp of semantic re-
lationships among entities, both on a local and a
holistic level. To construct our benchmark, we col-
lect and re-annotate data from the existing FUNSD
(Jaume et al., 2019) and SEAB (Wang et al., 2023)
datasets, which finally contains 466 documents.
Following He et al. (2023), we standardize to fa-
cilitate subsequent data processing and evaluation
from LLMs’ output. We meticulously construct
instructions that contains: 1) task description: a
clear and concise explanation of the task expected
to perform, which outlines the objective and pro-
vides any necessary background information; 2)
label mapping/constraint: it involves defining the
set of possible labels or categories that the LLM
can predict and are guided within a specific scope;
3) formatting: the structure and presentation of the
input and output data; 4) demonstration: the inclu-
sion of examples or demonstrations that illustrate
how the task should be performed, especially for
the few-shot learning scenario. More details refer
to Appx. A.

3 Experimental Results

We primarily utilize the GPT3.5 (gpt3.5-turbo)
and GPT4 (gpt4-0125-preview) models for our
experiments, as they are the only two capable of
successfully executing the full range of our exper-
imental protocols.

3.1 BSP: Does the LLM sense direction?

Table 1 shows that both GPT3.5 and GPT4 ex-
cel in pixel-level perception. It suggests that with
the right enhancements, both models could signifi-
cantly improve their spatial reasoning capabilities
in two-dimensional contexts. However, GPT4 un-

| EXACT | RELAXED

|P% R% F1%|P% R% Fl1%
g GPT3.5 | 58.99 62.33 60.61 | 98.64 92.27 95.35
& | crT4 99.33 98.40 98.86 | 99.53 98.60 99.06
ﬁ GPT3.5 | 65.72 43.47 5233 | 89.55 68.67 77.73
& | grT4 8791 62.70 73.20 | 89.90 64.10 74.84

Table 1: Evaluation results of exact and relaxed po-
sition predictions for LLMs with zero-shot inference
(w/o demonstration). Bold indicates the better results.

derperforms in B2B prediction for relaxed direc-
tions. See Appx. 3 for visualization.

3.2 PLP: Can LLMs fill in the gaps?

We challenge LLMs to leverage their inherent
knowledge of key-value pair layouts and seman-
tic similarities to deduce the spatial locations of
omitted fields in VRDs, devoid of visual cues
(only text input provided; no images.) We eval-
uate the results utilizing the reversed normalized
Euclidean distance. Table 2 shows that LLMs
equipped with a visual channel, such as GPT4 and
CogVLM (Wang et al., 2024), outperform purely
textual models as expected. Notably, GPT3.5 still
scores above 80 on average, indicating that textual
LLMs, when guided by effective prompts, can ac-
curately deduce the spatial locations of semantic
entities despite lacking a visual channel.

N s s s e
N PN P S S P I
CoGVLM7B | v | 858 813 639 582 670 663|704

GPT3.5
GPT4

X 839 80.5 898 84.0 764 80.0| 824
v 924 839 881 899 957 86.0 | 89.3

Table 2: Scores of page location prediction . Note: T1,
T2, T3 represent three typical types; “-v”” denotes value
types, with higher scores indicating greater precision.

3.3 DIE: Does information extraction need
spatial information?

Results in Table 4 indicate that GPT4 signifi-
cantly outperforms the average in fine-grained
SER task, underscoring GPT4’ domain-agnostic
strengths. Moreover, GPT3.5 adeptly categorizes



OUT-OF-DOMAIN

IN-DOMAIN (w/o Other) IN-DOMAIN (w Other)

MODEL METHODS
\ P% R% Fl1% AF1 P% R% Fl1% AF1 P% R% F1% AF1
GPT3.5 ZERO-SHOT 52.52 5133 51.92 76.00 47.88 58.75 53.63 53.16 53.39
’ LAYOUT-AWARE (our) 7036 7122 70.79 20.431 88.98 771.33 79.18 20.431 70.36 7122 70.79 17.40%
Gprd ZERO-SHOT - 88.58 74.46 8091 65.76  65.52 65.64
LAYOUT-AWARE (our) - 94.55 8549 89.79 8.887 78.71 78.10 78.40 12.761

Table 3: DIE using layout-aware learning upon GPTs surpasses the baseline systems by a large margin. In ‘out-of-
domain’ column, GPT4 outputs serve as ground truths for assessing GPT3.5’s capabilities.

60.52% of out-of-domain entities (bbox), evidenc-
ing their proficiency in knowledge transfer and cre-
ativity. Although performance decreases in the RE
task, in-domain improvements remained substan-
tial. GPT4 notably outpaced GPT3.5, especially
in grasping relationships.

| IN-DOMAIN | OUT-OF-DOMAIN
| P% R% Fl1% | P% R% F1%
é’ GPT3.5 | 79.31 4893 60.52 | 79.31 48.93 60.52
5 S GpPT4 91.18 64.83 75.78 -
“ 2 GPT3.5 | 90.98 57.28 70.28 | 59.17 57.84 58.50
“ | crT4 92,70 77.92 84.67 -
GPT3.5 | 76.11 47.88 58.75 | 52.22 51.33 51.92
GPT4 88.58 74.56 80.91 -

Table 4: Results of SER and RE using GPTs. The term
“Out-of-domain” refers to predictions made by GPTs
for instances categorized under Other. Conversely,
“In-domain’ excludes the Other category and focuses
solely on predefined labels.

3.4 DLG: Are LLMs good layout designer?

Both GPTs excel in overall prediction accuracy,
with their distributions closely matching the actual
ones. Table. 5 details our quantitative assessment
using KL divergence and JS divergence against the
benchmark distribution. GPTs show robust gen-

| KL JS
COGVLM7B | 42.03 85.83
GPT3.5 69.32 93.28
GPT4 77.02 95.15

Table 5: Higher scores indicate that the prediction dis-
tributions are closer to the true distributions.

eration skills without any reference or guidance,
with GPT4 outperforming, compared to CogVLM
which equipped with visual perception. The re-
sult suggesting that semantic reasoning is essen-
tial for comprehensive layout generation. Appx. 9
illustrates GPTs adherence to prior principles, i.e.,
key-value alignments or spatial patterns, affirming
LLMs’ proficiency in VRD layout generation.

3.5 Does layout-aware learning benefit
LLM-based IE?

Drawing from our findings in the aforementioned
tasks, we propose a layout-aware learning ap-
proach that harnesses spatial prior knowledge via
strategic prompting using ten-shots. This method
adopts a dual-strategy, seamlessly merging spa-
tial features with key-value patterns. Spatial fea-
tures are adeptly represented through x- and y-
coordinates, utilizing ten-shot instances presented
in the demonstration section of our instructions.
This approach facilitates the LLMs’ comprehen-
sion of the coordinate system. Concurrently, key-
value patterns, defined as key-value pairs accom-
panied by descriptive cues, are employed to delin-
eate up to eight distinct directional patterns, cater-
ing to both precise and generalized directional un-
derstanding. Notably, the layout-aware approach
has led to a substantial performance improvement
of GPTs in relationship extraction tasks, surpass-
ing zero-shot baseline systems (see Table 3.) In a
nutshell, this approach significantly enhances the
capability of LLMs to understand VRDs.

4 Conclusion

This study delves into the remarkable spatial rea-
soning abilities of large language models within
the context of visually-rich documents, a do-
main that traditionally demands visual percep-
tion. Through a meticulously crafted experimental
framework, we have uncovered that LLMs, devoid
of inherent visual channel, are nonetheless adept at
discerning and inferring complex spatial relation-
ships. Our findings pivot on the innovative integra-
tion of a layout-aware learning approach, signifi-
cantly amplifies LLMs’ capacity to comprehend,
reason, and generate spatially coherent document
layouts. By demonstrating that these models can
effectively perform tasks traditionally within the
purview of visually-aware systems, we open av-
enues for rethinking the boundaries of document
intelligence.



5 Limitations

As we reflect on the advancements made, we also
acknowledge the limitations and the fertile ground
for future exploration. The current work serves as
a foundation upon which more sophisticated mod-
els can be developed, datasets expanded, and meth-
ods refined. Our study is a stepping stone towards
a future where LLMs are not only arbiters of lan-
guage but also interpreters of the spatial constructs
that underpin our world.

* Expanding Dataset Diversity: Our study is
informed by a current dataset that requires ex-
pansion to encompass a wider array of docu-
ment structures and sources. Broadening the
dataset will allow for a more robust assess-
ment of model performance across diverse
document types.

* Inclusion of Diverse LLMs: The research
primarily targets prevalent LLMs, yet the in-
tegration of a more extensive range of models,
is necessary to advance our understanding of
their capabilities and applications.

¢ Refinement of Methodologies: While our
layout-aware approach has yielded promising
outcomes, there is ample room for the devel-
opment of advanced techniques. Future re-
search should concentrate on incorporating
explicit structural information and enhancing
models’ capacity to learn structural patterns
efficiently.

* Development of Domain-Specific Bench-
marks: Although progress has been made
in establishing benchmarks for structured text
generation, there is a clear advantage to creat-
ing benchmarks tailored to specific domains.
Tailoring benchmarks to unique domain re-
quirements will bolster the applicability and
precision of models within specialized con-
texts.
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Basic Spatial Perception in Section 3.1

TASK DESCRIPTION | You are now an expert in determining relative positions with a strong sense of
direction, proficient in understanding the Cartesian coordinate system. Your
task is to determine the relative position of the second point, point2, with re-
spect to the first point, pointl. The origin (0,0) is at the top left, with the x-
axis positive direction to the right and the y-axis positive direction downward.
You will now receive two points, pointl and point2, along with their respec-
tive coordinates (x1,y1) and (x2,y2). The algorithm is as follows: 1. If the
x-coordinates or y-coordinates of the two points are equal, choose from ‘top,’
‘bottom,” ‘left,” or ‘right.” 2. Otherwise, calculate the coordinates to determine
the relative position of point2 with respect to pointl, choosing from ‘top-left,’
‘top-right,” ‘bottom-left,” or ‘bottom-right.’

LABEL MAPPING Use the following algorithm to identify the region in which point2 is located
relative to pointl, and output the relative position as one of eight directions:
{top-left, top, top-right, left, right, bottom-left, bottom, or bottom-right. }
FORMATTING Here are the coordinates of the given two points:""item": "pointl": "position":
[x1, y1], "point2": "position": [x2, y2], "relative-position": Y

UERY ease predict the direct positional relationshi etween these two 1tems
Q Please predict the direct positional relationship b h i
"item11": "position": [142.5,800.5],"item12":"position": [357.5,974.5]

ANSWER "item": "pointl": "position": [x1, y1], "point2": "position": [x2, y2], "relative-
position": left

Table 6: Prompt template for the basic spatial perception task.

Page Location Prediction in Section 3.2

TASK DESCRIPTION | You are an expert in interpreting formatted documents. You excel in annotating
the coordinates of text. A bill of lading is a document used to describe and
record the shipment of goods by sea. It has a standardized format template
where similar types of semantic entities usually have similar visual and layout
attributes, with keys and values distributed horizontally or diagonally. Now,
you are given an entire bill of lading, including the text value of each text box,
the position value of the text, and the text category label. Based on the given
text value, position value, and text category label of each text box, predict
the approximate position coordinates of the text box labeled ‘shipper’ with
position null based on the distribution structure of key-value pairs in the bill of
lading.

LABEL MAPPING It contains key information such as the ‘shipper’, ‘consignee’, ‘mode of trans-
port’, ‘port of origin’, and ‘destination port’.

FORMATTING Provide the answer in the following format without explanation: [‘position’:
[x1,y1,x2,y2]]. Do not return an empty position;

QUERY Here is the text content of the document:*“ XXXX*. Please predict the approx-
imate coordinates of the ‘shipper’ text box based on related semantic entities.

ANSWER

Position:[778, 288, 791, 309]

Table 7: Prompt template for the page location prediction task.



Document Information Extraction in Section 3.3

TASK DESCRIPTION

LABEL MAPPING

FORMATTING

Hello, you are an experienced form-reading expert who has reviewed many
forms and understands the key-value distribution and logical layout structure
within them. Your task now is to generate a more perfect layout for a bill of
lading based on the given template. Your task is to learn the key-value distri-
bution and overall layout structure from the given template and use your prior
knowledge to create a more perfect template layout. Ensure that the arrange-
ment of each category follows a logical order and is easy to read, considering
the positional relationships between different text segments.

The generated layout should include at least the following categories:
[‘Consignee-value’, ‘Pieces-value’, ‘0’, ‘Receiver-value’, ‘Shipper’, ‘Shipper-
value’, ‘Receiver’, ‘Customer Order Number’, ‘Shipping Company’, ‘Ship-
ping Company-value’, .. .].

You will receive a sample bill of lading document, including text segments
and their coordinates in the format ‘id’: xxx, ‘text’: ‘xxx’, ‘position’: [x1, y1,
x2, y2]. Here, ‘position’ provides coordinates representing the top-left and
bottom-right corners of the text box in x and y values.” Provide the answers
in the following JSON format: [‘idx’: xxx, ‘position’: [x1, y1, x2, y2],‘label’:
‘predicted label’].

QUERY

Here is the text content of the document:* XXXX*. Please fill in the specific
content appropriately according to the entity category.

ANSWER

“text”: “Details”, “position”: [310, 60, 410, 95], “label”: “title”,
“text”: “Form”, “position”: [420, 60, 460, 95], “label”: “title”,
“text”: “SHIPPER:”, “position”: [60, 110, 130, 130], “label”: "shipper”,

“text”: “Acme Export Co.”, “position”: [60, 140, 310, 160], “label”: “shipper-
value”...

Table 8: Prompt template for the document layout generation task.



Document Layout Generation in Section 3.4

TASK DESCRIPTION

LABEL MAPPING

FORMATTING

Hello, you are an experienced form-reading expert who has reviewed many
forms and understands the key-value distribution and logical layout structure
within them. Your task now is to generate a more perfect layout for a bill of
lading based on the given template. Your task is to learn the key-value distri-
bution and overall layout structure from the given template and use your prior
knowledge to create a more perfect template layout. Ensure that the arrange-
ment of each category follows a logical order and is easy to read, considering
the positional relationships between different text segments.

The generated layout should include at least the following categories:
[‘Consignee-value’, ‘Pieces-value’, ‘0’, ‘Receiver-value’, ‘Shipper’, ‘Shipper-
value’, ‘Receiver’, ‘Customer Order Number’, ‘Shipping Company’, ‘Ship-
ping Company-value’, .. .].

You will receive a sample bill of lading document, including text segments
and their coordinates in the format ‘id’: xxx, ‘text’: ‘xxx’, ‘position’: [x1, y1,
x2, y2]. Here, ‘position’ provides coordinates representing the top-left and
bottom-right corners of the text box in x and y values.” Provide the answers
in the following JSON format: [‘idx’: xxx, ‘category’: ‘predicted category’,
‘position’: [x1, y1, x2, y2]].

QUERY

Please generate a perfect layout information for the sea waybill based on the
layout you just learned and your prior knowledge. Please fill in the specific
content appropriately according to the entity category.

ANSWER

“text”: “Details”, “position”: [310, 60, 410, 95], “label”: “title”,

“text”: “Form”, “position”: [420, 60, 460, 95], “label”: “title”,

“text”: “SHIPPER:”, “position”: [60, 110, 130, 130], “label”: "shipper”,
“text”: “Acme Export Co.”, “position”: [60, 140, 310, 160], “label”: “shipper-
value”...

Table 9: Prompt template for the document layout generation task.
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Layout-Aware Learning in Section 3.5

TASK DESCRIP-
TION

Hello, you are an expert specializing in semantic relationship understanding
and information extraction. Your current task is to extract information from a
bill of lading. Based on the given text value, position value, and text category
label of each text box, predict the approximate position coordinates of the text
box labeled ’shipper’ with position null based on the distribution structure of
key-value pairs in the bill of lading. For each text segment, you need to predict
a corresponding category from the given set. If no suitable category exists,
choose the category label *0’.

DEMONSTRATION | Now, here are some important entities, their positions, and their categories.
EXAMPLES These examples are provided for you to learn the category of key texts and
their corresponding positions:
* {"text":"Consignee","position":[179,342,268,365],"label":"Consignee" }
o {"text":"New York, NY","position":[424,380,615,403],"label":"Consignee-
value"}
o {"text":"PORT OF DISCHARGE","position":[280,580,430,600],"label":"port-
of-discharge" }
* {"text":"Boston","position":[280,610,380,630],"label":"port-of-
discharge-value"}
o {"text":"MARKS AND NUMBERS","position":[100,650,200,670],"label":"shipping-
mark"}
DEMONSTRATION | Additionally, here are three typical key-value pair layouts commonly found in
PATTERNS bills of lading:

1. Vertical Layout:

* "text":"Shipper","position":[65,340,99,352]
* "text":"ROAD, SHANGHAI 200135,
CHINA","position":[65,411,297,427]

2. Diagonal Layout:

* “text”:“Port of Loading”,"position:[320,781,390,793]
o “text”:“SHANGHAI”,“position”:[351,805,452,826]

3. Horizontal Layout:

* “text”:“Consignee”, “position”:[179,342,268,365]
* “text”:"New York, NY 10016 USA”,“position”:[173,342,262,365]

These three layouts are common key-value pair structures in a bill of lading.
When choosing a category, consider the positional information of the text seg-
ment, as nearby segments may be related. For example, ‘Marks-value’ repre-
sents the specific content of marks and numbers and is usually located near
the ‘Marks’ category. The category ‘Shipper-value’ represents specific infor-
mation about the shipper, which is also usually nearby.

Table 10: Prompt template for the document layout generation using layout-aware task. (Part 1)
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Layout-Aware Learning in Section 3.5

LABEL MAPPING | The category set is as follows: [‘Consignee-value’, ‘Pieces-value’, ‘0’,
‘Receiver-value’, ‘Shipper’, ‘Shipper-value’, ‘Receiver’, ‘Customer Order
Number’, ‘Shipping Company’, ‘Shipping Company-value’, ‘Container Type
and Quantity’, ‘Freight Terms’, ‘Freight Terms-value’, ‘Shipping Terms’,
‘Shipping Terms-value’, .. .].

FORMATTING You will receive OCR information from the bill of lading, including text
segments and their coordinates in the format ‘id’: xxx, ‘text’: ‘xxx’, ‘posi-
tion’: ‘xxx’. Here, ’position’ provides coordinates representing the top-left
and bottom-right corners of the text box in x and y values. Provide the an-

swers in the following JSON format: [ ‘specific idx’: ‘predicted label’]

QUERY Here is the text content of the document:“ XXXX*. Please predict the category
to which the above entities belong.

ANSWER
“text”: “Details”, “position”: [310, 60, 410, 95], “label: “title”,

“text”: “Form”, “position”: [420, 60, 460, 95], “label”: “title”,

“text”: “SHIPPER:”, “position”: [60, 110, 130, 130], “label”: "shipper”,
“text”: “Acme Export Co.”, “position”: [60, 140, 310, 160], “label”: “shipper-
value”...

Table 11: Prompt template for the document layout generation using layout-aware task.(Part 2)

Model Visual Encoder | BSP | PLP | DIE | DLG
LLAMA7B X v X X X
BAICHUAN7B X v X X X
BAICHUAN13B X v X X X
VICUNA7B X v X X X
COoGVLM v v v X X

Table 12: While we also tried other LL.Ms, due to their small scale of model parameters, they failed to yield results.
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result given by the GPT3.5.
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Figure 4: Euclidean distances of the positions of different categories of bounding boxes predicted by LLMs in
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