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ABSTRACT

In recent years, natural language processing approaches to machine learning, most
prominently deep neural network-based transformers, have been extensively ap-
plied to molecular classification and regression tasks, including the prediction of
pharmacokinetic and quantum-chemical properties. However, models based on
deep neural networks generally require extensive training, large training data sets,
and resource-consuming hyperparameter tuning. Recently, a low-resource and
universal alternative to deep learning approaches based on Gzip compression for
text classification has been proposed, which reportedly performs surprisingly well
compared to large language models such as BERT, given its conceptually sim-
plistic nature. Here, we adapt the proposed method to support multiprocessing,
multi-class classification, class-weighing, regression, and multiple modalities and
apply it to classification and regression tasks on various data sets of molecules
from the organic chemistry, biochemistry, drug discovery, and material science
domains. We further propose converting numerical descriptors into string repre-
sentations, enabling the integration of language input with domain-informed de-
scriptors. Our results show that the method can be used to classify and predict a
variety of properties of molecules or the binding affinity of protein-ligand com-
plexes, can reach the performance of transformers and graph transformers in a
subset of tasks, and has the potential for application in information retrieval from
large chemical databases.

1 INTRODUCTION

Machine learning methods to classify or predict the properties of molecules have become om-
nipresent tools in chemical and biological research. Classification tasks include categorising
molecules into toxic and non-toxic, protein-binding and non-binding, or otherwise pharmacological
active or inactive compounds. Meanwhile, regression tasks encompass predicting various physico-
chemical and pharmacological properties, such as solubility and lipophilicity, protein-ligand binding
affinity, or even quantum chemical properties. With the rise of deep learning during the past decade,
molecular classification and property prediction have increasingly been carried out by ever-larger
models with mixed results, as in tasks such as pharmacokinetic property prediction, where data
remains scarce, deep learning methods have yet to perform significantly better than ensemble meth-
ods (Muratov et al, [2020). Across all machine learning approaches, the most utilised methods are
fingerprint-, SMILES-, and graph-based approaches, where molecular feature vectors, text repre-
sentations of molecules, and molecular graphs, respectively, are used as the input of the respective
class of models (MLPs, transformers, and GNNs) (Probst & Reymond, |2018; Reiser et al., 2022}
Ross et al., [2022)). Even though the text-based SMILES encoding of a molecule is often called a 1D
representation (as opposed to the ”2D” molecular graph and the 3D molecular structure), a SMILES
string contains all information of its respective molecular graph, as it is constructed by traversing
said graph using a depth-first search (DFS) algorithm (Weininger, |1988). Furthermore, it also con-
tains implicit and explicit information on the 3D structure of the molecule, as molecular structure
is tied to molecular topology, and molecular chirality is often directly defined using the SMILES
notation.

Recently, a parameter-free text classification approach based on Gzip compression has been pro-
posed, which has shown excellent performance compared to deep learning architectures, such as
transformers, on text-classification benchmark data sets (Jiang et al. [2022). The intuition guiding
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the method is to exploit the capability of lossless compressors, such as Gzip, to capture regularity
using a statistical model that enables to assign shorter codes to high-probability sequences. It is
then assumed that texts in the same category share similar regularity and are thus close in compres-
sion space under a normalised compression distance (NCD) metric (Li et al., |2004). A k-nearest
neighbour classifier is then used to classify text under the NCD metric. As the SMILES string en-
coding of molecular graphs has proved to be a well-performing molecular representation for apply-
ing other NLP methods, such as transformers or locality-sensitive hashing (LSH) (Schwaller et al.,
2019; |Probst & Reymond, [2018)), we hypothesise that the methodology presented by Jiang et al.
(2022) will also yield good results for chemical tasks, and a comparison of the other NLP-based and
-inspired methods with compression-based representation learning is warranted.

Here, we report an implementation of the Gzip-based text representation method, initially intro-
duced by [Jiang et al.| (2022)), targeted towards chemical machine learning problems. We present
two algorithms denoted MolZip and MolZip-Vec, both capable of single- and multimodal molecular
classification and regression, with MolZip-Vec also allowing for the incorporation of real-valued
vectors to embed precomputed chemical values. We compare our implementation to deep neural
network-based methods, such as transformers and graph neural networks (GNNs), on molecular
classification and regression tasks that include a multimodal binding-affinity prediction problem.
We show that this conceptually simple and inexpensive method works not only for the classifica-
tion and clustering of data in a natural language processing context but also on SMILES-encoded
molecules without requiring time-consuming training on specialised hardware, such as GPUs. More
than that, we extend the methodology to support most chemical machine-learning tasks through an
open-source Python library.

2 RESULTS & DISCUSSION

We benchmark the proposed methodology using the MoleculeNet benchmark for molecular machine
learning and compare it against ChemBERTa-1, ChemBERTa-2, and GROVER e (Wu et al., 2018}
Yang et al.,|2019;|Rong et al., 2020; (Chithrananda et al., 2020; Ahmad et al., 2022). ChemBERTa-1
and ChemBERTa-2 are BERT-based transformers pre-trained on 10 million molecules and then fine-
tuned on the specific tasks from the benchmark. ChemBERTa-2 comes in a masked language model
(MLM) and a multi-task regression (MTR) variant; the latter is pretrained targeting the same 200
RDKit-computed properties we include in MolZip-Vec. GROVER 4 is a graph transformer based
on graph attention networks (GAT) first introduced by |Velickovi¢ et al.| (2018) that was trained on
10 million molecules. We chose these three architectures as they represent basic implementations of
the two most common types (SMILES and graph-based) of transformers used in cheminformatics.
A recent effort, Molformer-XL |Ross et al.| (2022), which was trained on 1.1 billion molecules for
approximately 208 hours on 16 NVIDIA V100 GPUs and then fine-tuned for another 12 hours, has
not been included in Tables[I]and [2]in order to compare architectures that represent early efforts on
the respective methodologies. Furthermore, we extended MolZip towards predicting protein-ligand
binding affinities and compared the approach to graph neural network-based methods, which have
seen continuous use and advancements over the past years.

2.1 CLASSIFICATION

We follow the proposed method by [Jiang et al.[(2022) for the classification tasks and extend it with
multiprocessing and nearest-neighbour weighing to support imbalanced data sets better. In addition,
we implement a framework which provides serialisable text transformations on the input SMILES,
including the translation into alternative string-based molecular representations (DeepSMILES and
SELFIES) and SMILES-based augmentation, which augments a sample by concatenates a user-
chosen number of different valid SMILES representations of a given molecule (Bjerrum, 2017}
O’Boyle & Dalke| 2018; Krenn et al.l 2022). For both MolZip and MolZip-Vec, we choose the
parameter k£ = 5 for the k-nearest neighbour classification and assume that all data sets are imbal-
anced, therefore adjusting the kNN classification based on class weights that are calculated using
the scikit-learn (v1.3.1) utility function compute_class_weight.

Before benchmarking and comparing transformer-based methods, we evaluated the effect of trans-
lation and augmentation transformations. Table [A.T] compares the performance of SMILES,
DeepSMILES, and SELFIES-encoded molecules with otherwise default parameters (K = 5, no
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augmentation) on various data sets. Based on these results, we decided to use SMILES encoding
for our implementation, as it provides a balanced baseline across all evaluated data sets. However,
the result of the SELFIES-encoding on the BACE (regression) data shows that the encoding could
indeed have a strong influence on the observed performance, as the SMILES and DeepSMILES-
encodings reached a performance of 0.668 and 0.682, respectively, under the AUROC metric, the
SELFIES-encoded variant reached 0.720. However, this observation was an outlier rather than a
trend. Evaluating the effect of augmentation, which concatenates multiple variants of SMILES-
encodings of the same molecule (e.g. starting the depth-first search, which constructs the SMILES,
at a different atom), using the BBBP and BACE (classification) sets showed mixed results. While
the performance of MolZip on the BACE (classification) data set could have been pushed by ap-
proximately 10% (Figure [A.Tb), a lack of correlation of the positive effect on the validation and
test set, as well as generally lower performance on the BBBP set (Figure[A.Th), led us to report the
non-augmented classification metrics. The same holds for MolZip-Vec, as presented in Figure [A.T]

Table 1: Performance comparison between ChemBERTa-1, ChemBERTa-2, GROVER, MoZip, and
MolZip-Vec. Underlined results are the best between ChemBERTa-1 and MolZip, bold results are
the best overall. Note: The data for GROVER |y, is taken from [Zhou et al.| (2023), as the authors of
the original GROVER paper did not include benchmark results for scaffold splits.

Data Set Split Metric ChemBERTa-1 MolZip | ChemBERTa-2 ChemBERTa-2 MolZip-Vec | GROVER
(ours) (MLM) (MTR) (ours) (large)

BBBP scaffold AUROC 0.643 0.665 0.696 0.733 0.692 0.695
ClinTox (CT_TOX) scaffold AUROC 0.733 0.862 0.349 0.601 0.500 -
Tox21 (SR-p53) scaffold AUROC 0.728 0.692 0.748 0.827 0.663 -
0.684 0.682

HIV scaffold AUROC 0.622 0.684 - -
BACE (classification)  scaffold AUROC - 0.667 0.729 0.783 0.668

The results reported in Table [T] show that our compression-based methods reach competitive perfor-
mance compared to baseline implementations of transformers. On a head-to-head with the original
seq2seq implementation of ChemBERTa- 1, MolZip performs better on 3 out of 4 data sets. However,
it falls short compared to the second-generation ChemBERTa-2, which was trained using a masked
language modelling (MLM) approach and a multi-task regression (MTR) pretraining scheme, target-
ing 200 precomputed molecular descriptors provided by RDKit. The same 200 RDKit descriptors
were embedded with their respective SMILES representation of the molecule for MolZip-Vec, which
fails to improve on MolZip on the classification tasks. Furthermore, MolZip and MolZip-Vec per-
form on par with the graph transformer GROVER ;o on BBBP and HIV. These results indicate that,
like with natural language, the compression-based method is surprisingly performant compared to
relatively large models such as a BERT transformer or a GAT-based graph transformer.

2.2 REGRESSION

We implemented regression functionality by taking the arithmetic mean of the k-nearest neighbours
weighted by the inverse of their normalised compression distance NCD to the query (Equation [3).
For all regression tasks, we choose & = 25 to potentially smooth noise labels. The two physical
chemistry regression tasks (Delaney/ESOL and Lipophilicity [LIPO]), for which data was available
for ChemBERTa-2 and GROVER, and the two pharmacokinetics regression tasks (BACE [regres-
sion] and Clearance), for which data was only available for ChemBERTa-2, were used to benchmark
our regression implementation. As for the classification tasks, we evaluated the SMILES-encoding
against DeepSMILES and SELFIES and again chose SMILES over the two alternatives for bench-
marking (Table [A.T). We further evaluated the effects of augmentation for regression tasks on the
two data sets Delaney/ESOL and BACE (regression). Interestingly, and unlike our evaluation of
augmentation on classification tasks, augmentation on regression tasks has a general, and in some
cases significant, positive effect on performance (Figure[A.Tk.d): Augmenting each SMILES in the
Delaney/ESOL data set with an additional 19 SMILES, that represent the same molecule but differ
in atom-order, would decrease the RMSE measured for MolZip by 28% from 1.510 to 1.097. How-
ever, we omit reporting augmentation-based results for the regression tasks to be compatible with
the results reported for the classification tasks.

The results reported in Table [2] show that our compression-based methods reach competitive perfor-
mance compared to ChemBERTa-2 in two out of four tasks; however, they perform comparatively
poor on the two data sets for which metrics were available for GROVER. For ChemBERTa-1, no re-
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Table 2: Performance comparison between ChemBERTa-1, ChemBERTa-2, GROVER, MoZip, and
MolZip-Vec. Underlined results are the best between ChemBERTa-1 and MolZip, bold results are
the best overall. Note: The data for GROVER (large) is taken from|Zhou et al.|(2023)), as the authors
of the original GROVER paper did not include benchmark results for scaffold splits.

Data Set Split Metric  ChemBERTa-1 MolZip | ChemBERTa-2 ChemBERTa-2 MolZip-Vec GROVER

(ours) (MLM) (MTR) (ours) (large)
Delaney/ESOL scaffold RMSE 1.510 0.961 0.858 1.271 0.895
BACE (regression) scaffold RMSE 1.174 1.611 1.417 1.133 -
LIPO scaffold RMSE 1.042 1.009 0.744 0.915 0.823
Clearance scaffold RMSE 49.885 53.859 48.93 49.211 -

gression benchmarks were available. Unlike in the classification benchmark, MolZip-Vec performed
better than MolZip on all data sets. Nevertheless, while it performed better than ChemBERTa-2
(MLM) on 3 out of 4 data sets, it was only able to perform better than ChemBERTa-2 (MTR) on
BACE (regression). These results show that compression-based classification on molecules can be
successfully extended to regression.

2.3 BINDING AFFINITY PREDICTION

In addition to molecular property prediction, we tested the ability of the compression-based approach
to predict protein-ligand binding affinities—an essential metric for rational drug design, which aims
to find a drug candidate, given structural information on a disease-associated protein (Gane & Dean,
2000). The protein-ligand binding affinity describes whether and how strong a ligand binds non-
covalently to a protein, usually causing a conformational change of the protein and potentially lead-
ing to a therapeutic effect (Williams| 2013)). The prediction of the binding affinity, given a potential
ligand and a protein’s structure or amino acid sequence, is therefore of interest to computational
chemistry. Over the past years, geometric deep learning, specifically graph neural network-based
approaches, have emerged as the most investigated methods to predict binding affinities, as they are
capable of capturing topological and spatial features important to protein-ligand binding (L1 et al.,
2021;|Méndez-Lucio et al., 2021; Nguyen et al., [2021).

Table 3: Performance of MolZip and MolZip-Vec on the PDBbind data set compared to graph
representation learning-based methods. “ Augmented with an additional SMILES.

Model RMSE MAE R
GCN 1735£0.034  1343£0.037 0.613£0.016

GAT 1765£0.026 1.354£0.033 0.601£0.016

GraphDTA Methods GIN 1.640£0.044 126120044  0.667+0.018
GAT-GCN 1562£0.022  1.191£0.016 0.697£0.008

SGCN 1583£0.033  1.250£0.036  0.686£0.015

GNN-DTI 1.492£0.025 1.192£0.032  0.736£0.021

D-MPNN 1.493£0.016  1.188£0.009 0.729+0.006

GNN-based Methods MAT 1.45740.037  1.154£0.037 0.747£0.013
DimeNet 145320027 113820026 0.7520.010

CMPNN 1.408+0.028 1.11740.031  0.765+0.009

. MolZip" (ours) 1.447£0.031  1.13420.020 0.74620.013
Compression-based Methods 11741 v (ours) | 1.675£0.000  1.300£0.000  0.648+0.000

To tackle the challenge of protein-ligand binding affinity prediction using MolZip and MolZip-Vec,
we implemented a data loader capable of loading and concatenating different modalities, namely
SMILES and amino acid sequences, and pass it to a MolZip or MolZip-Vec regressor. As we evalu-
ated the method on the PCBbind data set (Liu et al.| [2015), the following information was provided
for each protein-ligand complex: (i) structural and compositional data for the ligand, (ii) structural
and compositional data for amino acids that are part of the binding pocket of the protein, and (iii)
structural and compositional data for the entire protein. From this data, we generated the following
encodings: (1) For the ligand, a SMILES string, (2) for the binding pocket, a SMILES string and
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a one-letter amino acid string sequence, where amino acids that are not part of the binding pocket
are replaced by an X, and (3) for the protein, a one-letter amino acid string sequence. These encod-
ings provided us with four modalities (one molecule representation, two binding pocket representa-
tions, and one whole-protein representation) that can be combined arbitrarily through concatenation.
Exploratory benchmark results for the combinations ligand (SMILES), binding pocket (SMILES),
binding pocket (amino acid sequence), whole-protein (amino acid sequence), ligand (SMILES) +
binding pocket (SMILES), ligand (SMILES) + binding pocket (amino acid sequence), and ligand
(SMLIES) + whole-protein (amino acid sequence) can be found in Table The combination
ligand (SMILES) + binding pocket (amino acid sequence) provided the best results.

Comparing our best results against baseline GraphDTA- and GNN-based methods, it becomes ev-
ident that MolZip performs exceptionally well. It does not only perform better than basic GNNs,
including GCN, GAT, and GIN, that used atom features as node attributes for the molecular graph
and the protein sequence as inputs (Nguyen et al., [2021), but also better than methods that include
geometric information in the form of atom-wise protein-ligand interactions, such as GNN-DTI (Lim;
et al,|2019). Introducing molecular descriptors with MolZip-Vec reduces the performance to that of
GraphDTA methods, hinting at the importance of a relatively fuzzy representation of the ligand to a
well-performing compression-based model.

2.4 IMPLICATIONS FOR CHEMICAL INFORMATION RETRIEVAL

Compression-based representation of molecules may have implications beyond machine learning.
As chemical databases such as ZINC or GDB contain billions of molecules, and even partially
human-curated databases like PubChem contain more than 100 million unique molecules, retrieving
information based on chemical features is growing increasingly important (Irwin & Shoichet, 2005;
Visini et al.l 2017} |Kim et al) |2019). Currently, most searches rely on graph topological similar-
ity based on molecular fingerprints, precomputed stored chemical descriptors, or a combination of
both (Warr et al., [2022). With the findings presented in this study, we have shown that the lossless
compression-based combination of molecular structure and chemical descriptors, used as an input
for MolZip-Vec, presents a low-memory alternative to established methods discussed by [Warr et al.
(2022) that allows for direct structure and property-based storage, similarity search and indexing.
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Figure 1: TMAP visualisation of the BBBP data set.

The ability to index and search molecules similar to a commonly used molecular fingerprint, ECFP
(extended-connectivity fingerprint) (Rogers & Hahn| 2010)), is apparent when visually inspecting the
TMAP plots in Figure |1} where the high-dimensional ECFP and compression spaces of the BBBP
data set are visualized by embedding a minimum spanning tree calculated in the original spaces in
the Euclidean plane. They both show similar clusters of molecules capable of passing the blood-
brain barrier.
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3 METHODS

3.1 IMPLEMENTATION

We implemented the compression-based classification according to the code presented in the original
preprint and extended it with support for multiprocessing, class weights, multi-task classification,
and regression (Jiang et al.,|2022). As in the original preprint, the Normalised Compression Distance
(NCD) between molecules x and y is calculated as

C(zy) —min{C(z),C(y)}
max{C(z),C(y)}

NCD(z,y) = (1)

where C(z) and C(y) are the compressed lengths of the SMILES representations of molecules z
and y, respectively, and C(zy) the compressed length of the concatenated SMILES representations
of the two molecules. We changed the implementation of the k nearest-neighbour classifier by
weighting the class counts C; among the k nearest-neighbours using the formula

Cwi = Clwl(l - dl) (2)

where C'w; are the weighted class counts among the k nearest neighbors, W; the class weights
computed from class distribution in the training data set and d; the mean distance (NCD) between
the query point and the k nearest neighbours of class i. The class weights were computed using
the function compute_class_weight from the Python package scikit-learn. For the k nearest-
neighbour regression, a simple distance weighted kNN regressor was implemented in the form of

_ Syl — dyy)

— 3)
S (1= dij)

Yi

where Jij is the distance (NCD) between the query point ¢ and the k nearest neighbours j, y; the
values of the k nearest neighbours, and y; the predicted value.

Multiprocessing has been implemented using the Python standard library (multiprocessing).

3.2 MoLZIpP-VEC

For MolZip-Vec, we combined SMILES strings with numerical descriptors of molecules commonly
used in chemoinformatics. Specifically, we utilized a vector comprising 200 molecular descriptors
from the RDKit cheminformatics library RDKit| (2023)), which are typically used to augment graphs
in molecular graph representation learning (Yang et al.,2019). A complete list of the 200 descriptors
can be found in the documentation of the descriptastorus (v2.6.1) Python package. In order to com-
bine and compress the numerical descriptors with the molecular string representation, the values are
binned and subsequently translated into a set of non-ASCII Unicode characters. The three molecu-
lar string representations (SMILES, DeepSMILES, and SELFIES) used in this work only use ASCII
characters, so collisions are avoided. Empirically, we found that 256 is a suitable number of bins.
A special character prefixes negative values to represent positive and negative bins distinctly. Each
string-based representation of the numerical vector is concatenated to the corresponding SMILES
string, significantly improving the RMSE of several datasets listed in Table 2] In Figure [A.2] we
show that including numerical vectors increasingly improves the performance with growing training
set size on the FreeSolv data set (Mobley, 2013)). Note that the computational cost for the prediction
is slightly higher because of the increased string length.

3.3 BENCHMARKING

The benchmarking results and details of ChemBERTa-1, ChemBERTa-2, and MOLFORMER-XL
were taken from the respective publications (Chithrananda et al., [2020; |]Ahmad et al., 2022; [Ross
et al., 2022). For GROVER, the benchmark results based on scaffold splits have been taken
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from Zhou et al.| (2023). Benchmark results for GraphDTA and GNN-based methods were taken
from |L1 et al.| (2021)).

All benchmarks were run on a Intel Core i7-13700K CPU with a total of 16 cores (8 performance and
8 efficiency cores) with a maximum power-draw of 253W. Together, all classification and regression
benchmarks took 43h 55m to complete. All energy came from renewable sources (hydropower and
solar energy).

4 CONCLUSION

By applying the proposed Gzip-based text classification method by Jiang et al.| (2022) to multiple
molecular classification tasks and extending it to regression problems, we verified its validity and
utility beyond natural language processing tasks. While the proposed method does not achieve
the state-of-the-art performance set by the latest iteration of transformers trained on billions of
molecules on benchmark tasks, it performs as well as baseline BERT- and GAT-based transform-
ers. Furthermore, it is highly intriguing that a method based on differences in the length of Gzip
compressed string representations of molecules can yield comparable or even superior performance
compared to deep learning models. We have also shown that the methodology can be extended to
multimodal binding affinity tasks, where SMILES strings and amino acid sequences are jointly com-
pressed. On the PDBbind data set, our proposed method performs better than all GraphDTA- and
most GNN-based methods, including those incorporating spatial information. Additionally, we have
demonstrated that integrating molecular SMILES strings with string-converted chemical descriptors
can significantly enhance the accuracy compared to using SMILES input alone. Finally, we discuss
how such a method could be of interest outside machine learning and support a new generation of
chemical information retrieval in ultra-large databases. However, certain limitations and challenges
still need to be addressed, including the relatively high time complexity of the kNN-based approach
and the elucidation of the reasons for significant gaps in performance on specific data sets compared
to the state-of-the-art.
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A APPENDIX
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Figure A.1: Influence of data augmentation (randomised SMILES) on validation and test results.
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Table A.1: Effect of different string-encodings of molecules on MolZip performance.

Data Set Split Metric | SMILES DeepSMILES SELFIES
BBBP scaffold AUROC 0.665  0.688 (+0.023) 0.648 (-0.017)
ClinTox (CT_TOX) scaffold AUROC 0.862  0.898 (+0.036) 0.723 (-0.139)
Tox21 (SR-p53) scaffold AUROC 0.692  0.694 (+0.002) 0.681 (-0.011)
HIV scaffold AUROC 0.684 0.660 (-0.024) 0.660(-0.024)
BACE (classification) scaffold AUROC 0.668  0.682 (+0.014)  0.720 (+0.052)
Delaney/ESOL scaffold RMSE 1.510 1.519 (+0.009) 1.738 (+0.228)
BACE (regression) scaffold RMSE 1.174 1.211 (+0.035) 1.140 (-0.034)
LIPO scaffold RMSE 1.042 1.045 (+0.003) 1.069 (+0.027)
Clearance scaffold RMSE 49.885 51.116(+1.231) 50.540 (+0.655)

Table A.2: Effect of different combinations of PDBbind modalities on the performance of MolZip
(without augmentations).

Modalities | RMSE MAE R
Ligand (SMILES) 1.776  1.416 0.591
Pocket (SMILES) 1.653 1.311 0.653
Pocket (AA Seq.) 1.665 1303 0.644
Protein (AA Seq.) 1.885 1.512 0.525
Ligand (SMILES) + Pocket (SMILES) 1.598 1.258 0.679
Ligand (SMILES) + Pocket (AA Seq.) 1.504 1.187 0.721
Ligand (SMILES) + Protein (AA Seq.) 1.688 1.307 0.633
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Figure A.2: Comparing SMILES and a combination with molecular property vectors SMILES &
Vector). Learning curves i.e. mean absolute error (MAE) evaluated using 10-fold random splits of
the FreeSolv(Mobley, 2013) database for solvation free energies. The x-axis shows the number of
training examples N added at constant test set size. The curves show the average over the splits and
the shadow the standard deviation.
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