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Abstract
Due to the inherent vulnerability of neural networks, adversar-
ial attacks present formidable challenges to the robustness and
reliability of deep learning models. In contrast to traditional adver-
sarial training (AT) methods that prioritize semantic distillation
and purification, our work pioneers a novel discovery attributing
the insufficient adversarial robustness of models to the challenges
of spatial attention shift and channel activation disarray. To miti-
gate these issues, we propose a robust spatial-aligned and channel-
adapted learning paradigm, which we term the “StayFocused", that
integrates spatial alignment and channel adaptation to enhance
the focus region against adversarial attacks by adaptively recali-
brating the spatial attention and channel responses. Specifically,
the proposed StayFocused mainly benefits from two flexible mech-
anisms, i.e., Spatial-aligned Hypersphere Constraint (SHC) and
Channel-adapted Prompting Calibration (CPC). Specifically, SHC
aims to enhance intra-class compactness and inter-class separation
between adversarial and natural samples by measuring the angular
margins and distribution distance within the hypersphere space.
Inspired by the top-𝐾 candidate prompts from the clean sample,
CPC is designed to dynamically recalibrate channel-wise feature
responses by explicitly modeling interdependencies between chan-
nels. To comprehensively learn feature representations, the StayFo-
cused framework can be easily extended with additional branches
in a multi-head training manner, further enhancing the model’s
robustness and adaptability. Extensive experiments on multiple
benchmark datasets consistently demonstrate the effectiveness and
superiority of our StayFocused over state-of-the-art baselines.

CCS Concepts
• Computing methodologies→ Computer vision problems.
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1 INTRODUCTION
In the past decade, Deep Neural Networks (DNNs) have emerged as
indispensable tools for addressing complex real-world challenges
across diverse domains within the multimedia field. These appli-
cations encompass a broad spectrum of scenarios, ranging from
biomedical imaging [3, 4] and face recognition [34] to image re-
trieval [25]. However, due to the inherent susceptibility of neural
networks, adversarial attacks and perturbations [31, 47] can expose
significant security vulnerabilities in DNN-based models. Conse-
quently, adversarial robustness has become a crucial metric for
evaluating the reliability and trustworthiness of these models.

To enhance the robustness of deep learning models, early stud-
ies have concentrated on refining variations against adversarial
attacks, such as integrating additional regularization terms [17],
introducing core set-based training strategies [8], and adjusting
the perturbation size of training data [42]. By employing a large
number of adversarial samples as augmented data, adversarial train-
ing (AT) approaches [26, 27] have garnered significant attention
from the research community. Inevitably, a significant gap exists
between the training robustness and test robustness of adversarially
trained models [43]. With the advancement of knowledge distilla-
tion techniques, adversarial distillation (AD) [16, 32, 46] is dedicated
to enhancing the robustness of lightweight networks by distilling
valuable insights from adversarially pre-trained models. Despite the
progress achieved by pioneering efforts, most mainstream models
still suffer from inadequate adversarial robustness.

While semantic distillation and purification have been integral
in refining the semantic robustness of adversarially trained mod-
els, our research is driven by a fresh cognitive viewpoint beyond
semantic interpretation. We demonstrate that the challenges of
spatial attention shift and channel activation disarray posed
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(a) Origin (b) Clean (c) Adversarial (d) Ours

Figure 1: Visualization of activation maps generated by (a)
Original image, (b) Clean sample with non-robust model, (c)
Adversarial sample with non-robust model, and (d) Adver-
sarial sample with our work. Compared with conventional
models, our StayFocusedmethod effectively directs attention
to the most significant regions against adversarial attacks.

by adversarial attacks and perturbations can be regarded as the
main culprits responsible for reducing the robustness of models.
As illustrated in Figure 1(b), spatial attention shift refers to the
phenomenon where adversarial perturbations cause a displacement
in the model’s attention towards irrelevant features, significantly
impacting its performance and reliability. Intuitively, as shown in
Figure 2(a), channel activation disarray arises when adversarial at-
tacks disrupt the activation patterns of individual channels, which
can hinder the model’s ability to extract meaningful representations
from the data. By identifying these challenges, our work strives
to provide a new solution to the challenges posed by adversarial
attacks, improving the robustness of deep learning systems.

In this paper, we propose a robust spatial-aligned and channel-
adapted learning paradigm called “StayFocused", which aims to
stay focused on discriminative features against adversarial attacks
by adaptively recalibrating the spatial attention and channel re-
sponses. Specifically, the proposed StayFocused incorporates two
flexible mechanisms, i.e., Spatial-aligned Hypersphere Constraint
(SHC) and Channel-adapted Prompting Calibration (CPC). On the
one hand, the main purpose of SHC is to implicitly perform spatial
alignment by facilitating intra-class compactness and inter-class
separation between adversarial and natural samples. Based on the
angular margin measurement within the hypersphere space, it aims
to minimize the hyperspherical distribution distance within the
same category while maximizing the distinct margin from different
categories. On the other hand, CPC empowers the network to recal-
ibrate channel-wise feature responses by explicitly capturing the
interdependencies among different channels. Benefiting from the
top-𝐾 candidate class prompts, it dynamically adjusts the channel
magnitudes to prioritize important features while suppressing noise
and irrelevant features, leading to more accurate representations

against adversarial attacks. By incorporating diverse adversarial
objectives related to masking ratio, a flexible multi-head training
strategy is also proposed to learn more comprehensive feature rep-
resentations. Our main contributions are summarized as follows:

• Our work pioneers a novel perspective by identifying the
challenges of spatial attention shift and channel activation
disarray as critical factors contributing to the insufficient
adversarial robustness of deep learning models.

• Two well-designed mechanisms, i.e., SHC and CPC, are pro-
posed to effectively recalibrate spatial attention and channel
responses. Additionally, the StayFocused framework can
seamlessly incorporate additional branches, enhancing its
performance via a multi-head training strategy.

• Our StayFocused is comprehensively evaluated on multiple
large-scale datasets, and the promising performance on both
clean data and adversarial samples collectively demonstrates
its effectiveness over state-of-the-art algorithms.

2 RELATEDWORKS
2.1 Adversarial Attack
In the research community, adversarial attacks can be broadly clas-
sified into white-box and black-box attacks. It is noted that our
work is dedicated to defending against a variety of white-box at-
tacks [2, 11, 26, 31] while maintaining discriminative capability
on clean samples. Sezgedy et al. [31] introduced the concept of
adversarial samples, which involves adding imperceptible noise
to natural samples to cause misclassification by DNNs [33]. After
that, numerous influential techniques for white-box attacks have
emerged to combat adversarial examples. For example, Goodfellow
et al. [11] introduced the Fast Gradient Sign Method (FGSM) that
utilizes gradient information to identify the most aggressive per-
turbation within a specified range. Inspired by FGSM, Madry et al.
[26] proposed a multi-step perturbation strategy called projected
gradient descent (PGD) to generate stronger adversarial samples.
Different from the previous gradient search perturbation, Carlini
Wagner et al.[2] proposed an optimization-based attack method
as C&W, which is widely used to evaluate the robustness of deep
learning models. Furthermore, Croce et al. [7] explored an exten-
sion of PGD attacks and integrated them with existing attacks,
namely AutoAttack, to evaluate the robustness of adversarially
trained model.

2.2 Adversarial Defense
Adversarial Training. Among the various existing defense strate-
gies, adversarial training (AT) [19, 26, 35, 45] is widely acknowl-
edged and employed to enhance model robustness against adversar-
ial attacks and perturbations. Given the classification task based on
the batch training set X = {(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)}, where 𝑛 denotes
the batch size, each sample 𝑥 with the ground-truth label𝑦 is drawn
from the data distribution D. Theoretically, the function of AT can
be defined as a min-max optimization problem [9, 10, 36, 49],

min
𝜃

max
𝒙′∈B𝜖 (𝒙 )

L
(
F

(
𝒙′, 𝜃

)
, 𝑦
)
, (1)

where F represents a DNN-based model with weight parameters 𝜃 ,
𝒙′ is the adversarial example within the 𝐿𝑝 -norm ball B𝜖 (𝒙) = {𝒙′ :
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(a) Standard Training (b) Adversarial Training (c) Ours StayFocused

Figure 2: Comparisons of the averaged channel magnitudes between standard training, adversarial training, and our proposed
method for both natural and adversarial samples. In each plot, the 512 channels are sorted in descending order of magnitude.

∥𝒙′ − 𝒙 ∥𝑝 ≤ 𝜖} centered at 𝑥 and𝑦 is its corresponding label. In the
context of a classification task,L refers to the loss function, e.g., the
cross-entropy loss. Here, the inner maximization problem depends
on adversarial examples 𝒙′ generated within the 𝜖-ball. In contrast,
the outer minimization problem optimizes model parameters under
worst-case perturbations based on the inner maximization process.

Adversarial Distillation. The goal of knowledge distillation
is to transfer the knowledge learned by the large robust model
(teacher) to the lightweight target model (student), enabling the
student model to achieve similar performance with reduced compu-
tational resources [12]. Given a well-trained fixed teacher network
T with higher capacity, previous AD works [6, 10, 18, 20, 50] have
attempted to incorporate knowledge distillation with AT to en-
hance the adversarial robustness of the trainable student networks
S, which can be formulated as the following optimization:

min
𝑠

(1 − 𝛼)LCE (F𝑠 (𝑥) , 𝑦) + 𝛼𝜏2LKL (F𝑠 (𝒙′), F𝑡 (𝑥)), (2)

where 𝛼 is the trade-off factor and 𝜏 is a temperature constant,
LCE represents the cross-entropy (CE) loss that encourages the
student S to maximize the natural accuracy, and LKL denotes the
Kullback-Leibler (KL) divergence that aims to minimize the distri-
bution difference across teacher-student domains.

Advanced Adversarial Robustness. Recently, variants of ad-
vanced defense strategies have been proposed to enhance adversar-
ial robustness. For instance, the channel-wise activation suppress-
ing (CAS) strategy [1] suppressed redundant activations caused by
adversarial perturbations. To achieve a better trade-off, Zhang et
al.[45] decomposed the adversarial prediction error into the natural
error and boundary error, proposing TRADES to simultaneously
control both terms. Similarly, the Channel-wise Importance-based
Feature Selection (CIFS) [41] generated non-negative multipliers for
channels to manipulate channel activations for specific layers. In
contrast, MART [35] additionally considered misclassified examples
during adversarial training. Kim et al. [21] proposed a recalibra-
tion strategy called Feature Separation and Recalibration (FSR) to
recapture its potential discriminative clues. Furthermore, Yin et
al. [43] proposed an effective method named AGAIN to obtain the
attribution span of the model under real and random labels, aiming
to enlarge the learned attribution span.

3 METHODOLOGY
Technically, the proposed StayFocused is driven by a robustness
paradigm shift, specifically focusing on the challenges of spatial
attention shift and channel activation disarray posed by adversar-
ial attacks. Figure 3 provides a detailed pipeline of our proposed
StayFocused framework, comprising three essential modules: 1)
Multi-branches Feature Embedding, 2) Spatial-aligned Hypersphere
Constraint, and 3) Channel-adapted Prompting Calibration.

3.1 Multi-branches Feature Embedding
To proficiently capture distributed feature representations from
input images, a well-established multi-branch architecture is de-
signed as the backbone, comprising adversarial and clean branches.
Each encoder is initialized with a pretrained ResNet-18 model. In
the clean branches, StayFocused incorporates the concept of mask-
denoising [13, 39, 40] to explore the semantic-relevant local image.
By robustly capturing localized patterns from randomly masked
patches of images, we aim to capture the semantic relevance be-
tween different local images through two branches that share pa-
rameters, which can be formulated as follows:

min
𝜙

E(𝑥,𝑦)∼D LKL
(
𝑓𝜙 (𝑥), 𝑓𝜙 (Mask(𝑥))

)
, (3)

where 𝜙 represents the network parameters of the clean encoder.

3.2 Spatial-aligned Hypersphere Constraint
Inspired by contrastive learning [5, 14, 29], our SHC mechanism
aims to implicitly perform spatial alignment by enhancing intra-
class compactness and inter-class separation between adversarial
and natural samples. By measuring the angular margins and distri-
bution distance, it is engineered to anchor robust features within
the distribution of natural features, while dispersing features from
different classes across the hypersphere.

Typical Contrastive Learning. Contrastive learning serves as
a self-supervised learning paradigm, where the primary objective
is to drive the model to draw similar data points nearer within the
embedding space, while simultaneously pushing apart dissimilar
data points. As mentioned in [5], each instance 𝑥 contains a set of
positive views and a set of negative views [5]. In particular, the
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Figure 3: Illustration of the proposed spatial-aligned and channel-adapted learning paradigm (StayFocused) for combating
adversarial attacks and perturbations. Left: Multi-branch Feature Embedding is built on a multi-branch architecture to capture
both adversarial and natural feature representations.Middle: Spatial-aligned Hypersphere Constraint is designed to facilitate
intra-class compactness and inter-class separation between adversarial and natural samples. Right: Channel-adapted Prompting
Calibration aims to recalibrate channel-wise feature responses by modeling the interdependencies among channels.

contrastive loss function of a positive pair (𝑥𝑖 , 𝑥 𝑗 ) is defined as:

LCL = − log
exp(sim(𝑥𝑖 , 𝑥 𝑗 )/𝜏)

exp(sim(𝑥𝑖 , 𝑥 𝑗 )/𝜏) +
∑

𝑘∈N(𝑖 )
exp(sim(𝑥𝑖 , 𝑥𝑘 )/𝜏)

, (4)

where sim(𝑥𝑖 , 𝑥 𝑗 ) denotes a similarity metric between samples 𝑥𝑖
and 𝑥 𝑗 , N(𝑖) represents the set of negative embeddings.

Definition of Angular Margin. For the binary classification
task, let Δ(, ) represent the angle between each pair of feature em-
beddings. Suppose the learned adversarial feature 𝑥 ′ is given, where
Δ(𝑥 ′, 𝑥𝑎) and Δ(𝑥 ′, 𝑥𝑏 ) denote the angles between the adversarial
sample and natural samples from different ground-truth categories,

Δ(𝑥𝑎, 𝑥𝑏 ) = Δ(𝑥 ′, 𝑥𝑎) + Δ(𝑥 ′, 𝑥𝑏 ), (5)

To classify 𝑥 ′ in the spherical space, it is necessary to ensure that
Δ(𝑥 ′, 𝑥𝑎) is greater than the angles of the other class,

cos(𝑚 · Δ(𝑥 ′, 𝑥𝑎)) > cos(Δ(𝑥 ′, 𝑥𝑏 )). (6)

As shown in Figure 4, the decision boundary can be formulated as:

𝑚 · Δ(𝑥 ′, 𝑥𝑎) = Δ(𝑥 ′, 𝑥𝑏 ) . (7)

where 𝑚 ≥ 1 is an integer coefficient. According to Eq. (5) and
Eq. (7), the hyper-spherical angular marginM [23] between classes
𝑎 and 𝑏 can be calculated as:

M = |Δ(𝑥 ′, 𝑥𝑎) − Δ(𝑥 ′, 𝑥𝑏 ) | = 𝑚 − 1
𝑚 + 1

· Δ(𝑥𝑎, 𝑥𝑏 ) (8)

Hypersphere Contrastive Learning. Based on the aforemen-
tioned analysis, the essence of the angular margin lies in constrain-
ing the arc length on the unit circle, which in turn amplifies the

discriminative power of the features learned on the hypersphere.
Geometrically, we leverage the concept that the dot product of two
vectors can yield an angle, thereby transforming the optimization
of the feature vector into angle optimization on the unit sphere.
Formally, the multiplication of the adversarial and nature vectors
can be expressed as:

𝑥 · 𝑥 ′ = ∥𝑥 ∥⊤
𝑥 ′ · cos (Δ(𝑥, 𝑥 ′)) . (9)

In this way, we can transform the comparison of traditional feature
similarity matrices into an optimization problem on a hypersphere
with an angular marginM. Compared with standard contrastive
learning, the objective function of hypersphere contrastive learning
is formulated as follows:

LSHC = − log
exp (cos(𝑚 · Δ(𝑥 ′

𝑖
, 𝑥

𝑖
) )/𝜏 )

exp (cos(𝑚 · Δ(𝑥 ′
𝑖
, 𝑥

𝑖
) )/𝜏 ) +∑

𝑗≠𝑖 exp (cos(Δ(𝑥 ′
𝑖
, 𝑥

𝑗
) )/𝜏 ) .

(10)

3.3 Channel-adapted Prompting Calibration
To combat challenges arising from channel activation disarray, the
CPC mechanism is meticulously designed to suppress redundant
channels while maintaining the activation of relevant channels.
Benefiting from the top-𝐾 candidate class prompts, this strategic
modulation enables the model to recalibrate its visual attention
towards crucial channels, enhancing its resilience and robustness
against adversarial attacks and perturbations.

Top-K Class Prompts. In parallel with advancing the adver-
sarial branch, we introduce a standard training branch to pinpoint
the centroids of distinct class clusters by incorporating category
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Figure 4: Details of spatial-aligned hypersphere constraint.

prototypes during the training phase. It can provide a more de-
tailed representation and understanding of each class’s inherent
characteristics and distributions in the feature space. After that, we
compute the cosine similarity between its feature representation
and the prototypes of all classes. As a result, the categories with top-
𝐾 confidence scores are selected as the class prompts. This selection
process ensures that the model focuses on the most relevant and
informative classes for each sample, enhancing its discriminative
capability and robustness against adversarial attacks.

Channel-wise Recalibration. In this part, we initially acquire
the preliminary channel feature response 𝑧′ for each adversarial em-
bedding via a forward inference process. Following the concept of
class activation mapping [48], we leverage the top-𝐾 class prompts
to recalibrate the channel-wise feature responses,

Training : 𝑧′
𝑙
= 𝛼 · 𝑧′

𝑙
𝑤
𝑦

𝑙
+ (1 − 𝛼)/𝐾 ·

∑︁
𝑧′
𝑙
𝑤𝑘
𝑙
, (11)

where 𝑘 ∈ {1, ..., 𝐾}, 𝛼 is a trade-off factor to balance the weights
between different classes, and𝑤𝑦

𝑙
and𝑤𝑘

𝑙
denote the channel weight

of the 𝑙-th feature map corresponding to ground-truth class 𝑦 and
top-𝐾 candidate classes, respectively. Given that label information
and nature samples are unavailable during the testing phase, the
class obtaining the highest score in similarity calculation with the
prototype is considered as the initial predicted class,

Inference : 𝑧′
𝑙
= 𝑧′

𝑙
𝑤
𝑝𝑟𝑒

𝑙
, (12)

where 𝑤𝑝𝑟𝑒

𝑙
denotes the channel weights of the 𝑙-th feature map

provided by its corresponding class prototype vector. Notably, the
internal maximization of the optimization objective depends on
estimating the gradients of input pixels based on the loss function.
During the adversarial sample generation phase, our CPC strat-
egy is maintained in a frozen state to ensure effective gradient
computation for various attack algorithms, without discarding any
informative channels.

Theoretical and Robust Analysis. Based on Eq. (11), the ob-
jective function for classification during the adversarial training

phase can be formulated as follows:

LCPC = LCE (𝜎 (𝑧′), 𝑦)
= LCE

(
𝜎
(
𝛼 · 𝑧′𝑤𝑦 + (1 − 𝛼) · 𝑧′𝑤 ′), 𝑦), (13)

where 𝜎 represents the softmax activation function,𝑤 ′ denotes the
class weights corresponding to candidate classes. By incorporating
the cross-entropy loss, LCPC can be transformed to:

LCPC = − log

{
exp [𝛼 · 𝑧′𝑤𝑦 + (1 − 𝛼) · 𝑧′𝑤 ′]∑𝑁

𝑗=0 exp
(
𝑧′𝑤 𝑗

) }

= −𝛼
(
𝑧′𝑤𝑦 − 𝑧′𝑤 ′) − 𝑧′𝑤 ′ + log


𝑁∑︁
𝑗=0

exp
(
𝑧′𝑤 𝑗

)
= −𝛼

(
𝑧′𝑤𝑦 − 𝑧′𝑤 ′) + log

[∑𝑁
𝑗=0 exp

(
𝑧′𝑤 𝑗

)
exp (𝑧′𝑤 ′)

]
,

(14)

where 𝑁 is the number of classification categories. Suppose ℎ =

𝑧′𝑤𝑦 − 𝑧′𝑤 ′ [43], Eq. (14) can be reformulated as:

LCPC = −𝛼ℎ+

log

{
exp (𝑧𝑤 ′)∑𝑁

𝑗=0
[
exp

(
𝑧′𝑤 𝑗 − 𝑧′𝑤 ′) ]

exp (𝑧′𝑤 ′)

}
= −𝛼ℎ + log


𝑁−1∑︁
𝑗≠𝑦

exp
(
𝑧′𝑤 𝑗 − 𝑧′𝑤 ′

)
+ exp (ℎ)

 .
(15)

Theoretically, under ideal classification conditions,

∇ℎL = −𝛼 + exp(ℎ)
𝑐 + exp (ℎ) = 0. (16)

Consequently, we can infer the following:

𝑧′𝑤𝑦 − 𝑧′𝑤 ′ = log


𝛼 ·∑𝑁−1

𝑗≠𝑦 exp
(
𝑧′𝑤 𝑗 − 𝑧′𝑤𝑘

)
1 − 𝛼

 . (17)

According to Eq. (17), a reasonable trade-off mechanism with 𝛼 , e.g.,
𝛼 = 0.5, allows the model to focus on the activated features associ-
ated with the predicted class while also considering the activated
features of related classes. Therefore, it is evident that a comprehen-
sive fusion strategy used in Eq. (11) enhances the model’s reliability
and robustness against adversarial perturbations.

3.4 Multi-head Training and Optimization
Intuitively, our flexible multi-head training approach serves as a
pivotal enhancement to the model’s capabilities. By integrating
insights from various heads, StayFocused gains a richer understand-
ing of the data distribution, leading to improved generalization and
resilience against adversarial attacks. Meanwhile, each head focuses
on capturing different aspects of the data, allowing the model to un-
derstand and adapt to various complexities and nuances presented
by adversarial inputs.

Total Objective Function. Based on the above analyses, the
training objective of the proposed StayFocused approach is a com-
bination of multiple loss functions from different modules, i.e.,

LTotal =
∑︁

Multi-head
(
LSHC + LCPC + LKL

)
. (18)
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Table 1: Comparisons of clean accuracy (%) and robust accuracy (%) against various adversarial attacks on the CIFAR-10 dataset.

CIFAR-10 ResNet-18 WideResNet-34-10

Method Ref. Clean FGSM PGD-20 PGD-50 PGD-100 C&W AA Clean FGSM PGD-20 PGD-50 PGD-100 C&W AA

AT ICLR’18 84.25 55.11 46.56 44.85 44.76 48.97 41.69 84.26 58.50 56.11 55.23 55.15 54.02 51.52
TRADES ICML’19 83.64 57.39 50.67 50.38 50.20 49.56 46.81 84.92 60.06 56.05 55.93 55.82 54.91 52.95
CAS ICLR’21 86.79 55.99 51.49 51.77 51.04 53.66 44.23 85.37 58.96 57.84 57.68 57.43 58.47 53.25
CIFS ICML’21 83.86 58.86 51.23 49.80 48.70 50.16 43.94 84.63 59.39 58.49 56.98 56.31 55.25 52.36
FSR CVPR’23 81.46 58.07 52.47 51.62 51.02 49.44 46.41 83.83 60.59 56.89 56.29 55.63 54.96 51.89
AGAIN-PGD-AT CVPR’23 87.88 56.87 54.43 53.62 53.13 55.80 49.31 87.36 59.80 60.73 60.04 59.83 61.52 53.19
AGAIN-AWP CVPR’23 86.52 62.43 59.35 59.11 58.85 61.19 51.89 90.31 62.76 62.43 62.29 62.01 68.13 53.59

StayFocused Head=2 88.08 68.08 65.45 64.94 64.62 65.26 61.13 87.99 63.34 58.19 57.28 57.24 57.05 57.79
StayFocused Head=3 89.02 74.72 74.19 73.55 73.39 73.16 62.10 88.31 68.95 63.83 63.68 63.67 61.66 58.10
StayFocused Head=4 89.80 76.87 75.81 75.59 74.94 72.24 67.29 89.28 77.44 77.03 76.73 75.76 70.14 62.60

Increased ↑ - 1.92% 14.44% 16.46% 16.48% 16.09% 11.97% 15.40% - 14.68% 14.60% 14.44% 13.75% 2.01% 9.01%

Table 2: Comparisons of clean accuracy (%) and robust accuracy (%) against various adversarial attacks on the SVHN dataset.

SVHN ResNet-18 WideResNet-34-10

Method Ref. Clean FGSM PGD-20 PGD-50 PGD-100 C&W AA Clean FGSM PGD-20 PGD-50 PGD-100 C&W AA

AT ICLR’18 91.21 55.55 42.55 39.36 37.54 40.61 45.58 91.33 61.76 55.08 53.27 52.86 51.16 47.46
TRADES ICML’19 90.99 58.10 47.12 43.83 43.55 45.48 46.29 94.89 63.27 57.88 55.32 54.88 55.04 51.53
CAS ICLR’21 90.39 65.24 51.98 44.39 43.75 53.53 47.40 91.85 62.46 58.35 56.05 55.63 56.18 48.84
CIFS ICML’21 93.21 66.24 52.02 48.57 47.49 50.13 46.95 94.46 63.45 59.44 57.46 57.02 56.32 51.04
FSR CVPR’23 91.28 60.46 43.94 39.74 39.01 50.22 49.27 93.46 62.87 56.71 54.84 53.36 52.68 49.97
AGAIN-PGD-AT CVPR’23 92.69 65.32 60.54 55.63 53.25 58.22 51.04 94.02 64.24 60.35 58.48 59.86 62.03 53.23
AGAIN-AWP CVPR’23 91.57 66.58 63.56 58.63 57.01 61.28 53.25 93.68 64.70 62.09 61.94 61.39 64.78 53.62

StayFocused Head=2 93.14 67.79 63.81 62.79 62.54 66.03 57.72 94.50 70.51 63.27 56.02 54.19 58.34 53.28
StayFocused Head=3 93.40 72.52 67.58 66.77 66.57 65.99 58.99 95.06 79.44 73.75 68.21 65.58 70.47 54.76
StayFocused Head=4 93.54 69.55 68.42 67.98 67.86 68.15 57.89 95.56 80.41 77.44 72.59 68.81 75.04 56.94

Increased ↑ - 0.33% 5.94% 4.86% 9.35% 10.85% 6.87% 5.74% 0.67% 15.71% 15.35% 10.65% 7.42% 10.26% 3.32%

Through the joint optimization of these losses, our approach can
further improve the robustness and reliability of deep learning mod-
els. Our experimental results demonstrate that a straightforward
summation of the objective loss, without incorporating weight con-
straints, yields satisfactory outcomes across various benchmark
datasets. The training algorithm of StayFocused is shown in our
supplementary materials.

4 EXPERIMENTS
4.1 Datasets, Baselines, and Metrics
In our experiments, we evaluate the effectiveness of our proposed
StayFocused framework on two benchmark datasets, i.e., CIFAR-10
[22] and SVHN [28]. In particular, a wide range of state-of-the-
art baselines are introduced, including two AT methods, namely
AT[26] and TRADES [45], and five advanced adversarial robustness
methods, including CAS [1], CIFS [41], FSR [21], AGAIN [43] and
AGAIN with AWP [38]. To make a fair comparison, we utilize
natural/clean accuracy on natural test samples and robust accuracy
on adversarial test samples as the primary evaluation criteria.

4.2 Implementation Details
Following the existing studies, we adopt the ResNet-18 [15] and
WideResNet-34-10 [44] as the backbone architecture for the pro-
posed StayFocused method.

Training Phase. Following the conventional settings in existing
works[21], we utilize the stochastic gradient descent (SGD) opti-
mizer with momentum 0.9, weight decay 5×10−4, an initial learning
rate of 0.1 for CIFAR-10 and 0.01 for SVHN, which is divided by 10
at the 75th and 90th epochs. We apply our method to adversarial
training PGD-10 (10-step PGD) with a step size of 2/255 and the
perturbation 𝜖 in the adversarial attack under 𝐿∞-norm is set to
8/255 for all methods.

Evaluation Phase. The robustness of the model is evaluated
by measuring the correct accuracy of the model under different
adversarial attacks. We choose several adversarial attack methods
to attack the trained model, including single-step attack algorithm
FGSM [11], multi-step attack algorithm PGD [26] (PGD-10, PGD-20,
PGD-50 and PGD-100), C&W [2], and AutoAttack (AA) [7]. The
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Figure 5: Ablation study (%) for the proposed StayFocused
framework with different 𝛼 configurations on CIFAR-10.

maximum perturbation strength of all attack methods under 𝐿∞-
norm is set to 8/255 and the step size is 0.1× 𝜖 . This comprehensive
evaluation ensures a robust assessment of the model’s resilience
against a wide range of adversarial perturbations.

4.3 Comparisons with State-of-The-Art
To evaluate the effectiveness of our StayFocused in enhancing adver-
sarial robustness, we conduct comprehensive experiments against a
variety of state-of-the-art baselines on CIFAR-10 and SVHNdatasets.
The comparative results are summarized in Table 1 and Table 2.

Evaluation on CIFAR-10 Dataset. We can observe that our
proposed StayFocused method clearly outperforms all the compar-
ative baselines on benchmark datasets. Compared to the current
best-performing method, i.e., AGAIN-AWP, StayFocused trained
by ResNet-18 model on the CIFAR-10 achieves an average improve-
ment of 3.28% (89.80% vs. 86.52%) in clean accuracy and an average
improvement of 16.09% (74.94% vs. 58.85%) under the standard
100-step PGD attack. Particularly, when facing the challenging
scenario of comprehensive attack method AA, the classification
accuracy of StayFocused shows a 15.4% improvement (67.29% vs.
51.89%) and a 9.01% improvement (62.60% vs. 53.59%) in ResNet-
18 and WideResNet-34 on CIFAR-10, respectively. Furthermore,
the evaluation results on the ResNet-18 model reveal a substantial
improvement of 11.05% in test accuracy (72.24% vs. 61.19%) for Stay-
Focused compared to the AGAIN-AWP baseline under C&W attack.
Therefore, the above experimental results show that our StayFo-
cused method effectively uses prior knowledge from the standard
training branch to recalibrate visual attention and perform spatial
alignment, and has better robust performance compared with SOTA
in the same field.

Evaluation on SVHN Dataset. To evaluate the generalizability
of StayFocused on large datasets, we conduct extensive experiments
on the real-world dataset SVHN. The proposed StayFocused frame-
work surpasses the current state-of-the-art approaches by a large
margin. In particular, StayFocused achieves substantial improve-
ments in terms of Top-1 accuracy on clean samples, surpassing the
state-of-the-art approaches by 1.97% (93.54% vs. 91.57%) and 1.88%
(95.56% vs. 93.68%). Consistently, StayFocused increases PGD-100
attack accuracy by 10.85% on ResNet-18 and 7.42% on WideResNet-
34. Furthermore, the AA accuracy increased significantly by 5.74%
(58.99% vs. 53.25%) and 3.32% (56.94% vs. 53.62%) on the ResNet-
18 and WideResNet-34 models respectively, further confirms the
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Figure 6: Ablation study (%) for the proposed StayFocused
framework with different top-𝐾 configurations on CIFAR-10.

technical superiority of StayFocused in real-world scenarios. These
experimental results provide compelling evidence regarding the
efficacy and robustness of StayFocused across a range of real-world
datasets exhibiting attacks of varying intensity.

4.4 Parameter Analysis
We study an exhaustive parameter analysis of our proposed Stay-
Focused method under different parameter configurations. Specifi-
cally, we focus on analyzing the effects of two key parameters: the
trade-off factor of 𝛼 and the hyperparameter of 𝐾 in Eq. (11).

Hyperparameter 𝛼 . The hyperparameter 𝛼 controls the ra-
tio between true labels and the top-𝐾 candidate prompts. As 𝛼
increases, the model allocates greater attention to feature maps
associated with the true label. When 𝛼 = 1, only feature maps rel-
evant to the true label are amplified. Conversely, as 𝛼 decreases,
the model prioritizes feature maps of the top-𝐾 candidate prompts,
with 𝛼 = 0 exclusively enhancing these maps. We experimented
with different 𝛼 values using ResNet-18 on CIFAR-10 to find the op-
timal 𝛼 . Through experimentation and analysis in Figure 5. When 𝛼
equals 0 or 1, the model exclusively attends to the feature map under
top-𝐾 candidate prompts and those under true labels, respectively.
Based on experimental results, 𝛼 = 0.5 yields the optimal outcome.
Thus, we adopt 𝛼 = 0.5 during experiments to prioritize the feature
map associated with true labels while enabling the model to learn
additional feature knowledge.

Hyperparameter 𝐾 . The hyperparameter top-𝐾 dictates the
number of candidate prompts considered. When 𝐾 = 1, only real
labels are utilized. As 𝐾 increases, more pertinent candidate feature
maps are incorporated. We vary 𝐾 and conduct experiments on
the CIFAR-10 dataset using ResNet-18 to ascertain the optimal top-
𝐾 . The experimental results are depicted in Figure 6. Observing
the experimental results, the best performance is achieved when
𝐾=2. However, with further increments in the number of top-𝐾 ,
the model absorbs an excessive number of redundant feature maps,
leading to a reduction in discriminative capability.

4.5 Ablation Studies
Effect on Each Component.We systematically evaluate the im-
pact of each component on the model’s performance. The compara-
tive results are presented in Table 3. "StayFocused w/o CPC" shows
reduced adversarial robustness, emphasizing CPC’s critical role in
suppressing redundant channels and recalibrating visual attention.
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Figure 7: T-SNE Visualization of the discriminative features learned by PGD-AT and our StayFocused method on CIFAR-10.
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Figure 8: T-SNE Visualization of the discriminative features learned by PGD-AT and our StayFocused method on SVHN.

Table 3: Ablation studies (%) for the proposed StayFocused
framework on the CIFAR-10 dataset.

Method SHC CPC Clean FGSM PGD-100 C&W AA

Standard AT ✗ ✗ 84.25 55.11 44.76 48.97 41.69
w/o CPC ✓ ✗ 86.75 56.29 50.61 50.40 45.43
w/o SHC ✗ ✓ 85.61 66.83 63.52 61.75 52.37

StayFocused ✓ ✓ 88.08 68.08 64.62 65.26 61.13

Table 4: Comparison of our StayFocused with other con-
trastive measurement methods. The SHA module is replaced
by Cossim [37] and InfoNCE [14].

Method Cossim vs. InfoNCE vs. SHA

Clean 85.86 85.66 88.08
FGSM 57.45 58.47 68.08
PGD-100 52.51 55.79 64.62
C&W 58.49 63.88 65.26

Similarly, excluding the SHC mechanism significantly decreases
clean accuracy, as evidenced by "StayFocused w/o SHC".

Effect on Hypersphere Constraint. We also comprehensively
compare the hyper-sphere contrastive learning used in our SHC
mechanism. The comparative results are presented in Table 4. Com-
pared with two popular measurement methods, cosine similarity
[37] and InfoNCE [14, 24], experimental results show that SHC
substantially improves clean accuracy and adversarial robustness
under various adversarial attacks. The results from the ablation
studies above underscore the significance of our SHCmechanism in
enhancing both intra-class compactness and inter-class separation.

4.6 Visualization Results
Spatial Alignment. As illustrated in Figure 1, we adopt the class
activation mapping approach to identify the relevant attentional
visual regions. In contrast to traditional methods susceptible to
adversarial attacks, as demonstrated in Figure 1 our approach con-
sistently directs its attention towards the most relevant regions
associated with the ground-truth labels.

Channel Recalibration.Meanwhile, Figure 2(c) visualizes the
averaged channel magnitudes derived from StayFocused. This visu-
alization vividly showcases the efficacy of our approach in coun-
teracting channel activation disarray. By recalibrating the channel-
wise feature responses, our method ensures a more coherent and
stable representation of visual information.

T-SNE Visualization. To further showcase the effectiveness
of StayFocused, we employ the T-SNE technique [30] to represent
the distributions of feature representations for both clean and ad-
versarial samples. As depicted in Figure 7 and Figure 8, the T-SNE
[30] plots resulting from our StayFocused method exhibit a substan-
tial increase in intra-class compactness, while revealing a notable
improvement in the separation between different classes.

5 CONCLUSION
In this paper, we discovered the phenomenon of adversarial per-
turbation causing spatial attention shift and channel activation
disarray and proposed a StayFocused paradigm to recalibrate the
spatial attention and channel responses from a new perspective
to solve the above problems. The proposed StayFocused method
implicitly conducts spatial alignment and leverages top-K candi-
date class prompts to maintain focus on discriminative features,
combined with a multi-head training strategy to enhance resilience
against adversarial attacks. Comprehensive experiments prove that
our method is sufficiently effective and universal, and can be inte-
grated into existing advanced frameworks.
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