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ABSTRACT

Network pruning, or sparse network has a long history and practical significance
in modern applications. Although the loss functions of neural networks may yield
bad landscape due to non-convexity, we focus on linear activation which already
owes benign landscape. With no unrealistic assumption, we conclude the fol-
lowing statements for the squared loss objective of general sparse linear neural
networks: 1) every local minimum is a global minimum for scalar output with any
sparse structure, or non-intersected sparse first layer and dense other layers with
orthogonal training data; 2) sparse linear networks have sub-optimal local-min for
only sparse first layer due to low rank constraint, or output larger than three di-
mensions due to the global minimum of a sub-network. Overall, sparsity breaks
the normal structure, cutting out the decreasing path in original fully-connected
networks.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable empirical successes in the domains of
computer vision, speech recognition, and natural language processing, sparking great interests in
the theory behind their architectures and training. However, DNNs are often found to be highly
overparameterized, making them computationally expensive with large amounts of memory and
computational power. For example, it may take up to weeks on a modern multi-GPU server for
large datasets such as ImageNet (Deng et al., 2009). Hence, DNNs are often unsuitable for smaller
devices like embedded electronics, and there is a pressing demand for techniques to optimize models
with reduced model size, faster inference and lower power consumption.

Sparse networks, that is, neural networks in which a large subset of the model parameters are zero,
have emerged as one of the leading approaches for reducing model parameter count. It has been
shown empirically that deep neural networks can achieve state-of-the-art results under high levels
of sparsity (Han et al., 2015b; Gale et al., 2019; Louizos et al., 2017a). Modern sparse networks
are mainly obtained from network pruning (Zhu & Gupta, 2017; Lee et al., 2018; Liu et al., 2018;
Frankle & Carbin, 2018), which has been the subject of a great deal of work in recent years. How-
ever, training a sparse network with fixed sparsity patterns is difficult (Evci et al., 2019) and few
theoretical understanding of general sparse networks has been provided.

Previous work has already analyze deep neural networks, showing that the non-convexity of the
associated loss functions may cause complicated and strange optimization landscapes. However, the
property of general sparse networks is poorly understood. Saxe et al. (2013) empirically showed
that the optimization of deep linear models exhibits similar properties as deep nonlinear models,
and for theoretical development, it is natural to begin with linear models before studying nonlinear
models (Baldi & Lu, 2012). In addition, several works (Sun et al., 2020) have show bad minimum
exists with nonlinear activation. Hence, it is natural to begin with linear activation to understand the
impact of sparsity.

In this article, we go further to consider the global landscape of general sparse linear neural net-
works. We need to emphasize that dense deep linear networks already satisfy that every local min-
imum is a global minimum under mild conditions (Kawaguchi, 2016; Lu & Kawaguchi, 2017), but
findings are different and complicated for sparse linear network. The goal of this paper is to study
the relation between sparsity and local minima with the following contributions:

• First, we point out that every local minimum is a global minimum in scalar target case
with any depths, any widths and any sparse structure. Besides, we also briefly show that
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similar results hold for non-overlapping filters and orthogonal data feature when sparsity
only occurs in the first layer.
• Second, we find out that sparse connections would already give sub-optimal local minima

in general non-scalar case through analytic and numerical examples built on convergence
analyze. The local-min may be produced from two situations: a sub-sparse linear network
which owes its minimum as a local-min of the original sparse network; a rank-deficient
solution between different data features due to sparse connections, while both cases verify
the fact that sparsity cuts out the decreasing path in original fully-connected networks.

Overall, we hope our work contributes to a better understanding of the landscape of sparsity network
on simple neural networks, and provide insights for future research.

The remainder of our paper is organized as follows. In Section 2, we derive the positive findings of
shallow sparse linear networks, providing similar landscape as dense linear networks. In Section 3,
we give several examples to show the existence of bad local-min for non-scalar case. In section 4,
we briefly generalize the results from shallow to deep sparse linear networks. Some proofs are in
Appendix.

1.1 RELATED WORK

There is a rapidly increasing literature on analyzing the loss surface of neural network objectives,
surveying all of which is well outside our scope. Thus, we only briefly survey the works most related
to ours.

Local minima is Global. The landscape of a linear network date back to Baldi & Hornik (1989),
proving that shallow linear neural networks do not suffer from bad local minima. Kawaguchi (2016)
generalized same results to deep linear neural networks, and subsequent several works (Arora et al.,
2018; Du & Hu, 2019; Eftekhari, 2020) give direct algorithm-type convergence based on this benign
property, though algorithm analysis is beyond the scope of this paper. However, situations are
quite complicated with nonlinear activations. Multiple works (Ge et al., 2017; Safran & Shamir,
2018; Yun et al., 2018) show that spurious local minima can happen even in two-layer network with
population or empirical loss, some are specific to two-layer and difficult to generalize to general
multilayer cases. Another line of works (Arora et al., 2018; Allen-Zhu et al., 2018; Du & Hu, 2019;
Du et al., 2018; Li et al., 2018; Mei et al., 2018) understands the landscape of neural network in
an overparameterized setting, discovering benign landscape with or without gradient method. Since
modern sparse networks reserve few parameters compared to overparameterization, we still seek a
fundamental view of sparsity in contrast. Our standpoint is that spurious local minima can happen
when applied with specific sparsity even in linear networks.

Sparse networks. Sparse networks (Han et al., 2015b;a; Zhu & Gupta, 2017; Frankle & Carbin,
2018; Liu et al., 2018) have a long history, but appears heavily on the experiments, and mainly
related to network pruning, which has practical importance for reducing model parameter count
and deploying diverse devices. However, training sparse networks (from scratch) suffers great dif-
ficulty. Frankle & Carbin (2018) recommend reusing the sparsity pattern found through pruning
and train a sparse network from the same initialization as the original training (‘lottery’) to obtain
comparable performance and avoid bad solution. Besides, for fixed sparsity patterns, Evci et al.
(2019) attempt to find a decreasing objective path from ‘bad’ solutions to the ‘good’ ones in the
sparse subspace but fail, showing bad local minima can be produced by pruning, while we give
more direct view of simple examples to verify this. Moreover, several recent works also give abun-
dant methods (Molchanov et al., 2017; Louizos et al., 2017b; Lee et al., 2018; Carreira-Perpinán &
Idelbayev, 2018) for choosing weights or sparse network structure while achieving similar perfor-
mance. In theoretical view, Malach et al. (2020) prove that a sufficiently over-parameterized neural
network with random weights contains a subnetwork with roughly the same accuracy as the tar-
get network, providing guarantee for ‘good’ sparse networks. Some works analyze convolutional
network (Shalev-Shwartz et al., 2017; Du et al., 2018) as a specific sparse structure. Brutzkus &
Globerson (2017) analyze non-overlapping and overlapping structure as we do, but with weight
sharing to simulate CNN-type structure, and under teacher-student setting with population risk. We
do not follow CNN-type network but in general sparse networks, though still linear, to conclude
straightforward results.
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2 LANDSCAPE OF SHALLOW SPARSE LINEAR NETWORKS

2.1 PRELIMINARIES AND NOTATION

We use bold-faced letters (e.g., w and a) to denote vectors, capital letters (e.g., W = [wij ] and
A = [aij ]) for matrices. Let PX be the orthogonal projection to the column space of the matrix X ,
and λi(H) is the i-th smallest eigenvalue of a real symmetric matrix H .

We consider the training samples and their outputs as {(xi,yi)}ni=1 ⊂ Rdx × Rdy , which may
come from unknown distribution D. We form the data matrices X = [x1, . . . ,xn]T ∈ Rn×dx and
Y = [y1, . . . ,yn]T ∈ Rn×dy , respectively. In our analysis in Sections 2 and 3, we consider a
two-layer (sparse) linear neural network with squared loss:

min
W,A

L(W,A) :=
1

2
‖Y −XWA‖2F , (1)

where the first layer weight matrix W = [w1, . . . ,wd] ∈ Rdx×d , and the second layer weight
matrix A = [a1, . . . ,ad]T ∈ Rd×dy . After weights pruning or sparsity constraint, many weights
parameters become zero and would not be updated during retraining. We adopt Sj := {k : wkj = 0}
as pruned dimensions in the j-th column ofW , and−Sj := Scj = [dx]\Sj , where [d] := {1, . . . , d}.
In addition, wj,S denotes the sub-vector of wj choosing the positions in S, XS the sub-matrix of X
choosing the column indices in S.

We let pj = dx − |Sj |, where |S| is the cardinality of the set S. Then wj,−Sj ∈ Rpj is the
remaining j-th column in first layer weight which leaves out pruned dimension set Sj . Similarly,
X−Sj ∈ Rn×pj means the remaining data matrix connected to j-th node in the first layer.

Finally, for simplicity, we denote X−j = X−Sj , w−j = wj,−Sj , and (̃·) as the pruned layer weight
with several zero elements not updated all along, if no ambiguity.

Before we begin, a small note on the sparse structure we concern: there may have unnecessary
connections and nodes, such as a node with zero out-degree which can be retrieved and excluded
from the final layer to the first layer, and other cases are showing in Appendix C. Thus we do not
consider them in the subsequent proof and assume each data dimension has valid output connection,
i.e., ∩dj=1Sj = ∅.

2.2 SCALAR CASE

In the scalar case, assume dy = 1. We then simplify A = (a1, . . . , ad)
T . When pruning any weight

ai in the second layer, the output of the i-th node in the first layer contribute zero to final output.
Hence wi can also be pruned. Without loss of generality, we assume second layer parameters are
not pruned. After pruning several parameters, the original problem becomes

min
w−i,ai

L(W̃ ,A) :=
1

2

∥∥∥∥∥∥∥Y − (X−1, . . . , X−i, . . . , X−d)

a1w−1...
adw−d


∥∥∥∥∥∥∥
2

F

. (2)

Theorem 1 For a two-layer linear neural network with scalar output and any sparse structure,
every local minimum is a global minimum.

Proof: From Eq. (2), if a local minimizer satisfies ai = 0 for some 1 ≤ i ≤ d, then based on the
second order condition for a local minima, we have


∂2L

∂a2i

∂2L

∂ai∂wT
−i

∂L

∂w−i∂ai

∂L

∂w−i∂wT
−i

 � 0, (3)
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Figure 1: Sparse network without (left) / with (right) overlapping filters in the first layer.

which implies that wT
−iX−iX

T
−iw−i −

(
Y −

∑d
i=1X−iw−iai

)T
X−i

−XT
−i

(
Y −

∑d
i=1X−iw−iai

)
0

 � 0. (4)

Then XT
−i

(
Y −

∑d
i=1X−iw−iai

)
= 0, which is the global minimizer condition of w−iai.

Otherwise, ai 6= 0, then from the first-order condition for a local minima,

∂L

∂w−i
= aiX

T
−i

(
Y −

d∑
i=1

X−iw−iai

)
= 0,

showing that XT
−i

(
Y −

∑d
i=1X−iw−iai

)
= 0, which also gives the global minimizer condition

of w−iai. Hence every local minimum is a global minimum. �

2.3 NON-SCALAR CASE WITH DENSE SECOND LAYER

Now we discuss the case of non-scalar outputs. By the intractable and various sparse structure, we
first consider pruning only the first layer while retaining the dense second layer. Then the remaining
problem is formulated as follows:

min
w−i,ai

L(W̃ ,A) :=
1

2

∥∥∥∥∥Y −
d∑

i=1

X−iw−ia
T
i

∥∥∥∥∥
2

F

. (5)

Intuitively, if we can separate the weight parameters into d parts, based on linear network results,
we can still guarantee no bad local-min. We show that non-overlapping first layer weight or disjoint
feature extractor, as the left graph of Figure 1 depicts, and orthogonal data feature meet requirements.

Theorem 2 For a two-layer sparse linear neural network with dense second layer, assume that X
is full column rank, and ∀ i 6= j, XT

−iX−j = 0. Then every local minimum is global.

Proof: Since ∀ i 6= j, XT
−iX−j = 0 and X is full column rank, X−i and X−j share no same

columns. Additionally, from our assumption ∩dj=1Sj = ∅, we have ∩dj=1Sj = [dx], meaning that
(X−1, . . . , X−d) is X with different arrangement of columns. Hence,

Y = PXY + (I − PX)Y = X(XTX)−1XTY + (I − PX)Y =

d∑
i=1

X−iZi + (I − PX)Y, (6)

where Zi =
(
(XTX)−1XTY

)
−Si

is the sub-matrix choosing the row indices in −Si. Then we
only need to consider the objective:

min
w−i,ai

L(W̃ ,A) =
1

2

∥∥∥∥∥
d∑

i=1

X−i
(
Zi −w−ia

T
i

)∥∥∥∥∥
2

F

=
1

2

d∑
i=1

∥∥X−i (Zi −w−ia
T
i

)∥∥2
F
. (7)
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Figure 2: Left: spurious local minimum exists in sparse linear network with dy = 3 shown in above,
that is the global minimum of a sub-network. Right: one simple weight assignment for obtaining
the global minimum in deep sparse linear network with scalar output.

We will see that the objective has already been separated into d parts, while each part is a two-layer
dense linear network with full column rank data matrix. Based on Theorem 2.2 in Lu & Kawaguchi
(2017) or Eckart-Young-Mirsky theorem (Eckart & Young, 1936; Mirsky, 1960), we obtain that
every local minimum is a global minimum. �

Additionally, we need to explain the assumption that non-overlapping filters in the first layer involves
convolution networks (Brutzkus & Globerson, 2017) if weight sharing is used. Otherwise, we will
show a bad local minima exists when the first layer is overlapped or training data is not orthogonal
in Section 3.

2.4 GENERAL CASE WITH dy = 2

Previous findings imply positive results with one-dimension outputs, or specific sparse structure
and data assumption. In this subsection, we discuss an arbitrary sparse structure with outputs of
dimension dy = 2. We first prove that some connections still owe common benign landscape which
can be removed.

Theorem 3 For a sparse two-layer network, a node with full out-degree and one in-degree can be
removed if we consider the remaining structure with objective under some projected data, having no
influence for spurious local minima.

Previous result simplifies the sparse structure including such a hidden node with one connection to
input and full connection to output. Next, we will provide another type reduction with only one
connection to output when sparsity is applied to both layers with dy = 2.

We mention the final layer output as Node 1 and Node 2, and the hidden nodes which have only
one connection to the output layer as R1 and R2 while the remaining full connection set as R. Set
T1 = ∩j∈R1Sj , T2 = ∩j∈R2Sj . We define U(T ) = {j : wij 6= 0, i ∈ T } as the hidden node set
connected with data feature in T . When the hidden node sets connected to T1 and T2 satisfy the
condition below, we are able to simply the sparse structure into the dense layer case.

Theorem 4 For a sparse two-layer linear network with dy = 2, if U(T1 ∩ T2) ∩ U(T1 \ T2) = ∅
and U(T1 ∩ T2) ∩ U(T2 \ T1) = ∅, then there is a sub-network with dense second layer optimized
with some projected training data, sharing the same local minimum for the remaining parameters.

The formal proof of the theorem can be found in Appendix E. Additionally, from the proof of
Theorem 4, the objective is converted into two objectives with weight sharing in the first layer
even the assumption does not meet. Weight sharing structure has been shown in some related work
(Shalev-Shwartz et al., 2017; Brutzkus & Globerson, 2017), so we do not give detailed description
and leave it as future work.
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Now for a sparse two-layer linear network with dy = 2, we focus on the case which has dense
second layer. If one hidden node only has one in-degree, then based on Theorem 3, we can remove
such node and consider the objective optimized with some projected data. Therefore, each hidden
node should have at least two in-degree. Because one hidden node obviously leads to no bad local
minima, the least sparse structure has two hidden nodes with totally eight connections (e.g., two
constructions in Figure 1). We will show the existence of bad local-minima in Section 3.

2.5 GENERAL CASE WITH dy ≥ 3

We finish this section by discovering that a sub-network with its global minima might yield a spuri-
ous local minima of the original sparse network when dy ≥ 3.

Theorem 5 There exists a spurious local minima that is a global minimum of sub-network in two-
layer sparse network when output dimension dy ≥ 3.

Proof: We consider the sparse structure in Figure 2 with only eight connections. The objective is

min
wi

L(w1, . . . , w8) :=
1

2

∥∥∥∥∥Y −X
(
w1 0
w2 w3

0 w4

)(
w5 w6 0
0 w7 w8

)∥∥∥∥∥
2

F

=
1

2

∥∥∥∥∥Y −X
(
w1w5 w1w6 0
w2w5 w2w6 + w3w7 w3w8

0 w4w7 w4w8

)∥∥∥∥∥
2

F

.

Let X = I3 and Y =

(
1 2 0
2 10 0
0 0 4

)
. Clearly, X and Y have full column rank that is the common

assumption in previous work. Then

(
w1 0
w2 w3

0 w4

)
=

(
1 0
2 2
0 0

)
,
(
w5 w6 0
0 w7 w8

)
=

(
1 2 0
0 3 0

)
satisfy ∇L = 0, and L(w1, . . . , w8) = 8. In addition, for any small disturbances δi, i = 1 . . . , 8,

2L(w1 + δ1, . . . , w8 + δ8) = (δ1 + δ5 + δ1δ5)2 + (2δ1 + δ6 + δ1δ6)2 + (δ2 + 2δ5 + δ2δ5)2

+ (2δ2 + 2δ6 + δ2δ6 + 3δ3 + 2δ7 + δ3δ7)2

+ (2 + δ3)2δ28 + (3 + δ7)2δ24 + (δ4δ8 − 4)2

≥ (2 + δ3)2δ28 + (3 + δ7)2δ24 + (δ4δ8 − 4)2

≥ 2 [(2 + δ3) (3 + δ7)− 4] |δ4δ8|+ 16.

Since the perturbations δi are small, we have (2 + δ3) (3 + δ7)−4 > 0. Hence, L(w1+δ1, . . . , w8+
δ8) ≥ 8, verifying the local minimizer.

However, when

(
w1 0
w2 w3

0 w4

)
=

√10/5 0√
10 0
0 2

,
(
w5 w6 0
0 w7 w8

)
=

(√
10/5

√
10 0

0 0 2

)
,

L(w1, . . . , w8) = 0.18 < 8. Hence, a bad local minimum exists. �

We underline that the bad local minimum is produced from the sub-network when w4=w8=0. Since
we encounter no bad local minimum in a dense linear network, sparse connections indeed destroy
the benign landscape because sparsity obstructs the decreasing path as Evci et al. (2019) mentioned
from experiments.

3 BAD LOCAL MINIMUM WITH SPARSE FIRST LAYER

Now we turn back to the dense second layer case in Section 2.3 with dy=2, and assume X has full
column rank. We give an algorithm to check the existence of spurious local minima when ∃ i 6= j,
s.t.,XT

−iX−j 6= 0.
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Algorithm 1 Sparse-2-Opt (Z1, Z2, D): Obtain the solution of two-layer sparse linear neural net-
work with two hidden neurons.

1: Input: Target matrix Z1, Z2 and covariance diagonal matrix D.
2: Initialize w2, d2,a2;
3: while not converge do
4: w1, d1,a1 = SV D(Z1 +D(Z2 − d2w2a

T
2 ));

5: w2, d2,a2 = SV D(Z2 +DT (Z1 − d1w1a
T
1 ));

6: end while
7: w1 = d1w1,w2 = d2w2.
8: if λ1(∇2L), λ2(∇2L) ≈ 0, λ3(∇2L) > 0 then
9: Return the solution w1,a1,w2,a2.

10: else
11: Try again from another initialization.
12: end if
13: Output: w1,a1,w2,a2.

Notice that we have no rank constraint for the Zi in Eq. (5). Suppose singular value decomposition
of X−i as X−i = UiDiV

T
i with Ui ∈ Rn×pi , Di ∈ Rpi×pi , Vi ∈ Rpi×pi . Since Di has full rank,

we take DiViZi and DiViwi as new targets and variables. With a slight abuse of notation, then the
problem becomes

min
W̃ ,A

1

2

∥∥∥∥∥
d∑

i=1

Ui

(
Zi −wia

T
i

)∥∥∥∥∥
2

F

. (8)

In the following, we show d = 2 is enough to give counter examples. Similarly, using the singular
value decomposition of UT

1 U2 as UT
1 U2 = ŪDV̄ T with a rectangle diagonal matrix D ∈ Rp1×p2 .

Notice that U1, U2 are column orthogonal matrices, thus Dii ≤ 1, and |{i : Dii = 1}| equals to the
overlapping columns between X−1 and X−2. Finally, the objective becomes

L(w1,w2,a1,a2) =
1

2
‖Z1−w1a

T
1 ‖2F +

1

2
‖Z2−w2a

T
2 ‖2F + tr[(Z1−w1a

T
1 )TD(Z2−w2a

T
2 )].

If we fix w2 and a2, we can see w1 and a1 are the best rank-1 approximation ofZ1+D(Z2−w2a
T
2 ),

since w1 and a1 are the solution of

arg min
w1,a1

‖Z1 +D(Z2 −w2a
T
2 )−w1a

T
1 ‖2F .

Similarly, w2 and a2 are the best rank-1 approximation of Z2 +DT (Z1 −w1a
T
1 ). Empirically, we

use alternating update method to find the solution in Algorithm 1 for two blocks, where SV D(·) is
a classical method getting the largest singular value and the corresponding singular vectors.

Since each update does not increase the loss, this makes the convergence of sequence
w1,a1,w2,a2. Once the algorithm converges, the first-order condition is satisfied and two eigen-
vectors with zero eigenvalue of the Hessian matrix are decided. Moreover, we can also prove that
the convergent solution is indeed a local minima (detail see Appendix B). Otherwise, we examine a
local minimum using gradient descent or other optimization method started with noise, if necessary.

Based on Algorithm 1, we find several cases with bad local minima including the overlapping case
(∃i, Dii = 1). The results are shown in Table 1. We observe distinct gaps between the local minima
because our choice of elements in the Zi is small. In the non-overlapping setting, the algorithm
reaches the local min quickly and shows several different examples. As for the overlapping setting,
a simple construction is leaving out the repeated feature away with zero items in the Zi, though we
also show bad-min applied with the overlapping data feature in Row 3 in Table 1.

It is interesting to note that for d = 2, only at most two local minimum are found, and we can
easily broaden the alternating update method into general d case in Appendix D, that will also verify
similar observation: at most d local minimum produced by a sparse-first-layer network with hidden
d nodes, which leaves as future work. Overall, sparsity breaks the original matrix structure, leading
to additional low rank constraint in this case, and still cuts out the decreasing path in the original
fully-connected network.
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Table 1: Examples found by algorithm with spurious local minimum. All experiments run 600
iterations, except last one with 1000 iterations. λi := λi(∇2L).

Z1 Z2 D λ3 λ1, λ2 ‖∇L‖2 Objective L(
1 1
1 0

) (
1 1
1 −1

) (
0.5 0
0 0.9

)
2.1 · 10−1 0 ∼ 10−14 < 10−14 0.5143043518476
1.4 · 10−1 0 ∼ 10−14 < 10−14 0.6781647585271(

−2 0
0 −1

) (
0 1
−2 2

) (
0.8 0
0 0.1

)
3.4 · 10−1 0 ∼ 10−14 < 10−14 0.5373672988360
1.7 · 10−1 0 ∼ 10−14 < 10−14 0.6805528480352(−1 0

1 1
−1 0

) (
0 0
1 1
−2 0

) (
1 0 0
0 0.6 0
0 0 0.8

)
1.7 · 10−1 0 ∼ 10−14 < 10−14 0.8980944246693

2.5 · 10−1 0 ∼ 10−14 < 10−14 0.4712847600704

Additionally, a descent algorithm still will diverge to infinity. For instance, the example in Appendix
A shows that there is a sequence diverging to infinity while the function values are decreasing and
convergent.

4 LANDSCAPE OF DEEP SPARSE LINEAR NETWORKS

In this section, we briefly extend Theorems 1 and 2 to deep sparse linear networks and leave the
proof in Appendix F. The intuition is that deep linear networks have similar landscape property as
the shallow case (Lu & Kawaguchi, 2017; Eftekhari, 2020). However, understanding the landscape
of an arbitrary deep sparse linear network is still complicated.

Theorem 6 For a deep sparse linear neural network with scalar output (dy = 1) and any sparse
structure, every local minimum is a global minimum.

The proof intuition can be described by induction based on shallow linear networks. The above
theorem shows that sparsity introduces no bad-min when applied with scalar target. In addition, we
give a simple choice for obtaining a global minimizer below.

How to obtain a global minimizer in scalar case: One way is to set the first-layer weights as the
global minimizer in the two-layer case with ai = 1, then the remaining layers uniformly distribute
the output of each node to the next layer. For example, if one node has k output connections, then
each connection assigns weight 1/k. Hence, the sum of each layer output remains the best solution
to approximate target Y (see the right graph of Figure 2 for example).

Theorem 7 For a deep sparse linear neural network with a sparse first layer and dense other layers,
assume that X,Y have full column rank, and ∀ i 6= j, XT

−iX−j = 0. If di ≥ min{d1, dy},∀i ≥ 1,
where di is the hidden width in the i-th layer, then every local minimum is a global minimum.

Note that under our assumption di ≥ min{d1, dy},∀i ≥ 1, the deep linear network we study has the
same solution as the shallow linear network when the first-layer weight fixed. Hence, the optimal
value for our objective function is equal to the optimal value of the shallow network problem.

5 DISCUSSION

We have discussed the landscape of sparse linear networks with several arguments. On the positive
side, spurious local minimum does not exist when the objective applied with scalar target, or with
separated first layer and orthogonal training data. On the negative side, we have discovered the bad
local minimum when the previous conditions are violated in a general sparse two-layer linear net-
work, that is, one is generated from low rank constraint, another is produced from sub-sparse struc-
ture. Both the cases show that sparsity cuts out the decreasing path in the original fully-connected
network. Since dense linear networks possess benign landscape, we have concluded that sparsity or
network pruning destroys the favourable solutions. However, some heuristic algorithms combining
training and pruning still work well in practice, leading to mystery of modern network pruning meth-
ods and sparse network design. Other interesting questions for future research include understanding
the gap between global minimum and spurious local minimum, or showing a similar performance
of bad-min, particularly, combining with pruning algorithms.
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A DECREASING PATH OF SPARSE LINEAR NETWORK WITH SPARSE FIRST
LAYER

In addition, there still exists decreasing path to infinity:

min
wi

L(w1, . . . , w8) : =
1

2

∥∥∥∥∥Y −X
(
w1 0
w2 w3

0 w4

)(
w5 w6

w7 w8

)∥∥∥∥∥
2

F

=
1

2

∥∥∥∥∥Y −X
(

w1w5 w1w6

w2w5 + w3w7 w2w6 + w3w8

w4w7 w4w8

)∥∥∥∥∥
2

F

(9)

X = I3, Y =

(
1 0
0 1
1 1

)
, Choose (w1, w2, w3, w4, w5, w6, w7, w8) = (− 1√

k
,−
√
k, 1, 1, 1√

k
, 0, 1, 1),

with k ∈ N+. then 2L(w1, . . . , w8) = ( 1
k + 1)2 > 1 decreases when k increases. Since

minwi
L(w1, . . . , w8) = 0, hence we get a decreasing path to infinity, but not a global minimum.

B ALGORITHM ANALYSIS

We built algorithm guarantee in the following:

First, since each update step, the objective doesn’t increase, then the algorithm will converge.

Second, we verify that the convergent solution (w∗1,a
∗
1,w

∗
2,a
∗
2) satisfy zero gradient. Recall the

first-order condition:

− ∂L

∂w1
=
(
Z1 −w1a

T
1 +D(Z2 −w2a

T
2 )
)
a1 =

(
Z1 +D(Z2 −w2a

T
2 )
)
a1 − aT

1 a1w1,

− ∂L

∂a1
=
(
Z1 −w1a

T
1 +D(Z2 −w2a

T
2 )
)T

w1 =
(
Z1 +D(Z2 −w2a

T
2 )
)T

w1 −wT
1 w1a1,

− ∂L

∂w2
=
(
Z2 −w2a

T
2 +DT (Z1 −w1a

T
1 )
)
a2 =

(
Z2 +DT (Z1 −w1a

T
1 )
)
a2 − aT

2 a2w2,

− ∂L

∂a2
=
(
Z2 −w2a

T
2 +DT (Z1 −w1a

T
1 )
)T

w2 =
(
Z2 +DT (Z1 −w1a

T
1 )
)T

w2 −wT
2 w2a2.

(10)
Notice that w∗1,a

∗
1 is the best rank-1 approximation of Z1 + D(Z2 − w∗2a

∗T
2 ), and w∗2,a

∗
2 are

the best rank-1 approximation of Z2 + DT (Z1 − w∗1a
∗T
1 ). Then we have already got a solution

(w∗1,a
∗
1,w

∗
2,a
∗
2) with zero gradient.

Third, we verify that the convergent solution is a local minimizer through the conditions we checked.
Set r1 = Z1 +D(Z2 −w2a

T
2 ), r2 = Z2 +DT (Z1 −w1a

T
1 ). Then

∇2L(w1,a1,w2,a2) =


aT
1 a1Ip1

−r1 + 2w1a
T
1 aT

1 a2D Dw2a
T
1(

−r1 + 2w1a
T
1

)T
wT

1 w1Idy
a2w

T
1D wT

1Dw2Idy

aT
1 a2D

T DTw1a
T
2 aT

2 a2Ip2 −r2 + 2w2a
T
2

a1w
T
2D

T wT
1Dw2Idy

(
−r2 + 2w2a

T
2

)T
wT

2 w2Idy


(11)

Set H∗ := ∇2L(w∗1,a
∗
1,w

∗
2,a
∗
2). Observe that(

w∗T1 ,−a∗T1 ,0T ,0T
)
H∗ = 0,

(
0T ,0T ,w∗T2 ,−a∗T2

)
H∗ = 0,

showing that H∗ has zero eigenvalue with at least two eigenvectors v1 =
(
w∗T1 ,−a∗T1 ,0T ,0T

)T
and v2 =

(
0T ,0T ,w∗T2 ,−a∗T2

)T
.

Suppose the third smallest eigenvalue is λ3 ≥ ε > 0, then for any direction v with ‖v‖2 = 1, we
have v = α1v̄1 + α2v̄2 + α3v̄3 with v3⊥v1,v3⊥v2,

∑3
i=1 α

2
i = 1, and w̄ := w/‖w‖2.
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If α3 6= 0, then vHv = α2
3v̄3Hv̄3 ≥ α2

3λ3 ≥ α2
3ε ≥ 0. Otherwise, we set v = δ1v1 + δ2v2

with small δ1, δ2 as perturbation, and the perturbed parameters are notated as w̃1, ã1, w̃2, ã2 =
(1− δ1)w∗1, (1− δ2)w∗2, (1 + δ1)a∗1, (1 + δ2)a∗2, which yields

L(w̃1, ã1, w̃2, ã2) = ‖X1

(
Z1 − (1− δ21)w1a

T
1

)
+X2

(
Z2 − (1− δ22)w2a

T
2

)
‖2F

= ‖X1

(
Z1 −w1a

T
1

)
+X2

(
Z2 −w2a

T
2

)
‖2F + ‖δ21w1a

T
1 + δ22w2a

T
2 ‖2F

+ 2δ21 tr[
(
w1a

T
1

)T (
r1 −w1a

T
1

)
] + 2δ22 tr[

(
w2a

T
2

)T (
r2 −w2a

T
2

)
]

= ‖X1

(
Z1 −w1a

T
1

)
+X2

(
Z2 −w2a

T
2

)
‖2F + ‖δ21w1a

T
1 + δ22w2a

T
2 ‖2F

= L(w1,a1,w2,a2) + ‖δ2α2
1w1a

T
1 + δ2α2

1w2a
T
2 ‖2F ≥ L(w1,a1,w2,a2).

(12)

Third equality holds for the rank-1 approximation of the solution. Hence, the convergent solution is
a local minimizer.

Fourth, due to numerical error, we can not obtain exact convergent solution, but we are able
to obtain approximate solution (wt

1,a
t
1,w

t
2,a

t
2) after t iterations with L (wt

1,a
t
1,w

t
2,a

t
2) −

L (w∗1,a
∗
1,w

∗
2,a
∗
2) ≤ ε2, and then use Weyl’s inequality (Safran & Shamir, 2018, Theorem 2),∣∣λi(∇2L(wt

1,a
t
1,w

t
2,a

t
2))− λi(∇2L(w∗1,a

∗
1,w

∗
2,a
∗
2))
∣∣ < O(ε),

where λi(H) is the i-th smallest eigenvalue of the real symmetric matrix H . Therefore, if the
approximate solution is approximate positive semi-definite with a large third smallest eigenvalue,
we conclude the convergent solution is a local minimizer.

C USELESS CONNECTIONS AND NODES IN SPARSE NETWORK

In this section, we explain several kinds of unnecessary connections suffered from sparsity or net-
work pruning.

x1

x2

x3

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

y1

y2

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 3: An example of sparse network with no bias. Lines are connections of original sparse
network, dotted lines are useless connections that can be removed, and solid lines are effective
connections.

1. Zero out-degree I: if a node have zero out-degree, such as h(2)1 in Figure 3, we can eliminate
the input connections.

2. Zero out-degree II: if a node have zero out-degree when removed output connections in
latter layers, such as h(1)1 in Figure 3. Though it owes one output connection, the connected
node h(2)1 is zero out-degree, hence the connection can be removed, leading to zero out-
degree. We can eliminate the input connections of h(1)1 as well.

3. Zero in-degree I: if a node have zero in-degree, such as h(2)4 and h(1)4 in Figure 3, we can
eliminate the output connections, but notice that when the node has a bias term, then we
can not remove output connections since the bias constant will still propagate to subsequent
layers.
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4. Zero in-degree II: if a node have zero in-degree when removed input connections in former
layers, such as h(2)3 in Figure 3. Though it owes one input connection, the connected node
h
(1)
4 is zero in-degree, hence the connection can be removed, leading to zero in-degree. We

can eliminate the output connections of h(2)3 as well.

D GENERAL d BLOCKS ALGORITHM

Algorithm 2 Sparse-d-Opt (X1, . . . , Xd, Z1, . . . , Zd): Obtain the solution of two-layer sparse lin-
ear neural network with d hidden neurons.

1: Input: Input matrix X1, . . . , Xd. Target matrix Z1, . . . , Zd;
2: Initialize wi, di,ai, i = 2, . . . , d;
3: while not converge do
4: for i = 1, . . . , d do
5: wi, di,ai = SV D(Zi +

∑
j 6=iX

T
i Xj(Zj − djwja

T
j ));

6: end for
7: end while
8: wi = diwi, i = 1, . . . , d.
9: if λ1(∇2L), . . . , λd(∇2L) ≈ 0, λd+1(∇2L) > 0 then

10: Return the solution wi,ai, i = 1, . . . , d.
11: else
12: Try again from another initialization.
13: end if
14: Output: wi,ai, i = 1, . . . , d.

The analysis that the convergent solution is a local minimizer is similar to d = 2, so we are not
going to repeat the details. We list some examples searched for d > 2 below.

d = 3: Target: Z1 =

(
0 0
0 1

)
, Z2 =

(
1 0
1 1

)
, Z3 =

(
1 0
−1 −1

)
.

Training data: XTX =


1.0 0.0 −0.088 −0.599 −0.234 0.178
0.0 1.0 −0.163 0.429 −0.529 0.431
−0.088 −0.163 1.0 −0.0 0.558 0.193
−0.599 0.429 −0.0 1.0 −0.357 −0.244
−0.234 −0.529 0.558 −0.357 1.0 −0.0
0.178 0.431 0.193 −0.244 −0.0 1.0


Local minimum found:

Table 2: Examples found by algorithm with spurious local minimum when dy = 3. All experiments
run 2000 iterations. λi := λi(∇2L).

λd+1 λ1, . . . , λd ‖∇L‖2 Objective L
1.9 · 10−1 0 ∼ 10−14 < 10−14 0.357481957
9.7 · 10−2 0 ∼ 10−14 < 10−14 0.521705675
4.9 · 10−2 0 ∼ 10−14 < 10−14 0.539730382

E MISSING PROOFS FOR SECTION 2

E.1 PROOF OF THEOREM 3

Proof: Suppose the j-th node has full out-degree and one in-degree, so that w−j ∈ R. We treat
objective with fixed other weights and only consider optimizing w−j ,aj .

min
wj ,aj

`(wj ,aj) =
1

2

∥∥∥Ỹ −X−jwja
T
j

∥∥∥2
F
, Ỹ := Y −

∑
i6=j

X−iw−ia
T
i . (13)
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Based on the proof of scalar case, a local minimizer (w∗j ,a
∗
j ) of `(wj ,aj) must satisfy the condition

XT
−j

(
Ỹ −X−jw∗ja∗Tj

)
= 0, showing that `(w∗j ,a

∗
j ) = 1

2‖
(
I − PX−j

)
Ỹ ‖2F . Therefore, the

objective with remaining weights becomes:

min
w−i,ai,i6=j

1

2

∥∥∥∥∥∥(In − PX−j

)
Y −

∑
i 6=j

(
In − PX−j

)
X−iw−ia

T
i

∥∥∥∥∥∥
2

F

. (14)

We define
((
In − PX−j

)
XSj ,

(
In − PX−j

)
Y
)

as new training dataset which is the projection into
the orthogonal complement ofX−j , and remove some elements in w−i corresponding to the column
in X−j . Moreover, if X has full column rank, then projected data

(
In − PX−j

)
XSj still has full

column rank. Hence, removing the above connections doesn’t affect the spurious local minima since
these connections preserve certain solution. �

E.2 PROOF OF THEOREM 4

Proof: The original loss function can be formulated as below,

2L(W̃ , Ã) =

∥∥∥∥∥∥Y1−
∑
i∈R1

X−iw−iai1−
∑
j∈R

X−jw−jaj1

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥Y2−
∑
i∈R2

X−iw−iai2−
∑
j∈R

X−jw−jaj2

∥∥∥∥∥∥
2

F

.

Under similar analysis as scalar case,

∀i ∈ R1, X
T
−i

Y1 − ∑
i∈R1

X−iw−iai1 −
∑
j∈R

X−jw−jaj1

 = 0.

∀i ∈ R2, X
T
−i

Y2 − ∑
i∈R2

X−iw−iai2 −
∑
j∈R

X−jw−jaj2

 = 0.

Hence,
w−i1ai11

...
w−ijaij1

...
w−i|R1|

ai|R1|1

 =

(
X−i1 , · · · , X−ij , · · · , X−i|R1|

)+
Y1 −∑

j∈R
X−jw−jaj1

 , ij ∈ R1.


w−i1ai12

...
w−ijaij2

...
w−i|R2|

ai|R1|1

 =

(
X−i1 , · · · , X−ij , · · · , X−i|R2|

)+
Y2 −∑

j∈R
X−jw−jaj2

 , ij ∈ R2.

Then the objective becomes:∥∥∥∥∥∥(In − PX−T1

)Y1 −∑
j∈R

X−jw−jaj1

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥(In − PX−T2

)Y2 −∑
j∈R

X−jw−jaj2

∥∥∥∥∥∥
2

2

.

We can see the objective is separated into two parts with shared sparse first-layer weights. Notice
that if i /∈ T1, then Xi ∈ XT1 , hence

(
In − PX−T1

)
Xi = 0. Therefore, we simplify the problem as

min
W̃ ,Ã

L(W̃ , Ã) =
1

2

∥∥∥∥∥∥(In − PX−T1

)Y1 −∑
i∈T1

Xi

∑
j:i/∈Sj

wijaj1

∥∥∥∥∥∥
2

2

+
1

2

∥∥∥∥∥∥(In − PX−T2

)Y2 −∑
i∈T2

Xi

∑
j:i/∈Sj

wijaj2

∥∥∥∥∥∥
2

2

.

(15)
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Use previous analysis again on T1 \ T2 in first output dimension and T2 \ T1 in second output
dimension since no overlap in parameters by the condition U(T1 ∩ T2) ∩ U(T1 \ T2) = ∅ and
U(T1 ∩ T2) ∩ U(T2 \ T1) = ∅. Therefore, we simplify the problem again as

min
W̃ ,Ã

L(W̃ , Ã) =
1

2

∥∥∥∥∥∥
(
In−P(In−PX−T1

)
XT1\T2

)(
In−PX−T1

)Y1− ∑
i∈T1∩T2

Xi

∑
j:i/∈Sj

wijaj1

∥∥∥∥∥∥
2

2

+
1

2

∥∥∥∥∥∥
(
In−P(In−PX−T1

)
XT2\T1

)(
In−PX−T2

)Y2− ∑
i∈T1∩T2

Xi

∑
j:i/∈Sj

wijaj2

∥∥∥∥∥∥
2

2

.

Using the fact that (In − PW1
) (In − PW2

) = In−P(W1,W2) if WT
1 W2 = 0. Hence the remaining

problem is same as

min
W̃ ,Ã

L(W̃ , Ã) =
1

2

2∑
k=1

∥∥∥∥∥∥(In − PX−T1∩T2

)Yk − ∑
i∈T1∩T2

Xi

∑
j:i/∈Sj

wijajk

∥∥∥∥∥∥
2

2

.

Therefore, the remaining network structure has dense second layer. �

F MISSING PROOFS FOR SECTION 4

The objective of a deep linear network with squared loss is

min
W (1),...,W (L)

1

2
‖Y −XW (1) · · ·W (L)‖2F , (16)

where the i-th layer weight matrix W (i) ∈ Rdi−1×di , d0 = dx, dL = dy , Data matrix X ∈
Rn×dx , Y ∈ Rn×dy . We adopt S(i)j = {k : W

(i)
kj = 0} as pruned dimensions in j-th column of

W (i). Besides, W (i)
j,−S as the remaining j-th column in i-th layer weight which leaves out pruned

dimension set S. For simplification, we denote w
(i)
−j = w

(i)

j,−S(i)
j

∈ R
(
di−1−|S(i)

j |
)

, w(i)
jk = W

(i)
jk ,

and W̃ (i) as the pruned weight matrix with several zero elements as before.

F.1 PROOF OF THEOREM 6

Proof: Using induction. Base on Theorem 1, we have already proof two layer case. If the result holds
for (L− 1)-layer sparse linear network, we consider L layer case. We denote Xnew := XW̃ (1) as
new training set, and ` := Y −XW̃ (1) · · · W̃ (L). Then based on inductive assumption, `TXnew = 0,
showing that

`TX−iw
(1)
−i = 0, ∀1 ≤ i ≤ d1. (17)

Combined with first-order condition:

∂L

∂w
(1)
−i

= −`TX−i(W̃ (2) · · · W̃ (L))i = 0.

If (W̃ (2) · · · W̃ (L))i 6= 0, then `TX−i = 0, which satisfies the global minimizer condition. Other-
wise, any value of w(1)

−i doesn’t change the loss since the forward path already contribute zero to the

final output. Hence, arbitrary choice of w(1)
−i owes same objective value. Thus, from Eq. (17), we

still obtain `TX−i = 0. Thus any local minimum is a global minimum for the pruned sparse model.
�

15



Under review as a conference paper at ICLR 2021

F.2 PROOF OF THEOREM 7

Proof: Since ∀ i 6= j, X−i, X−j share no same columns and XTX = Id, then ∀ i 6= j, XT
−iX−j =

0. Besides, from our assumption ∩mj=1Sj = ∅, then ∩mj=1Sj = {1, . . . , d}, meaning that
(X−1, . . . , X−d) is X with different arrangement of columns. Hence

Y = PXY + (I −PX)Y = X(XTX)−1XTY + (I −PX)Y ,
d∑

i=1

X−iZi + (I −PX)Y, (18)

Set W (2) = [a1, . . . ,ad1
]T , then the objective becomes

1

2

d1∑
i=1

‖Zi −w−ia
T
i W

(3) · · ·W (L)‖2F .

We set X̃ = XW̃ (1) = (X−1w−1, . . . , X−d1w−d1). Now we show the following problems have
same local minimizer condition for w−1.

(P) L(W̃ (1),W (2), . . . ,W (L)) =
1

2

∥∥∥Y − X̃ (W (2) · · ·W (L)
)∥∥∥2

F
,

(P1) L2(W̃ ,A) =
1

2

∥∥∥∥∥Y −
d1∑
i=1

X−iw−ia
T
i

∥∥∥∥∥
2

F

.

(19)

If there is a local minimizer w−1, . . . ,w−d1 6= 0, for problem (P), since di ≥ min{d1, dy},∀i ≥ 1

and X̃, Y have full column rank, then based on Theorem 2.3 in Lu & Kawaguchi (2017), a local
minimizer of L(W̃ (1),W (2), . . . ,W (L)) is obtained when

W (2) · · ·W (L) =
(
X̃T X̃

)−1
X̃TY.

Notice that X̃T X̃ = diag(wT
−1w−1, . . . ,w

T
−d1

w−d1
). Then the objective is simplified as

2L(W̃ (1)) =

∥∥∥∥Y − X̃ (X̃T X̃
)−1

X̃TY

∥∥∥∥2
F

=

∥∥∥∥∥Y −
d1∑
i=1

(X−iw−i)(X−iw−i)
TY

wT
−iw−i

∥∥∥∥∥
2

F

=

d1∑
i=1

∥∥∥∥X−iZi −
(X−iw−i)(X−iw−i)

TX−iZi

wT
−iw−i

∥∥∥∥2
F

=

d1∑
i=1

∥∥∥∥X−iZi −
X−iw

T
−iw−iZi

wT
−iw−i

∥∥∥∥2
F

(20)

For problem (P1), similarly, a local minimizer of L2(W̃ ,A) is obtained when
(X−jw−j)

T
(
Y −

∑d1

i=1X−iw−ia
T
i

)
= 0. Then aT

j =
(X−jw−j)

TY

wT
−jw−j

, showing same loss
objective as

2L2(W̃ ) =

∥∥∥∥∥Y −
d1∑
i=1

(X−iw−i)(X−iw−i)
TY

wT
−iw−i

∥∥∥∥∥
2

F

=

d1∑
i=1

∥∥∥∥X−iZi −
(X−iw−i)(X−iw−i)

TX−iZi

wT
−iw−i

∥∥∥∥2
F

= 2L(W̃ (1)).

(21)

Finally, based on Theorem 2, every local minimum of (P1) is a global minimum. Hence every local
minimum of (P) is a global minimum.

If there exists i0, such that w−i0 = 0, we show that Zi0 = 0 below. Without loss of generality, we
assume i0 = 1, then the value of a1 does not affect the objective, we take a1 = 0 as well. In order
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to show the result, we only perturb w−1,a1, W (3), . . . ,W (L) into w−1 + ∆w,a1 + ∆a,W (3) +
∆3, . . . ,W

(L) + ∆L and analyze the difference of loss as ∆L. We set

∆W ,
L∏

i=3

(
W (i) + ∆i

)
−

L∏
i=3

W (i), W o ,
L∏

i=3

W (i). (22)

Then the perturbation leads to

2∆L(∆w,∆a,∆W ) = ‖Z1 −∆w∆aT (W o + ∆W ) ‖2F − ‖Z1‖2F
+
∑
i 6=1

‖Zi −w−ia
T
i (W o + ∆W ) ‖2F − ‖Zi −w−ia

T
i W

o‖2F

= −2tr[ZT
1 ∆w∆aT (W o + ∆W )] + ‖∆w∆aT (W o + ∆W ) ‖2F

− 2
∑
i 6=1

tr[∆WTaiw
T
−i
(
Zi −w−ia

T
i W

o
)
] + ‖w−iaT

i ∆W‖2F .

(23)

Applying the first case to the remaining parameters excluding w−1 and a1 (If there are several w−is
are zero, we can leave them all out), we have

aT
i W

o =
(X−iw−i)

TY

wT
−iw−i

=
(w−i)

TZi

wT
−iw−i

,

which agrees with
wT
−i
(
Zi −w−ia

T
i W

o
)

= 0, i 6= 1.

Hence the second term in the final row of Eq. (23) is zero. Besides, let us note the first-order term
of ∆w, showing that tr[ZT

1 ∆w∆aT (W o + ∆W )] = 0. Otherwise, given w−1 = Θ(t−1),a−1 =
Θ(t−1), ∆W = Θ(t−3), as t→∞, the sign in the final expansions of Eq. (23) depends on the fist
term that is indefinite.

Therefore, ∆a (W o + ∆W )ZT
1 = 0, then (W o + ∆W )ZT

1 = 0, leading to W oZT
1 = 0 and

∆WZT
1 = 0.

In view of expression ∆W , it holds that

∆WZT
1 =

d1∑
i=3

(
W (3) · · ·W (i−1)∆iW

(i+1) · · ·W (L)
)
ZT
1 + . . .

=

L−2∑
t=1

ft(∆3, . . . ,∆L)ZT
1 ,

(24)

where ft(∆3, . . . ,∆L) is the sum of the product in W (3), . . . ,W (L),∆3, . . . ,∆L that con-
tains exactly t different ∆is. Then from small-order terms to high-order terms, we obtain
ft(∆3, . . . ,∆L)Z1 = 0. It follows from fL−2 = ∆3 · · ·∆L, di ≥ min{d1, dL}, and the arbitrary
of ∆3 · · ·∆L, we get Zi = 0. Finally, when Z1 = 0, It is evident that w1 = 0 already satisfies the
global minimizer condition since the objective is separated as

∑d1

i=1 ‖Zi−w−iaT
i W

(3) · · ·W (L)‖2F .
This completes the proof.

�
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