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Figure 1: Showcase of InstructX. The bottom panel presents state-of-the-art performance of In-
structX in image and video editing.

ABSTRACT

With recent advances in Multimodal Large Language Models (MLLM) showing
strong visual understanding and reasoning, interest is growing in using them to im-
prove the editing performance of diffusion models. Despite rapid progress, most
studies lack an in-depth analysis of MLLM design choice. Moreover, the integra-
tion of MLLM and diffusion models remains an open challenge in some difficult
tasks, e.g., video editing. In this paper, we present InstructX, a unified framework
for image and video editing. Specifically, we conduct a comprehensive study on
integrating MLLM and diffusion model for instruction-driven editing across di-
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verse tasks. Building on this study, we analyze the cooperation and distinction be-
tween images and videos in unified modeling. (1) We show that training on image
data can emerge video editing capabilities without explicit supervision, thereby
alleviating the constraints imposed by scarce video training data. (2) By incorpo-
rating modality-specific MLLM features, our approach effectively unifies image
and video editing tasks within a single model. Extensive experiments demonstrate
that our method can handle a broad range of image and video editing tasks and
achieve state-of-the-art performance.

1 INTRODUCTION

Recent research demonstrates a growing trend toward developing unified models that integrate mul-
timodal understanding with generation. For example, systems for text-to-image generation Xie et al.
(2024); Zhou et al. (2024); Chen et al. (2025a), image editing Deng et al. (2025); Lin et al. (2025);
Liu et al. (2025); Wu et al. (2025) and video editing Liang et al. (2025); Wang et al. (2024a); Yu
et al. (2025), have achieved impressive results. However, how to effectively integrate Multimodal
Large Language Models (MLLM) with diffusion models, thereby leveraging their understanding
and reasoning capabilities to aid visual editing tasks, remains an open question.
Typical integration paradigms include: (1) autoregressive visual generation Chen et al. (2025b); Lu
et al. (2023); Qu et al. (2025) with discrete visual tokenizers Lee et al. (2022); Yu et al. (2021), (2)
hybrid AR–diffusion approaches that unify an autoregressive loss for text and a diffusion loss for
vision within a single transformer Zhou et al. (2024); Ma et al. (2025b); Shi et al. (2024a); Deng et al.
(2025), and (3) using an MLLM backbone combined with an external diffusion model as the visual
decoder Dong et al.; Ge et al. (2024); Sun et al. (2024); Pan et al. (2025). In this paper, we adopt
an external diffusion model framework because it typically converges quickly, requires minimal
changes, and delivers competitive performance. Although several visual editing works have been
developed under this paradigm Lin et al. (2025); Wu et al. (2025); Liu et al. (2025); Yu et al. (2025),
the role of MLLMs in the editing pipeline has yet to be examined in sufficient detail. Recently,
MetaQuery Pan et al. (2025) introduces a set of learnable queries that act as an interface between
MLLM and diffusion models. Moreover, MetaQuery employs a large connector (1.6B parameters)
between the MLLM and the diffusion model while keeping the MLLM parameters fixed. However,
a consensus has not been reached on the optimal integration of MLLM with diffusion models for
editing tasks. Specifically, debates persist regarding several key design choices: whether to directly
utilize all last hidden states or compress them into meta-query features; whether the connector should
be a large transformer or if a small Multi-Layer Perceptron (MLP) suffices; and whether the MLLM
itself requires fine-tuning. In this paper, we conduct a comprehensive study and validate a central
hypothesis: to fully leverage the understanding capabilities of MLLMs, they should not be treated
merely as feature extractors; instead, editing should be primarily realized within the MLLM, rather
than delegated to a subsequent large connector.
Collecting high-quality video data remains a bottleneck for video editing. Early works Qi et al.
(2023); Cong et al. (2023); Wu et al. (2023) perform video editing through zero-shot strategies, but
they are often limited in generation quality and generalizability. Other methods Ku et al. (2024);
Ouyang et al. (2024); Mou et al. (2024) transfer image editing capabilities to video by editing the
first frame and propagating the changes, which is prone to content drift and loss. Recently, several
methods Ye et al. (2025b); Zi et al. (2025b) have sought to construct video-editing datasets by train-
ing video-expert models; however, these approaches suffer from lengthy data-construction pipelines
and low success rates. Noting that recent commercial models, such as GPT-4o OpenAI, have set
a new standard for instructional image editing, we leverage large-scale, high-quality image editing
data generated with these models to support video editing. This approach addresses both the scarcity
of video-editing data and the narrow range of editing types. Specifically, we train on a mixture of
image and video data and incorporate modality-specific MLLM features, unifying image and video
editing within a single model. We observe that editing capabilities learned from image data transfer
effectively to video editing without explicit supervision.
In summary, this paper has the following contributions:

• We present a unified framework that performs image and video editing within a single
model. Our study analyzes the integration of MLLMs and diffusion models and offers
insights for future research.
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Figure 2: Overview of InstructX. The MLLM serves as the understanding module, generating editing
guidance given the input instruction and visual inputs. The DiT serves as the generation module and
connects to the MLLM via learnable queries and an MLP connector.

• We discuss a simple yet effective approach to extend zero-shot video editing capabilities
via image training data. This design allows our method to tackle a wider range of tasks
than existing open-source or closed-source methods.

• Extensive experiments show that our method achieves state-of-the-art performance across
diverse image and video editing tasks.

2 RELATED WORK

2.1 INSTRUCTIONAL IMAGE AND VIDEO EDITING

Text-guided image editing significantly improves the convenience of visual manipulation by en-
abling users to modify images through natural language commands. Earlier approaches Nam et al.
(2018); Li et al. (2020); Fu et al. (2020) primarily rely on GAN frameworks Goodfellow et al.
(2020), often being constrained by limited realism and narrow domain applicability. The advent of
diffusion models Ho et al. (2020) enables high-quality image editing via text. Early works learn
from synthetic input-goal-instruction triples Brooks et al. (2023) and with additional human feed-
back Zhang et al. (2024b) to follow editing instructions. Fu et al. (2023) investigates how MLLM
facilitate edit instructions. Recently, as MLLM grows in scale and demonstrates stronger capabil-
ities in instruction understanding, several unified modeling approaches Lin et al. (2025); Liu et al.
(2025); OpenAI; Zeng et al. (2025) are proposed, improving the performance of image editing.
When it comes to video editing, the challenge becomes significantly harder. Limited by model
capabilities and training data, early research Qi et al. (2023); Cong et al. (2023); Wu et al. (2023)
primarily relies on zero-shot or one-shot approaches based on image diffusion models. Later, with
the performance scale-up of video diffusion models, several downstream tasks emerge, leveraging
pre-trained video diffusion models. Examples include video inpainting Zi et al. (2025c); Bian et al.
(2025), video try-on Fang et al. (2024); Zuo et al. (2025), and video addition Tu et al. (2025); Zhuang
et al. (2025). Recently, some unified modeling methods Liang et al. (2025); Yu et al. (2025); Ye
et al. (2025b) are proposed for video editing. However, these methods are constrained by manual
priors, such as specifying editing areas and motion trajectories. Instruction-based editing offers a
more convenient way. Early research, InsV2V Cheng et al. (2023), adapt image instruction editing
model Brooks et al. (2023) to generate video training pairs. However, due to limitations in data
quality, the editing results are often unsatisfactory. Very recent studies Tan et al. (2025) integrate
the comprehension capabilities of MLLM into video editing. However, model designs are often not
justified experimentally or very briefly, and the scope of tasks remains limited by the training data.
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Figure 3: Different design choices for unified editing modeling.
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Figure 4: Illustration of alignment ability (left) and editing performance (right) for different design
choices.

2.2 UNIFIED UNDERSTANDING AND GENERATION MODELS

Recently, extensive attempts extend the success of multimodal understanding to multimodal gener-
ation. Some works learn to regress image features Ge et al. (2024); Sun et al. (2023); Tong et al.
(2024); some works auto-regressively predict the next visual tokens Jin et al. (2023); Team (2024);
Xie et al. (2024); and some works Zhou et al. (2024); Ma et al. (2025b); Shi et al. (2024a); Deng et al.
(2025) employ diffusion objective for visual generation and autoregressive objective for text gener-
ation. In this field, using a connector Dong et al.; Ge et al. (2024); Sun et al. (2024) to bridge the
understanding model and diffusion model is a strategy for rapid convergence, while also delivering
promising results. Recent work on MetaQuery Pan et al. (2025) introduces a useful bridging method
through a set of learnable queries. However, for visual editing, several questions arise: whether to
use all final hidden states directly or compress them into meta-queries; whether a large connector is
necessary; and whether freezing the MLLM is sufficient. We study these questions in this work.

3 METHOD

3.1 OVERVIEW

An overview of InstructX is presented in Fig. 2. Recall that our goal is to build a unified architecture
for image and video editing by leveraging the comprehension capabilities of MLLM. To this end,
we employ a multimodal understanding model, i.e., QWen2.5-VL-3B Bai et al. (2025), to embed
the editing instruction and source image/video. Inspired by MetaQuery Pan et al. (2025), we append
a set of learnable queries to the MLLM input sequence to extract editing information and retain
only the meta-query features from the MLLM output. Wan2.1-14B Wan et al. (2025) is used as the
decoder for the edited output. The produced queries from the MLLM are fed into a two-layer MLP
connector, and are subsequently used to replace the text embeddings in the DiT model. To enhance
the consistency between the edited result and the source image/video, we add the VAE encoding of
the original image/video to the noisy latent. For tasks involving a reference image, we concatenate
the VAE features of the reference image to the noisy latent along the sequence dimension.

3.2 ARCHITECTURE CHOICE

Different choices. As noted above, integrating understanding and generation models exposes many
design choices that are often not empirically justified in prior work. We conduct a comprehensive
study of these structural design choices. In Fig. 3, we compare several instruction-editing architec-
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Figure 5: Illustration of three training stages of our methods.
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Figure 6: Examples for emergent video editing capabilities through image data.

tures: (a) Instructions are encoded by the native T5 text encoder Chung et al. (2024) and fed directly
into the diffusion model, i.e., diffusion-only setting. (b) The last hidden states of the MLLM are en-
coded by QFormer Li et al. (2023) into fixed-length representation (i.e., 256 tokens), which is then
input to DiT. (c) The MetaQuery Pan et al. (2025) structure uses learnable queries to extract editing
information from the MLLM and employs a large connector to bridge the MLLM and the DiT. (d)
The architecture adopted in this work. It uses the same learnable queries as MetaQuery, fine-tunes
the MLLM LoRA, and employs a simple two-layer MLP as the connector between MLLM and DiT.
Comparsion. We validate the performance of different structure choices from two aspects. (1) Fea-
ture alignment capability. Due to the gap between the MLLM text space and the diffusion generation
space, previous works Dong et al.; Ge et al. (2024) usually incorporate a pre-training stage to align
these two spaces. Here, we freeze the DiT and train different designs on image editing task. The
left part of Fig 4 shows that solely relying on a large-scale connector or a learnable query mecha-
nism for the understanding-generation alignment converges slowly. Partially involving MLLM in
feature alignment via LoRA Hu et al. (2022) accelerates convergence. Note that the T5 features
are already aligned with DiT, hence not involved in this stage. Upon completion of the alignment
stage, we unfreeze the DiT for continued training and evaluate the performance of various methods
on ImgEdit-Bench Ye et al. (2025a). The right part in Fig. 4 also shows an advantage of the design
choice in this paper. We also provide a further discussion on the gains of MLLM in the appendix A.8.
Other details. Moreover, to model images and videos in a unified architecture while distinguishing
between the two modalities, we introduce separate sets of learnable queries for each: 256 queries
for image inputs and 512 queries for video inputs. Note that for video input, we specifically sample
13 frames to serve as input to the MLLM. Further experimental details are provided in Sec. 4.4.

3.3 TRAINING STRATEGIES

Three stages. As shown in Fig. 5, the training process is divided into three stages: feature alignment
training, full-data training, and quality fine-tuning. Stage 1: The target of the first stage is to align
the feature space of the MLLM with the generation space of the DiT. During this stage, we only train
the learnable query, the LoRA in the MLLM, and the MLP connector on the image-instruction data.
After this stage, the model acquires a rough instruction-based editing capability. However, due to the
coarse-grained visual information in the MLLM, the editing results exhibit poor consistency with the
original image. Stage 2: The second stage has two objectives: (1) Improving the fidelity between
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Figure 7: Visual comparsion between our InstructX and other methods on image editing tasks.
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Figure 8: Visual comparsion between our InstructX and other methods on video editing tasks.

the editing results and the original visual input by incorporating VAE features, and (2) to enable the
model to acquire unified and generalized image/video editing capabilities through full-data training.
In this stage, we train the learnable query, the LoRA in the MLLM, the MLP connector, and the entire
DiT. Note that mixing image and video training in this stage not only allows for unified modeling
with a single model but also excites video editing capabilities that are difficult to obtain training
data, by leveraging image data. As shown in Fig. 6, segmentation and style transfer tasks absent
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from the video data but present in the image data. After mixed training, the model also acquires
the capability for video style transfer. Stage 3: Although the model acquires unified image/video
editing capabilities after the second stage, the generation quality is affected by some low-quality
training data, resulting in the oily and plastic-like textures. To rectify this problem, we collect a
small amount of high-quality training data and perform quality fine-tuning. As shown in the last
row of Fig. 5, the generated results become more natural and aesthetically pleasing after quality
fine-tuning. We use flow-matching Lipman et al. (2022) as the training objective in all stages.
Training data. For instruction-based image editing, we utilize large-scale open-source training
data, including NHR-Edit Kuprashevich et al. (2025), X2Edit Ma et al. (2025a), and GPT-Image-
Edit Wang et al. (2025b). For video editing, due to the lack of high-quality open-source video
editing data, we develop a pipeline for synthesizing video-editing data. More details are provided in
the appendix A.2.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

During training, we set the learning rate to 1 × 10−5, with a global batch size of 128 for images
and 32 for videos. In the first and second training stages, we iterate for 20, 000 steps each, while the
third stage involves 5, 000 iterations. During the image/video mixed training, we sample video data
with a probability of 0.6 and image data with a probability of 0.4.

4.2 EVALUATION DETAILS

For image editing, we compare different methods on two benchmarks: ImgEdit-Bench Ye et al.
(2025a) and GEdit-Bench Liu et al. (2025). Specifically, on ImgEdit-Bench, we use GPT-4.1 Ope-
nAI to score the editing results on a 1-5 scale. On GEdit-Bench, we employ Qwen2.5-VL-72B Bai
et al. (2025) to evaluate the edited results across three metrics: instruction-following score (Q SC),
perceptual-quality score (Q PQ), and overall score (Q O). We compare our method with the well-
known instruction-based image editing method (i.e., InstructPix2Pix Brooks et al. (2023)), recent
state-of-the-art approaches (i.e., OmniGen Xiao et al. (2025), Uniworld Lin et al. (2025), Step1x-
Edit Liu et al. (2025), Bagel Deng et al. (2025)), as well as several closed-source models (GPT-
4o OpenAI, DouBao Shi et al. (2024b)).
For video editing, existing benchmarks(e.g., UNICBench Ye et al. (2025b) and VACE-
Benchmark Jiang et al. (2025)) primarily focus on target-prompt rather than instruction-prompt eval-
uation and provide few examples per task. To address the lack of instruction-based video-editing
benchmarks, we introduce VIE-Bench, which comprises 140 high-quality instances across eight
categories, covering both reference-free and reference-based edits. Further details are provided in
Appendix Sec. A.1. Prior work commonly uses the CLIP text score to assess text–video alignment,
which is effective for target-prompt settings but fails to capture instruction-following capability.

Table 1: Comparison results on GEdit-Bench.
Q SC, Q PQ, and Q O refer to the metrics evaluated
by Qwen-2.5-VL-72B. The best and second best results
are shown in bold and underlined respectively.

Model Community
Model Q SC↑ Q PQ↑ Q O↑

Ours ✓ 7.47 7.22 6.68
Step1X-Edit ✓ 7.05 7.21 6.79
Instruct-P2P ✓ 5.08 6.86 4.90
OmniGen ✓ 6.33 6.96 6.04
UniWorld ✓ 5.43 7.37 5.35
Bagel ✓ 7.43 7.03 7.10
SeedEdit 3.0 ✗ 7.92 7.39 7.57
GPT-4o ✗ 7.98 7.73 7.83

Therefore, we adopt an MLLM-based
judge using GPT-4o OpenAI to evaluate
editing accuracy (instruction follow-
ing), preservation (consistency with
the source video), and quality (overall
video quality). For reference-based
editing, GPT-4o also assesses subject
similarity to the reference image. All
scores range from 1 to 10. The system
prompts for the MLLM-based judge
are provided in Appendix Sec. A.9. In
addition, we employ VBench Zhang
et al. (2024a) to evaluate video qual-
ity. We compare our method with the
well-known baseline InsV2V Cheng
et al. (2023), recent state-of-the-art ap-
proaches (VACE-14B Jiang et al. (2025),
Omni-Video Tan et al. (2025)), and
closed-source systems (Kling Keling
(2025), Pika Pika (2025), Runway-Aleph Runway (2025)). For the removal task, we also evaluate
against MiniMax-Remover Zi et al. (2025a) and DiffuEraser Li et al. (2025).
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Table 2: Comparison results on ImgEdit-Bench. “Overall” is calculated by averaging all scores
across tasks. We use Qwen2.5-VL-72B for evaluation. The best and second best results are shown
in bold and underlined respectively.

Model Community
Model Adjust Remove Replace Add Style Compose Background Action Overall↑

Ours ✓ 3.56 3.92 4.03 3.7 4.45 3.27 3.63 4.24 3.85
Step1X-Edit ✓ 3.27 3.13 3.91 2.75 4.53 2.38 3.67 3.48 3.39
Instruct-P2P ✓ 2.53 1.11 1.50 1.89 3.44 1.61 1.65 2.35 2.01
OmniGen ✓ 2.04 2.09 2.02 3.33 3.65 3.58 2.46 1.97 2.64
UniWorld ✓ 2.95 3.54 2.64 4.04 3.33 2.91 3.07 2.55 3.13
BAGEL ✓ 3.51 3.27 3.26 3.81 4.26 3.11 2.62 4.31 3.52

SeedEdit 3.0 ✗ 2.43 4.27 4.33 4.40 4.51 4.32 3.58 4.62 4.06
GPT-4o ✗ 4.15 4.54 4.49 4.84 4.63 4.30 4.87 4.22 4.51

Table 3: Comparison results on VIE-Bench. The best and second best results are shown in bold
and underlined respectively.

Task Method VIE-Bench Score Video Quality

Model Community
Model

Instruction
base

Instruct
follow

Preser-
vation Quality Similarity Avg. Smooth-

ness
Aesthe-

tics

Video Edit

Add

Ours ✓ ✓ 8.446 8.683 7.919 - 8.349 0.991 0.558
Kling ✗ ✓ 6.000 8.230 5.576 - 6.602 0.988 0.519
Runway ✗ ✓ 8.607 8.913 7.823 - 8.447 0.990 0.557
Omni-Video ✓ ✓ 5.699 6.135 6.294 - 6.242 0.987 0.586
InsV2V ✓ ✓ 3.552 5.891 3.402 - 4.281 0.988 0.513
VACE ✓ ✗ 3.938 6.696 3.929 - 4.854 0.983 0.557

Swap / Change

Ours ✓ ✓ 9.514 9.171 8.533 - 9.072 0.977 0.557
Kling ✗ ✓ 9.000 9.060 8.333 - 8.800 0.989 0.541
Runway ✗ ✓ 9.580 8.628 9.275 - 9.161 0.981 0.541
Pika ✗ ✓ 7.542 7.847 6.837 - 7.408 0.974 0.528
Omni-Video ✓ ✓ 4.733 4.856 4.656 - 4.748 0.981 0.556
InsV2V ✓ ✓ 5.304 6.428 4.971 - 5.567 0.977 0.530
VACE ✓ ✗ 6.171 7.552 6.199 - 6.640 0.976 0.534

Remove

Ours ✓ ✓ 8.627 8.668 7.672 - 8.322 0.983 0.472
Kling ✗ ✓ 8.440 8.800 7.520 - 8.253 0.993 0.455
Runway ✗ ✓ 8.664 9.145 7.703 - 8.504 0.987 0.460
Omni-Video ✓ ✓ 6.004 5.970 4.807 - 5.593 0.989 0.417
InsV2V ✓ ✓ 1.209 3.769 1.322 - 2.098 0.982 0.517
VACE ✓ ✗ 1.812 3.877 2.359 - 2.682 0.983 0.535
MiniMax ✓ ✗ 6.963 7.518 6.037 - 6.839 0.985 0.467
DiffuEraser ✓ ✗ 6.346 6.807 5.576 - 6.243 0.986 0.465

Style / Tone Change

Ours ✓ ✓ 9.650 9.099 8.839 - 9.196 0.972 0.560
Runway ✗ ✓ 9.583 9.200 8.616 - 9.133 0.982 0.547
Omni-Video ✓ ✓ 5.486 4.655 5.959 - 5.366 0.984 0.557
InsV2V ✓ ✓ 7.835 8.086 6.437 - 7.452 0.971 0.529

Hybrid Edit

Ours ✓ ✓ 9.448 8.862 8.411 - 8.907 0.973 0.590
Runway ✗ ✓ 8.966 8.533 8.033 - 8.510 0.984 0.585
Omni-Video ✓ ✓ 5.444 5.066 5.766 - 5.425 0.978 0.608
InsV2V ✓ ✓ 5.033 5.966 4.966 - 5.321 0.975 0.541

Reference Base Video Edit

Ref Base Swap

Ours ✓ ✓ 9.210 9.201 8.221 9.190 8.955 0.978 0.549
Kling ✗ ✓ 8.830 8.910 8.120 8.510 8.592 0.988 0.522
Pika ✗ ✓ 8.438 8.665 7.656 8.447 8.301 0.989 0.462
VACE ✓ ✗ 8.312 8.542 7.442 7.654 7.987 0.976 0.550

Ref Base Add

Ours ✓ ✓ 9.491 9.252 8.375 9.511 9.157 0.987 0.595
Kling ✗ ✓ 9.714 9.571 8.714 9.285 9.321 0.992 0.567
Pika ✗ ✓ 8.510 8.625 7.750 8.625 8.377 0.991 0.511
VACE ✓ ✗ 2.665 6.540 3.052 3.636 3.973 0.987 0.561

4.3 COMPARSION RESULT

Tab. 1 and Tab. 2 respectively present the comparsion results of our method and other methods on
GEdit-Bench Liu et al. (2025) and ImgEdit-Bench Ye et al. (2025a). It can be observed that our
method achieves competitive performance across multiple sub-tasks, and outperforms other open-
source methods in terms of the overall score on ImgEdit-Bench. Fig. 7 demonstrates that in some
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Figure 9: Ablation study of image/video independent queries (a) and MLLM inputs (b).

complex scenarios, such as removing broccoli from a cluttered pile of vegetables, methods like
OmniGen Xiao et al. (2025), UniWorld Lin et al. (2025), and Step1x-Edit Liu et al. (2025) fail to
recognize the target, while SeedEdit Shi et al. (2024b) and GPT-4o OpenAI produce editing results
that lack consistency with the original image. Our method enables accurate removal while maintain-
ing better consistency. Additionally, our advantages exist in cleaner background replacement and
superior style consistency. We also conduct a user study in Sec. A.3 in appendix.
Table 3 shows that our method outperforms current open-source video-editing models on most met-
rics and remains competitive with state-of-the-art closed-source solutions. Specifically, our method
attains the highest average scores on Style/Tone/Weather Change, Hybrid Edit, and Ref-Based Swap
tasks among all methods, while scoring slightly below Runway Aleph on the Add, Swap/Change,
and Remove tasks, and marginally below Kling on Ref-Based Add. Moreover, our method demon-
strates leading advantages on several fine-grained evaluation dimensions. As shown in Fig. 8, on the
fine-grained local editing task, our method achieves superior accuracy, while competing approaches
either perform poorly on the handheld box replacement or fail to replace it. Our method also excels
at style transfer and instruction following in hybrid edits. In reference-based editing, the backpack
in our output shows higher similarity to the reference image. Additional visual comparisons are
provided in Appendix Sec.A.10; we also report a user study in Appendix Sec. A.3.

4.4 ABLATION STUDY

We perform ablation studies on the design choice of unifying image and video editing: (1) whether
to separate image and video queries; (2) whether the MLLM requires multi-frame video input. As
shown in Fig 9 (a), the separate query setting achieves a higher score on VIE-Bench, as it better
distinguishes the feature extraction for different modelity information. Fig 9 (b) shows that if the
MLLM only uses the first frame of the video to generate editing guidance, the editing results are
prone to collapse in some complex scenarios, such as when the edited content appears in the middle
of the video.

5 CONCLUSION

In this paper, we propose InstructX, a unified framework for image and video editing. Specifi-
cally, we conduct a comprehensive study on the design for the combination of MLLM and diffusion
models, ultimately selecting the integration of Learnable Query, MLLM LoRA, and MLP Connec-
tor, which achieves faster convergence and superior performance. Furthermore, we explore mixed
image-video training, which not only enables unified modeling for image and video editing but also
expands the scope of video editing task. Additionally, we employ separate queries within the uni-
fied framework to better distinguish different modalities. We also introduce a MLLM-based video
editing benchmark, i.e., VIE-Bench, comprising 140 high-quality editing instances across eight cat-
egories. Extensive experiments demonstrate that our method outperforms the latest open-source
image and video editing methods. Particularly, in video editing, InstructX achieves comparable
performance to some closed-source editing methods while supporting a broader range of tasks.
Limitation Although InstructX demonstrates remarkable performance and appealing training effi-
ciency, it is constrained by the pre-trained video DiT, making it difficult for high-resolution (e.g.,
>1080P) image/video editing. Although image data can excite zero-shot video editing capabili-
ties, it is not a direct solution. However, it can serve as a temporary solution to address the current
shortage of video data.
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Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024. URL https://arxiv.org/abs/2408.00714.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Runway. Creating anything. https://runwayml.com/, 2025.

Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer,
and Lili Yu. Lmfusion: Adapting pretrained language models for multimodal generation. arXiv
preprint arXiv:2412.15188, 2024a.

12

https://arxiv.org/abs/2508.07607
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/
https://pika.art/pikadditions
https://arxiv.org/abs/2408.00714
https://runwayml.com/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yichun Shi, Peng Wang, and Weilin Huang. Seededit: Align image re-generation to image editing.
arXiv preprint arXiv:2411.06686, 2024b.

Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao,
Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative pretraining in multimodality.
arXiv preprint arXiv:2307.05222, 2023.

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao,
Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 14398–14409, 2024.

Zhiyu Tan, Hao Yang, Luozheng Qin, Jia Gong, Mengping Yang, and Hao Li. Omni-video: Democ-
ratizing unified video understanding and generation. arXiv preprint arXiv:2507.06119, 2025.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2024. URL
https://arxiv. org/abs/2405.09818, 9(8), 2024.

Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
generation via instruction tuning. arXiv preprint arXiv:2412.14164, 2024.

Yuanpeng Tu, Hao Luo, Xi Chen, Sihui Ji, Xiang Bai, and Hengshuang Zhao. Videoanydoor: High-
fidelity video object insertion with precise motion control. In Proceedings of the Special Interest
Group on Computer Graphics and Interactive Techniques Conference Conference Papers, pp.
1–11, 2025.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Bryan Wang, Yuliang Li, Zhaoyang Lv, Haijun Xia, Yan Xu, and Raj Sodhi. Lave: Llm-powered
agent assistance and language augmentation for video editing. In Proceedings of the 29th Inter-
national Conference on Intelligent User Interfaces, pp. 699–714, 2024a.

Qiuheng Wang, Yukai Shi, Jiarong Ou, Rui Chen, Ke Lin, Jiahao Wang, Boyuan Jiang, Haotian
Yang, Mingwu Zheng, Xin Tao, et al. Koala-36m: A large-scale video dataset improving consis-
tency between fine-grained conditions and video content. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 8428–8437, 2025a.

Yuhan Wang, Siwei Yang, Bingchen Zhao, Letian Zhang, Qing Liu, Yuyin Zhou, and Cihang
Xie. Gpt-image-edit-1.5 m: A million-scale, gpt-generated image dataset. arXiv preprint
arXiv:2507.21033, 2025b.

Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang, Yuwei Guo, Wenran Liu, Jing Tan, Kai
Chen, Tianfan Xue, Bo Dai, and Dahua Lin. Humanvid: Demystifying training data for camera-
controllable human image animation. In NeurIPS, 2024b.

Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
arXiv preprint arXiv:2506.18871, 2025.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7623–7633, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In Proceed-
ings of the Computer Vision and Pattern Recognition Conference, pp. 13294–13304, 2025.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024.

Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
two-stages distillation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4210–4220, 2023.

Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
Imgedit: A unified image editing dataset and benchmark. arXiv preprint arXiv:2505.20275,
2025a.

Zixuan Ye, Xuanhua He, Quande Liu, Qiulin Wang, Xintao Wang, Pengfei Wan, Di Zhang, Kun
Gai, Qifeng Chen, and Wenhan Luo. Unic: Unified in-context video editing. arXiv preprint
arXiv:2506.04216, 2025b.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Shoubin Yu, Difan Liu, Ziqiao Ma, Yicong Hong, Yang Zhou, Hao Tan, Joyce Chai, and Mohit
Bansal. Veggie: Instructional editing and reasoning of video concepts with grounded generation.
arXiv preprint arXiv:2503.14350, 2025.

Ziyun Zeng, Junhao Zhang, Wei Li, and Mike Zheng Shou. Draw-in-mind: Learning precise image
editing via chain-of-thought imagination. arXiv preprint arXiv:2509.01986, 2025.

Fan Zhang, Shulin Tian, Ziqi Huang, Yu Qiao, and Ziwei Liu. Evaluation agent: Efficient and
promptable evaluation framework for visual generative models. arXiv preprint arXiv:2412.09645,
2024a.

Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan
Wang, Silvio Savarese, Stefano Ermon, et al. Hive: Harnessing human feedback for instructional
visual editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9026–9036, 2024b.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
diffuse images with one multi-modal model. arXiv preprint arXiv:2408.11039, 2024.

Shaobin Zhuang, Zhipeng Huang, Binxin Yang, Ying Zhang, Fangyikang Wang, Canmiao Fu,
Chong Sun, Zheng-Jun Zha, Chen Li, and Yali Wang. Get in video: Add anything you want
to the video. arXiv preprint arXiv:2503.06268, 2025.

Bojia Zi, Weixuan Peng, Xianbiao Qi, Jianan Wang, Shihao Zhao, Rong Xiao, and Kam-Fai
Wong. Minimax-remover: Taming bad noise helps video object removal. arXiv preprint
arXiv:2505.24873, 2025a.

Bojia Zi, Penghui Ruan, Marco Chen, Xianbiao Qi, Shaozhe Hao, Shihao Zhao, Youze Huang, Bin
Liang, Rong Xiao, and Kam-Fai Wong. Se\˜ norita-2m: A high-quality instruction-based dataset
for general video editing by video specialists. arXiv preprint arXiv:2502.06734, 2025b.

Bojia Zi, Shihao Zhao, Xianbiao Qi, Jianan Wang, Yukai Shi, Qianyu Chen, Bin Liang, Rong Xiao,
Kam-Fai Wong, and Lei Zhang. Cococo: Improving text-guided video inpainting for better con-
sistency, controllability and compatibility. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 11067–11076, 2025c.

Tongchun Zuo, Zaiyu Huang, Shuliang Ning, Ente Lin, Chao Liang, Zerong Zheng, Jianwen Jiang,
Yuan Zhang, Mingyuan Gao, and Xin Dong. Dreamvvt: Mastering realistic video virtual try-on
in the wild via a stage-wise diffusion transformer framework. arXiv preprint arXiv:2508.02807,
2025.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 VIE-BENCHMARK DETAILS

As discussed in Sec. 4.2, given the scarcity of public video editing benchmarks, we build a high-
quality, instruction-based video editing benchmark. Specifically,The source videos come from pub-
lic datasets (e.g., DAVIS Pont-Tuset et al. (2017), HumanVid Wang et al. (2024b)) and the web. All
videos are 720P and 3–10 seconds long, covering indoor, outdoor, dynamic, animated, and portrait
scenes. For each video, we used GPT-4o to generate 5 editing instructions, followed by careful
manual curation to ensure that the instructions align with the original video content while retaining
a degree of creativity. For reference-based editing tasks, the reference images are derived from the
DreamBooth Ruiz et al. (2023) dataset. In total, our benchmark comprises eight fine-grained video-
editing tasks with 140 editing examples. As shown in Tab. 4. The benchmark encompasses local
video editing tasks—add, object swap, color change, and remove; global editing tasks—style change
and tone/weather change; and reference base tasks-including reference base add and reference base
swap.

A.2 VIDEO SYNTHESIS PAIRED DATA PIPELINE

To construct high-quality paired training data for video editing, we develop a synthetic video-editing
data pipeline covering the editing tasks: add, reference-based add, remove, swap, and reference-
based swap. Source videos are drawn from Wang et al. (2025a). We use PySceneDetect to partition
videos into single-scene clips, which serve as the original video. The data synthesis pipeline is
shown in Fig. 10.
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Figure 10: Pipeline for synthesizing paired video data.

Table 4: Editing Tasks in VIE-Bench.

Edit Task Sub Edit Task Number
Total 140

Local Edit

Object Swap 25
Color Change 10
Add 30
Remove 30

Global Edit Style Change 10
Tone / Weather Change 5

Hybrid Edit - 10

Reference Base Edit Reference Base Swap 10
Reference Base Add 10

For the add and remove data. We first employ GPT-4o to analyze the video and identify a target
subject category. Leveraging Grounding DINO Liu et al. (2023) and SAM Ravi et al. (2024), we
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Instruct follow score:

Preservation score:

Video Quality score:

You are an evaluator for instructional video editing tasks. Your job is to assess how well the edited video fulfills the user’s specific instructions.
Based on the original video and its corresponding editing prompt, please evaluate the three instructional editing scores.Each dimension is rated on a scale from 1 to 5: 

- Instruct follow: Does the edit precisely follow the given instruction?  - Preservation: Does the edit maintain coherence with the original video context?  -  Quality: Is 
the edit result video visually seamless and natural-looking? 
 Scoring rules: 
 Instruct follow score: 1: Edit does not follow the instruction. 2-3: Edit follows the instruction partially. 4-5: Edit follows the instruction fully.
 Preservation score: 1: Edit result video does not maintain coherence with the original video context. 2-4: Edit result video maintains coherence with the original video 
context partially. 5: Edit result video maintains coherence with the original video context fully.
 Quality score: 1: Edit result video is not visually seamless, not natural-looking. 2-4: Edit result video is visually seamless partially, natural-looking partially. 5: Edit result 
video is visually seamless, natural-looking fully.

Figure 11: User study example.

segment the corresponding masks and then apply video erasure techniques Zi et al. (2025a) to re-
move the target subjects, with a MLLM-based filtering mechanism that avoids visual artifacts of
inpainting. The original and erased videos are subsequently provided to GPT-4o.By swapping the
roles of the original and generated videos, GPT-4o is prompted to produce “remove” and “add” edit-
ing instructions. We using Flux-Kontext Labs et al. (2025) to generate cross-pair reference images
of the edit object, to form quadruples—source video, target video, reference image, and instruc-
tion prompt. Finally, the training set comprised 65K removal paired samples and 73K add paired
samples.
For the swap and change data, we first apply an optical-flow-based analysis to partition videos
into static-background and dynamic-background categories. Paired editing data are synthesized via
two routes. First, we use GPT-4o to select a target subject category and to generate both the edit-
ing instruction and the target prompt. For human-centric, static-background videos, Flux-Kontext
produces the edited first-frame image. Pose sequences of the characters are extracted with DW-
pose Yang et al. (2023), after which a pose-driven image-to-video expert model generates a driven
video used as the source video. The original video is treated as the target video, and these are pro-
vided to GPT-4o to obtain editing instructions. Additionally, we segment the target object in the first
frame and use Flux-Kontext to generate cross-pair reference images of the edited target object, yield-
ing paired training data composed of the source video, target video, reference image, and instruction
prompt. For dynamic-background editing, a specially trained, mask-based video inpainting expert
model is employed during video generation to construct editing triplets, ensuring consistency under
substantial background changes and motion.We ultimately used 98K paired swap/change samples
as training data.

A.3 USER STUDY

We invited 30 professional image and video creators to serve as our user evaluation experts. For
the image-editing tasks, we randomly selected 30 image-editing sample pairs from GEdit-Bench
and 30 from ImgEdit-Bench, for a total of 60 pairs. For the video-editing tasks, we randomly
selected 60 non-reference video-editing samples from VIE-bench. Our user study example is shown
in Fig.11. Users rated 8 image-editing methods and 4 instruct-based video-editing methods on three
dimensions, including ‘Instruct follow’, ‘Preservation’ and ‘Quality’. All scores range from 1 to
5, and we averaged the ratings to obtain the final scores. The user study was carried out under
blinded to reduce bias and promote fairness. Figs.12 and 13 indicate that our method outperforms
current open source image and video editing methods in the user study and is competitive with the
state-of-the-art closed source solution.

A.4 MORE ABLATION STUDIES

The impact of image data. In Fig. 6 of the main paper, we demonstrate that the model can per-
form untrained video editing tasks under mixed image-video training. To further verify that this

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 12: User study result of image edit.

Figure 13: User study result of video edit.

improvement comes from the image data, Fig. 14 compares the editing results from training with
both image and video data against those from training with video data alone. Note that the video
data does not include training data for segmentation and style transfer. It can be seen that training
without mixed image data fails to enable zero-shot video editing tasks. Furthermore, in Tab. 5, we
present the impact of the image-video training mixture ratio on model performance, which shows
insensitivity to the mixing ratio.
The impact of video data. The results in Fig. 15 demonstrate that using only image data disrupts
the temporal consistency of video generation outcomes, leading to undesired flickering and arti-
facts. Moreover, the video editing performance obtained using only image training data are also
unsatisfactory.
The number of video queries. In the main paper, Fig. 9(a) verifies the performance gain achieved
by utilizing modality-independent queries. In this part, we further study the impact of the number of
queries on performance. Specifically, we double the number of video queries. Tab. 6 indicates that
an excessive number of queries does not yield a significant performance improvement, primarily
because the VLM mainly provides high-level semantic information.

A.5 LONG VIDEO EDITING PIPELINE

Our InstructX can also perform long video editing by modifying the inference pipeline. Specifically,
we process long videos using a sliding window approach, where consecutive windows overlap at the
tail frame of the previous window and the head frame of the next window. During editing, the
editing result of the tail frame of the preceding window replaces the head frame of the subsequent
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Figure 14: Comparison of zero-shot video editing capabilities with and without image training data.
The first row demonstrates video segmentation, while the second row showcases video stylization.

Table 5: The impact of different image-video training mixture ratios on video editing performance.

image:video 5,000 iter 10,000 iter

Instruct
follow Preservation Quality Instruct

follow Preservation Quality

2:3 (paper setting) 8.40 8.73 7.77 8.26 8.73 7.59
1:4 8.36 8.74 7.67 7.91 8.54 7.38
4:1 8.41 8.79 7.74 8.69 8.92 7.87

window to maintain consistency between windows. During testing, we use a 5-second window.
Fig. 16 demonstrates the editing results for a 30-second, 30 FPS video. It can be observed that the
transitions between windows are smooth. Therefore, our method can be extended to long video
editing.

A.6 HIGH-RESOLUTION VIDEO EDITING

Although we use 480P resolution data during training, we found that the model also has generaliza-
tion capability for higher resolutions. Fig. 17 demonstrates the promising editing results at 1080P
resolution.

A.7 MORE DETAILS OF MODEL SIZE

In Tab. 7, we present the model size of representative image editing and video editing methods.
It can be seen that the number of model parameters in our method is comparable to that of main-

Table 6: Ablation study of the number of video queries.

5,000 iter 10,000 iter

Instruct follow Preservation Quality Instruct follow Preservation Quality

512 video query 8.61 8.82 7.94 8.55 8.81 7.90
1024 video query 8.85 8.98 8.10 8.70 8.91 8.02
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Figure 15: Video editing performance of InstructX trained solely on image editing data.

Replace the man with a white robot 

0s 30s

Figure 16: The performance of InstructX in long video (30s) editing using a sliding window ap-
proach.

stream approaches. The comparaison in this paper demonstrate that our performance surpasses these
methods.

Table 7: Model size of different methods

Method Model Size
OmniGen 3.8B

Step1X-Edit 12.5B
UniWorld 12B

Bagel 14.6B
Omni-Video 11B

VACE 14B
ours 14B (DiT) + 0.6B (MLLM LoRA)

A.8 FURTHER DISCUSSION ON THE GAINS OF MLLM
In Fig. 18, we visualize the understanding ability gains of MLLM in visual editing. It can be ob-
served that using only the diffusion model fails to comprehend some complex and tiny details, such
as the books on the corner shelf and the plants in the corner. MLLM, however, can understand these
elements quite well. In Fig. 19, we quantify the performance of using only diffusion for instruction-
based editing versus MLLM+Diffusion across various tasks on ImgEdit-Bench Ye et al. (2025a). A
noticeable gap can also be observed.

A.9 MLLM-BASED JUDGE

We employ GPT-4o as MLLM-based judge. Figs.20 and 21 present the MLLM scoring prompts
used in our paper for the video-editing and reference-based video-editing tasks respectively.

A.10 MORE EXAMPLES

We show additional visual results in Figs. 22 - 27 .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Change the weather to snowy

Put a pink hat on the woman‘s 

10
72

x1
92

0
10

72
x1

88
8

Figure 17: The editing performance of InstructX on 1080P videos.

“Remove the plant on the right side of the image, and adjust the man's suit to a darker shade of blue.”

T5+DiT MLLM+DiT

“Remove the books from the shelf, and change the color of the couch pillow to blue.”

Source Image

Figure 18: Comparison of understanding abilities between MLLM+Diffusion and Diffusion-only
setting in instructional editing tasks.
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Figure 19: Comparison of understanding abilities between MLLM+Diffusion and Diffusion-only
setting in instructional editing tasks.

"""
 # **Role**
 You are an evaluator for instructional video editing tasks. Your job is to assess how well the edited video fulfills the user’s specific instructions.
 # **Input**
 1. The user’s instruction
 2. The original video (first video)
 3. The edited video (second video)

 # **Task**
 Please evaluate the instruct editing score: 
- Instruct follow: Does the edit precisely follow the given instruction? -   Quality: Is the edit result video visually seamless and natural-looking? - Preservation: Does the 
edit maintain coherence with the original video context?
 Scoring rules: 
 Instruct follow score: 1-3: Edit does not follow the instruction. 4-6: Edit follows the instruction partially. 7-10: Edit follows the instruction fully.
 Quality score: 1-3: Edit result video is not visually seamless, not natural-looking and not aesthetics. 4-6: Edit result video is visually seamless partially, natural-looking   
partially, and aesthetics partially. 7-10: Edit result video is visually seamless fully, natural-looking fully, and aesthetics fully.
 Preservation score: 1-3: Edit result video does not maintain coherence with the original video context. 4-6: Edit result video maintains coherence with the original video 
context partially. 7-10: Edit result video maintains coherence with the original video context fully.
 Using the following Output format: 

 # **Output**
 Structure the output in JSON format with:
 - instruction: Repeat the user’s instruction.
 - instruct follow score (1-10): Your score number
 - quality score (1-10): Your score number
 - preservation score (1-10): Your score number
 - reason: The reasons for the score you gave
"""

Figure 20: MLLM score system prompt for video edit.
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"""
 # **Role**
 You are an evaluator for instructional video editing tasks. Your job is to assess how well the edited video fulfills the user’s specific instructions.
 # **Input**
 1. The user’s instruction
 2. The reference image.
 2. The original video (first video)
 3. The edited video (second video)

 # **Task**
 Please evaluate the reference base instruct editing score: - Instruct follow: Does the edit precisely follow the given instruction? -   Quality: Is the edit result video 
visually seamless and natural-looking? - Preservation: Does the edit maintain coherence with the original video context? - Similarity: The similarity between the editing 
object in edited video(replace or add) and the reference image?
 Scoring rules: 
 Instruct follow score: 1-3: Edit does not follow the instruction. 4-6: Edit follows the instruction partially. 7-10: Edit follows the instruction fully.
 Quality score: 1-3: Edit result video is not visually seamless, not natural-looking and not aesthetics. 4-6: Edit result video is visually seamless partially, natural-looking 
partially, and aesthetics partially. 7-10: Edit result video is visually seamless fully, natural-looking fully, and aesthetics fully.
 Preservation score: 1-3: Edit result video does not maintain coherence with the original video context. 4-6: Edit result video maintains coherence with the original video 
context partially. 7-10: Edit result video maintains coherence with the original video context fully.
 Similarity score: 1-3: In the edited video (replaced or added), the similarity between the edited object and the reference image is low. 4-6: the similarity is medium . 7-10:  
the similarity is high.
 Using the following Output format: 

 # **Output**
 Structure the output in JSON format with:
 - instruction: Repeat the user’s instruction.
 - instruct follow score (1-10): Your score number
 - quality score (1-10): Your score number
 - preservation score (1-10): Your score number
 - similarity score  (1-10): Your score number
 - reason: The reasons for the score you gave
"""

Figure 21: MLLM score system prompt for reference base video edit.
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“Add a UFO in the air.”

Figure 22: Visual comparsion on VIE-Bench.
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Figure 23: Visual comparsion on VIE-Bench.
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Figure 24: Visual comparsion on VIE-Bench.
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“Change the woman to a girl with red dress, add a little boy to the chair, and Change the weather to rainy.”
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Figure 25: Visual comparsion on VIE-Bench.
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“Turn the ground into ice ground.”
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“Change the T-shirt of the man in the middle to blue.”

“Change weather to autumn.”
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“Add a shark in the sea.”

“Remove the dogs.”
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“Transform into Chinese ink style.”
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“Add the hat on the woman's head.”
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“Add the yellow clock by the window.”

“Let the car on fire, and add a blue alien on the grass.” “Replace the man to a man with black skin.”

“Remove all persons.”
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“Replace the brown bear with a panda.”

Figure 26: More video editing results of our method.
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"Replace the 
bracelet with 

a jade bangle."

"Turn it into 
a cartoon 
image."

""Change the 
weather to 

foggy""

"Remove the 
meat pie"

"Replace the child 
in the image with a 
large pumpkin. "

"Change the building's 
exterior color to a 

soft beige."

Figure 27: Visual comparsion on image editing.
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