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Figure 1: Showcase of InstructX. The bottom panel presents state-of-the-art performance of In-
structX in image and video editing.

ABSTRACT

With recent advances in Multimodal Large Language Models (MLLM) showing
strong visual understanding and reasoning, interest is growing in using them to im-
prove the editing performance of diffusion models. Despite rapid progress, most
studies lack an in-depth analysis of MLLM design choice. Moreover, the integra-
tion of MLLM and diffusion models remains an open challenge in some difficult
tasks, e.g., video editing. In this paper, we present InstructX, a unified framework
for image and video editing. Specifically, we conduct a comprehensive study on
integrating MLLM and diffusion model for instruction-driven editing across di-
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verse tasks. Building on this study, we analyze the cooperation and distinction be-
tween images and videos in unified modeling. (/) We show that training on image
data can emerge video editing capabilities without explicit supervision, thereby
alleviating the constraints imposed by scarce video training data. (2) By incorpo-
rating modality-specific MLLM features, our approach effectively unifies image
and video editing tasks within a single model. Extensive experiments demonstrate
that our method can handle a broad range of image and video editing tasks and
achieve state-of-the-art performance.

1 INTRODUCTION

Recent research demonstrates a growing trend toward developing unified models that integrate mul-
timodal understanding with generation. For example, systems for text-to-image generation Xie et al.
(2024); |Zhou et al.[(2024)); Chen et al.| (2025a), image editing Deng et al.| (2025); [Lin et al.| (2025);
Liu et al.[(2025); Wu et al.[ (2025)) and video editing [Liang et al.[ (2025); Wang et al.[ (2024a); Yu
et al.| (2025)), have achieved impressive results. However, how to effectively integrate Multimodal
Large Language Models (MLLM) with diffusion models, thereby leveraging their understanding
and reasoning capabilities to aid visual editing tasks, remains an open question.

Typical integration paradigms include: (1) autoregressive visual generation (Chen et al.| (2025b); |Lu
et al.[(2023); Qu et al.| (2025) with discrete visual tokenizers |Lee et al.[(2022); Yu et al.| (2021)), (2)
hybrid AR—diffusion approaches that unify an autoregressive loss for text and a diffusion loss for
vision within a single transformer|Zhou et al.|(2024); Ma et al.| (2025b));|Shi et al.|(2024a)); Deng et al.
(2025)), and (3) using an MLLM backbone combined with an external diffusion model as the visual
decoder |Dong et al.; |Ge et al.[(2024)); |Sun et al.| (2024)); |Pan et al.[(2025)). In this paper, we adopt
an external diffusion model framework because it typically converges quickly, requires minimal
changes, and delivers competitive performance. Although several visual editing works have been
developed under this paradigm |Lin et al.| (2025);|Wu et al.| (2025); [Liu et al.[(2025);|Yu et al.[(2025)),
the role of MLLMs in the editing pipeline has yet to be examined in sufficient detail. Recently,
MetaQuery Pan et al.| (2025)) introduces a set of learnable queries that act as an interface between
MLLM and diffusion models. Moreover, MetaQuery employs a large connector (1.6B parameters)
between the MLLM and the diffusion model while keeping the MLLM parameters fixed. However,
a consensus has not been reached on the optimal integration of MLLM with diffusion models for
editing tasks. Specifically, debates persist regarding several key design choices: whether to directly
utilize all last hidden states or compress them into meta-query features; whether the connector should
be a large transformer or if a small Multi-Layer Perceptron (MLP) suffices; and whether the MLLM
itself requires fine-tuning. In this paper, we conduct a comprehensive study and validate a central
hypothesis: to fully leverage the understanding capabilities of MLLMs, they should not be treated
merely as feature extractors; instead, editing should be primarily realized within the MLLM, rather
than delegated to a subsequent large connector.

Collecting high-quality video data remains a bottleneck for video editing. Early works |Qi et al.
(2023)); |Cong et al.|(2023)); [Wu et al.| (2023) perform video editing through zero-shot strategies, but
they are often limited in generation quality and generalizability. Other methods |[Ku et al.| (2024);
Ouyang et al.[(2024); Mou et al.| (2024) transfer image editing capabilities to video by editing the
first frame and propagating the changes, which is prone to content drift and loss. Recently, several
methods|Ye et al.|(2025b); Zi et al.|(2025b) have sought to construct video-editing datasets by train-
ing video-expert models; however, these approaches suffer from lengthy data-construction pipelines
and low success rates. Noting that recent commercial models, such as GPT-40 |OpenAl, have set
a new standard for instructional image editing, we leverage large-scale, high-quality image editing
data generated with these models to support video editing. This approach addresses both the scarcity
of video-editing data and the narrow range of editing types. Specifically, we train on a mixture of
image and video data and incorporate modality-specific MLLM features, unifying image and video
editing within a single model. We observe that editing capabilities learned from image data transfer
effectively to video editing without explicit supervision.

In summary, this paper has the following contributions:

* We present a unified framework that performs image and video editing within a single
model. Our study analyzes the integration of MLLMs and diffusion models and offers
insights for future research.
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Figure 2: Overview of InstructX. The MLLM serves as the understanding module, generating editing
guidance given the input instruction and visual inputs. The DiT serves as the generation module and
connects to the MLLM via learnable queries and an MLP connector.

* We discuss a simple yet effective approach to extend zero-shot video editing capabilities
via image training data. This design allows our method to tackle a wider range of tasks
than existing open-source or closed-source methods.

» Extensive experiments show that our method achieves state-of-the-art performance across
diverse image and video editing tasks.

2 RELATED WORK

2.1 INSTRUCTIONAL IMAGE AND VIDEO EDITING

Text-guided image editing significantly improves the convenience of visual manipulation by en-
abling users to modify images through natural language commands. Earlier approaches [Nam et al.
2018); ILi et al.| (2020); [Fu et al| (2020) primarily rely on GAN frameworks |Goodfellow et al.
2020), often being constrained by limited realism and narrow domain applicability. The advent of
diffusion models (2020) enables high-quality image editing via text. Early works learn
from synthetic input-goal-instruction triples |Brooks et al.| (2023) and with additional human feed-
back [Zhang et al| (2024b)) to follow editing instructions. [Fu et al. investigates how MLLM
facilitate edit instructions. Recently, as MLLM grows in scale and demonstrates stronger capabil-
ities in instruction understanding, several unified modeling approaches [Lin et al.[ (2025)); |Liu et al.
(2025);|OpenAl; [Zeng et al.|(2025) are proposed, improving the performance of image editing.
When it comes to video editing, the challenge becomes significantly harder. Limited by model
capabilities and training data, early research Qi et al.| (2023); |Cong et al.| (2023); |Wu et al.| (2023)
primarily relies on zero-shot or one-shot approaches based on image diffusion models. Later, with
the performance scale-up of video diffusion models, several downstream tasks emerge, leveraging
pre-trained video diffusion models. Examples include video inpainting |Z1 et al.| (2025c); |Bian et al.
(2023)), video try-on|Fang et al.| (2024)); Zuo et al.|(2025), and video addition Tu et al. (2025)); Zhuang
et al| (2025). Recently, some unified modeling methods [Liang et al.| (2025); [Yu et al.| (2025); |Ye
et al.[(2025b) are proposed for video editing. However, these methods are constrained by manual
priors, such as specifying editing areas and motion trajectories. Instruction-based editing offers a
more convenient way. Early research, InsV2V [Cheng et al.| (2023)), adapt image instruction editing
model Brooks et al.| (2023) to generate video training pairs. However, due to limitations in data
quality, the editing results are often unsatisfactory. Very recent studies integrate
the comprehension capabilities of MLLM into video editing. However, model designs are often not
justified experimentally or very briefly, and the scope of tasks remains limited by the training data.
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Figure 4: Illustration of alignment ability (left) and editing performance (right) for different design
choices.

2.2 UNIFIED UNDERSTANDING AND GENERATION MODELS

Recently, extensive attempts extend the success of multimodal understanding to multimodal gener-
ation. Some works learn to regress image features |Ge et al.| (2024); |Sun et al. (2023)); [Tong et al.
(2024); some works auto-regressively predict the next visual tokens Jin et al.| (2023)); |Team| (2024);
Xie et al.[(2024); and some works|Zhou et al|(2024); Ma et al.| (2025b)); [Shi et al.|(2024a)); Deng et al.
(2025)) employ diffusion objective for visual generation and autoregressive objective for text gener-
ation. In this field, using a connector |Dong et al.; |Ge et al.| (2024); [Sun et al.| (2024) to bridge the
understanding model and diffusion model is a strategy for rapid convergence, while also delivering
promising results. Recent work on MetaQuery [Pan et al.| (2025) introduces a useful bridging method
through a set of learnable queries. However, for visual editing, several questions arise: whether to
use all final hidden states directly or compress them into meta-queries; whether a large connector is
necessary; and whether freezing the MLLM is sufficient. We study these questions in this work.

3 METHOD

3.1 OVERVIEW

An overview of InstructX is presented in Fig.[2| Recall that our goal is to build a unified architecture
for image and video editing by leveraging the comprehension capabilities of MLLM. To this end,
we employ a multimodal understanding model, i.e., QWen2.5-VL-3B [Bai et al.| (2025), to embed
the editing instruction and source image/video. Inspired by MetaQuery [Pan et al.| (2025), we append
a set of learnable queries to the MLLM input sequence to extract editing information and retain
only the meta-query features from the MLLM output. Wan2.1-14B |Wan et al.| (2025) is used as the
decoder for the edited output. The produced queries from the MLLM are fed into a two-layer MLP
connector, and are subsequently used to replace the text embeddings in the DiT model. To enhance
the consistency between the edited result and the source image/video, we add the VAE encoding of
the original image/video to the noisy latent. For tasks involving a reference image, we concatenate
the VAE features of the reference image to the noisy latent along the sequence dimension.

3.2 ARCHITECTURE CHOICE

Different choices. As noted above, integrating understanding and generation models exposes many
design choices that are often not empirically justified in prior work. We conduct a comprehensive
study of these structural design choices. In Fig. 3] we compare several instruction-editing architec-
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Figure 6: Examples for emergent video editing capabilities through image data.

tures: (a) Instructions are encoded by the native T5 text encoder|[Chung et al.|(2024) and fed directly
into the diffusion model, i.e., diffusion-only setting. (b) The last hidden states of the MLLM are en-
coded by QFormer |Li et al.| (2023) into fixed-length representation (i.e., 256 tokens), which is then
input to DiT. (¢) The MetaQuery structure uses learnable queries to extract editing
information from the MLLM and employs a large connector to bridge the MLLM and the DiT. (d)
The architecture adopted in this work. It uses the same learnable queries as MetaQuery, fine-tunes
the MLLM LoRA, and employs a simple two-layer MLP as the connector between MLLM and DiT.
Comparsion. We validate the performance of different structure choices from two aspects. (1) Fea-
ture alignment capability. Due to the gap between the MLLM text space and the diffusion generation
space, previous works |[Dong et al.; |Ge et al|(2024) usually incorporate a pre-training stage to align
these two spaces. Here, we freeze the DiT and train different designs on image editing task. The
left part of Fig[4] shows that solely relying on a large-scale connector or a learnable query mecha-
nism for the understanding-generation alignment converges slowly. Partially involving MLLM in
feature alignment via LoRA accelerates convergence. Note that the T5 features
are already aligned with DiT, hence not involved in this stage. Upon completion of the alignment
stage, we unfreeze the DiT for continued training and evaluate the performance of various methods
on ImgEdit-Bench (2025a). The right part in Fig. ] also shows an advantage of the design
choice in this paper. We also provide a further discussion on the gains of MLLM in the appendix[A-8]
Other details. Moreover, to model images and videos in a unified architecture while distinguishing
between the two modalities, we introduce separate sets of learnable queries for each: 256 queries
for image inputs and 512 queries for video inputs. Note that for video input, we specifically sample
13 frames to serve as input to the MLLM. Further experimental details are provided in Sec.[4.4]

3.3 TRAINING STRATEGIES

Three stages. As shown in Fig.[3] the training process is divided into three stages: feature alignment
training, full-data training, and quality fine-tuning. Stage 1: The target of the first stage is to align
the feature space of the MLLM with the generation space of the DiT. During this stage, we only train
the learnable query, the LoRA in the MLLM, and the MLP connector on the image-instruction data.
After this stage, the model acquires a rough instruction-based editing capability. However, due to the
coarse-grained visual information in the MLLM, the editing results exhibit poor consistency with the
original image. Stage 2: The second stage has two objectives: (1) Improving the fidelity between
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the editing results and the original visual input by incorporating VAE features, and (2) to enable the
model to acquire unified and generalized image/video editing capabilities through full-data training.
In this stage, we train the learnable query, the LoRA in the MLLM, the MLP connector, and the entire
DiT. Note that mixing image and video training in this stage not only allows for unified modeling
with a single model but also excites video editing capabilities that are difficult to obtain training
data, by leveraging image data. As shown in Fig. [f] segmentation and style transfer tasks absent
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from the video data but present in the image data. After mixed training, the model also acquires
the capability for video style transfer. Stage 3: Although the model acquires unified image/video
editing capabilities after the second stage, the generation quality is affected by some low-quality
training data, resulting in the oily and plastic-like textures. To rectify this problem, we collect a
small amount of high-quality training data and perform quality fine-tuning. As shown in the last
row of Fig. 5] the generated results become more natural and aesthetically pleasing after quality
fine-tuning. We use flow-matching |Lipman et al.|(2022) as the training objective in all stages.

Training data. For instruction-based image editing, we utilize large-scale open-source training
data, including NHR-Edit [Kuprashevich et al.| (2025), X2Edit Ma et al.| (2025a), and GPT-Image-
Edit [Wang et al.| (2025b). For video editing, due to the lack of high-quality open-source video
editing data, we develop a pipeline for synthesizing video-editing data. More details are provided in

the appendix [A.2]

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

During training, we set the learning rate to 1 x 107>, with a global batch size of 128 for images
and 32 for videos. In the first and second training stages, we iterate for 20, 000 steps each, while the
third stage involves 5, 000 iterations. During the image/video mixed training, we sample video data
with a probability of 0.6 and image data with a probability of 0.4.

4.2 EVALUATION DETAILS

For image editing, we compare different methods on two benchmarks: ImgEdit-Bench |Ye et al.
(2025a) and GEdit-Bench [Liu et al.| (2025). Specifically, on ImgEdit-Bench, we use GPT-4.1 |Ope-
nAll to score the editing results on a 1-5 scale. On GEdit-Bench, we employ Qwen2.5-VL-72B Bai
et al. (2025) to evaluate the edited results across three metrics: instruction-following score (Q_SC),
perceptual-quality score (Q_PQ), and overall score (Q_O). We compare our method with the well-
known instruction-based image editing method (i.e., InstructPix2Pix [Brooks et al.| (2023)), recent
state-of-the-art approaches (i.e., OmniGen Xiao et al.| (2025), Uniworld [Lin et al.| (2025)), Step1x-
Edit |Liu et al.| (2025), Bagel Deng et al.| (20235))), as well as several closed-source models (GPT-
40|OpenAl, DouBao Shi et al.| (2024b)).

For video editing, existing benchmarks(e.g., UNICBench |Ye et al.| (2025b) and VACE-
Benchmark|Jiang et al.|(2025))) primarily focus on target-prompt rather than instruction-prompt eval-
uation and provide few examples per task. To address the lack of instruction-based video-editing
benchmarks, we introduce VIE-Bench, which comprises 140 high-quality instances across eight
categories, covering both reference-free and reference-based edits. Further details are provided in
Appendix Sec.[A.T] Prior work commonly uses the CLIP text score to assess text—video alignment,
which is effective for target-prompt settings but fails to capture instruction-following capability.
Therefore, we adopt an MLLM-based . .

judge using GPT-40 [OpenAll to evaluate Table 1: Comparison results on GEdlt-Bench.
editing accuracy (instruction follow- Q-SC, Q_PQ, and Q_O refer to the metrics evaluated
ing), preservation (consistency with by Qwen-2.5-VL-72B. The best and second best results
the source video), and quality (overall arc shown in bold and underlined respectively.

video quality). For reference-based

editing, GPT-40 also assesses subject Community

similarity to the reference image. All Model Model QSCT QPQT QO7
scores range from 1 to 10. The system

prompts for the MLLM-based judge gtESX-E dit ; ;?)Z % g?g
are provided in Appendix Sec. [A.9] In Instruct-P2P % 508 68 490
addition, we employ VBench |[Zhang OmniGen v 6‘33 6.96 6'0 4
et al| (2024a) to evaluate video qual- UniWorld v 5' 43 7:37 5'35
ity. We compare our method with the Bagel v 7' 43 703 7'10
well-known baseline InsV2V |Cheng — : :
et al| (2023), recent state-of-the-art ap- SeedEdit 3.0 X 7.92 7.39 7.57
proaches (VACE-14B [Jiang et al| 2025), GPT-4o X 7.98 773  7.83

Omni-Video Tan et al.| (2025)), and
closed-source systems (Kling [Keling
(2025)), Pika |Pikal (2025), Runway-Aleph [Runway| (2025))). For the removal task, we also evaluate
against MiniMax-Remover|Zi et al.| (2025a) and DiffuEraser |Li et al.[(2025)).
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Table 2: Comparison results on ImgEdit-Bench. “Overall” is calculated by averaging all scores
across tasks. We use Qwen2.5-VL-72B for evaluation. The best and second best results are shown
in bold and underlined respectively.

Model Coﬁ?&lell"ty Adjust Remove Replace Add Style Compose Background Action|Overallt
Ours v 3.56 3.92 403 37 445 327 3.63 4.24 3.85
Step1X-Edit v 3.27 3.13 391 275 453 238 3.67 3.48 3.39
Instruct-P2P v 2.53 1.11 1.50 1.89 3.44 1.61 1.65 2.35 2.01
OmniGen v 2.04 2.09 2.02 3.33 3.65 3.58 2.46 1.97 2.64
UniWorld v 2.95 3.54 2.64 4.04 3.33 291 3.07 2.55 3.13
BAGEL v 3.51 3.27 326 3.81 4.26 3.11 2.62 4.31 3.52
SeedEdit 3.0 X 243 4.27 433 440 451 4.32 3.58 4.62 4.06
GPT-40 X 4.15 4.54 449 484 4.63 430 4.87 4.22 4.51

Table 3: Comparison results on VIE-Bench. The best and second best results are shown in bold
and underlined respectively.

Task | Method | VIE-Bench Score | Video Quality
Community Instruction | Instruct Preser- . Lo Smooth-  Aesthe-
Model Model base follow  vation Quality  Similarity  Avg. ness tics
Video Edit
Ours v v 8.446 8.683 7.919 - 8.349 0.991 0.558
Kling X v 6.000 8.230 5.576 - 6.602 | 0.988 0.519
Add Runway X v 8.607 8.913 7.823 - 8.447 | 0.990 0.557
Omni-Video v v 5.699 6.135 6.294 - 6.242 | 0.987 0.586
InsV2V v v 3.552 5.891 3.402 - 4.281 0.988 0.513
VACE v X 3.938 6.696 3.929 - 4.854 0.983 0.557
Ours v v 9.514 9.171 8.533 - 9.072 0.977 0.557
Kling X v 9.000 9.060 8.333 - 8.800 | 0.989 0.541
Runway X v 9.580 8.628 9.275 - 9.161 0.981 0.541
Swap / Change Pika X v 7.542 7.847 6.837 - 7.408 0.974 0.528
Omni-Video v v 4.733 4.856  4.656 - 4.748 0.981 0.556
InsV2V v v 5.304 6.428 4971 - 5.567 0.977 0.530
VACE v X 6.171 7.552 6.199 - 6.640 | 0.976 0.534
Ours v v 8.627 8.668 7.672 - 8.322 | 0.983 0.472
Kling X v 8.440 8.800 7.520 - 8.253 0.993 0.455
Runway X v 8.664 9.145 7.703 - 8.504 | 0.987 0.460
Omni-Video v v 6.004 5970  4.807 - 5.593 0.989 0.417
Remove InsV2V v v 1.209 3.769 1.322 - 2.098 0.982 0.517
VACE v X 1.812 3.877 2.359 - 2.682 0.983 0.535
MiniMax v X 6.963 7.518 6.037 - 6.839 0.985 0.467
DiffuEraser 4 X 6.346 6.807 5.576 - 6.243 0.986 0.465
Ours v v 9.650 9.099 8.839 - 9.196 | 0.972 0.560
Style / Tone Chanee Runway X v 9.583 9.200 8.616 - 9.133 0.982 0.547
Y 2% | Omni-Video v v 5.486 4.655 5.959 - 5.366 | 0.984 0.557
InsV2V v v 7.835 8.086 6.437 - 7.452 0.971 0.529
Ours v v 9.448 8.862  8.411 - 8907 | 0.973 0.590
Hybrid Edit Runway X v 8.966 8.533 8.033 - 8.510 0.984 0.585
y Omni-Video v v 5.444 5.066 5.766 - 5.425 0.978 0.608
InsV2V v v 5.033 5.966  4.966 - 5.321 0.975 0.541
Reference Base Video Edit
Ours v v 9.210 9.201 8.221 9.190 8.955 0.978 0.549
Ref Base Swa Kling X v 8.830 8.910 8.120 8.510 8.592 | 0.988 0.522
P Pika X v 8.438 8.665 7.656 8.447 8.301 0.989 0.462
VACE v X 8.312 8.542  7.442 7.654 7.987 0.976 0.550
Ours v v 9.491 9.252 8.375 9.511 9.157 0.987 0.595
Ref Base Add Kling X v 9.714 9.571 8.714 9.285 9.321 0.992 0.567
’ Pika X v 8.510 8.625 7.750 8.625 8.377 0.991 0.511
VACE 4 X 2.665 6.540 3.052 3.636 3.973 0.987 0.561

4.3 COMPARSION RESULT

Tab. (1] and Tab. 2| respectively present the comparsion results of our method and other methods on
GEdit-Bench [Liu et al.| (2025)) and ImgEdit-Bench |Ye et al.| (2025a)). It can be observed that our
method achieves competitive performance across multiple sub-tasks, and outperforms other open-
source methods in terms of the overall score on ImgEdit-Bench. Fig. [/|demonstrates that in some
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complex scenarios, such as removing broccoli from a cluttered pile of vegetables, methods like
OmniGen [Xiao et al.|(2025), UniWorld [Lin et al.| (2025), and Step1x-Edit|Liu et al.[ (2025)) fail to
recognize the target, while SeedEdit|Shi et al.| (2024b)) and GPT-40 OpenAl produce editing results
that lack consistency with the original image. Our method enables accurate removal while maintain-
ing better consistency. Additionally, our advantages exist in cleaner background replacement and
superior style consistency. We also conduct a user study in Sec. [A3]in appendix.

Table [3|shows that our method outperforms current open-source video-editing models on most met-
rics and remains competitive with state-of-the-art closed-source solutions. Specifically, our method
attains the highest average scores on Style/Tone/Weather Change, Hybrid Edit, and Ref-Based Swap
tasks among all methods, while scoring slightly below Runway Aleph on the Add, Swap/Change,
and Remove tasks, and marginally below Kling on Ref-Based Add. Moreover, our method demon-
strates leading advantages on several fine-grained evaluation dimensions. As shown in Fig.[8] on the
fine-grained local editing task, our method achieves superior accuracy, while competing approaches
either perform poorly on the handheld box replacement or fail to replace it. Our method also excels
at style transfer and instruction following in hybrid edits. In reference-based editing, the backpack
in our output shows higher similarity to the reference image. Additional visual comparisons are
provided in Appendix Sec[A.T0} we also report a user study in Appendix Sec.[A.3]

4.4 ABLATION STUDY

We perform ablation studies on the design choice of unifying image and video editing: (1) whether
to separate image and video queries; (2) whether the MLLM requires multi-frame video input. As
shown in Fig[9] (a), the separate query setting achieves a higher score on VIE-Bench, as it better
distinguishes the feature extraction for different modelity information. Fig[J](b) shows that if the
MLLM only uses the first frame of the video to generate editing guidance, the editing results are
prone to collapse in some complex scenarios, such as when the edited content appears in the middle
of the video.

5 CONCLUSION

In this paper, we propose InstructX, a unified framework for image and video editing. Specifi-
cally, we conduct a comprehensive study on the design for the combination of MLLM and diffusion
models, ultimately selecting the integration of Learnable Query, MLLM LoRA, and MLP Connec-
tor, which achieves faster convergence and superior performance. Furthermore, we explore mixed
image-video training, which not only enables unified modeling for image and video editing but also
expands the scope of video editing task. Additionally, we employ separate queries within the uni-
fied framework to better distinguish different modalities. We also introduce a MLLM-based video
editing benchmark, i.e., VIE-Bench, comprising 140 high-quality editing instances across eight cat-
egories. Extensive experiments demonstrate that our method outperforms the latest open-source
image and video editing methods. Particularly, in video editing, InstructX achieves comparable
performance to some closed-source editing methods while supporting a broader range of tasks.
Limitation Although InstructX demonstrates remarkable performance and appealing training effi-
ciency, it is constrained by the pre-trained video DiT, making it difficult for high-resolution (e.g.,
>1080P) image/video editing. Although image data can excite zero-shot video editing capabili-
ties, it is not a direct solution. However, it can serve as a temporary solution to address the current
shortage of video data.
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A APPENDIX

A.1 VIE-BENCHMARK DETAILS

As discussed in Sec. given the scarcity of public video editing benchmarks, we build a high-
quality, instruction-based video editing benchmark. Specifically,The source videos come from pub-
lic datasets (e.g., DAVIS [Pont-Tuset et al.| (2017), HumanVid [Wang et al.| (2024b))) and the web. All
videos are 720P and 3-10 seconds long, covering indoor, outdoor, dynamic, animated, and portrait
scenes. For each video, we used GPT-40 to generate 5 editing instructions, followed by careful
manual curation to ensure that the instructions align with the original video content while retaining
a degree of creativity. For reference-based editing tasks, the reference images are derived from the
DreamBooth Ruiz et al.| (2023)) dataset. In total, our benchmark comprises eight fine-grained video-
editing tasks with 140 editing examples. As shown in Tab.[d The benchmark encompasses local
video editing tasks—add, object swap, color change, and remove; global editing tasks—style change
and tone/weather change; and reference base tasks-including reference base add and reference base
swap.

A.2 VIDEO SYNTHESIS PAIRED DATA PIPELINE

To construct high-quality paired training data for video editing, we develop a synthetic video-editing
data pipeline covering the editing tasks: add, reference-based add, remove, swap, and reference-
based swap. Source videos are drawn from [Wang et al.| (2025a). We use PySceneDetect to partition
videos into single-scene clips, which serve as the original video. The data synthesis pipeline is
shown in Fig. [T0]

Add / Remove Data generation pipline Swap/Change Data generation pipline

Origin| Video Gen Video

Gen Video

First frame
Editing

Origin Video

DINO
Detector

Detector
+
SAM

M“k a
Inpainting
i
m i
'

Suurce\nien Target Video Referencelmn;e' Source Video  Target Video Reference Image

Paired data

Replace the running little rabbit Replace the man into one with brown
with a rhinoceros coat and beard

Add a leopard to the snow Removel the leopard

Figure 10: Pipeline for synthesizing paired video data.

Table 4: Editing Tasks in VIE-Bench.

Edit Task Sub Edit Task Number
Total 140
Object Swap 25
. Color Change 10
Local Edit Add 30
Remove 30
. Style Change 10
Global Edit Tone / Weather Change 5
Hybrid Edit - 10
Reference Base Swap 10

Reference Base Edit Reference Base Add 10

For the add and remove data. We first employ GPT-40 to analyze the video and identify a target
subject category. Leveraging Grounding DINO (2023) and SAM (2024), we
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You are an evaluator for instructional video editing tasks. Your job is to assess how well the edited video fulfills the user’s specific instructions.
Based on the original video and its corresponding editing prompt, please evaluate the three instructional editing scores.Each dimension is rated on a scale from 1 to 5:

- Instruct follow: Does the edit precisely follow the given instruction? - Preservation: Does the edit maintain coherence with the original video context? - Quality: Is
the edit result video visually seamless and natural-looking?

Scoring rules:

Instruct follow score: 1: Edit does not follow the instruction. 2-3: Edit follows the instruction partially. 4-5: Edit follows the instruction fully.

Preservation score: 1: Edit result video does not maintain coherence with the original video context. 2-4: Edit result video maintains coherence with the original video
context partially. 5: Edit result video maintains coherence with the original video context fully.

Quality score: 1: Edit result video is not visually seamless, not natural-looking. 2-4: Edit result video is visually seamless partially, natural-looking partially. 5: Edit result
video is visually seamless, natural-looking fully.

result_4

“Change the backg
round to snow-cap
ped mountains."

Instruct follow score:

Preservation score: ‘ T2 s a4 5‘

Video Quality score:

Figure 11: User study example.

segment the corresponding masks and then apply video erasure techniques 20254d) to re-
move the target subjects, with a MLLM-based filtering mechanism that avoids visual artifacts of
inpainting. The original and erased videos are subsequently provided to GPT-40.By swapping the
roles of the original and generated videos, GPT-4o is prompted to produce “remove” and “add” edit-
ing instructions. We using Flux-Kontext (2025) to generate cross-pair reference images
of the edit object, to form quadruples—source video, target video, reference image, and instruc-
tion prompt. Finally, the training set comprised 65K removal paired samples and 73K add paired
samples.

For the swap and change data, we first apply an optical-flow-based analysis to partition videos
into static-background and dynamic-background categories. Paired editing data are synthesized via
two routes. First, we use GPT-4o0 to select a target subject category and to generate both the edit-
ing instruction and the target prompt. For human-centric, static-background videos, Flux-Kontext
produces the edited first-frame image. Pose sequences of the characters are extracted with DW-
pose (2023), after which a pose-driven image-to-video expert model generates a driven
video used as the source video. The original video is treated as the target video, and these are pro-
vided to GPT-40 to obtain editing instructions. Additionally, we segment the target object in the first
frame and use Flux-Kontext to generate cross-pair reference images of the edited target object, yield-
ing paired training data composed of the source video, target video, reference image, and instruction
prompt. For dynamic-background editing, a specially trained, mask-based video inpainting expert
model is employed during video generation to construct editing triplets, ensuring consistency under
substantial background changes and motion.We ultimately used 98K paired swap/change samples
as training data.

A.3 USER STUDY

We invited 30 professional image and video creators to serve as our user evaluation experts. For
the image-editing tasks, we randomly selected 30 image-editing sample pairs from GEdit-Bench
and 30 from ImgEdit-Bench, for a total of 60 pairs. For the video-editing tasks, we randomly
selected 60 non-reference video-editing samples from VIE-bench. Our user study example is shown
in Fig[TT] Users rated 8 image-editing methods and 4 instruct-based video-editing methods on three
dimensions, including ‘Instruct follow’, ‘Preservation’ and ‘Quality’. All scores range from 1 to
5, and we averaged the ratings to obtain the final scores. The user study was carried out under
blinded to reduce bias and promote fairness. Figs[I2]and [T3]indicate that our method outperforms
current open source image and video editing methods in the user study and is competitive with the
state-of-the-art closed source solution.

A.4 MORE ABLATION STUDIES

The impact of image data. In Fig. [f] of the main paper, we demonstrate that the model can per-
form untrained video editing tasks under mixed image-video training. To further verify that this
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Figure 12: User study result of image edit.
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Figure 13: User study result of video edit.

improvement comes from the image data, Fig. [[4 compares the editing results from training with
both image and video data against those from training with video data alone. Note that the video
data does not include training data for segmentation and style transfer. It can be seen that training
without mixed image data fails to enable zero-shot video editing tasks. Furthermore, in Tab.[5] we
present the impact of the image-video training mixture ratio on model performance, which shows
insensitivity to the mixing ratio.

The impact of video data. The results in Fig. E]demonstrate that using only image data disrupts
the temporal consistency of video generation outcomes, leading to undesired flickering and arti-
facts. Moreover, the video editing performance obtained using only image training data are also
unsatisfactory.

The number of video queries. In the main paper, Fig. [Dfa) verifies the performance gain achieved
by utilizing modality-independent queries. In this part, we further study the impact of the number of
queries on performance. Specifically, we double the number of video queries. Tab. [findicates that
an excessive number of queries does not yield a significant performance improvement, primarily
because the VLM mainly provides high-level semantic information.

A.5 LONG VIDEO EDITING PIPELINE

Our InstructX can also perform long video editing by modifying the inference pipeline. Specifically,
we process long videos using a sliding window approach, where consecutive windows overlap at the
tail frame of the previous window and the head frame of the next window. During editing, the
editing result of the tail frame of the preceding window replaces the head frame of the subsequent
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Train w Train w/o
Image Data

Image Data

Train w/o
Image Data
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Image Data

Frame 20 Frame 40 ' Frame 70

Figure 14: Comparison of zero-shot video editing capabilities with and without image training data.
The first row demonstrates video segmentation, while the second row showcases video stylization.

Table 5: The impact of different image-video training mixture ratios on video editing performance.

5,000 iter 10,000 iter

Instruct . . Instruct
Preservation  Quality

image:video

Preservation  Quality

follow follow
2:3 (paper setting) 8.40 8.73 7.77 8.26 8.73 7.59
1:4 8.36 8.74 7.67 7.91 8.54 7.38
4:1 8.41 8.79 7.74 8.69 8.92 7.87

window to maintain consistency between windows. During testing, we use a 5-second window.
Fig. demonstrates the editing results for a 30-second, 30 FPS video. It can be observed that the
transitions between windows are smooth. Therefore, our method can be extended to long video
editing.

A.6 HIGH-RESOLUTION VIDEO EDITING

Although we use 480P resolution data during training, we found that the model also has generaliza-
tion capability for higher resolutions. Fig.[T7)demonstrates the promising editing results at 1080P
resolution.

A.7 MORE DETAILS OF MODEL SIZE

In Tab. [7] we present the model size of representative image editing and video editing methods.
It can be seen that the number of model parameters in our method is comparable to that of main-

Table 6: Ablation study of the number of video queries.

5,000 iter 10,000 iter
Instruct follow  Preservation Quality Instruct follow Preservation Quality
512 video query 8.61 8.82 7.94 8.55 8.81 7.90
1024 video query 8.85 8.98 8.10 8.70 8.91 8.02
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Replace the blackswan with a white cat

Figure 15: Video editing performance of InstructX trained solely on image editing data.

Replace the man with a white robot

Figure 16: The performance of InstructX in long video (30s) editing using a sliding window ap-
proach.

stream approaches. The comparaison in this paper demonstrate that our performance surpasses these
methods.

Table 7: Model size of different methods

Method Model Size
OmniGen 3.8B
Step1X-Edit 12.5B
UniWorld 12B
Bagel 14.6B
Omni-Video 11B
VACE 14B
ours 14B (DiT) + 0.6B (MLLM LoRA)

A.8 FURTHER DISCUSSION ON THE GAINS OF MLLM

In Fig. [T8] we visualize the understanding ability gains of MLLM in visual editing. It can be ob-
served that using only the diffusion model fails to comprehend some complex and tiny details, such
as the books on the corner shelf and the plants in the corner. MLLM, however, can understand these
elements quite well. In Fig.[T9} we quantify the performance of using only diffusion for instruction-
based editing versus MLLM+Diffusion across various tasks on ImgEdit-Bench (2025a). A
noticeable gap can also be observed.

A.9 MLLM-BASED JUDGE

We employ GPT-40 as MLLM-based judge. Figs[20| and [2T] present the MLLM scoring prompts
used in our paper for the video-editing and reference-based video-editing tasks respectively.

A.10 MORE EXAMPLES
We show additional visual results in Figs.[22]-[27].
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Figure 17: The editing performance of InstructX on 1080P videos.

Source Image T5+DiT MLLM+DiT

“Remove the books from the shelf, and change the color of the couch pillow to blue.”

Figure 18: Comparison of understanding abilities between MLLM+Diffusion and Diffusion-only
setting in instructional editing tasks.
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1116 1 3. The edited video (second video) !
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' Please evaluate the instruct editing score: |
1118 ! -Instruct follow: Does the edit precisely follow the given instruction? - Quality: Is the edit result video visually seamless and natural-looking? - Preservation: Does the !
1 edit maintain coherence with the original video context? !
1119 1 Scoring rules: 1
' Instruct follow score: 1-3: Edit does not follow the instruction. 4-6: Edit follows the instruction partially. 7-10: Edit follows the instruction fully. |
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' 1
1123 1 #**Output** \
1124 | Structure the output in JSON format with: H
! - instruction: Repeat the user’s instruction. !
1125 ' - instruct follow score (1-10): Your score number !
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0 Figure 20: MLLM score system prompt for video edit.
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nm

# **Role**

You are an evaluator for instructional video editing tasks. Your job is to assess how well the edited video fulfills the user’s specific instructions.
# **Input**

1. The user’s instruction

2. The reference image.

2. The original video (first video)

3. The edited video (second video)

# **Task**

Please evaluate the reference base instruct editing score: - Instruct follow: Does the edit precisely follow the given instruction? - Quality: s the edit result video
visually seamless and natural-looking? - Preservation: Does the edit maintain coherence with the original video context? - Similarity: The similarity between the editing
object in edited video(replace or add) and the reference image?

Scoring rules:

Instruct follow score: 1-3: Edit does not follow the instruction. 4-6: Edit follows the instruction partially. 7-10: Edit follows the instruction fully.

Quality score: 1-3: Edit result video is not visually seamless, not natural-looking and not aesthetics. 4-6: Edit result video is visually seamless partially, natural-looking
partially, and aesthetics partially. 7-10: Edit result video is visually seamless fully, natural-looking fully, and aesthetics fully.

Preservation score: 1-3: Edit result video does not maintain coherence with the original video context. 4-6: Edit result video maintains coherence with the original video
context partially. 7-10: Edit result video maintains coherence with the original video context fully.

Similarity score: 1-3: In the edited video (replaced or added), the similarity between the edited object and the reference image is low. 4-6: the similarity is medium . 7-10:
the similarity is high.

Using the following Output format:

# **Output**

Structure the output in JSON format with:

- instruction: Repeat the user’s instruction.

- instruct follow score (1-10): Your score number
- quality score (1-10): Your score number

- preservation score (1-10): Your score number

- similarity score (1-10): Your score number

- reason: The reasons for the score you gave

Figure 21: MLLM score system prompt for reference base video edit.
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“Replace the duck with the yellow duck toy.” “Add a brown dog in the car.”

Src video

Ours

Keling

Pika

VACE

Src video

Ours

Pika

VACE

Figure 22: Visual comparsion on VIE-Bench.
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“Change the color of the bus to green.”

Src video

Ours

Pika

InsV2V

Omni-video

VACE

Figure 23: Visual comparsion on VIE-Bench.
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Omni-video InsV2V Keling Runway Ours Src video

MiniMax

DiffuEraser

“Remove the bowl in the middle.” “Remove the car.”

Figure 24: Visual comparsion on VIE-Bench.
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“Change the woman to a girl with red dress, add a little boy to the chair, and Change the weather to rainy.”

Src video

Qurs

InsV2V

Omni-video

src video

ours

InsV2V

Omni-video

Figure 25: Visual comparsion on VIE-Bench.
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“Turn the ground into ice ground.” N the in the middle to L

Src video

Result

“Change weather to autumn.” a in the sea.”

Src video

Result

Src video

Result

Src video

Result

Src video

Result

Src video

Result

Figure 26: More video editing results of our method.
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GPT-40 SeedEdit Bagel Step 1x-Edit UniWorld OmniGen InstructP2P Src Image

Ours

"Replace the  "Turn it into ""Change the "Remove the "Replace the child "Change the building's

bracelet with a cartoon weather to meat pie" in the image with a  exterior color to a
a jade bangle." image." foggy"" large pumpkin. " soft beige."

Figure 27: Visual comparsion on image editing.
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