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ABSTRACT

Oriented object detection emerges in many applications from aerial images to au-
tonomous driving, while many existing detection benchmarks are annotated with
horizontal bounding box only which is also less costive than fine-grained rotated
box, leading to a gap between the readily available training corpus and the rising
demand for oriented object detection. This paper proposes a simple yet effective
oriented object detection approach called H2RBox merely using horizontal box
annotation for weakly-supervised training, which closes the above gap and shows
competitive performance even against those trained with rotated boxes. The cores
of our method are weakly- and self-supervised learning, which predicts the an-
gle of the object by learning the consistency of two different views. To our best
knowledge, H2RBox is the first horizontal box annotation-based oriented object
detector. Compared to an alternative i.e. horizontal box-supervised instance seg-
mentation with our post adaption to oriented object detection, our approach is not
susceptible to the prediction quality of mask and can perform more robustly in
complex scenes containing a large number of dense objects and outliers. Exper-
imental results show that H2RBox has significant performance and speed advan-
tages over horizontal box-supervised instance segmentation methods, as well as
lower memory requirements. While compared to rotated box-supervised oriented
object detectors, our method shows very close performance and speed. The source
code is available at PyTorch-based MMRotate and Jittor-based JDet.

1 INTRODUCTION

In addition to the relatively matured area of horizontal object detection (Liu et al., 2020), oriented ob-
ject detection has received extensive attention, especially for complex scenes, whereby fine-grained
bounding box (e.g. rotated/quadrilateral bounding box) is needed, e.g. aerial images (Ding et al.,
2019; Yang et al., 2019a), scene text (Zhou et al., 2017), retail scenes (Pan et al., 2020) etc.

Despite the increasing popularity of oriented object detection, many existing datasets are annotated
with horizontal boxes (HBox) which may not be compatible (at least on the surface) for training an
oriented detector. Hence labor-intensive re-annotation1 have been performed on existing horizontal-
annotated datasets. For example, DIOR-R (Cheng et al., 2022) and SKU110K-R (Pan et al., 2020)
are rotated box (RBox) annotations of the aerial image dataset DIOR (192K instances) (Li et al.,
2020) and the retail scene SKU110K (1,733K instances) (Goldman et al., 2019), respectively.

One attractive question arises that if one can achieve weakly supervised learning for oriented object
detection by only using (the more readily available) HBox annotations than RBox ones. One poten-

∗Correspondence author is Junchi Yan. The work was in part supported by National Key Research and De-
velopment Program of China (2020AAA0107600), National Natural Science Foundation of China (62222607),
and Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102).

1The annotation cost (in price) of the RBox is about 36.5% ($86 vs. $63) higher than that of the HBox
according to https://cloud.google.com/ai-platform/data-labeling/pricing.
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(a) BoxInst-RBox (b) BoxLevelSet-RBox

(c) H2RBox

Figure 1: Visual comparison of three HBox-supervised rotated detectors on aircraft detection (Wei
et al., 2020), ship detection (Yang et al., 2018), vehicle detection (Azimi et al., 2021), etc. The
HBox-Mask-RBox style methods, i.e. BoxInst-RBox (Tian et al., 2021) and BoxLevelSet-RBox (Li
et al., 2022b), perform not well in complex and object-cluttered scenes.

tial and verified technique in our experiments is HBox-supervised instance segmentation, concern-
ing with BoxInst (Tian et al., 2021), BoxLevelSet (Li et al., 2022b), etc. Based on the segmentation
mask by these methods, one can readily obtain the final RBox by finding its minimum circumscribed
rectangle, and we term the above procedure as HBox-Mask-RBox style methods i.e. BoxInst-RBox
and BoxLevelSet-RBox in this paper. Yet it in fact involves a potentially more challenging task i.e.
instance segmentation whose quality can be sensitive to the background noise, and it can influence
heavily on the subsequent RBox detection step, especially given complex scenes (in Fig. 1(a)) and
the objects are crowded (in Fig. 1(b)). Also, involving segmentation is often more computational
costive and the whole procedure can be time consuming (see Tab. 1-2).

In this paper, we propose a simple yet effective approach, dubbed as HBox-to-RBox (H2RBox),
which achieves close performance to those RBox annotation supervised methods e.g. (Han et al.,
2021b; Yang et al., 2023a) by only using HBox annotations, and even outperforms in considerable
amount of cases as shown in our experiments. The cores of our method are weakly- and self-
supervised learning, which predicts the angle of the object by learning the enforced consistency be-
tween two different views. Specifically, we predict five offsets in the regression sub-network based
on FCOS (Tian et al., 2019) in the WS branch (see Fig. 2 left) so that the final decoded outputs
are RBoxes. Since we only have horizontal box annotations, we use the horizontal circumscribed
rectangle of the predicted RBox when computing the regression loss. Ideally, predicted RBoxes and
corresponding ground truth (GT) RBoxes (unlabeled) have highly overlapping horizontal circum-
scribed rectangles. In the SS branch (see Fig. 2 right), we rotate the input image by a randomly
angle and predict the corresponding RBox through a regression sub-network. Then, the consistency
of RBoxes between the two branches, including scale consistency and spatial location consistency,
are learned to eliminate the undesired cases to ensure the reliability of the WS branch. Our main
contributions are as follows:

1) To our best knowledge, we propose the first HBox annotation-based oriented object detector.
Specifically, a weakly- and self-supervised angle learning paradigm is devised which closes the gap
between HBox training and RBox testing, and it can serve as a plugin for existing detectors.

2) We prove through geometric equations that the predicted RBox is the correct GT RBox under our
designed pipeline and consistency loss, and does not rely on not-fully-verified/ad-hoc assumptions,
e.g. color-pairwise affinity in BoxInst or additional intermediate results whose quality cannot be
ensured, e.g. feature map used by many weakly supervised methods (Wang et al., 2022).

3) Compared with the potential alternatives e.g. HBox-Mask-RBox whose instance segmenta-
tion part is fulfilled by the state-of-the-art BoxInst, our H2RBox outperforms by about 14% mAP
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Figure 2: Our H2RBox consists of two branches respectively fed with two augmented views (View 1
and View 2) of the input image. The left Weakly-supervised Branch in general can be any rotated
object detector (FCOS here) for RBox prediction, whose circumscribed HBox is used for supervised
learning given the GT HBox label in the sense of weakly-supervised learning. This branch is also
used for test-stage inference. The right Self-supervised Branch tires to achieve RBox prediction
consistency of the two views with self-supervised learning. Image is from the DIOR-R dataset.

(67.90% vs. 53.59%) on DOTA-v1.0 dataset, requiring only one third of its computational resources
(6.25 GB vs. 19.93 GB), and being around 12× faster in inference (31.6 fps vs. 2.7 fps).

4) Compared with the fully RBox annotation-supervised rotation detector FCOS, H2RBox is only
0.91% (74.40% vs. 75.31%) and 1.01% (33.15% vs. 34.16%) behind on DOTA-v1.0 and DIOR-R,
respectively. Furthermore, we do not add extra computation in the inference stage, thus maintaining
a comparable detection speed, about 29.1 FPS vs. 29.5 FPS on DOTA-v1.0.

2 RELATED WORK

RBox-supervised Oriented Object Detection. Oriented object detection in visual images has re-
ceived increasing attention across different areas e.g. aerial image (Xu et al., 2020; Yang et al.,
2022; 2023a; Hou et al., 2023), scene text (Zhou et al., 2017; Liao et al., 2018), retail (Pan et al.,
2020; Chen et al., 2020), etc. Earlier methods including RRPN (Ma et al., 2018), ROI-Transformer
(Ding et al., 2019) and ReDet (Han et al., 2021b) directly perform angle regression. To address
the loss discontinuity and regression inconsistency due to periodicity of angle, subsequent works ei-
ther convert the parameterization of the rotated bounding box into 2-D Gaussian distributions (Yang
et al., 2021c;d) or transform the angle regression to classification (Yang et al., 2021a; Yang & Yan,
2022). (Hou et al., 2022; Li et al., 2022a) introduce the adaptive point set for object representation
to mitigate the angle regression sensitivity and meanwhile captures instances’ semantic information.

HBox-supervised Instance Segmentation and Its Potential for Oriented Object Detection. The
bold idea of purely using HBox-annotations to train a rotated object detector is attractive yet still
rarely studied in literature, which can be seen as a weakly-supervised (WS) learning paradigm for
oriented object detection. A related and better-studied technique is HBox-supervised instance seg-
mentation, which tries to segment instance based on the HBox annotations for WS training. For
instance, SDI (Khoreva et al., 2017) relies on the region proposals generated by MCG (Pont-Tuset
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(a) O2O by zeros padding. (b) O2M by reflect padding. (c) The two re-assignment strategies.

Figure 3: Comparison of different padding methods (Sec. 3.1) and re-assignment strategies
(Sec. 3.4). Green and red RBox represent the target rboxws∗ and rboxss, respectively.

et al., 2016) and uses an iterative training process to refine the segmentation. BBTP (Hsu et al.,
2019) formulates the HBox-supervised instance segmentation into a multiple instance learning prob-
lem based on Mask R-CNN (He et al., 2017). BoxInst (Tian et al., 2021) uses the color-pairwise
affinity with box constraint under an efficient RoI-free CondInst (Tian et al., 2020). BoxLevelSet
(Li et al., 2022b) introduces an energy function to predict the instance-aware mask as the level set.

Though one can obtain the final object orientation by certain means based on the segmentation
mask from the above instance segmentation methods, e.g. by finding the minimum circumscribed
rectangle, we argue and show in our experiments that such an HBox-Mask-RBox pipeline can be
complex (segmentation can be even more difficult than rotation detection – see Fig. 1) and expensive
in the presence of dense objects and background noises. Hence we aim to skip the segmentation step
and build an HBox-to-RBox paradigm which has not been studied before to our best knowledge.

3 PROPOSED METHOD

The overview of the H2RBox is shown in Fig. 2. Two augmented views are generated and infor-
mation leakage is avoided for training overfitting. There are two branches. One branch is used for
weakly-supervised (WS) learning where the supervision is the GT HBox from the training data, and
the regression loss is calculated between the circumscribed HBox derived from the predicted RBox
by this branch and GT HBox. The other branch is trained by self-supervised (SS) learning that
involves two augmented views of the raw input image, which encourages to obtain the consistent
RBox prediction between the two views. The final loss is the weighted sum of the WS loss and SS
loss. Note that the test-stage prediction is concerned only with the WS branch.

3.1 AUGMENTED VIEW GENERATION

In line with the general idea of self-supervised learning by data augmentation, given the input image,
we perform random rotation to generate View 2 while keeping View 1 consistent with the input
image, as shown in Fig. 2. However, rotation transformation will geometrically and inevitably
introduce an artificial black border area and leads to the risk of GT angle information leakage.
We provide two available techniques to resolve this issue:

1) Center Region Cropping: Crop a
√
2
2 s×

√
2
2 s area2 in the center of the image.

2) Reflection Padding: Fill the black border area by reflection padding.

If the Center Region Cropping is used in View 2, View 1 also needs to perform the same operation
and filter the corresponding ground truth. In contrast, Reflection Padding works better than Center
Region Cropping because it preserves as much of the area as possible while maintaining a higher
image resolution. Fig. 3(a) and Fig. 3(b) compare zeros padding and reflection padding. Note that
the black border area does not participate in the regression loss calculation in the SS branch, so it
does not matter that this region is filled with unlabeled foreground objects by reflection padding.

2When the rotation angle is a multiple of 45◦, the black border area reaches its peak, so the side length of
the largest crop area is

√
2

2
of the side length of the original image (s), refer to the View 2 in Fig. 2.
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(a) WS loss only (b) WS + SS loss

Figure 4: Visual comparison of our methods with and without the SS loss used in the SS branch. It
can help learn the scale and spatial location consistency between the two branches.

3.2 THE WEAKLY-SUPERVISED (WS) BRANCH

w · | cos θ|+ h · | sin θ| = wws

w · | sin θ|+ h · | cos θ| = hws

w · | cosφ|+ h · | sinφ| = wss

w · | sinφ|+ h · | cosφ| = hss

Figure 5: Proof of the relationship between predicted RBox
and GT RBox under horizontal circumscribed rectangle
constraint and scale constraint. Green and orange RBoxes
represent correct coincident prediction Bc and undesired
symmetric prediction Bs.

The two generated views (View 1
and View 2) are respectively fed into
the two branches with the parameter-
shared backbone and neck, specified
as ResNet (He et al., 2016) and FPN
(Lin et al., 2017a) as shown in Fig. 2.
The WS branch here is specified by
a FCOS-based rotated object detector,
as involved for both training and infer-
ence. This branch contains regression
and classification sub-networks to pre-
dict RBox, category, and center-ness.
Recall that we can not use the pre-
dicted RBox to calculate the final re-
gression directly as there is no RBox
annotation but HBox only. There-
fore, we first convert the predicted
RBox into the corresponding mini-
mum horizontal circumscribed rectan-
gle, for calculating the regression loss
between the derived HBox and the GT Hbox annotation (we defer the details of the loss formula-
tion to Sec. 3.5). As the network is better trained, an indirect connection (horizontal circumscribed
rectangle constraint) occurs between predicted RBox and GT RBox (unlabeled): No matter how an
object is rotated, their corresponding horizontal circumscribed rectangles are always highly over-
lapping. However, as shown in Fig. 4(a), only using WS loss can only localize the objects, while
still not effective enough for accurate rotation estimation.

3.3 THE SELF-SUPERVISED (SS) BRANCH

As complementary to the WS loss, we further introduce the SS loss. The SS branch only contains
one regression sub-network for predicting RBox in the rotated View 2. Given a (random) rotation
transformation R (with degree ∆θ) as adopted in View 2, the relationship between location (x, y)
of View 1 in the WS branch and location (x∗, y∗) of View 2 with rotation R in the SS branch is:

(x∗, y∗) = (x− xc, y − yc)R
⊤ + (xc, yc), R =

(
cos∆θ − sin∆θ
sin∆θ cos∆θ

)
(1)

where (xc, yc) is the rotation center (i.e. image center). Recall the label of the black border area
(in Fig. 3) in the SS branch is set as invalid and negative samples, which will not participate in the
subsequent losses designed below.

Specifically, a scale loss Lwh accounts for the scale consistency to enhance the indirect connection
described above: For augmented objects obtained from the same object through different rotations,
a set of RBoxes of the same scale are predicted by the detector, and these predicted RBoxes and
corresponding GT RBoxes (unlabeled) shall have highly overlapping horizontal circumscribed rect-
angles. With such an enhanced indirect connection, including horizontal circumscribed rectangle
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constraint and scale constraint, we can limit the prediction results to a limited number of feasible
cases, explained as follows:

Fig. 5 shows two cases based on the above enhanced indirect connection, and lists four different
expressions for the four variables (w, h, θ, φ). Due to the periodicity of the angles, there are only
two feasible solutions to the four equations within the angle definition, i.e. the green GT RBox
and the orange symmetric RBox. In other words, with such a strengthened indirect connection, the
relationship between predicted RBox and GT RBox is coincident Bc(w, h, θ) or symmetrical about
the center of the object Bs(w, h, π − θ). It can be seen from Fig. 4(a) that there are still many
bad cases with extremely inaccurate angles after using Lwh. Interestingly, if we make a symmetry
transformation of these bad cases with their center point, the result becomes much better. When
generating views, a geometric prior can be obtained, that is, the spatial transformation relationship
between the two views, denoted as R in Eq. 1. Thus, we can get the following four transformation
relationships, marked as T ⟨Bws, Bss⟩, between the two branches:

T ⟨Bc
ws, B

c
ss⟩ = {R}, T ⟨Bc

ws, B
s
ss⟩ = {R,S} = {S,R⊤}

T ⟨Bs
ws, B

s
ss⟩ = {R⊤}, T ⟨Bs

ws, B
c
ss⟩ = {R⊤,S} = {S,R}

(2)

where Bc
ws and Bs

ss represent the coincident bounding box predicted in WS branch and the symmet-
ric bounding box predicted in SS branch, respectively. Here S denotes symmetric transformation.
Take T ⟨Bc

ws, B
s
ss⟩ = {R,S} as an example, it means Bs

ss = S(R ·Bc
ws).

Therefore, an effective way to eliminate the symmetric case is to let the model know that the relation-
ship between the RBoxes predicted by the two branches can only be R. Inspired by above analysis,
spatial location loss is used to construct the spatial transformation relationship R of RBoxes pre-
dicted by two branches. Specifically, the RBox predicted by WS branch is first transformed by R,
and then several losses (e.g. center point loss Lxy and angle loss Lθ) are used to measure its lo-
cation consistency with the RBox predicted by SS branch. In fact, the spatial location consistency,
especially the angle loss, provides a fifth angle constraint equation (φ − θ = ∆θ ̸= 0) so that the
system of equations in Fig. 5 have a unique solution (i.e. the predicted RBox is the GT RBox)
with non-strict proof, because system of equations are nonlinear. The final SS learning consists of
scale-consistent and spatial-location-consistent learning:

Sim⟨R ·Bws, Bss⟩ = 1 (3)

Fig. 4(b) shows the visualization by using the SS loss, with accurate predictions. The appendix
shows visualizations of feasible solutions for different combinations of constraints.

3.4 LABEL RE-ASSIGNER

Since the consistency of the prediction results of the two branches needs to be calculated, the la-
bels need to be re-assigned in the SS branch. Specifically, the labels at the location (x∗, y∗) of
the SS branch, including center-ness (cn∗), target category (c∗) and target GT HBox (gtboxh∗),
are the same as in the location (x, y) of the WS branch. Besides, we also need to assign the
rboxws(xws, yws, wws, hws, θws) predicted by the WS branch as the target RBox of the SS branch
to calculate the SS loss. We propose two reassignment strategies:

1) One-to-one (O2O) assignment: With cn, c and gtboxh, the rboxws predicted at location (x, y)
in the WS branch is used as the target RBox at (x∗, y∗) of the SS branch (see Fig. 3(a)).

2) One-to-many (O2M) assignment: Use the rboxws closest to the center point of the gtboxh
(x,y)

as the target RBox at location (x∗, y∗) of SS branch, as shown in Fig. 3(b).

Fig. 3(c) visualizes the difference between the two re-assignment strategies. After
re-assigning, we need to perform an rotation transformation on the rboxws to get the
rboxws∗(x∗

ws, y
∗
ws, w

∗
ws, h

∗
ws, θ

∗
ws) for calculating the SS loss according to Eq. 3:

(x∗
ws, y

∗
ws) = (xws − xc, yws − yc)R

⊤ + (xc, yc), (w∗
ws, h

∗
ws) = (wws, hws), θ∗ws = θws +∆θ (4)

The the visualized label assignment in Fig. 3 further shows that the SS loss effectively eliminates
prediction of the undesired case. The label reassignment of different detectors may require different
strategies. The key is to design a suitable matching strategy for the prediction results of the two
views, which can allow the network to learn the consistency better.
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3.5 THE OVERALL LOSS BY COMBINING THE WS AND SS LOSSES

Since the WS branch is a rotated object detector based on FCOS, the losses in this part mainly
include the regression Lreg, classification Lcls, and center-ness Lcn. We define the WS loss in the
WS branch as follows:

Lws =
µ1

Npos

∑
(x,y)

Lcls(p(x,y), c(x,y)) +
µ2

Npos

∑
(x,y)

Lcn(cn
′
(x,y), cn(x,y))

+
µ3∑
cnpos

∑
(x,y)

1{c(x,y)>0}cn(x,y)Lreg

(
r2h(rboxws

(x,y)), gtbox
h
(x,y)

) (5)

where Lcls is the focal loss (Lin et al., 2017b), Lcn is cross-entropy loss, and Lreg is IoU loss
(Yu et al., 2016). Npos denotes the number of positive samples. p and c denote the probability
distribution of various classes calculated by Sigmoid function and target category. rboxws and
gtboxh represent the predicted RBox in the WS branch and horizontal GT box, respectively. cn

′

and cn indicate the predicted and target center-ness. 1{c(x,y)>0} is the indicator function, being 1 if
c(x,y) > 0 and 0 otherwise. The r2h(·) function converts the RBox to its corresponding horizontal
circumscribed rectangle. We set the hyperparameters µ1 = 1, µ2 = 1 and µ3 = 1 by default.

Then, the SS loss between rboxws∗(x∗
ws, y

∗
ws, w

∗
ws, h

∗
ws, θ

∗
ws) and rboxss(xss, yss, wss, hss, θss)

predicted by the SS branch is:

Lss =
1∑
cn∗

pos

∑
(x∗,y∗)

1{c∗
(x∗,y∗)

>0}cn
∗
(x∗,y∗)Lreg(rbox

ws∗
(x∗,y∗), rbox

ss
(x∗,y∗)) (6)

Lreg(rbox
ws∗, rboxss) = γ1Lxy + γ2Lwhθ, Lxy =

∑
t∈(x,y)

l1(t
∗
ws, tss)

Lwhθ = min{Liou(Bws, B
1
ss) + | sin(θ∗ws − θss)|, Liou(Bws, B

2
ss) + | cos(θ∗ws − θss)|}

(7)

where Bws(−w∗
ws,−h∗

ws, w
∗
ws, h

∗
ws), B

1
ss(−wss,−hss, wss, hss) and B2

ss(−hss,−wss, hss, wss).
We set γ1 = 0.15 and γ2 = 1 by default. Lwhθ takes into account the loss discontinuity caused by
the boundary issues (Yang et al., 2021c), such as periodicity of angle and exchangeability of edges.

The overall loss is a weighted sum of the WS loss and the SS loss where we set λ = 0.4 by default.
Ltotal = Lws + λLss (8)

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

DOTA-v1.0 (Xia et al., 2018) is one of the largest datasets for oriented object detection in aerial
images, which contains challenging cases, e.g. large-scale dense scenes and complex background. It
contains 15 categories, 2,806 images and 188,282 instances with both RBox and HBox annotations,
and the latter are directly derived from the former one. The proportion of the training set, validation
set, and testing set is 1/2, 1/6, and 1/3, respectively. For training and testing, we follow a standard
protocol by cropping images into 1,024×1,024 patches with a stride of 824. DIOR-R (Cheng et al.,
2022) is an aerial image dataset annotated by RBoxes based on its horizontal annotation version
DIOR (Li et al., 2020). There are 23,463 images and 190,288 instances with 20 classes.

Methods are implemented both by PyTorch (Paszke et al., 2019)-based framework MMRotate (Zhou
et al., 2022) and Jittor (Hu et al., 2020)-based framework JDet. We adopt the FCOS (Tian et al.,
2019) with ResNet50 (He et al., 2016) backbone and FPN neck (Lin et al., 2017a) as the baseline
method and building block based on which we develop our approach (see Fig. 1). To implement
the weakly-supervised HBox-Mask-RBox alternatives for comparison, we use two strong HBox
annotation-based instance segmentation methods: BoxInst and BoxLevelSet, followed by finding its
minimum compact surrounding rectangle as the detected RBox and we dub them BoxInst-RBox and
BoxLevelSet-RBox respectively. All models are trained with AdamW (Loshchilov & Hutter, 2018)
on GeForce RTX 3090 GPU, except BoxLevelSet (Li et al., 2022b) which requires NVIDIA V100
with larger memory. The initial learning rate is 10−4 with 2 images per mini-batch. The weight
decay is 0.05. Besides, we adopt learning rate warm-up for 500 iterations, and the learning rate is
divided by 10 at each decay step. Random flipping is adopted without any additional tricks.
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Table 1: Results of box the default AP50 (%) on the DOTA-v1.0. All models are trained with
ResNet50. ‘1x’ and ‘3x’ schedules indicate 12 epochs and 36 epochs for training. ∗ indicates using
NV V100 GPU with more memory. MS denotes multi-scale (Zhou et al., 2022) training and testing.
See the appendix for performance of specific categories.

Method Sched. MS Size Mem. (GB) FPS AP50

RBox-supervised:
RepPoints (Yang et al., 2019b) 1x 1,024 3.44 24.5 64.18
RetinaNet (Lin et al., 2017b) 1x 1,024 3.61 25.4 67.83
RetinaNet (Lin et al., 2017b) 1x ✓ 1,024 4.17 – 73.30
CSL (Yang & Yan, 2020) 1x 1,024 3.93 24.6 68.26
GWD (Yang et al., 2021c) 1x 1,024 3.61 25.4 69.25
KLD (Yang et al., 2021d) 1x 1,024 3.61 25.4 69.64
KFIoU (Yang et al., 2023b) 1x 1,024 3.61 25.4 70.05
SASM (Hou et al., 2022) 1x 1,024 3.69 24.4 70.35
R3Det (Yang et al., 2021b) 1x 1,024 3.78 20.0 71.17
S2A-Net (Han et al., 2021a) 1x 1,024 3.37 23.3 74.13
FCOS (Tian et al., 2019) 1x 1,024 4.66 29.5 70.78
FCOS (Tian et al., 2019) 3x 1,024 4.66 29.5 72.22
FCOS (Tian et al., 2019) 1x ✓ 1,024 6.23 – 75.31

HBox-supervised:
BoxInst-RBox (Tian et al., 2021) 1x 960 19.93 2.7 53.59
BoxLevelSet-RBox∗ (Li et al., 2022b) 1x 960 26.81 4.7 56.44
H2RBox (FCOS-based) 1x 960 6.25 31.6 67.90
H2RBox (FCOS-based) 1x 1,024 7.02 29.1 67.82
H2RBox (FCOS-based) 3x 960 6.25 31.6 70.73
H2RBox (FCOS-based) 3x 1,024 7.02 29.1 70.41
H2RBox (FCOS-based) 1x ✓ 1,024 8.58 – 74.40

Table 2: Results of box AP (%) on the DIOR-R test. All models are trained with ResNet50. The
input image size is 800×800. ‘1x’ and ‘3x’ schedules indicate 12 epochs and 36 epochs. ∗ indicates
using NV V100 GPU with more memory.

Method Sched. Mem. (GB) FPS AP AP50 AP75

RBox-supervised:
RetinaNet (Lin et al., 2017b) 1x 2.48 33.3 33.47 54.60 33.80
KLD (Yang et al., 2021d) 1x 2.48 33.3 35.77 58.00 37.00
GWD (Yang et al., 2021c) 1x 2.48 33.3 37.01 57.80 38.20
FCOS (Tian et al., 2019) 1x 3.06 40.8 34.16 58.60 31.90

HBox-supervised:
BoxLevelSet-RBox∗ (Li et al., 2022b) 1x 11.44 4.7 29.96 56.56 24.36
BoxInst-RBox (Tian et al., 2021) 1x 9.23 3.1 31.73 57.40 28.10
H2RBox (FCOS-based) 1x 4.52 34.9 33.15 57.00 32.60

4.2 MAIN RESULTS

Results on DOTA-v1.0. As shown in Tab. 1, our method significantly outperforms BoxInst-RBox
and BoxLevelSet-RBox by 14.31% and 11.46% in terms of AP50, respectively. Moreover, our meth-
ods are also more memory and inference efficient. Specifically, compared to BoxInst, we only need
less than one-third of its memory (6.25 GB vs. 19.93 GB) and have a about 12× speed advantage
(31.6 fps vs. 2.7 fps). In contrast to BoxLevelSet, our memory costs only a quarter of its memory
(6.25 GB vs. 26.81 GB), and inference is about 7 times faster (31.6 fps vs. 4.7 fps). In fact, the
main cost of the -RBox methods come from the costive post-processing step for find the compact
surrounding box as RBox which is fulfilled by calling an OpenCV function in our implementation.
Even compared with RBox-supervised methods, our method has outperformed several methods,
such as RepPoints and RetinaNet. Under the ‘1x’ and ‘3x’ training schedules, our method slightly
lags behind the baseline method, i.e. FCOS (recall it is RBox-supervised), by 2.96% and 1.81%.
After using multi-scale training and testing, the gap is reduced to only 0.91% (75.31% vs. 74.40%).

Results on DIOR-R. Note that some categories in this dataset including Chimney, Wind mill, Air-
port, Golf field, are all forcefully annotated by horizontal boxes though the objects are not exactly
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Table 3: Ablation for H2RBox with different bor-
der effect dismissing strategies for view genera-
tion by padding/cropping on DOTA-v1.0.

Padding Cropping AP AP50 AP75

Zeros 20.17 51.76 12.91
Zeros ✓ 33.72 63.95 30.00

Reflection 35.92 67.31 32.78
Reflection ✓ 33.60 64.09 30.02

Table 4: Ablation with different label re-
assignment strategies. O2M and O2O rep-
resent one-to-many and one-to-one.

Dataset Assigner AP AP50 AP75

DOTA O2M 21.60 53.96 14.14
O2O 35.92 67.31 32.78

DIOR-R O2M 31.10 56.00 29.80
O2O 33.15 57.00 32.60

Table 5: Ablation with two strategies S1, S2 dealing
with circular category: ST & RA on DOTA-v1.0.

S1 S2 ST RA AP AP50 AP75

69.82 38.87 31.90 64.52 27.11
✓ 85.29 64.04 36.36 67.25 33.26

✓ 84.58 65.98 35.92 67.31 32.78
✓ ✓ 85.41 63.38 36.41 67.22 33.40

Table 6: Ablation with using SS loss (Lss) or
not on DOTA-v1.0 and DIOR-R.

Dataset Lss AP AP50 AP75

DOTA 12.63 37.13 7.54
✓ 35.92 67.31 32.78

DIOR-R 15.27 29.60 13.60
✓ 33.15 57.00 32.60

horizontal, which may affect the learning and the final results. As shown in Tab. 2, compared with
DOTA-v1.0, DIOR-R is less challenging for the instance segmentation methods. This may explain
the observation that the performance of H2RBox and BoxInst-RBox on AP50 is close. Yet for
high-precision detection i.e. with high AP75 that requires more accurate segmentation, H2RBox
outperforms BoxLevelSet-RBox and BoxInst-RBox on AP75 by 8.24% (32.6% vs. 24.36%) and
4.50% (32.6% vs. 28.10%), and with lower memory and high inference speed. Similarly, H2RBox
performs slightly inferior than the RBox-supervised FCOS: 33.15% vs. 34.16%.

4.3 ABLATION STUDIES

The ablation study is performed on the proposed H2RBox with 12 training epochs.

Border effect elimination for view generation. Tab. 3 studies the impact of different border effect
elimination strategies for view generation, in terms of padding and/or cropping (see Sec. 3.1). Such
techniques are essential to avoid ground truth angle information leakage, otherwise the model will
suffer overfitting and leads to significant performance drop as verified in the first row of the table.
Note that when both reflection padding and cropping are applied the AP slightly drops from 35.92%
to 33.60% compared with only using reflection padding. The reason may be due to that reduced size
of input image by cropping. Hence in all other experiments we always use reflection padding alone.

Label re-assignment. Tab. 4 shows the one-to-one strategy outperforms one-to-many strategy.

Strategies for dealing with sotropic circular object classes. For circular objects like Storage Tank
(ST) and Roundabout (RA), the self-supervised loss takes no effect as it is insensitive to isotropic
information. We take two treatments to handle such circular objects. S1: for training, we mask the
SS loss for circular classes. S2: for testing, the horizontal circumscribed rectangle of the circular
category is taken as the final output. Tab. 5 shows that, when either or both strategies is used, the
performance can be greatly improved, about 15% on ST and about 25% on RA.

Self-supervised loss. Without using SS loss, Tab. 6 shows that our method only achieves 12.63%
and 15.27% on DOTA-v1.0 and DIOR-R, respectively. In contrast, the use of SS loss leads to a
substantial increase in overall performance, reaching 35.92% and 33.15%. Figure 4(b) also shows
that the SS loss can effectively help the model learn the correct object angle information.

5 CONCLUSION

This paper presents H2RBox, the first (to the best of our knowledge) HBox-supervised oriented ob-
ject detector. H2RBox learns the rotation via self-supervised learning, whose loss measures the con-
sistency of the predicted angles in two different views. Compared to the alternative HBox-supervised
instance segmentation methods, H2RBox achieves much higher detection accuracy especially for
complex scenes, yet with lower memory and higher speed. Compared with fully RBox-supervised
algorithms, our method still shows competitive.
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A FEASIBLE SOLUTIONS UNDER DIFFERENT CONSTRAINTS

Three different constraints, including horizontal circumscribed rectangle constraint (HCRC), scale
constraint (SC) and angle constraint (AC), are introduced in this paper to guide the model to learn
the correct result. Fig. 6(a) shows when there are only horizontal circumscribed rectangle constraint,
the feasible solutions are still infinite. After adding scale constraint, only the symmetric case and
the correct case are left, as shown in Fig. 6(b). The final angle constraint allows the correct solution
to be preserved, refer to Fig. 6(c).

(a) HCRC only (b) HCRC + SC (c) HCRC + SC + AC

Figure 6: Visualization of feasible solutions under different constraints.

Table 7: Results of box the default AP50 (%) on the DOTA-v1.0. All models are trained with
ResNet50. ‘1x’ and ‘3x’ schedules indicate 12 epochs and 36 epochs for training. ∗ indicates using
NV V100 GPU with more memory. MS denotes multi-scale (Zhou et al., 2022) training and testing.

Method Sched. MS Size Mem. (GB) FPS AP50

RBox-supervised:
RepPoints (Yang et al., 2019b) 1x 1,024 3.44 24.5 64.18
RetinaNet (Lin et al., 2017b) 1x 1,024 3.61 25.4 67.83
RetinaNet (Lin et al., 2017b) 1x ✓ 1,024 4.17 – 73.30
CSL (Yang & Yan, 2020) 1x 1,024 3.93 24.6 68.26
GWD (Yang et al., 2021c) 1x 1,024 3.61 25.4 69.25
KLD (Yang et al., 2021d) 1x 1,024 3.61 25.4 69.64
KFIoU (Yang et al., 2023b) 1x 1,024 3.61 25.4 70.05
SASM (Hou et al., 2022) 1x 1,024 3.69 24.4 70.35
R3Det (Yang et al., 2021b) 1x 1,024 3.78 20.0 71.17
ATSS (Zhang et al., 2020) 1x 1,024 3.32 26.5 71.98
S2A-Net (Han et al., 2021a) 1x 1,024 3.37 23.3 74.13
FCOS (Tian et al., 2019) 1x 1,024 4.66 29.5 70.78
FCOS (Tian et al., 2019) 3x 1,024 4.66 29.5 72.22
FCOS (Tian et al., 2019) 1x ✓ 1,024 6.23 – 75.31

HBox-supervised:
BoxInst-RBox (Tian et al., 2021) 1x 960 19.93 2.7 53.59
BoxLevelSet-RBox∗ (Li et al., 2022b) 1x 960 26.81 4.7 56.44
H2RBox (ATSS-based) 1x 1,024 5.50 25.7 67.24
H2RBox (FCOS-based) 1x 960 6.25 31.6 67.90
H2RBox (FCOS-based) 1x 1,024 7.02 29.1 67.82
H2RBox (FCOS-based) 3x 960 6.25 31.6 70.73
H2RBox (FCOS-based) 3x 1,024 7.02 29.1 70.41
H2RBox (FCOS-based) 1x ✓ 1,024 8.58 – 74.40
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Table 8: Results of each category on the DOTA-v1.0 test set.
Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP50

RBox-supervised:
RepPoints-1x(2019b) 84.79 73.35 40.68 56.51 71.56 52.21 73.40 90.64 76.25 85.15 58.77 61.43 54.91 64.43 18.57 64.18
RetinaNet-1x (2017b) 89.11 74.52 44.69 72.18 71.80 63.59 74.94 90.78 78.71 80.56 50.48 59.17 62.86 64.35 39.69 67.83
RetinaNet-1x-ms (2017b) 88.10 84.43 50.54 79.12 73.65 59.80 72.94 90.39 86.45 87.24 65.02 65.55 67.09 70.72 58.44 73.30
CSL-1x (2020) 89.03 78.25 40.04 68.52 77.20 67.14 78.25 90.87 82.77 81.30 52.17 60.33 56.14 65.71 36.10 68.26
GWD-1x (2021c) 88.68 78.59 45.41 71.46 72.27 68.26 77.05 90.80 80.56 81.93 46.48 60.14 63.87 67.39 46.06 69.25
KLD-1x (2021d) 88.27 76.22 46.22 72.73 72.11 67.84 77.63 90.77 80.67 83.03 52.74 62.23 64.91 65.95 43.22 69.64
KFIoU-1x (2023b) 88.83 77.51 47.79 74.28 71.27 62.72 74.75 90.72 82.34 81.61 58.44 64.23 64.39 67.87 44.07 70.05
SASM-1x (2022) 87.44 71.31 48.46 68.07 73.93 74.24 83.55 90.91 80.36 84.59 57.98 62.84 66.51 63.82 41.17 70.35
R3Det-1x (2021b) 88.96 76.99 47.09 70.89 77.54 76.19 86.24 90.91 79.45 83.60 52.98 62.50 64.65 67.32 42.29 71.17
ATSS-1x (2020) 88.34 76.87 50.92 71.29 76.39 76.21 83.47 90.64 81.38 83.59 58.86 60.38 65.23 67.96 48.19 71.98
S2A-Net (2021a) 89.07 82.76 51.94 72.17 78.85 79.56 87.37 90.90 85.97 84.92 59.67 63.37 67.24 68.59 49.57 74.13
FCOS-1x (2019) 88.41 75.61 47.98 60.10 79.78 77.81 86.64 90.08 78.23 84.95 52.80 66.25 64.45 68.28 40.31 70.78
FCOS-3x (2019) 88.41 76.77 49.00 59.16 79.23 79.04 86.86 90.06 75.83 83.75 58.59 59.54 69.25 72.44 53.54 72.22
FCOS-1x-ms (2019) 88.72 78.77 51.73 71.27 81.03 83.70 87.99 90.28 83.70 86.75 65.18 65.77 74.90 78.18 41.68 75.31
HBox-supervised:
BoxInst-RBox-1x (2021) 68.43 40.75 33.07 32.29 46.91 55.43 56.55 79.49 66.81 82.14 41.24 52.83 52.80 65.04 29.99 53.59
BoxLevelSet-RBox∗-1x (2022b) 63.48 71.27 39.34 61.06 41.89 41.03 45.83 90.87 74.12 72.13 47.59 62.99 50.00 56.42 28.63 56.44
H2RBox-ATSS-1x 87.82 74.73 43.22 69.57 72.67 53.95 70.91 90.39 85.58 83.44 54.77 63.77 47.15 66.28 44.29 67.24
H2RBox-FCOS-1x 88.47 73.51 40.81 56.89 77.48 65.42 77.87 90.88 83.19 85.27 55.27 62.90 52.41 63.63 43.26 67.82
H2RBox-FCOS-3x 88.24 79.30 42.76 55.79 78.90 72.70 77.54 90.85 81.96 84.38 55.28 64.49 61.91 70.63 51.51 70.41
H2RBox-FCOS-1x-ms 88.93 78.89 46.27 68.79 81.12 75.45 86.68 90.89 86.71 87.33 64.15 68.83 62.81 69.39 59.79 74.40

B VERIFICATION EXPERIMENTS ON DIFFERENT DETECTORS

As shown in Tab. 7, we have conducted experiments on different basic detectors, including anchor
based method (ATSS (Zhang et al., 2020)) and anchor free method (FCOS (Tian et al., 2019)). It can
be seen that the method proposed in this paper has excellent portability. Tab. 8 lists the performance
of each class of each method in Tab. 7.
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