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Abstract

Temporal point process (TPP) is commonly used to model the asynchronous event sequence
featuring occurrence timestamps and revealed by probabilistic models conditioned on histori-
cal impacts. While lots of previous works have focused on ‘goodness-of-fit’ of TPP models
by maximizing the likelihood, their predictive performance is unsatisfactory, which means
the timestamps generated by models are far apart from true observations. Recently, deep
generative models such as denoising diffusion and score matching models have achieved
great progress in image generating tasks by demonstrating their capability of generating
samples of high quality. However, there are no complete and unified works exploring and
studying the potential of generative models in the context of event occurence modeling for
TPP. In this work, we try to fill the gap by designing a unified generative framework for
neural temporal point process (GNTPP) model to explore their feasibility and effectiveness,
and further improve models’ predictive performance. Besides, in terms of measuring the
historical impacts, we revise the attentive models which summarize influence from historical
events with an adaptive reweighting term considering events’ type relation and time intervals.
Extensive experiments have been conducted to illustrate the improved predictive capability
of GNTPP with a line of generative probabilistic decoders, and performance gain from
the revised attention. To the best of our knowledge, this is the first work that adapts
generative models in a complete unified framework and studies their effectiveness in the
context of TPP. Our codebase including all the methods given in Section. 5.1.1 is open in
https://github.com/BIRD-TAO/GNTPP. We hope the code framework can facilitate future
research in Neural TPPs.

1 Introduction

Various forms of human activity or natural phenomena can be represented as discrete events happening with
irregular time intervals, such as electronic health records, purchases in e-commerce systems, and earthquakes
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with aftershocks. A natural choice for revealing the underlying mechanisms of the occurrence of events is
temporal point processes (TPPs) (D.J. Daley, 2003; Isham & Westcott, 1979; Hawkes, 1971), which describe
the probability distribution of time intervals and types of future events’ occurrence by summarizing the
impacts of historical observations.

Recently, with the rapid development in deep learning, TPP models also benefit from great expressiveness of
neural networks, from the first work proposed in Du et al. (2016). A neural TPP model can be divided into
two parts – history encoder and probabilistic decoder. Recently, great success has been achieved in
modeling the TPPs thanks to fast developments in sequential models and generative models in deep learning
(Shchur et al., 2021; Lin et al., 2021). The former concentrates on the competence of encoding and aggregating
the past impacts of events on the next event’s occurrence probability (Zhang et al., 2020a; Zuo et al., 2020),
which is called history encoder; The latter one aims to improve the flexibility and efficiency to approximate
the target distribution of occurrence time intervals conditioned on the historical encoding (Omi et al., 2019;
Shchur et al., 2020a;b), which is called probabilistic decoder.

Most of the previous works focus on the ‘goodness-of-fit’ of the proposed models, which can be quantified by
negative log-likelihood (NLL). However, limited by this, to model the distribution in a general fashion, one
needs to formulate the probabilistic decoder with certain families of functions whose likelihoods are tractable,
such as the mixture of distributions whose support sets are positive real numbers (Shchur et al., 2020a;
Lin et al., 2021) or triangular maps as a generalization of autoregressive normalizing flows (Shchur et al.,
2020b). Although some probabilistic decoders with intractable likelihoods still perform well in the evaluation
of ‘goodness-of-fit’ (Mei & Eisner, 2017; Zhang et al., 2020a; Zuo et al., 2020), they rely on the stochastic
or numerical approximation to calculate the likelihood, which leads to unaffordable high computational
cost despite their theoretically universal approximation ability (Soen et al., 2021). To sum up, both the
requirements for a certain structure in the functional approximators, e.g. on the mixture of log-normal
distribution (Shchur et al., 2020a), and the excessive emphasis on ‘goodness-of-fit’ as the optimization
objective considerably impose restrictions on the models’ predictive and extrapolation performance. This
causes that the timestamp samples generated by them are far apart from the ground-truth observations,
which limits their application in real-world scenarios. Recent empirical studies show that these models’
predictive performance is very unsatisfactory (Lin et al., 2021), with extremely high error in the task of
next arrival time prediction. As a probabilistic models, a good TPP model should not only demonstrate its
goodness-of-fitting (lower NLL), but also have ability to generate next arrival time as samples of high quality,
as well as preserve the randomness and diversity of the generated samples.

Since the TPP models aim to approximate the target distribution of event occurrence conditioned on the
historical influences, we can classify the TPP models into conditional probabilistic or generative models in
the field of deep learning, and lend the techniques in these fields to improve the predictive performance (Yan
et al., 2018; Xiao et al., 2017a). In deep probabilistic models, the functional forms in energy-based models
are usually less restrictive, and the optimization of the objective function as unnormalized log-likelihood
can be directly converted into a point estimation or regression problem, thus empowering the models to
have an improved predictive ability. Recently, deep generative models including denoising diffusion models
(Sohl-Dickstein et al., 2015b; Ho et al., 2020) and score matching models (Song et al., 2021b;a; Bao et al.,
2022) as an instance of energy-based deep generative model have attracted lots of scientific interests as it
demonstrates great ability to generate image samples of high quality. Thanks to its less restrictive functional
forms and revised unnormalized log-probability as the optimization objective, in other fields such as crystal
material generation (Xie et al., 2021) and time series forecasting (Rasul et al., 2021), they are also employed
for generative tasks and demonstrates great feasibility. Enlighted by this, we conjecture that the probabilistic
decoders constructed by deep generative models in the context of TPP are likely to generate samples of time
intervals that are close to ground truth observations, thus improving the predictive performance. In this
way, we design a unified framework for generative neural temporal point process (GNTPP) by employing
the deep generative models as the probabilistic decoder to approximate the target distribution of occurrence
time. Besides, we revise the self-attentive history encoders (Zhang et al., 2020a) which measure the impacts
of historical events with adaptive reweighting terms considering events’ type relation and time intervals.

In summary, the contributions of this paper are listed as follows:
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• To the best of our knowledge, we are the first to establish a complete framework of generative models
to study their effectiveness for improving the predictive performance in TPPs, i.e. enabling TPP
models to generate time sample of high quality.

• In terms of history encoders, we revise the self-attentive encoders with adaptive reweighting terms,
considering type relation and time intervals of historical observations, showing better expressiveness.

• We conduct extensive experiments on one complicated synthetic dataset and four real-world datasets,
to explore the potential of GNTPP in the aspect of predictive performance and fitting ability.
Besides, further studies give more analysis to ensure the effectiveness of the revised encoder.

2 Background

2.1 Temporal Point Process

2.1.1 Preliminaries

A realization of a TPP is a sequence of event timestamps {ti}1≤i≤N , where ti ∈ R+, and ti < ti+1 ≤ T . In a
marked TPP, it allocates a type mi (a.k.a. mark) to each event timestamps, where there are M types of
events in total and mi ∈ [M ] with [M ] = {1, 2, . . . ,M}. A TPP is usually described as a counting process,
with the measure N (t) defined as the number of events occurring in the time interval (0, t].

We indicate with {(ti,mi)}1≤i≤N as an observation of the process, and the history of a certain timestamp t
is denoted as H(t) = {(tj ,mj), tj < t}. In this way, the TPP can be characterized via its intensity function
conditioned on H(t), defined as

λ∗(t) = λ(t|H(t)) = lim
∆t→0+

E[N (t+ ∆t)−N (t)|H(t)]
∆t , (1)

which means the expected instantaneous rate of happening the events given the history. Note that it is
always a non-negative function of t. Given the conditional intensity, the probability density function of the
occurrence timestamps reads

q∗(t) = λ∗(t) exp(−
∫ t

ti−1

λ∗(τ)dτ), (2)

The leading target of TPPs is to parameterize a model p∗θ(t), to fit the distribution of the generated marked
timestamps, i.e. q∗(t), as to inference probability density or conditional intensity for further statistical
prediction, such as next event arrival time prediction. Besides, in marked scenarios, parameterizing p∗θ(m) to
predict the next event type is also an important task. More details on preliminaries are given in Appendix A.
Usually, in the deep neural TPP models, the impacts of historical events H(t) on the distribution of time t
are summarized as a historical encoding hi−1, where i− 1 = arg maxj∈N tj < t, and the parameters in p∗θ(t)
and p∗θ(m) are determined by hi−1, for t > ti, which reads

p∗(t; θ(hi−1)) = pθ(t|hi−1); p∗(m; θ(hi−1)) = pθ(m|hi−1) (3)

In summary, in deep neural TPPs, there are two key questions to answer in modeling the process:

(1) How to measure the historical events’ impacts on the next events’ arrival time and type distribution.
In other words, how to encode the historical events before time t which is H(t) for ti−1 < t into a
vector hi−1 to parameterize pθ(t|hi−1) or pθ(m|hi−1)?

(2) How to use a conditional probabilistic model p∗(t,m; θ(hi−1)) = pθ(t,m|hi−1) with respect to time t
and type m, whose parameters are obtained by θ = θ(hi−1), to approximate the true probability of
events’ time and types?
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2.1.2 History Encoders

For the task (1), it can be regarded as a task of sequence embedding, i.e. finding a mapping H which maps a
sequence of historical event time and types before t, i.e. H(t) = {(tj ,mj)}1≤j≤i−1 where t > ti−1, to a vector
hi−1 ∈ RD called historical encoding. D is called ‘embedding size’ in this paper.

To increase expressiveness, the j-th event in the history set is firstly lifted into a high-dimensional space,
considering both temporal and type information, as

u(tj ,mj) = ej = [ω(tj); ET
mmj ], (4)

where ω transforms one-dimension tj into a high-dimension vector, which can be linear, trigonometric, and
so on, Em is the embedding matrix for event types, and mj is the one-hot encoding of event type mj .
Commonly, to normalize the timestamps into a unifying scale, the event embeddings take the τj = tj − tj−1 as
the inputs, i.e. ej = u(τj ,mj) . And then, another mapping v will be used to map the sequence of embedding
{e1, e2, . . . , ei−1} into a vector space of dimension D, by

hi−1 = v([e1; e2; . . . ; ei−1]). (5)

For example, units of recurrent neural networks (RNNs) including GRU and LSTM can all be used to map
the sequence (Du et al., 2016; Omi et al., 2019; Shchur et al., 2020a), as

h0 = 0; hi = RNN(ei,hi−1) (6)

Therefore, the history encoder can be dismantled as two parts, as

hi−1 = H(H(t)) = v ◦ u(H(t))
= v([u(τ1,m1);u(τ2,m2); . . . ;u(τi−1,mi−1)]),

(7)

where u and v are the event encoder and sequence encoder respectively, and the composites of both make up
the history encoder.

The attention mechanisms (Vaswani et al., 2017) which have made great progress in language models prove
to be superior history encoders for TPPs in the recent research (Zhang et al., 2020a; Zuo et al., 2020). In this
paper, we follow their works in implementing self-attention mechanisms (Vaswani et al., 2017) but conduct
revisions to the self-attentive encoders, leading to our revised attentive history encoders in our paper.

2.1.3 Probabilistic Decoders

For the task (2), it is usually regarded as setting up a conditional probabilistic model p∗(t,m|θ(hi−1)),
whose conditional information is contained by model’s parameters θ(hi−1) obtained by historical encoding.
Statistical inference and prediction can be conducted according to the model, such as generating new sequences
of events, or using expectation of time t to predict the next arrival time. Besides, for interpretability, the
relation among different types of events such as Granger causality (Xu et al., 2016; Eichler et al., 2016)
inferred by probabilistic models also arises research interests.

In the temporal domain, one choice is to directly formulate the conditional intensity function λ∗θ(t) (Du et al.,
2016), cumulative hazard function Λ∗θ(t) =

∫ t
0 λ
∗
θ(τ)dτ (Omi et al., 2019) or probability density function p∗θ(t)

(Shchur et al., 2020a), and to minimize the negative log-likelihood as the optimization objective. For example,
the loss of a single event’s arrival time reads

li =− log λθ(ti|hi−1) +
∫ ti

ti−1

λθ(t|hi−1)dt. (8)

However, as demonstrated in Equation. (2) and (8), minimizing the negative likelihood requires the closed
form of probability density function, which limits the flexibility of the models to approximate the true
probabilistic distribution where the event data are generated. For example, one attempts to formulate λ∗θ(t)
will inevitably confront whether the integration of it (a.k.a. cumulative hazard function) has closed forms, for
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Table 1: Description of exisiting neural TPP methods, following Lin et al. (2021).

Methods History Encoder Probabilistic Decoder Closed Likelihood Flexible Sampling

RMTPP(Du et al., 2016) RNN Gompertz " "

LogNorm(Shchur et al., 2020a) RNN Log-normal " "

ERTPP(Xiao et al., 2017b) RNN Gaussian " "

WeibMix(Lin et al., 2021) Transformer Weibull " "

FNNInt(Omi et al., 2019) RNN Feed-forward Network " %

SAHP(Zhang et al., 2020a) Transformer Exp-decayed + Nonlinear % %

THP(Zuo et al., 2020) Transformer Linear-decayed + Nonlinear % %

WasGANTPP(Xiao et al., 2017a) RNN GAN - "

manageable computation of the likelihood. Although this term can be approximated by numerical or Monte
Carlo integration methods, the deviation of the approximation from the analytical likelihood may occur due
to insufficient sampling and high computational cost may be unaffordable. Another problem is that these
likelihood-targeted models usually perform unsatisfactorily in next arrival time prediction (Lin et al., 2021)
despite its good fitting capability in terms of negative log-likelihood.

For these reasons and enlightened by effectiveness of adversarial and reinforcement learning (Yan et al.,
2018; Arjovsky et al., 2017; Upadhyay et al., 2018; Li et al., 2018) in the context of TPPs, we conjecture
that state-of-the-art methods and techniques in deep generative models can be transferred to deep neural
TPPs. Differing from the previous works focusing on models’ fitting ability in terms of higher likelihood,
these models aim to promote models’ prediction ability, i.e. to generate high-quality samples which are closer
to ground truth observations. Inspired by great success achieved by recently proposed generative models
(Sohl-Dickstein et al., 2015a; Ho et al., 2020; Song et al., 2021b) which enjoy the advantages in generating
image samples of good quality and have been extended to a line of fields (Xie et al., 2021; Rasul et al.,
2021), we hope to deploy this new state-of-the-art probabilistic model to TPPs, to solve the dilemma of
unsatisfactory predictive ability of neural TPPs as well as further enhance models’ flexibility.

2.2 A Brief Review
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(a) Complexity Comparison on MOOC
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(b) Predictive Performance Comparison on MOOC

Figure 1: Intuitive explanation of our motivation: In (a), SAHP and THP cost more memory than others,
and WasGANTPP is more time-consuming because of the adversarial training. In (b), the ‘MAPE’ in
WasGANTPP as a generative model is relatively smaller, in comparison to the classical TPP probabilistic
decoders. The detail of the experimental settings and results is given in Section 5 and Appendix B.4.

We review recently-proposed neural TPP models, and give a brief disciption of them in Table 1. Most methods
directly model the intensity function or probabilistic density function of the process, while only WasGANTPP
(Xiao et al., 2017a) employed Wasserstein GAN as the probabilistic decoder, whose learning target is an
approximation to the Wasserstein distance between the empirical and model distributions, and allows flexible
sample generation. The classical methods with closed-form likelihood usually show unsatisfactory performance,
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while SAHP, THP and WasGANTPP achieve improvements, as shown in Figure. 1(b). SAHP and THP
depends on numerical or Monte Carlo integration to approximate the likelihood because the probabilistic
decoder has no closed form, leading to higher computational cost (shown in Figure 1(a)). Besides, FNNInt,
SAHP and THP do not allow flexible sampling, which limits the real-world application when one needs to
draw out samples from the learned models. Figure 1 adn Table 1 give an intuitive demonstration of our
motivation.

3 Methodology

3.1 Revised Attentive Encoder

Self-attention as the key module in Transformer (Vaswani et al., 2017; Dong et al., 2021) benefits from its fast
parallel computing and capability of encoding long-term sequences in lots of fields. In attentive TPPs (Zhang
et al., 2020a), the events are embedded as vectors ej = [ω(τj); ET

mmj ] by positional encoding techniques,
where

ω(τj) = [sin(ω1j + ω2τj); cos(ω1j + ω2τj)], (9)

in which ω1j is positional term, and ω2τj is time term. Or in Zuo et al. (2020), it reads

ω(τj) = [sin(ω1τj); cos(ω2τj)]. (10)

After that, the historical encoding obtained by attention mechanisms can be written as

hi−1 =
i−1∑
j=1

exp(φ(ej , ei−1))ψ(ej)/
i−1∑
j=1

exp(φ(ej , ei−1)), (11)

where φ(·, ·) maps two embedding into a scalar called attention weight, e.g. φ(ej , ei) = (ejWQ)(eiWK)T and
ψ transforms ej into a series of D-dimensional vectors called values, e.g. ψ(ej) = ejWV . This calculation
of Equation. (11) can be regarded as summarizing all the previous events’ influence, with different weights
wj,i−1 = exp(φ(ej ,ei−1))∑i−1

j=1
exp(φ(ej ,ei−1))

= softmax(φ(ej , ei−1)).

Although the self-attentive history encoders are very expressive and flexible for both long-term and local
dependencies, which prove to be effective in deep neural TPPs (Zuo et al., 2020; Zhang et al., 2020a), we are
motivated by the following two problems raised by event time intervals and types, and revise the classical
attention mechanisms by multiplying two terms which consider time intervals and type relation respectively.

P.1. As shown in Equation. (11), in the scenarios where the positional encoding term j is not used (Refer
to Equation. (2) in Zuo et al. (2020)), if there are two events, with time intervals τj1 = tj1 − tj1−1 and
τj2 = tj2 − tj2−1 which are equal and of the same type but tj2 > tj1 , the attention weights of them
will be totally equal because their event embeddings ej1 and ej2 are the same. However, the impacts
of the j2-th and j1-th event on time t can be not necessarily the same, i.e. when the short-term
events outweigh long-term ones, the impacts of tj2 should be greater, since tj2 > tj1 .

P.2. As discussed, the relations between event types are informative, which can provide interpretation
of the fundamental mechanisms of the process. Self-attention can provide such relations, through
averaging the attention weights of certain type of events to another (Zhang et al., 2020a). In
comparison, we hope that attention weights are just used for expressiveness, and the relations among
events should be provided by other modules.

To solve the problem P.1., we revise the attention weight by a time-reweighting term by exp {a(t− tj)},
where a is a learnable scaling parameter. This term will force the impacts of short-term events to be greater
(a < 0) or less (a ≥ 0) than ones of long-term events, when the two time intervals are the same. Although the
position term in Zhang et al. (2020a) can also fix the problem, the exponential term can slightly improve the
performance thanks to it further enhances models’ expressivity (See Section 5.3).
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To provide events’ relations learned by the model as well as avoid flexibility of attention mechanisms as
discussed in P.2., we employ the type embedding E to calculate the cosine similarity of different types, and
the inner product of two embedding vectors is used as another term to revise the attention weights (Zuo
et al., 2020; Zhang et al., 2021). In this way, the weight of event j in attention mechanisms can be written as

wj,i−1 = softmax((ET
mmj)T (ET

mmi−1) exp {a(ti−1 − tj)}φ(ej , ei−1)), (12)

where ET
mm is normalized as a unit vector for all m ∈ [M ] as type embedding, and thus the inner product is

equivalent to cosine similarity. Note that in Eq. 12, when (ET
mmj)T (ET

mmi−1) = 0, the influence of mj to
mi−1 will not be eliminated after the softmax(·), so in implementation, we map (ET

mmj)T (ET
mmi−1) to −109

to force the influence of type mj events to mi−1 to be zero after softmax function if (ET
mmj)T (ET

mmi−1) = 0.
We deploy the revised attentive encoder into the Transformer, which are commonly used in Zhang et al.
(2020a); Zuo et al. (2020).

3.2 Generative Probabilistic Decoder

In the generative model, we directly model the time intervals instead of timestamps. For the observation
{tj}j≤i−1, the next observed arrival time interval is τi = ti − ti−1, while the next sampled arrival time is
t̂i = τ̂i + ti−1 after the sample τ̂i is obtained.

3.2.1 Temporal Conditional Diffusion Denoising Probabilistic Model

Revised Attentive History Encoder

··· ···

Time-Reweighting Attention&Type Product

··· ···

Weighted Summation

··· ······ ···

··· ······ ···

Diffusion Probabilistic Decoder

··· ···

Event Embedding

··· ···

History Encoder

Probabilistic Decoder

··· ···

··· ···

Figure 2: The workflows of revised attentive history encoder with TCDDM as probabilistic decoder.

Temporal Diffusion Denoising Probabilistic Decoder. For notation simplicity, we first introduce
the temporal diffusion denoising decoder with no historical encoding as condition, and the i-th sample τi
is denoted by τ in that we are discussing occurrence of a single event. Denote the a single observation of
event occurrence time interval by τ = τ0 ∼ q(τ0), where τ0 ∈ R+ and q(τ0) is unkown, and the probability
density function by pθ(τ0) which aims to approximate q(τ0) and allows for easy sampling. Diffusion models
(Sohl-Dickstein et al., 2015a) are employed as latent variable models of the form pθ(τ0) :=

∫
pθ(τ0:K) dτ1:K ,

where τ1, . . . , τK are latent variables. The approximate posterior q(τ1:K |τ0),

q(τ1:K |τ0) = ΠK
k=1q(τk|τk−1); q(τk|τk−1) := N (τk;

√
1− βkτk−1, βk). (13)

is fixed to a Markov chain, which is called the ‘forward process’. β1, . . . , βK ∈ (0, 1) are predefined parameters.

‘Reverse process’ is also a Markov chain with learned Gaussian transitions starting with p(τK) = N (τK ; 0, 1)

pθ(τk−1|τk) := N (τk−1;µθ(τk, k),Σθ(τk, k)), (14)
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The likelihood is not tractable, so the parameters θ are learned to fit the data distribution by minimizing the
negative log-likelihood via its variational bound (Ho et al., 2020):

min
θ

Eq(τ0)[− log pθ(τ0)] ≤ Eq
[

1
2Σθ
‖µ̃k(τk, τ0)− µθ(τk, k)‖2

]
+ C, (15)

where C is a constant which does not depend on θ, and µ̃k(τk, τ0) :=
√
ᾱk−1βk

1−ᾱk τ0 +
√
αk(1−ᾱk−1)

1−ᾱk τk; β̃k :=
1−ᾱk−1
1−ᾱk βk. The optimization objective in Equation. (15) is straightforward since it tries to use µθ to predict
µ̃k for every step k. To resemble learning process in multiple noise scales score matching (Song & Ermon,
2019; 2020), it further reparameterizing Equation. (15) as

Eτ0,ε

[
β2
k

2Σθαk(1− ᾱk)‖ε− εθ(
√
ᾱkτ

0 +
√

1− ᾱkε, k)‖2
]
. (16)

since τk(τ0, ε) =
√
ᾱkτ

0 +
√

1− ᾱkε for ε ∼ N (0, 1) .

Temporal Conditional Diffusion Denoising Probabilistic Decoder. We establish a temporal condi-
tional diffusion denoising model (TCDDM) as the probabilistic decoder in GNTPP. In training, after hi−1
is obtained as historical encoding, through a similar derivation in the previous paragraph, we can obtain the
temporal conditional variant of the objective of a single event arrival time in Equation. (16) as

li = Eτ0
i
,ε

[
‖ε− εθ(

√
ᾱkτ

0
i +
√

1− ᾱkε,hi−1, k)‖2
]
, (17)

in which the technique of reweighting different noise term is employed. εθ as a neural network is conditioned
on the historical encodings hi−1 and the diffusion step k. Our formutaion of εθ is a feed-forward neural
network, as

εθ(
√
ᾱkτ

0
i +
√

1− ᾱkε,hi−1, k)

= W (3)(W (2)(W (1)
h hi−1 + W

(1)
t τ ′i + cos(Ekk)) + b(2)) + b(3),

(18)

where W
(1)
h ∈ RD×D, W

(1)
t ∈ RD×1, W (2) ∈ RD×D, W (3) ∈ R1×D, τ ′i =

√
ᾱkτ

0
i +
√

1− ᾱkε, Ek is the
learnable embedding matrix of step k and k is the one-hot encoding of k. In implementation, the residual
block is used for fast and stable convergence.

In sampling, given the historical encoding hi−1, we first sample τ̂Ki from the standard normal distribution
N (0, 1), then take it and hi−1 as the input of network εθ to get the approximated noise, and generally remove
the noise with different scales to recover the samples. This process is very similar to annealed Langevin
dynamics in score matching methods.

For inference, the prediction is based on Monte Carlo estimation. For example, when mean estimation is
deployed to predict the next event arrival time interval after ti−1, we first sample a large amount of time
interval from pθ(τ |hi−1) (e.g. 100 times), then use the average of sampled {τ̂ (s)}1≤s≤S to estimate the mean
of learned distribution, as the prediction value of next event arrival time interval, so the next arrival time is
estimated as E [ti] ≈ ti−1 + 1

N

∑S
s=1 τ̂

(s).

Algorithm 1 Training for each timestamp ti >
ti−1 in temporal point process in TCDDM

1: Input: Observation time interval τi and
historical encoding hi−1

2: repeat
3: Initialize k ∼ Uniform(1, . . . ,K) and ε ∼
N (0, 1)

4: Take gradient step on

∇θ‖ε− εθ(
√
ᾱkτi +

√
1− ᾱkε,hi−1, k)‖2

5: until converged

Algorithm 2 Sampling t̂i > ti−1 via Langevin dynamics
Input: noise τ̂Ki ∼ N (0, 1) and historical encoding hi−1
for k = K to 1 do

if k > 1 then
z ∼ N (0, 1)

else
z = 0

end if
τ̂k−1
i = 1√

αk
(τ̂ki −

βk√
1−ᾱk

εθ(τ̂ki ,hi−1, k)) +
√

Σθz
end for
Return: t̂i = τ̂0

i + ti−1
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··· ···

··· ···

Sampling

Figure 3: Network structure of temporal conditional variational autoencoder as the probabilistic decoder.

3.3 Temporal Conditional Variational AutoEncoder Probabilistic Model

We establish a temporal conditional variational autoencoder (TCVAE) as the probabilistic decoder (Kingma
& Welling, 2014; Pan et al., 2020), which consists of a variational encoder qξ(z|τi,hi−1) as a conditional
Gaussian distribution N (µξ,Σξ) for approximating the prior standard Gaussian N (0, I) and a variational
decoder pθ(τ |zi,hi−1) to generate arrival time samples. The network structure is given in Figure 3, where
the latent Gaussian variable z ∈ RD. The training objective of a single event’s arrival time interval is the
evidence lower bound, which can be written as

min
θ,ξ

DKL(qξ(z|τi,hi−1)|N (0, I)) + Eτ̂i∼pθ
[
‖τ̂i − τi‖22

]
. (19)

In sampling process, the encoder qξ(z|τi,hi−1) is abandoned. The decoder pθ(τ |zi,hi−1) transforms sample
zi which is generated from N (0, I) to the target sample τ̂i conditioned on hi−1.

3.3.1 Temporal Conditional Generative Adversarial Network Probabilistic Model

Our temporal conditional generative adversarial network (TCGAN) decoder is mostly based on Wasserstein
GAN in TPPs (Arjovsky et al., 2017; Xiao et al., 2017a). The probabilistic generator pθ(τ |z,hi−1) is trained
via adversarial process, in which the other network called discriminator dξ(τ |hi−1) is trained to map the
samples to a scalar, for maximizing the Wasserstein distance between the distribution of generated samples
τ̂i and the distribution of observed samples τi. The final objective to optimize in TCGAN is

min
θ

max
ξ

Eτ̂i∼pθ(τ |z,hi−1) [dξ(τi|hi−1)− dξ(τ̂i|hi−1)]− η
∣∣∣∣ |dξ(τi|hi−1)− dξ(τ̂i|hi−1)|

|τ̂i − τi|
− 1
∣∣∣∣ , (20)

where the first term is to maximize the distance, and the second is to add a Lipschitz constraint as a
regularization term proposed in original Wasserstein GAN (Arjovsky et al., 2017) with η as the loss weight.
The formulation of the pθ(τ |z,hi−1) and dξ(τ |hi−1) are similar to the variational decoder in the TCVAE,
both transforming the D-dimensional random variables into 1. After training, pθ(τ |z,hi−1) can be used for
sampling in the same process as the variational decoder in TCVAE.

3.3.2 Temporal Conditional Continuous Normalizing Flow Probabilistic Model

As a classical generative model, normalizing flows (Papamakarios et al., 2019) are constructed by a series of
invertible equi-dimensional mapping. However, in TPPs, the input data sample is 1-dimensional time, and
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thus the flexibililty and powerful expressiveness of neural network is hard to harness. Therefore, here we
choose to use temporal conditional continuous normalizing flows (TCCNF) (Mehrasa et al., 2020) which is
based on Neural ODE (Chen et al., 2019; 2021). Note that the t term in Neural ODE is here replaced by k,
to avoid confusion. The TCCNF defines the distribution through the following dynamics system:

τi = Fθ(τ(k0)|hi−1) = τ(k0) +
∫ k1

k0

fθ(τ(k), k|hi−1)dk, (21)

where τ(k0) ∼ N (0, 1). fθ is implemented with the same structure of variational decoder in TCVAE. The
invertibility of Fθ(τ(k0)|hi−1) allows us to not only conduct fast sampling, but also easily optimize the
parameter set θ by minimizing the negative log-likelihood on a single time sample:

min
θ

{
− log(p(τ(k0))) +

∫ k1

k0

Tr(∂fθ(τ(k), k|hi−1)
∂τ(k) )dk|τ=τi

}
. (22)

3.3.3 Temporal Conditional Noise Score Network Probabilistic Model

Finally, we establish the probabilistic decoder via a temporal conditional noise score network (TCNSN) as a
score matching method, which aims to learn the gradient field of the target distribution (Song & Ermon,
2019; 2020). In specific, given a sequence of noise levels {σk}Kk=1 with noise distribution qσi(τ̃i|τi,hi−1), i.e.
N (τ̃i|τi,hi−1, σ

2
k), the training loss for a single arrival time on each noise level σk is as follows

li = 1
2‖sθ(τ̃i;σk|hi−1)−∇τ̃i log qσk(τ̃i|τi,hi−1)‖22, (23)

where the sθ is the gradient of target distribution with the same formulation of variational decoders in
TCVAE. According to Song & Ermon (2019), the weighted training objective can be written as

min
θ

σ2
k

2 ‖
sθ(τ̃i;σk|hi−1)

σk
+ τ̃i − τi

σ2
k

‖22, (24)

where τ̃i ∼ qσk(τ̃i|τi,hi−1).

In the sampling process, the Langevin dynamics (Welling & Teh, 2011) is used, in which the sample is firstly
drawn from a Gaussian distribution, then iteratively updated by

τ̂ki = τ̂k−1
i + αksθ(τ̂k−1

i ;σk|hi−1) +
√

2αkz, (25)

in different noise levels with different times, where z ∼ N (0, 1).

3.4 Mark Modeling

When there exists more than one event type, another predictive target is what type of event is most likely
to happen, given the historical observations. The task is regarded as a categorical classification. Based
on the assumption that the mark and time distributions are conditionally independent given the historical
embedding Shchur et al. (2021); Lin et al. (2021), we first transform the historical encoding hi−1 to the
discrete distribution’s logit scores as

κ(hi−1) = logit(m̂i), (26)

where logit(m̂i) ∈ RM , κ : RD → RM . Then, softmax function is used to transform logit scores into the
categorical distribution, as

p(m̂i = m|θ(hi−1)) = softmax(logit(m̂i))m (27)

where softmax(logit(m̂i))m means choose them-th element after softmax ’s output. In training, a cross-entropy
loss for categorical classification CEi = CE(p(mi|hi−1)) will be added to the loss term, leading the final loss
of a single event to

Li = li + CEi. (28)
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4 Related Work

Deep Neural Temporal Point Process. From Du et al. (2016) which firstly employed RNNs as history
encoders with a variant of Gompertz distribution as its probabilistic decoder. Following works, proposed to
combine deep neural networks with TPPs, have achieved great progress (Lin et al., 2021; Shchur et al., 2021).
For example, in terms of history encoder, a continuous time model (Mei & Eisner, 2017) used recurrent units
and introduces a temporal continuous memory cell in it. Recently, attention-based encoder (Zhang et al.,
2020a; Zuo et al., 2020) is established as a new state-of-the-art history encoder. In probabilistic decoders,
Omi et al. (2019) fit the cumulative harzard function with its derivative as intensity function. Xiao et al.
(2017b) and Shchur et al. (2020a) used the single Gaussian and the mixture of log-normal to approximate
the target distribution respectively. In events dependency discovering, Mei et al. (2022) explicitly modeled
dependencies between event types in the self-attention layer, and Zhang et al. (2020b) implicitly captured the
underlying event interdependency by fitting a neural point process.

Probabilistic Generative TPP Models. A line of works have been proposed to deploy new progress in
deep generative models to TPPs. For example, the reinforcement learning approaches which are similar to
adversarial settings, used two networks with one generating samples and the other giving rewards are proposed
sequentially (Upadhyay et al., 2018; Li et al., 2018). And adversarial and discriminative learning (Yan et al.,
2018; Xiao et al., 2017a) have been proposed to further improve the predictive abilities of probabilistic
decoders. Noise contrastive learning to maximize the difference of probabilistic distribution between random
noise and true samples also proved to be effective in learning TPPs (Guo et al., 2018; Mei et al., 2020).

5 Experiments

5.1 Experimental Setup

5.1.1 Implementation Description

EDTPP GNTPP

Conditional
Intensity

Generative  
Model 

Log-norm

Weibull Gaussian FNNInt

Gompertz

TCVAE TCGANTCCNF

TCNSNTCDDM

History
Encoder

RNN (Revised) 
Attention 

Figure 4: The hierarchical description of our experimental framework with modules integrated in GNTPP.

We first introduce our experimental framework for model comparison, as shown in Figure 4. In the history
encoder module, it includes: GRU, LSTM and Transformer with and without our revised attention. In
the probabilistic decoder module, probabilistic models in EDTPP (Lin et al., 2021) with closed likelihood
including Gaussian, Gompertz, Log-norm, Feed-forward Network, and Weibull are implemented
and integrated into our code. And the discussed neural generative models which is classified into our GNTPP
including TCDDM, TCVAE, TCGAN, TCCNF and TCNSN are implemented.

5.1.2 Datasets

We use a complex synthetic dataset which is simulated by Hawkes process of five types of events with
different impact functions (Appendix B.1.) and 4 real-world datasets containing event data from various
domains: MOOC (user interaction with online course system), Retweet (posts in social media), Stack Overflow
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(question-answering badges in website), Yelp (check-ins to restaurants). The data statistics are shown in
Table 2. We clamp the maximum length of sequences to 1000. The dataset is split into 20% ratio for testing,
80% ratio for training with 20% in training set as validation set used for parameter tuning. All the time
scale [0, Tmax] is normalized into [0, 50] for numerical stability, where Tmax is the maximum of observed event
occurrence time in the training set. The detailed description is given in Appendix B.1.

Table 2: Dataset Statistics

Dataset # of sequences Mean length Min length Max length # of event type
MOOC 7047 56.28 4 493 97

Retweet 24000 108.75 50 264 3
Stack Overflow 6633 72.42 41 736 22

Yelp 300 717.15 424 2868 1
Synthetic 6000 580.36 380 835 5

5.1.3 Protocol

In the training process, hyper-parameters of every model are tuned in the range of ‘learning rate’ : {1 ×
10−3, 5 × 10−4, 1 × 10−4}, ‘embedding size’ : {8, 16, 32}, ‘layer number’ : {1, 2, 3}, where ‘embedding size’
is the dimension of historical encoding, i.e. D. The hyper-parameters are tuned on validation set. The
maximum training epoch number is set as 100, and early stopping technique is used based on values of loss on
validation set. The reported metrics are the results of models trained with the lowest loss, except ‘TCGAN’
probabilistic decoder, whose parameters are choosen as the final epoch’s results. The mean and standard
deviation of each metric is obtained according to 5 experiments’ results with different random seeds.

5.1.4 Metrics

To evaluate the predictive performance of each methods, we deploy commonly used metric – ‘mean absolute
percent error’ (MAPE) for measuring the predictive performance of next arrival time (Zhang et al., 2020a),
and ‘top-1 accuracy’ (Top1_ACC) and ‘top-3 accuracy’ (Top3_ACC) to measure the predictive performance
of next event types Lin et al. (2021). Note that there is only one event type in Yelp, so ‘Top3_ACC’ is not
meaningful. However, the commonly used negative likelihood has no closed form in deep generative models.
Therefore, we use another two metrics to evaluate the ‘goodness-of-fitness’. The first is ‘continuous ranked
probability score’ (CRPS), which is widely used in time series prediction (Rasul et al., 2021; Ben Taieb, 2022)
for measuring the compatibility of a cumulative distribution function (CDF) F with an observation t as
CRPS(F, t) =

∫
R(F (y)− I{t ≤ y})2 dy. Regarding the model as fitting next event arrival time’s distribution

(Jordan et al., 2018), we can calculate it on a single timestamp by using the empirical CDF as

CRPS(F̂ , ti) = 1
S

S∑
i=1
|t̂i,k − ti| −

1
2S2

S∑
i=1

S∑
j=1
|t̂i,k − t̂j,k|, (29)

where there are S samples {t̂i,k}1≤k≤S drawn from pθ(t|hi−1), ti is the ground truth observation. Equation. (29)
reflects that CRPS can also evaluate models’ the sampling quality as predictive performance in the first term,
and the sampling diversity in the second term. Another metric is ‘QQPlot-deviation’ (QQP-Dev) (Xiao et al.,
2017a), which can be calculated by first computing the empirical cumulative hazard function Λ̂∗θ(t), and
its distribution should be exponential with parameter 1. Therefore, the deviation of the QQ plot of it v.s.
Exp(1) is calculated, as metric ‘QQP-Dev’. Appendix B.2. gives details.

5.2 Performance Comparison

Here we choose 5 methods whose probabilistic decoders are not generative models as baseline for performance
comparison:

(1) RMTPP (Lin et al., 2021) as the extension of RMTPP (Du et al., 2016), whose probabilistic decoder
is a mixture of Gompertz distribution.
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(2) LogNorm (Shchur et al., 2020a), which uses Log-normal distribution as its decoder.

(3) ERTPP (Lin et al., 2021) as the generalization of ERTPP (Xiao et al., 2017b), with a mixture of
Gaussian as its decoder.

(4) FNNInt (Omi et al., 2019), which formulates the cumulative harzard function as a fully-connected
feed-forward network, and its derivative w.r.t. time as intensity.

(5) WeibMix (Marín et al., 2005; Lin et al., 2021) with Weibull mixture distribution as its decoder.

(6) SAHP (Zhang et al., 2020a), whose conditional intensity function is an exponential-decayed formula-
tion, with a softplus as a nonlinear activation function stacked in the final.

(7) THP (Zuo et al., 2020), whose intensity function reads λ∗(τ) = softplus(α τ
ti−1

+ Whhi−1 + b).

(8) Deter, as a baseline for MAPE and ACC metrics, which is a totally deterministic model with the
probabilistic model replaced by a linear projection head whose weight and bias are all constraint to
be positive, and trained by MSE loss as a regression task.

Table 3: Comparison of different methods’ performance on the real-world datasets. Results in bold give the
top-3 performance, where Deter is excluded. The comparison on NLL or ELBO is given in Appendix B.3.

MOOC Retweet

Methods MAPE(↓) CRPS(↓) QQP_Dev(↓) Top1_ACC(↑) Top3_ACC(↑) MAPE(↓) CRPS(↓) QQP_Dev(↓) Top1_ACC(↑) Top3_ACC(↑)
Deter 17.4356±6.4756 - - 0.3894±0.6027 0.70445±0.3361 12.7697±1.1566 - - 0.5745±0.0001 1.0000±0.0000

RMTPP 67.2866±0.2321 37.1259±0.2539 1.9677±0.0002 0.4069±0.0130 0.7189±0.0131 65.1189±1.2747 0.3282±0.0075 1.7006±0.0035 0.6086±0.0001 1.0000±0.0000
LogNorm 70.8006±0.3010 36.2675±0.6712 1.9678±0.0006 0.3992±0.0012 0.7155±0.0011 75.3065±0.0000 0.4579±0.0803 1.7091±0.0101 0.6003±0.0063 1.0000±0.0000
ERTPP 94.3711±0.0713 24.4113±0.3728 1.9571±0.0006 0.3841±0.0189 0.7043±0.0165 71.5601±0.0000 0.3842±0.0144 1.7283±0.0033 0.6055±0.0042 1.0000±0.0000
WeibMix 75.2570±1.3158 18.1352±4.0137 1.9776±0.0000 0.3409±0.0293 0.6613±0.0295 72.5045±0.4957 0.3795±0.0043 1.9776±0.0001 0.6058±0.0005 1.0000±0.0000
FNNInt 66.5765±2.4615 - 1.3780±0.0067 0.4203±0.0035 0.7310±0.0024 22.7489±3.8260 - 1.0318±0.0749 0.5348±0.0367 1.0000±0.0000
SAHP 43.0847±0.9447 - 1.0336±0.0007 0.3307±0.0082 0.6527±0.0138 15.5689±0.0239 - 1.0286±0.0030 0.6032±0.0001 1.0000±0.0000
THP 41.6676±1.1192 - 1.0207±0.0001 0.3287±0.0097 0.6531±0.0109 16.4464±0.0112 - 1.0242±0.0014 0.5651±0.0003 1.0000±0.0000

TCDDM 23.5559±0.3098 0.1468±0.0000 1.0369±0.0000 0.4308±0.0069 0.7408±0.0044 12.6058±0.5550 0.2076±0.0000 1.0327±0.0111 0.6274±0.0075 1.0000±0.0000
TCVAE 19.3336±1.4021 0.1465±0.0003 1.0369±0.0001 0.3177±0.0066 0.6282±0.0032 12.2332±0.6755 0.1848±0.0005 1.0443±0.0018 0.5825±0.0213 1.0000±0.0000
TCGAN 24.4184±4.7497 0.1470±0.0001 1.0352±0.0001 0.4179±0.0049 0.7270±0.0005 15.4630±1.5843 0.2084±0.0134 1.0356±0.0002 0.6263±0.0088 1.0000±0.0000
TCCNF 26.3197±1.7119 0.1636±0.0044 1.0578±0.0106 0.4297±0.0105 0.7374±0.0100 13.9865±1.9811 0.1625±0.0092 1.0598±0.0022 0.5965±0.0105 1.0000±0.0000
TCNSN 80.8541±4.7017 1.3668±0.0371 1.3345±0.0011 0.3292±0.0115 0.6516±0.0102 63.3995±1.2366 1.1954±0.0196 1.3291±0.0017 0.5845±0.0132 1.0000±0.0000

Stack Overflow Yelp

Methods MAPE(↓) CRPS(↓) QQP_Dev(↓) Top1_ACC(↑) Top3_ACC(↑) MAPE(↓) CRPS(↓) QQP_Dev(↓) Top1_ACC(↑) Top3_ACC(↑)
Deter 4.7518±0.0658 - - 0.5302±0.0010 0.8327±0.0014 15.9814±2.4486 - - 1.0000±0.0000 -
RMTPP 7.6946±1.3470 6.2844±0.3374 1.9317±0.0020 0.5343±0.0013 0.8555±0.0073 13.6576±0.1261 0.0657±0.0005 1.3142±0.0055 1.0000±0.0000 -
LogNorm 13.3008±1.2214 6.3377±0.2380 1.9313±0.0017 0.5335±0.0019 0.8542±0.0064 32.1609±0.3978 0.0646±0.0018 1.2840±0.0395 1.0000±0.0000 -
ERTPP 17.3008±1.5724 4.5747±0.0947 1.9299±0.0016 0.5316±0.0028 0.8526±0.0044 34.8405±0.0000 0.0673±0.0014 1.2632±0.0087 1.0000±0.0000 -
WeibMix 7.6260±1.0663 4.3028±0.5535 1.9776±0.0000 0.5327±0.0011 0.8454±0.0056 34.8391±0.0019 0.0680±0.0000 1.9776±0.0000 1.0000±0.0000 -
FNNInt 6.1583±0.0952 - 1.5725±0.0065 0.5336±0.0009 0.8432±0.0010 16.2753±0.5204 - 1.2579±0.0390 1.0000±0.0000 -
SAHP 5.5246±0.0271 - 1.5175±0.0010 0.5235±0.0002 0.8278±0.0003 12.9830±0.0474 - 1.0755±0.0004 1.0000±0.0000 -
THP 5.6331±0.0413 - 1.5033±0.0016 0.5310±0.0003 0.8508±0.0001 14.4189±0.0474 - 1.0775±0.0004 1.0000±0.0000 -
TCDDM 4.9947±0.0366 0.4375±0.0163 1.5711±0.0043 0.5371±0.0004 0.8693±0.0010 10.8426±0.0253 0.0570±0.0001 1.1728±0.0082 1.0000±0.0000 -
TCVAE 5.1397±0.0626 0.5129±0.0082 1.5320±0.0057 0.5398±0.0022 0.8418±0.0112 9.9204±0.2895 0.0631±0.0008 1.1732±0.0001 1.0000±0.0000 -
TCGAN 5.0874±0.1527 0.5458±0.0254 1.5178±0.0095 0.5340±0.0048 0.8481±0.0200 12.0471±0.7363 0.0608±0.0022 1.1170±0.0275 1.0000±0.0000 -
TCCNF 6.3022±0.0281 0.4259±0.0005 1.6319±0.0007 0.5428±0.0003 0.8721±0.0003 13.4562±0.2129 0.0575±0.0008 1.2355±0.0034 1.0000±0.0000 -
TCNSN 29.4333±2.4937 0.8350±0.0035 1.6611±0.0004 0.5352±0.0012 0.8538±0.0095 43.9613±2.1338 0.4274±0.0131 1.5855±0.0055 1.0000±0.0000 -

The methods of (1) ∼ (4) have closed-form expectation. Mean of FNNInt, SAHP and THP is obtained by
numerical integration, and mean of GNTPP is obtained by Monte Carlo integration thanks to its advantages
in flexible sampling. Note that it is possible to sample events from SAHP and THP using Ogata’s thinning
method (Ogata, 1981) since the intensity for both methods is monotonically decreasing between events.
Samples can also be drawn from FNNInt model using numerical root-finding (Shchur et al., 2020a), but
these sampling methods designed especially for the three models have not yet been developed. Therefore,
flexible sampling is not allowed for FNNInt, SAHP and THP (Table 1), so we do not report their ‘CRPS’. In
all the generative methods, the trick of log-noramlization is used: The input samples are firstly normalized
by log τ−Mean(log τ)

Var(log τ) during training, and rescaled back by exp (log τVar(log τ) + Mean(log τ)) to make sure
the sampled time intervals are positive.

For fair comparison, we all use revised attentive encoder which is a variant of Transformer to obtain the
historical encodings.

We conclude from the experimental results in Table 3 that

13



Published in Transactions on Machine Learning Research (08/2022)

• All these established generative methods show comparable effectiveness and feasibility in TPPs,
except TCNSN as a score matching method. TCDDM, TCVAE and TCGAN usually show good
performance in next arrival time prediction, compared with the diffusion decoder.

• In spite of good performance, as a continuous model, TCCNF is extremely time-consuming, whose
time complexity is unaffordable as shown in Appendix B.4.

• By using the numerical integration to obtain the estimated expectation of SAHP and THP, we find
they can also reach comparable ‘MAPE’ to generative decoders. However, the two models do not
provide a flexible sampling methods, where the time interval samples cannot be flexibly drawn from
the learned conditional distribution.

• From ‘CRPS’ and ‘QQP_Dev’ evaluating models’ fitting abilities of arrival time, the generative
decoders still outperforms others. For ‘QQP_Dev’, SAHP and THP’s show very competitive fitting
ability thanks to its employing expressive formulation as the intensity function.

For the Synthetic dataset, results are given in Appendix B.3. In summary, the empirical results show that
proposed generative neural temporal point process employs and demonstrates deep generative models’ power
in modeling the temporal point process.

Further Discussion on Generative Models. As TCDDM, TCCNF, and TCNSN can all be classified
into score-based methods according to Song et al. (2021b), in which they are described as different stochastic
differential equations, this raises a question to us: Why only TCNSN fails to model the temporal point
process effectively? Following the former work (Song et al., 2021b; Song & Ermon, 2019; 2020), the continuous
form of temproal conditional score-matching model is given by the stochastic differential equation (SDE) as

dτ =
√
d[σ2(k)]
dk

dw, (30)

where w is a standard Wiener process. It is a variance exploding process because the variance goes to infinity
as k → +∞. In comparison, the forward process of temporal conditional diffusion model can be regarded as
a variance perserving one, as

dτ = −1
2
√

1− β(k)τdk +
√
β(k)dw. (31)

And temporal conditional continuous normalizing flow is the deterministic process where dw = 0, as

dτ = fθ(τ, k)dk, (32)

where fθ is a learnable neural network. Note that we omit the conditional notation in the single event
modeling for simplicity.

In the reverse process which is used for sampling (or denoising), these three models firstly sample τK ∼ N (0, 1).
τK is denoised by the learnable score function εθ in TCDDM and TCNSN, or invertible process in TCCNF,
and τ0 as the output of the final stage of the process is generated as the time interval sample. For the variance
exploding property of TCNSN, in the reverse process as shown in Figure 5, the variance of the distribution
will firstly become excessively large. As a result, later in small-variance scales, it cannot recover the input
signals and distributions attributing to the high variance of the early stage. In comparison, the variance in
the sampling dynamics of TCDDM and TCCNF keeps stable, and the learned distributions are approaching
the input gradually in the iteration of denoising process.

5.3 Advantages of Revised Encoders

In this part, we aim to conduct empirical study to prove the better expressivity our revised attentive
encoder. We first fix the probabilistic decoder as diffusion decoder, and conduct experiments with different
history encoders, including our revised attentive (Rev-ATT), self-attentive (ATT) and LSTM encoders to
demonstrate the advantages in expressiveness of the revised attention. Table 4 shows the advantages of the
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Figure 5: The empirical distribution of the sample generating dynamics of TCDDM, TCCNF, and TCNSN.
The visualization is conducted in Stack Overflow dataset obtained by 5000 samples, with the iteration step
set as 100 in TCDDM and 1000 in TCNSN. We regard the time scale as [0, 0.9], and give the dynamics of
the distribution change of the reverse sampling process at different discrete time points. As demonstrated, the
variance of TCNSN is much larger than others, which prevents the model from recovering the distribution of
the input samples. Log-noramlization trick is used to force the intermediate samples to be positive while σ
is calculated with unnormalized latent variables for consistent order of numerical values.

Table 4: Comparison of different history encoders.
MOOC

Encoders MAPE CRPS QQP_Dev Top1_ACC Top3_ACC
LSTM 23.3562±0.0076 0.1468±0.0000 1.0369±0.0000 0.4232±0.0004 0.7279±0.0001
ATT 23.3559±0.0283 0.1468±0.0000 1.0369±0.0000 0.4228±0.0003 0.7275±0.0000
Rev-ATT 23.3559±0.3098 0.1468±0.0000 1.0369±0.0000 0.4308±0.0069 0.7408±0.0044

Retweet

Encoders MAPE(↓) CRPS(↓) QQP_Dev(↓) Top1_ACC(↑) Top3_ACC(↑)
LSTM 16.3525±0.0237 0.2079±0.0001 1.0521±0.0012 0.6083±0.0002 1.0000±0.0000
ATT 16.3160±0.0397 0.2077±0.0001 1.0469±0.0002 0.6083±0.0001 1.0000±0.0000
Rev-ATT 15.6058±0.5550 0.2076±0.0001 1.0327±0.0111 0.6274±0.0075 1.0000±0.0000

Stack Overflow

Encoders MAPE(↓) CRPS(↓) QQP_Dev(↓) Top1_ACC(↑) Top3_ACC(↑)
LSTM 5.0381±0.0055 0.4502±0.0005 1.5737±0.0006 0.5337±0.0001 0.8626±0.0001
ATT 5.0285±0.0290 0.4502±0.0012 1.5683±0.0013 0.5326±0.0002 0.8632±0.0001
Rev-ATT 4.9947±0.0366 0.4375±0.0163 1.5711±0.0043 0.5371±0.0004 0.8693±0.0010

Yelp
Encoders MAPE CRPS QQP_Dev Top1_ACC Top3_ACC
LSTM 10.9082±0.0387 0.0571±0.0001 1.1792±0.0003 1.0000±0.0000 -
ATT 10.9119±0.0188 0.0571±0.0001 1.1792±0.0002 1.0000±0.0000 -
Rev-ATT 10.8426±0.0253 0.0570±0.0001 1.1728±0.0082 1.0000±0.0000 -
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Figure 6: The relations of similarity between
event types of Stack Overflow which is infer-
enced by Rev-Att + TCDDM. Rows are ar-
ranged in the same order as columns.

revision on two datasets, the revised attention outperforms others in most metrics. Results on Synthetic
dataset are shown in Appendix B.3.

The revised attentive encoder achieves overall improvements by a small margin. The complete empirical
study (Lin et al., 2021) has illustrate that the performance gain brought from history encoders is very small,
and our revision can further brings tiny improvements.

Second, we give visualization shown in Figure 6 on the events’ relations of similarity obtained by EmET
m,

as discussed in Section 3.1. It shows that the effects of some pairs of event types are relatively significant
with high absolute value of event similarity, such as (Stellar Question, Great Answer) and (Great Question,
Constituent). It indicates the statistical co-occurrence of the pairs of the event types in a sequence.

15



Published in Transactions on Machine Learning Research (08/2022)

5.4 Hyperparameter Sensitivity Analysis

Several hyper-parameters affect the model performance, and in this part we try to explore their impacts. We
conduct experiments on different ‘embedding size’, i.e. D and ‘layer number ’. The partial results of TCDDM
are given in Figure 7 and 8, and details are shown in Appendix B.4.
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Figure 7: Change of Performance with
layer number of TCDDM on MOOC.
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Figure 8: Change of Performance with
embedding size of TCDDM on MOOC.

The MAPE metric is more sensitive than CRPS with the change of the hyperparameter of the model. In
MOOC dataset, the large ‘layer number’ and ‘embedding size’ is not beneficial to predictive performance.

6 Conclusion

A series of deep neural temporal point process (TPP) models called GNTPP, integrating deep generative
models into the neural temporal point process and revising the attentive mechanisms to encode the history
observation. GNTPP improves the predictive performance of TPPs, and demonstrates its good fitting ability.
Besides, the feasibility and effectiveness of GNTPP have been proved by empirical studies. And experimental
results show good expressiveness of our revised attentive encoders, with events’ relation provided.

A complete framework with a series of methods are integrated into our code framework, and we hope the fair
empirical study and easy-to-use code framework can make contributions to advancing research progress in
deep neural temporal point process in the future.

Acknowledgement

This work is supported in part by National Natural Science Foundation of China, Geometric Deep Learning
and Applications in Proteomics-Based Cancer Diagnosis (No. U21A20427). We thank a lot to all the reviewers
who are responsible, careful and professional in TMLR for their valuable and constructive comments.

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

E. Bacry, M. Bompaire, S. Gaïffas, and S. Poulsen. tick: a Python library for statistical learning, with a
particular emphasis on time-dependent modeling. ArXiv e-prints, July 2017.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal reverse
variance in diffusion probabilistic models, 2022. URL https://arxiv.org/abs/2201.06503.

Souhaib Ben Taieb. Learning quantile functions for temporal point processes with recurrent neural splines. In
Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pp. 3219–3241. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/ben-taieb22a.
html.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations, 2019.

16

https://arxiv.org/abs/2201.06503
https://proceedings.mlr.press/v151/ben-taieb22a.html
https://proceedings.mlr.press/v151/ben-taieb22a.html


Published in Transactions on Machine Learning Research (08/2022)

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes, 2021.

D. Vere-Jones D.J. Daley. An Introduction to the Theory of Point Processes, volume 1. Springer-Verlag New
York, 2003.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure attention
loses rank doubly exponentially with depth, 2021.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song. Recurrent
marked temporal point processes: Embedding event history to vector. In In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.

Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. Graphical modeling for multivariate hawkes processes
with nonparametric link functions, 2016.

Ruocheng Guo, Jundong Li, and Huan Liu. Initiator: Noise-contrastive estimation for marked temporal point
process. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pp. 2191–2197. International Joint Conferences on Artificial Intelligence Organization, 7 2018.
doi: 10.24963/ijcai.2018/303. URL https://doi.org/10.24963/ijcai.2018/303.

Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):
83–90, 1971. ISSN 00063444. URL http://www.jstor.org/stable/2334319.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

Valerie Isham and Mark Westcott. A self-correcting point process. Stochastic Processes and their Applications,
8(3):335–347, 1979. ISSN 0304-4149. doi: https://doi.org/10.1016/0304-4149(79)90008-5. URL https:
//www.sciencedirect.com/science/article/pii/0304414979900085.

Alexander Jordan, Fabian Krüger, and Sebastian Lerch. Evaluating probabilistic forecasts with scoringrules,
2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
5d50d22735a7469266aab23fd8aeb536-Paper.pdf.

Haitao Lin, Cheng Tan, Lirong Wu, Zhangyang Gao, and Stan. Z. Li. An empirical study: Extensive deep
temporal point process, 2021.

J. M. Marín, M. T. Rodríguez-Bernal, and M. P. Wiper. Using weibull mixture distributions to model
heterogeneous survival data. Communications in Statistics - Simulation and Computation, 34(3):673–684,
2005. doi: 10.1081/SAC-200068372. URL https://doi.org/10.1081/SAC-200068372.

Nazanin Mehrasa, Ruizhi Deng, Mohamed Osama Ahmed, Bo Chang, Jiawei He, Thibaut Durand, Mar-
cus Brubaker, and Greg Mori. Point process flows, 2020. URL https://openreview.net/forum?id=
rklJ2CEYPH.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
6463c88460bd63bbe256e495c63aa40b-Paper.pdf.

Hongyuan Mei, Tom Wan, and Jason Eisner. Noise-contrastive estimation for multivariate point processes,
2020.

17

https://doi.org/10.24963/ijcai.2018/303
http://www.jstor.org/stable/2334319
https://www.sciencedirect.com/science/article/pii/0304414979900085
https://www.sciencedirect.com/science/article/pii/0304414979900085
https://proceedings.neurips.cc/paper/2018/file/5d50d22735a7469266aab23fd8aeb536-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5d50d22735a7469266aab23fd8aeb536-Paper.pdf
https://doi.org/10.1081/SAC-200068372
https://openreview.net/forum?id=rklJ2CEYPH
https://openreview.net/forum?id=rklJ2CEYPH
https://proceedings.neurips.cc/paper/2017/file/6463c88460bd63bbe256e495c63aa40b-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6463c88460bd63bbe256e495c63aa40b-Paper.pdf


Published in Transactions on Machine Learning Research (08/2022)

Hongyuan Mei, Chenghao Yang, and Jason Eisner. Transformer embeddings of irregularly spaced events
and their participants. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=Rty5g9imm7H.

Y. Ogata. On lewis’ simulation method for point processes. IEEE Transactions on Information Theory, 27
(1):23–31, 1981. doi: 10.1109/TIT.1981.1056305.

Takahiro Omi, naonori ueda, and Kazuyuki Aihara. Fully neural network based model for general temporal
point processes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/39e4973ba3321b80f37d9b55f63ed8b8-Paper.pdf.

Zhen Pan, Zhenya Huang, Defu Lian, and Enhong Chen. A variational point process model for social event
sequences. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01):173–180, Apr. 2020. doi:
10.1609/aaai.v34i01.5348. URL https://ojs.aaai.org/index.php/AAAI/article/view/5348.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. 2019. doi: 10.48550/ARXIV.1912.
02762. URL https://arxiv.org/abs/1912.02762.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising diffusion
models for multivariate probabilistic time series forecasting, 2021.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point processes.
In International Conference on Learning Representations, 2020a. URL https://openreview.net/forum?
id=HygOjhEYDH.

Oleksandr Shchur, Nicholas Gao, Marin Biloš, and Stephan Günnemann. Fast and flexible temporal point
processes with triangular maps, 2020b.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural temporal point
processes: A review, 2021.

Alexander Soen, Alexander Mathews, Daniel Grixti-Cheng, and Lexing Xie. Unipoint: Universally approxi-
mating point processes intensities, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised Learning
using Nonequilibrium Thermodynamics. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
2256–2265, Lille, France, 2015a. PMLR. URL http://proceedings.mlr.press/v37/sohl-dickstein15.
html.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics, 2015b.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32, pp. 11918–11930. Curran Associates, Inc., 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

Yang Song and Stefano Ermon. Improved Techniques for Training Score-Based Generative Models. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 33. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models, 2021a. URL https://arxiv.org/abs/2101.09258.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations, 2021b.

18

https://openreview.net/forum?id=Rty5g9imm7H
https://openreview.net/forum?id=Rty5g9imm7H
https://proceedings.neurips.cc/paper/2019/file/39e4973ba3321b80f37d9b55f63ed8b8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/39e4973ba3321b80f37d9b55f63ed8b8-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/5348
https://arxiv.org/abs/1912.02762
https://openreview.net/forum?id=HygOjhEYDH
https://openreview.net/forum?id=HygOjhEYDH
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://arxiv.org/abs/2101.09258


Published in Transactions on Machine Learning Research (08/2022)

Utkarsh Upadhyay, Abir De, and Manuel Gomez Rodriguez. Deep reinforcement learning of
marked temporal point processes. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
71a58e8cb75904f24cde464161c3e766-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http:
//arxiv.org/abs/1706.03762.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In ICML,
2011.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein learning
of deep generative point process models, 2017a.

Shuai Xiao, Junchi Yan, Stephen M. Chu, Xiaokang Yang, and Hongyuan Zha. Modeling the intensity
function of point process via recurrent neural networks, 2017b.

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffusion
variational autoencoder for periodic material generation, 2021.

Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning granger causality for hawkes processes. In
Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1717–1726, New York,
New York, USA, 20–22 Jun 2016. PMLR. URL http://proceedings.mlr.press/v48/xuc16.html.

Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improving maximum likelihood
estimation of temporal point process via discriminative and adversarial learning. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2948–2954.
International Joint Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/409.
URL https://doi.org/10.24963/ijcai.2018/409.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process. In Hal Daumé
III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 11183–11193. PMLR, 13–18 Jul 2020a. URL
http://proceedings.mlr.press/v119/zhang20q.html.

Qiang Zhang, Aldo Lipani, and Emine Yilmaz. Learning neural point processes with latent graphs. In In
Proceedings of the Web Conference 2021 (WWW ’21), 2021. URL https://doi.org/10.1145/3442381.
3450135.

Wei Zhang, Thomas Kobber Panum, Somesh Jha, Prasad Chalasani, and David Page. Cause: Learning
granger causality from event sequences using attribution methods, 2020b. URL https://arxiv.org/abs/
2002.07906.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes process. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 11692–11702. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/zuo20a.html.

A Preliminaries on Temporal Point Process

Temporal point process with markers. For a temporal point process {ti}i≥1 as a real-valued stochastic
process indexed on N+ such that Ti ≤ Ti+1 almost surely (here Ti representing the random variable), each
random variable is generally viewed as the arrival timestamp of an event. When each timestamp is given a
type marker, i.e. {(ti,mi)}i≥1, the process is called marked temporal point process, also called multivariate
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point process as well.

Conditional intensity function and probability density function. As defined in Eq. 1, the
probability density function and cumulative distribution function can be obtained through

λ(t|H(t))dt = E[N (t+ dt)−N (t)|H(t)]
= P(ti ∈ [t, t+ dt)|H(t))
= P(ti ∈ [t, t+ dt)|ti /∈ [ti−1, t),H(ti−1))

= P(ti ∈ [t, t+ dt), ti /∈ [ti−1, t)|H(ti−1))
P(ti /∈ [ti−1, t)|H(ti−1)))

= P(ti ∈ [t, t+ dt)|H(ti−1))
P(ti /∈ [ti−1, t)|H(ti−1))

= p(t|H(ti−1))
1− P (t|H(ti−1))

= p∗(t)
1− P ∗(t) ,

In this way, the reverse relation can be given by

p∗(t) = λ∗(t) exp(−
∫ t

ti−1

λ∗(τ)dτ);

P ∗(t) = 1− exp(−
∫ t

ti−1

λ∗(τ)dτ).

Example 1. (Poisson process) The (homogeneous) Poisson process is quite simply the point process where
the conditional intensity function is independent of the past. For example, λ∗(t) = λ(t) = c which is a
constant.
Example 2. (Hawkes process) The conditional intensity function of which can be written as

λ∗(t) = α+
∑
tj<t

g(t− tj ; ηj , βj),

which measures all the impacts of all the historical events on the target timestamp t. The classical Hawkes
process formulates the impact function g(t− tj ; η, β) = η exp(β(t− tj)) as the exponential function.

B Experiments

B.1 Sythetic Dataset Description

The synthetic datasets are generated by tick1 packages (Bacry et al., 2017), using the Hawkes process
generator. Four Hawkes kernels as impact functions are used with each process’s intensity simulated according
to Example 2, including

ga(t) = 0.09 exp(−0.4t)
gb(t) = 0.01 exp(−0.8t) + 0.03 exp(−0.6t) + 0.05 exp(−0.4t)
gc(t) = 0.25| cos 3t| exp(−0.1t)
gd(t) = 0.1(0.5 + t)−2

The impact function gj,i(t) measuring impacts of type i on type j is uniformly-randomly chosen from above.
A probability equalling to r which we called cutting ratio is set to force the impact to zero, thus leading the
Granger causality graph to be sparse. The cutting ratio is set as 0.2, and the total number of types is set as 5.

1https://github.com/X-DataInitiative/tick
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B.2 Calculation of QQP_Dev

If the sequences come from the intensity function of point process λ(t) , then the integral Λ =
∫ tt+1
ti

λ(τ)dτ
between consecutive events should be exponential distribution with parameter 1. Therefore, the QQ plot
of Λ against exponential distribution with rate 1 should fall approximately along a 45-degree reference line.
Therefore, we first use the model to sample a series timestamps, and use them to estimate the empirical Λ∗.
Mean absolute deviation of the QQ plot of it v.s Exp(1) from the line with slop 1 is ‘QQP_DEV’.

B.3 Supplementary Results

We first give supplementary results of different methods on the Sythetic dataset shown by Table 5.
Table 5: Comparison on Sythetic dataset.

Synthetic
Methods MAPE CRPS QQP_Dev Top1_ACC Top3_ACC
E-RMTPP 22.8206±1.5594 0.1905±0.0110 1.7921±0.0047 0.2497±0.0031 0.6693±0.0034
LogNorm 54.6208±0.0000 0.1916±0.0102 1.7920±0.0044 0.2494±0.0027 0.6687±0.0026
E-ERTPP 54.6208±0.0000 0.1843±0.0072 1.7881±0.0062 0.2482±0.0011 0.6674±0.0012
WeibMix 26.5910±7.3426 0.1060±0.0029 1.9776±0.0000 0.2476±0.0001 0.6668±0.0002
FNNInt 4.5223±0.0976 - 1.3342±0.0005 0.2531±0.0041 0.6724±0.0040
SAHP 4.5198±0.1677 - 1.1775±0.0002 0.2964±0.0003 0.7269±0.0001
THP 4.4958±0.1331 - 1.1775±0.0001 0.2474±0.0002 0.6667±0.0002

TCVAE 3.3237±0.0304 0.0617±0.0001 1.4124±0.0024 0.2476±0.0002 0.6670±0.0000
TCGAN 3.5009±0.1288 0.2510±0.2690 1.4297±0.0223 0.1924±0.0894 0.5059±0.2438
TCCNF 4.7095±0.0303 0.0654±0.0000 1.5787±0.0007 0.2465±0.0001 0.6669±0.0001
TCNSN 33.9541±0.9428 0.1109±0.0002 1.5884±0.0001 0.2554±0.0001 0.6766±0.0001
TCDDM 3.2323±0.0015 0.0509±0.0000 1.4261±0.0002 0.2492±0.0020 0.6686±0.0019

We give the negative ELBO which is the upper bound of models’ NLL of TCDDM, TCVAE, and TCNSN,
and the exact NLL of other models except that in TCGAN we give Wasserstein distance between the
empirical and model distributions in the four real-world dataset, as shown in Table 6.

B.4 Complexity Comparison

We provide each methods mean training time for one epoch to figure out which methods are extremely
time-consuming. It shows all these methods are affordable in time complexity except CNSN, and CGAN is also
time-consuming. The test is implemented on a single Nvidia-V100(32510MB). In all the test setting, batch
size is set as 16, embedding size is 32 and layer number is 1. For methods whose likelihood has no closed-form,
we use Monte Carlo integration, where in each interval, the sample number is 100.

Table 6: Comparison on four real-world datasets on the NLL and ELBO.
Methods MOOC Retweet Stack Overflow Yelp

E-RMTPP 1.7504 −1.9872 4.9031 −1.0832
LogNorm 1.3635 −2.4197 4.8782 −1.2808
E-ERTPP 3.5791 −0.8876 5.0845 −0.9678
WeibMix 0.7950 −2.5110 3.8717 −1.1125
FNNInt −2.3024 −3.0064 1.8469 −1.2294
SAHP −2.3472 −2.9955 1.8348 −1.6607
THP 0.1270 −1.3794 1.8591 −1.6349
TCDDM ≤ 1.7609 ≤ 0.7560 ≤ 2.2450 ≤ 0.0142
TCVAE ≤ 9.4754 ≤ 7.5911 ≤ 3.9727 ≤ 6.2181
TCGAN (0.0056) (0.0001) (0.0511) (0.0560)
TCCNF −2.8591 −3.0464 1.6881 −1.8791
TCNSN ≤ 2.1815 ≤ 0.8340 ≤ 2.4131 ≤ 0.3517
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Table 7: Comparison of time complexity.
Time per Epoch

Methods MOOC Retweet Stack Overflow Yelp Synthetic

E-RMTPP 46′′ 2′08′′ 1′22′′ 12′′ 1′26′′
LogNorm 39′′ 2′02′′ 1′14′′ 11′′ 1′27′′
E-ERTPP 42′′ 2′14′′ 1′17′′ 11′′ 1′33′′
WeibMix 49′′ 2′18′′ 1′27′′ 13′′ 1′22′′
FNNInt 45′′ 2′08′′ 1′16′′ 14′′ 1′32′′
SAHP 1′11′′ 2′42′′ 1′51′′ 21′′ 2′14′′
THP 57′′ 2′29′′ 1′30′′ 18′′ 2′02′′

TCVAE 46′′ 2′43′′ 1′33′′ 11′′ 1′31′′
TCGAN 2′30′′ 11′24′′ 3′47′′ OOM 4′02′′
TCCNF 5′42′′ 21′28′′ 7′06′′ 3′24′′ 5′47′′
TCNSN 33′′ 1′46′′ 42′′ 10′′ 56′′
TCDDM 35′′ 1′39′′ 1′16′′ 13′′ 1′12′′

Table 8: Comparison of used memory.
Peak Memory in Training

Methods MOOC Retweet Stack Overflow Yelp Synthetic

E-RMTPP 2174 MiB 1544 MiB 4288 MiB 22294 MiB 7074 MiB
LogNorm 1976 MiB 1544 MiB 4096 MiB 22294 MiB 7078 MiB
E-ERTPP 1976 MiB 1544 MiB 4096 MiB 22294 MiB 7078 MiB
WeibMix 2078 MiB 1544 MiB 4290 MiB 22294 MiB 7080 MiB
FNNInt 1828 MiB 1438 MiB 3692 MiB 21366 MiB 10686 MiB
SAHP 7197 MiB 1606 MiB 4706 MiB 22730 MiB 15258 MiB
THP 6004 MiB 1496 MiB 4544 MiB 18384 MiB 7648 MiB
TCVAE 2286 MiB 1436 MiB 3198 MiB 27684 MiB 6854 MiB
TCGAN 3712 MiB 2164 MiB 4906 MiB OOM 12318 MiB
TCCNF 2598 MiB 1486 MiB 3932 MiB 27836 MiB 4048 MiB
TCNSN 2926 MiB 1662 MiB 3884 MiB 22374 MiB 7984 MiB
TCDDM 3110 MiB 1542 MiB 3508 MiB 22764 MiB 8084 MiB

B.5 Hyperparameter Sensitivity Analysis

We give the CDDM’s performance under different parameters on MOOC, Retweet and Stack Overflow, with
layer number and embedding size set in range of {1, 2, 3} and {8, 16, 32} respectively. It shows that the large
embedding size usually brings improvements, so we recommend that it should be set as 32. And layer number
should be set as 1 or 2.
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Figure 9: Change of Performance with Layer Number on MOOC
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Figure 10: Change of Performance with Layer Number on Retweet
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Figure 11: Change of Performance with Layer Number on Stack Overflow
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Figure 12: Change of Performance with embedding size on MOOC
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Figure 13: Change of Performance with embedding size on Retweet
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