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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems bolster large language models (LLMs)
by integrating retrieval mechanisms to over-
come limitations in knowledge scope. How-
ever, traditional retrieval mechanisms, which
predominantly operate at the sentence level, of-
ten fail to capture complete semantics at finer
syntactic constituent granularities, degrading
generation quality. To address this, we propose
GGatrieval (Fine-grained Grounded Alignment
Retrieval for Verifiable Generation), a novel
framework that enhances retrieval by targeting
syntactic constituent interactions. Specifically,
drawing inspiration from human cognitive pro-
cesses, GGatrieval introduces a document selec-
tion criterion and assigns categorical labels via
a Fine-grained Grounded Alignment strategy.
These labels enable document reranking and
drive a Semantic Compensation Query Aug-
mentation strategy, yielding enriched queries
that retrieve documents tightly aligned with
the original query. Experiments on the ALCE
benchmark and the extended Natural Questions
datasets demonstrate GGatrieval’s superior per-
formance over established baselines, with abla-
tion studies validating the effectiveness of our
selection criterion and classification methods.

1 Introduction

Retrieval-Augmented Generation (RAG) systems
integrate large language models (LLMs) with tar-
geted retrieval mechanisms to address knowledge
coverage limitations of generative models (Lewis
et al., 2020). By retrieving relevant external knowl-
edge, RAG improve output accuracy (Khandelwal
et al., 2019; Min et al., 2020), mitigates LLM hal-
lucinations (Cheng et al., 2024), and incorporates
current real-world information (Gupta et al., 2024),
often without additional model training (Izacard
et al., 2023a).

The retrieval mechanism in RAG systems com-
prises three pivotal stages: Pre-retrieval, Retrieval,
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Figure 1: Document Selection Criteria and Document
Taxonomy. (a) refers to human cognitive process for
acquiring standard documents. (b) refers to examples of
labels for different document categories.

and Post-retrieval. In the Pre-retrieval stage, in-
dexing leverages methods like graphs, product
quantization (PQ) (Liu et al., 2023a), and locality-
sensitive hashing (LSH) (Datar et al., 2004),
employing approximate nearest neighbor search
(ANNS) (Arya et al., 1998) for efficiency. Query
manipulation, including query expansion, reformu-
lation, and prompt-based rewriting (Izacard and
Grave, 2021; Wang et al., 2023; Chan et al., 2024;
Zheng et al., 2023), refines queries to address am-
biguities, significantly boosting retrieval accuracy.
The Retrieval stage employs search and ranking
techniques such as CRAG, IRCOT, and FLARE
(Yan et al., 2024a; Trivedi et al., 2023; Jiang et al.,
2023), optimizing document relevance via few-shot
learning and confidence-based strategies. Retrieval
strategies—basic, iterative, recursive, conditional,
and adaptive (Shao et al., 2023; Kang et al., 2023;
Yue et al., 2024; Asai et al., 2024)—tailor the pro-
cess to specific tasks, enabling dynamic, context-



sensitive retrieval. In the Post-retrieval stage, re-
ranking, using unsupervised and supervised meth-
ods alongside data augmentation (Ram et al., 2023;
Ma et al., 2024; Sun et al., 2023), prioritizes per-
tinent documents, while filtering techniques like
Self-RAG and RECOMP (Asai et al., 2024; Xu
et al.) eliminate irrelevant content, enhancing out-
put quality. Collectively, these stages ensure RAG
systems retrieve and refine information effectively,
improving relevance and accuracy in knowledge-
intensive tasks.

Limitation. However, conventional retrieval mech-
anisms typically operate at the sentence level, lead-
ing to semantic incompleteness at the syntactic
constituent granularity. This deficiency means re-
trieved documents may lack the semantic infor-
mation needed fully address queries, ultimately
limiting the generation quality of RAG systems.
Our approach. The meaning of complex expres-
sions derives from their fundamental components
(Drozdov et al., 2022). Syntactic parsing partic-
ularly crucial for sentence understanding (Lesmo
and Lombardo, 1992). Consequently, a human cog-
nitive process for selecting retrieval documents can
be summarized as follows, also as shown in Fig-
ure 1(a): (1) Decompose the user query into basic
syntactic constituents; (2) Identify continuous tex-
tual segments in candidate documents that semanti-
cally match these constituents; (3) Determine that
a candidate document fully supports query-answer
generation if it contains a segment aligning with all
query constituents.

Inspired by these insights, we propose GGa-
trieval (Fine-grained Grounded Alignment
Retrieval for Verifiable Generation), a framework
that enhances retrieval by aligning information
with the user query at the syntactic constituent
level and validates it through Verifiable Generation
(Gao et al., 2023). Specifically, we introduce a
novel document selection criterion, which assesses
whether a continuous textual segment within a
retrieval document semantically aligns with every
syntactic constituent of the query. Based on this
criterion, we define category labels for retrieval
documents, as shown in Figure 1(b), derived
through a Fine-grained Grounded Alignment
(FGA) strategy. These labels enable document
re-ranking and underpin a Semantic Compensation
Query Augmentation (SCQA) strategy. By
performing semantic compensation at the syntactic
constituent granularity, SCQA generates diverse,
semantically rich augmented queries, retrieving

documents highly aligned with the original query.
Experiments on the ALCE benchmark (Gao
et al., 2023) and extended Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019) demonstrate that
GGatrieval outperforms mainstream baselines. Ab-
lation studies and analysis validate the effectiveness
of our document selection criterion and the role of
document labels. Notably, on the ELI5 dataset,
GGatrieval improves Claim F1 by 22% and Cita-
tion F1 by 28%.
Contributions. Our key contributions are summa-
rized below.

* We propose a novel document selection crite-
rion, enabling precise document classification
and validating its effectiveness.

* We propose a FGA strategy, enhancing docu-
ment verifiability within RAG systems, thus
improving the credibility of generated out-
comes.

* We propose a SCQA strategy to bridge the
semantic gap between queries and target docu-
ments, thereby enhancing retrieval document
quality.

» Extensive experiments across various datasets
and retrieval optimization baselines demon-
strate the superior performance of our ap-
proach compared to existing methods.

2 Related Work
2.1 Verifiable Generation

Verifiable generation refers to producing text that
can be independently traced and validated through
explicit citations. Current methodologies fall into
two main categories. The first involves directly em-
bedding citations during text generation by lever-
aging the inherent capabilities of language models.
For instance, Weller et al. (2024) prompt LLMs
with citation cues (e.g., “according to Wikipedia”),
while Lee et al. (2023) systematically evaluate and
provide feedback on text quality, guiding models to-
ward improved verifiability. The second, retrieval-
based approach emphasizes accurate citations by
incorporating external sources, such as webpages
or documents. Notably, WebGPT (Nakano et al.,
2021) and LaMDA (Thoppilan et al., 2022) con-
struct large-scale training datasets from web and
Wikipedia resources, enabling citation-rich outputs.
Additionally, Li et al. (2024) iteratively refine ci-
tation quality by aligning retrieved content with
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Figure 2: Overview of GGatrieval at inference. Our approach defines categorical labels {Full Alignment, Partial
Alignment, No Alignment} for documents (Section 3.1) and employs a FGA strategy (Section 3.2) to assign
appropriate labels to each document. Furthermore, based on these categorical labels, we use a SCQA (Section 3.3)

strategy to retrieve high-quality documents.

generated responses. Our method adopts the latter
retrieval-oriented paradigm, facilitating rigorous
comparison of retrieval mechanisms within RAG
frameworks.

2.2 Retrieval mechanisms

The retrieval mechanism in RAG systems com-
prises three critical stages: Pre-retrieval, Retrieval,
and Post-retrieval, each enhancing precision and
contextual relevance. In the Pre-retrieval stage, effi-
cient indexing utilizes graphs, product quantization
(PQ) (Liu et al., 2023a), and locality-sensitive hash-
ing (LSH) (Datar et al., 2004), supported by approx-
imate nearest neighbor search (ANNS) (Arya et al.,
1998). Query manipulation techniques, including
query expansion, reformulation, and prompt-based
rewriting (Izacard and Grave, 2021; Wang et al.,
2023; Chan et al., 2024; Zheng et al., 2023), refine
input queries to address ambiguity and enhance
retrieval accuracy. The Retrieval stage incorporates
search and ranking approaches such as Atlas, AAR,
IRCOT, and FLARE (Izacard et al., 2023b; Yu et al.,
2023; Trivedi et al., 2023; Jiang et al., 2023), utiliz-
ing strategies like few-shot learning and dynamic
adaptation (Shao et al., 2023; Kang et al., 2023;
Yue et al., 2024; Asai et al., 2024). Post-retrieval,
re-ranking and filtering methods—including Self-

RAG, RECOMP, and CRAG (Ram et al., 2023;
Ma et al., 2024; Asai et al., 2024; Xu et al.; Yan
et al., 2024a)—further refine results, ensuring RAG
systems deliver highly relevant and accurate infor-
mation for knowledge-intensive applications.

3 Methods

Figure 2 presents an overview of GGatrieval dur-
ing inference. This method enhances document
reliability through an optimized retrieval mech-
anism, thereby improving overall system perfor-
mance. Specifically, upon receiving a user query,
the system initially retrieves candidate documents
using a conventional retriever. It then applies the
FGA strategy (Section 3.2) to assign category la-
bels (Section 3.1) to each document. Subsequently,
the system re-ranks these candidate documents ac-
cording to their matching degrees and relevance
scores, selecting the final retrieval documents via
a progressive selection algorithm, which are then
verified. It then applies the FGA strategy (Section
3.2) to assign category labels (Section 3.1) to each
document. Otherwise, a SCQA strategy (Section
3.3) is added to refine the query iteratively until a
predefined iteration limit is reached. For more de-
tails regarding the specific algorithmic procedure,



please refer to Appendix C.

3.1 Selection Criterion and Document
Taxonomy

Inspired by human cognitive processes for docu-
ment selection, as shown in Figure 1(a), we pro-
pose a novel document selection criterion: whether
a document contains a continuous text segment se-
mantically aligning with all syntactic constituents
of the query. Based on this, we define document
labels into three types:

Full Alignment: A candidate document contains a
continuous text segment semantically matches all
syntactic constituents of the query.

Partial Alignment: A candidate document con-
tains a continuous text semantically matches at
least one syntactic constituent of the query, but
does not match all syntactic constituents.

No Alignment: A candidate document contains no
continuous text segment that semantically matches
any syntactic constituent of the query.

Examples are shown in Figure 1(b). We use the
FGA strategy (Section 3.2) to label retrieval docu-
ments. Subsequently, which are then re-ranked and
filtered to support generation effectively.

3.2 Fine-grained Grounded Alignment

We propose a FGA strategy, which assigns specific
category label to each retrieval document to repre-
sent the degree of semantic alignment between the
retrieved document and the user query.

Query Syntactic Parsing: Given a user query @),
the system decomposes it into essential syntactic
constituents such as subject, predicate, and object:

C = {CSa C’Ua Co; Cca Cattra Cadva Csuppa Capp}
= LLM(Iq, Q)

(D
where I denotes the instruction for syntactic
parsing, and C' is the set of extracted syntac-
tic constituents from query (). The components
Cs,C,Co,Ce,.Cattr,Cadn>Cosupp and Cypp corre-
spond to subject, predicate, object, predicative, at-
tribute, adverbial, complement, and apposition, re-
spectively. Leveraging LLLM for shallow parsing
enables comparable performance to traditional su-
pervised methods without additional training or
complex technical processing, improving the effi-
ciency of system implementation.

Fine-grained Grounded Alignment: For each
syntactic constituent of the query, the system an-
alyzes candidate documents D to identify seman-

tically matching fragments, yielding both an ana-
lytical process and the matched constituents. This
process can be formulated as:

AnalysisResult = LLM(Ig, Ci,D) (2

where I g prompts the LLM to analyze and
match query syntactic constituents within docu-
ment D. C; denotes each syntactic constituent
in C, Analysisresult includes both the matching
analysis and the corresponding results. Documents
aligned with more syntactic constituents are more
likely to support accurate answers. This process
mirrors human strategies for document selection,
demonstrating the potential of LLM-driven interac-
tion with external corpora at the syntactic level.
Result Reflection: As emphasized by Liu et al.
(2024), LLMs enhance performance through self-
reflection capabilities. Therefore, we incorporate a
reflection step to reassess the previous analysis as
follows:

L(Q,D) = LLM (IR, AnalysisResult) (3)

Here, Ir instructs the LLM to reflect on the
AnalysisResult, yielding a final list of matched
syntactic constituents L((Q, D) from the user query
for document D.

Document Labeling: For document classifica-
tion, we define the following symbols: let |Q
be the number of syntactic constituents in the
query @, and |L(Q, D)| the numberin L(Q, D).
Based on the document classification in Section
3.1, documents are labeled as follows: “ Full
Alignment” if | L(Q, D)|=|Q)|, “ Partial Alignment”
if 0< |L(Q, D)|<|Q|, and “ No Alignment” if
|L(Q, D)|=0. These labels support subsequent doc-
ument re-ranking and filtering, and also provide the
semantic foundation for SCQA strategy (Section
3.3).

3.3 Semantic Compensation Query
Augmentation

Dense retrievers excel at finding documents that
are semantically related to the original query
(Karpukhin et al., 2020; Lewis et al., 2020). Build-
ing on this, we propose a SCQA strategy, which
generates augmented queries to retrieve highly se-
mantically relevant documents:

Query Diversification: Full Alignment documents
meet the target retrieval criterion and thus require



no further processing. However, for Partial Align-
ment or No Alignment documents, we generate syn-
onymous queries based on syntactic constituents
missing from L(Q, D), as represented by:

Q' = {LLM(I%,C;) for C;in C

) . €]
if Cinotin L(Q, D) else C;}

If a component C; is not in L(Q, D), I gl prompts
the LLM generates a synonymous description, oth-
erwise, the original component is retained. Original
and synonymous components jointly reconstruct
the query, yielding diversified updated queriy Q’.
This method leverages the diversity of L(Q, D)
to generate multiple queries that are semantically
similar but differ in form.

Semantic Compensation Query Augmentation:
Dense retrievers typically perform semantic sim-
ilarity matching at the sentence level. Although
query diversification enriches the original queries
from various syntactic perspectives, there remain
notable semantic differences at the level of syntac-
tic constituent granularity between these queries
and the target document. To bridge this semantic,
we propose compensating semantic information
at the syntactic constituent level, constructing en-
hanced queries that closely align with the target
documents. The detailed implementation includes:

| L(Q, D
Dypseudo = LLM(Ipseudo, Q/>7 if ‘(ﬁQ” <T
(&)

Q + D, fo IL(@,D)] > r

; oy ©
Q +Dpseud07 Zfﬁ <T

Q//:{

A document is
M > 1, and Low-aligned otherwise. The
threshold 7 is user-defined and adjustable, control-
ling the intensity of semantic compensation and
computational cost. For High-aligned documents
D, we directly concatenate the query () and the doc-
ument D to form augmented queries. Given their
semantic alignment, such concatenation enriches
the query’s semantic content. For Low-aligned
documents, in order to compensate semantic in-
formation, we use I},5cydo to instruct the LLM to
generate pseudo-documents D40 aligned with
every query syntactic constituent of the updated
query ', then we concatenated them to form aug-
mented queries. This strategy dynamically updates

considered high-aligned if

query () at each retrieval iteration, bridging seman-
tic gaps between the query and target documents.
Consequently, the system retrieves documents with
high grounded alignment. Compared to LLatrieval
(Li et al., 2024), GGatrieval reduces retrieval vol-
ume by 95% on the ASQA dataset and by 67%
on the QAMPARI dataset, enhancing retrieval effi-
ciency (Appendix B.4).

4 Experiment Settings

4.1 Datasets and Evaluation Metrics

In this study, experiments were conducted on the
ALCE benchmark (Gao et al., 2023). Given that
ALCE primarily focuses on multi-hop question
answering, we expanded the LLatrieval baseline
by incorporating a representative open-domain
single-hop QA dataset—Natural Questions (NQ)
(Kwiatkowski et al., 2019)—to achieve a compre-
hensive evaluation of GGatrieval. (1) ASQA (Stel-
makh et al., 2022): An open-domain long-form
QA dataset providing comprehensive and explana-
tory long answers to ambiguous factual questions.
Answering questions from this dataset requires in-
tegrating multiple sources of information, resolv-
ing contextual ambiguities, and correlating vari-
ous short answers; hence, ASQA is classified as a
multi-hop dataset. (2) QAMPARI (Amouyal et al.,
2023): A challenging open-domain QA benchmark
specifically designed to handle multi-answer ques-
tions distributed across different paragraphs. (3)
ELIS (Fan et al., 2019): Developed by Facebook Al
Research, designed to enhance Al models’ capabil-
ities in addressing complex explanatory questions
and generating paragraph-level, multi-sentence an-
swers. (4) NQ: The Natural Questions dataset, de-
veloped by Google Research, primarily used for
evaluating machine reading comprehension tasks,
emphasizing answer localization and extraction.

We evaluate the system’s correctness and the ver-
ifiability of the documents using the ALCE frame-
work proposed by Gao et al. (2023). For more
details of datasets and evaluation metrics, please
refer to Appendix A.1.

4.2 Baselines

To conduct a comprehensive evaluation, we se-
lected seven representative baselines from the three
stages of retrieval mechanisms, highlighting the
advantages of GGatrieval in terms of document
verifiability and overall system accuracy.



Dataset ASQA QAMPARI ELI5 Overall
Correct Citation Correct Citation Correct Citation Lo
- Correct Citation F1
EM-R Rec Prec Fl F1 Rec Prec Fl Claim Rec Prec Fl
BM25 36.57 36.79 38.98 37.86 10.21 1895 19.67 19.3 11.65 41.28 41.4 2347 1948 26.88
BGE-E-large 51.57 53.63 55.95 54.73 12.06 2642 27.48 26.93 - - - - - -
CRAG 46.29 47.15 50.19 48.59 11.9 20.1 20.73 20.41 12.79 48.07 48.96 48.49 23.66 39.16
GGatrieval 52.86 56.93 58.19 57.51 17.85 3544 36.58 35.98 14.21 56.16 56.26 56.17 28.31 49.89

Table 1: Comparison with Baselines in the Retrieval stage (USING gpt-3.5-turbo), The bolded numbers indicate the

best performance.

Dataset ASQA

QAMPARI

ELI5 Overall

Correct Citation Correct

Citation

Correct Citation L
Correct Citation F1

EM-R Rec Prec Fl F1 Rec

Prec

F1 Claim Rec Prec Fl

RankGPT 49.76 51.48 54.71 53.04 164 33.1
LLatrieval 50.8 53.54 55.75 54.58
GGatrieval

34.24 33.66
16.86 34.09 34.9 34.46
52.86 56.93 58.19 57.51 17.85 35.44 36.58 3598 14.21 56.16 56.26 56.17 28.31

11.6 4238 43.12 4274 25.92
11.62 43.47 44.85 43.88 2643

43.15
44.31
49.89

Table 2: Comparison with Baselines in the Post-retrieval stage (USING gpt-3.5-turbo).

Dataset ASQA QAMPARI

EM-R Citation-F1 Correct-F1 Citation-F1

Query2Doc 50.44 53.04 16.76 33.26
MuGI 50.76 51.71 16.52 32.23

GGatrieval 52.12 57.16 16.86 35.57

Table 3: Comparison with baselines in the Pre-retrieval
stage (USING gpt-3.5-turbo).

Dataset NQ
Correct-F1  Rec  Prec Citation-F1

BM25 20.08 31.28 33.61 32.41
BGE-E-large 26.06 31.5 3495 33.13
CRAG 23.98 23.7 26.19 24.588
RankGPT 27.83 33.45 36.76 35.03
LLatrieval 27.3 32.64 36.03 34.25
GGatrieval 28.68 34.51 37.58 35.98

Table 4: Comparison with baselines on the NQ dataset
(USING gpt-3.5-turbo).

Pre-retrieval stage: (1) MuGI (Zhang et al., 2024),
which utilizes LLMs to generate multiple pseudo-
reference documents combined with the original
query to enhance sparse and dense retrieval effec-
tiveness; and (2) Query2Doc (Wang et al., 2023),
employing a few-shot prompting approach to gener-
ate pseudo-documents related to the query through
LLMs, which are then appended to the original
query to enhance expressiveness.

Retrieval stage: (1) BM25 (Robertson et al.,
2009), a probabilistic model widely used in in-
formation retrieval for assessing the relevance be-
tween queries and documents; (2) BGE Large

(Liu et al., 2023b), a general embedding model
efficiently converting textual data into low-
dimensional dense vectors, enabling effective se-
mantic similarity computation and retrieval; and
(3) CRAG (Yan et al., 2024b), introducing a
lightweight retrieval evaluator for assessing the rel-
evance and quality of retrieved documents given a
specific query.

Post-retrieval stage: (1) RankGPT (Sun et al.,
2023), which directly generates document rankings
through language modeling; and (2) LLatrieval (Li
et al., 2024), which improves retrieval quality via
language model feedback, thereby supporting more
accurate and verifiable generation. For details of
baselines, please refer to Appendix A.2.

4.3 Implementation Details

We utilize the Verifiable Generation (Gao et al.,
2023; Li et al., 2024) paradigm for both answer
generation and evaluation. The APIs of OpenAl’s “
gpt-3.5-turbo” language model and the open-source
“ Meta-Llama3-8B-Instruct” model are used for
GGatrieval, with the temperature set to 0 to mini-
mize random variation. The threshold 7 (Section
3.3) for document alignment categorizing is set to
0.66, determined through systematic experimen-
tation and analysis. The number of supporting
documents is set to 5, and the maximum number
of iterations is 4. For ASQA, QAMPARI, and
NQ datasets, the retrieval corpus is based on the
Wikipedia dataset used in ALCE (Gao et al., 2023),
with the dense embedding model BGE-large (Xiao
et al., 2024) as the retriever. For the overall imple-



mentation details, please refer to Appendix A.3.

4.4 Main Results

Exp-1: Comparison with baselines in the Pre-
retrieval stage. We evaluated GGatrieval against
two query expansion baselines in the Pre-retrieval
stage, MuGI and Query2Doc, on ASQA and QAM-
PARI datasets. To ensure a fair comparison, only
the initial application of GGatrieval’s SCQA strat-
egy was employed. As shown in Table 3, GGa-
trieval outperformed the best baseline by 4.8% for
Correct and 8.4% for Citation-F1 on ASQA, and by
0.5% for Correct and 7% for Citation-F1 on QAM-
PARI. Notably, larger improvements in Citation-F1
suggest GGatrieval retrieves more reliable docu-
ments, while baseline methods sometimes relied
on lower-quality documents coincidentally produc-
ing correct answers.

Exp-2: Comparison with Baselines in the Re-
trieval stage. We assessed GGatrieval against con-
ventional retrieval methods, BM25 and BGELarge,
and a trained retriever, CRAG, using the ALCE
benchmark. As shown in Table 1, GGatrieval sur-
passed the best baseline by 2.5% in Correct and
2.98% in Citation-F1 on ASQA. On QAMPARI, it
achieved substantial improvements of 48% in Cor-
rect and 33.6% in Citation-F1. For the ELI5 dataset,
GGatrieval improved Claim by 11.1% and Citation-
F1 by 15.83%. These results demonstrate that the
optimizations applied by GGatrieval in both the Pre-
retrieval(SCQA) and Post-retrieval(FGA) stages
are critical to its effectiveness.

Exp-3: Comparison with Baselines in the Post-
retrieval stage. We compared GGatrieval with two
baselines, RankGPT and LLatrieval, with results
detailed in Table 2. On ASQA, GGatrieval im-
proved Correct by 4.1% and Citation-F1 by 5.4%.
On QAMPARYI, it enhanced Correct by 5.9% and
Citation-F1 by 4.4%. The most significant improve-
ments occurred on ELIS, with a 22.3% increase in
Claim and a 28% increase in Citation-F1. The ELI5
dataset exhibits greater performance improvements
because its queries contain more redundant infor-
mation, leading to a higher number of syntactic
components and a greater diversity of queries. This
increased query diversity enables GGatrieval to ac-
cess more reliable documents. Detailed statistics
are shown in Table 11 in Appendix B.4.

To evaluate the generality and robustness of our
GGatrieval, we conducted experiments using the
Meta-Llama3-8B-Instruct model. Please refer to
Appendix B.1 for more details.

ASQA QAMPARI
EM-R Cite Correct-F1 Cite

Final Result 5830 61.30 17.90 35.42
Full Alignment 46.79 53.43 1343 28.52
Partial Alignment 48.38 53.13 15.04 33.65
No Alignment 50.14 56.14 16.60 34.88

Table 5: Ablation study for excluding documents with
different labels. “ — signifies that a specific category
of document has been eliminated. The bolded numbers
indicate the worst performance.

= Correct improvement = Full Alignment proportion
~ Citation F1 improvement = Partial Alignment proportion
i No Alignment proportion
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Figure 3: Cross-dataset analysis of label proportions.
The bars above the dashed line represent system perfor-
mance, while the bars below the dashed line indicate the
proportion of documents with different labels.

Exp-4: Comparison with Baselines on the NQ
Dataset To evaluate GGatrieval’s effectiveness
in single-hop question-answering tasks, we per-
formed experiments on the NQ dataset, benchmark-
ing it against multiple baselines. As shown in Ta-
ble 4, GGatrieval consistently outperformed all five
baselines from both the Retrieval and Post-retrieval
stages. In particular, GGatrieval achieved a 3% im-
provement in Correct scores and a 2.7% increase in
Citation-F1 over the strongest baseline. These re-
sults demonstrate the effectiveness of GGatrieval in
both single-hop and multi-hop question answering
tasks.

4.5 Ablation Study and Analysis

Exp-5: Ablation Study on Alignment Labels.
We investigated the effect of alignment labels by
systematically excluding documents labeled as
“Full Alignment”, “Partial Alignment”, and “No
Alignment” from the candidate retrieval set. Ta-
ble 5 presents results for ASQA and QAMPARI
datasets. To maintain comparability, remaining
documents were re-ranked by alignment degree



and relevance, filling any gaps caused by exclusion.
Excluding ““ Full Alignment” documents caused
the most significant performance drop, followed
by “ Partial Alignment” , while “ No Alignment”
exclusions had minimal impact. This establishes a
clear hierarchy of importance: * Full Alignment” >
“ Partial Alignment” > “ No Alignment” , corrobo-
rated by additional analysis in Exp-10 (Appendix
B.3).

Figure 3 reveals a correlation between docu-
ment category proportions and GGatrieval’s per-
formance improvements across datasets. On ELIS,
performance notably improved with a higher pro-
portion of ““ Partial Alignment” documents and
fewer “ No Alignment” ones. This is because
ELIS5 queries often contain redundant information,
where “ Partial Alignment” documents prove valu-
able. For instance, in the query “ Please briefly
explain, whether Jordan is the greatest player in
NBA history,” alignment with the latter segment
suffices. Overall, these findings indicate that “ Full
Alignment” documents are most likely to support
query-answer generation, “ Partial Alignment” la-
bels enhance system robustness, and ““ No Align-
ment” labels can serve as criteria for document
exclusion.

Dataset ASQA QAMPARI
EM-R Cite Correct-F1 Cite
Origin 51.57 54.73 12.06  26.93
+SCQA 51.97 55.03 1532 32.82
+SCQA & FGA 52.12 57.16 16.86  35.57

Table 6: Ablation Study of GGatrieval Components.

Exp-6: Ablation Study of GGatrieval Com-
ponents. We further analyzed the contributions
of individual GGatrieval modules on the ASQA
and QAMPARI datasets. Starting from a base-
line retrieval system, we incrementally added the
SCQA and Fine-grained Grounded Alignment
(FGA) strategies. Results in Table 6 demonstrate
that each component improves performance, af-
firming their complementary roles in enhancing the
system. Additional ablation experiments on the
reflection step within the FGA strategy, detailed in
Appendix B.2, further confirm its effectiveness.

Exp-7: Component Interactions Across Iter-
ations. We investigated the interplay between
query updates, document retrieval, and overall per-
formance across four iterations using ASQA and

-e- Citation F1 - - Number of samples without Full Alignment

Correct -= - Number of samples with sufficient Full Alignment
Number of update queries Number of update queries
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Figure 4: Impact of interactions among components.
The solid line represents the evaluation metric, while the
dashed line indicates the distribution of Full Alignment
labels within the sample.

QAMPARI datasets. Figure 4 illustrates perfor-
mance metrics alongside query update number and
the distribution of ““ Full Alignment” documents
over iterations. The largest performance gain oc-
curred after the second iteration, aligning with a
decrease in samples lacking ““ Full Alignment” doc-
uments and an increase in those with five such
documents. Performance stabilized thereafter. No-
tably, gains tracked closely with the rising propor-
tion of “ Full Alignment” documents, emphasizing
their pivotal role. Query update frequency showed
weak correlation with performance, suggesting that
semantic query augmentation primarily enhances
retrieval by increasing highly aligned documents.
Among 1,000 samples per dataset, fewer than 30
had sufficient “ Full Alignment” documents, while
over 600 had none, indicating that expanding their
availability in the corpus could further boost perfor-
mance. These results also highlight the significant
potential of interacting with retrieval documents at
the level of syntactic constituent.

5 Conclusion

Inspired by LLatrieval, we propose GGatrieval, a
novel framework to address the semantic informa-
tion deficiency issue in retrieval mechanisms. Un-
like traditional methods, our approach introduces
a new criterion for document selection, which are
then used to classify retrieved documents. Based
on this classification, we develop two strategies:
FGA and SCQA. Together, these strategies opti-
mize the retrieval mechanism, ensuring that the re-
trieved documents meet verifiability standards and
improve overall system performance. Experimen-
tal results demonstrate that GGatrieval outperforms
various types of baselines and achieves superior
results.



Limitations

* We preliminarily explored interactions be-
tween queries and retrieved documents at the
syntactic constituent level. However, log-
ical relationships among these components
were not modeled, and hallucination in LLMs
may introduce alignment errors. Future work
will focus on enhancing alignment accuracy
through deep learning or reinforcement learn-
ing methods.

e Similar to human cognitive processes, our
method incurs additional latency and compu-
tational overhead due to its simulation of hu-
man reasoning. However, over the years we
have seen the model algorithm optimization,
acceleration mechanisms advance and hard-
ware performance increase, which can help
improve the efficiency of model inference.
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A Experiment Setting

A.1 Datasets and Evaluation Metrics

In this study, experiments were conducted on the
ALCE benchmark (Gao et al., 2023). Given that
ALCE primarily focuses on multi-hop question
answering, we expanded the LLatrieval baseline
by incorporating a representative open-domain
single-hop QA dataset—Natural Questions (NQ)
(Kwiatkowski et al., 2019)—to achieve a compre-
hensive evaluation of GGatrieval.
(1) ASQA (Stelmakh et al., 2022): An open-
domain long-form QA dataset providing compre-
hensive and explanatory long-form answers to
ambiguous factual questions. Answering ques-
tions from this dataset requires integrating multiple
sources of information, resolving contextual am-
biguities, and correlating various short answers;
hence, ASQA is classified as a multi-hop dataset.
We evaluate our approach using the development
set of ASQA, which includes 948 questions, each
with two annotations.
(2) QAMPARI (Amouyal et al., 2023): A challeng-
ing open-domain QA benchmark specifically de-
signed to handle multi-answer questions distributed
across different paragraphs. For instance, a typical
question is: “ Which players were drafted by the
Brooklyn Nets?” Such distributed-answer scenar-
ios frequently appear in real-world contexts. We
utilize the development set of QAMPARI, compris-
ing 1000 QA pairs, for evaluation.
(3) ELIS (Fan et al., 2019): Developed by Facebook
Al Research, ELIS5 is the first large-scale open-
domain dataset designed to improve Al models’
capabilities in handling complex explanatory ques-
tions and generating multi-sentence, paragraph-
level answers. Successfully addressing ELIS ques-
tions requires cross-document and cross-sentence
reasoning, categorizing this dataset as multi-hop
QA. To assess answer correctness, we adopt the
methodology from Gao et al. (2023), evaluating
whether model predictions entail the sub-claims of
standard answers.
(4) NQ: The Natural Questions dataset, developed
by Google Research, is an open-domain QA bench-
mark primarily designed for evaluating machine
reading comprehension, emphasizing answer local-
ization and extraction. To maintain consistency
with the ALCE evaluation, we randomly select
1000 samples from the NQ development set to as-
sess our method.

This study assesses retrieval effectiveness
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through verifiability of cited documents and eval-
uates text generation quality of the optimized
retrieval-augmented generation (RAG) system. Re-
garding correctness, the ASQA dataset employs Ex-
act Match Recall (EM-R) to measure whether gen-
erated answers encompass multiple correct short
answers. QAMPARI and NQ evaluates gener-
ated entity lists using precision-matched F1 scores
against gold-standard answers. The ELI5 dataset
assesses the entailment relationship between gener-
ated text and standard-answer claims. For verifia-
bility, we adopt the evaluation framework proposed
by Gao et al. (2023), measuring Citation Recall, Ci-
tation Precision, and their harmonic mean, Citation
F1, to determine whether cited documents fully
and accurately support the generated answers. This
multi-dimensional evaluation approach not only
provides a comprehensive assessment of model per-
formance but also underscores the critical impact of
document retrieval quality on the generated outputs.
Following ALCE (Gao et al., 2023), for ASQA
and QAMPARI, we use aliases of short answers
provided by the dataset and normalize the model
output and the short answers when measuring ex-
act match. For ASQA, we use its sub-questions
as the question to eliminate the original question’s
ambiguity, for simplicity.

A.2 Baselines

To achieve a comprehensive evaluation, we selected
seven representative baselines from the three stages
of retrieval mechanisms, highlighting GGatrieval’s
advantages in terms of document verifiability and
overall system accuracy.

In the Pre-retrieval stage, we selected two query
augmentation baselines: (1) MuGI [65], which em-
ploys LLMs to generate multiple pseudo-reference
documents combined with the original query to en-
hance sparse and dense retrieval effectiveness; (2)
Query2Doc (Wang et al., 2023), utilizing a few-
shot prompting strategy with LLMs to generate
pseudo-documents relevant to the query, subse-
quently appended to the original query to enhance
its expressiveness. Specifically, we employed the
BM25+MuGI (ChatGPT-3.5) method from MuGI
and the Query2Doc method for query augmenta-
tion. Subsequently, the document retrieval and
answer generation processes of these query aug-
mentation baselines were kept consistent with our
proposed method and evaluated on the ASQA and
QAMPARI datasets. To ensure fairness, we ex-
plicitly evaluated GGatrieval’s performance in the



Dataset ASQA QAMPARI ELI5 Overall
Correct Citation Correct Citation Correct Citation Correct Citation F1
EM-R Rec Prec Fl F1 Rec Prec Fl1 Claim Rec Prec Fl
BM25 31.03 235 2458 2402 597 734 825 776 10.88 23.93 26.56 25.18 15.96 18.99
BGE-E-large 40.59 33.83 37.79 357 6.55 11.62 13.88 12.62 - - - - 23.57 24.16
CRAG 33.92 33.86 36.28 35.05 591 70 834 76 11.19 29.19 32.16 30.61 17.01 24.42
RankGPT  40.17 36.59 38.68 37.61 924 16.8 19.7 18.13 11.2 24.89 28.52 26.58 20.20 27.44
LLatrieval 40.58 40.13 42.94 41.5 693 13.7 14.52 14.09 1123 27.96 329 302 19.58 28.6
GGatrieval 41.37 39.7 4292 4122 9.5 18.06 21.13 1947 11.64 30.41 33.7 32.0 20.84 30.9

Table 7: Comparison with Baselines Using the LLama Model

initial iteration of semantic compensation query
augmentation, thereby eliminating potential influ-
ences from multiple iterations. In the Retrieval
stage, we compared our approach with two stan-
dard retrievers and one trained retriever: (1) BM25
(Robertson et al., 2009), a probabilistic model
widely utilized in information retrieval to evalu-
ate relevance between queries and documents; (2)
BGE Large (Liu et al., 2023b), a general embed-
ding model efficiently converting text data into
low-dimensional dense vectors, facilitating effec-
tive semantic similarity calculation and retrieval;
(3) CRAG (Yan et al., 2024b), which introduces
a lightweight retrieval evaluator for assessing the
relevance and quality of retrieved documents given
a specific query. For a fair comparison, we utilize
only the retriever trained in CRAG to retrieve from
the same corpus as GGatrieval. The top five ranked
retrieved documents are then used to complete
the final generation task. In the Post-retrieval
stage, we selected two representative baselines: (1)
RankGPT (Sun et al., 2023), directly generating
document rankings through language modeling;
and (2) LLatrieval (Li et al., 2024), improving re-
trieval quality through language model feedback,
thus supporting more accurate and verifiable gener-
ation.

A.3 Implementation Details

We utilize the Verifiable Generation (Gao et al.,
2023; Liet al., 2024) paradigm for both answer gen-
eration and evaluation, aiming to assess the verifia-
bility and accuracy of the generated responses and
compare the effectiveness of various retrieval mech-
anisms. The APIs of OpenAl’s *“ gpt-3.5-turbo” lan-
guage model and the open-source “ Meta-Llama3-
8B-Instruct” model are used for implementing FGA
strategy, SCQA strategy, and answer generation,
with the temperature set to 0 to minimize random
variation. The threshold 7 (Section 3.3) for doc-
ument alignment categorizing is set to 0.66, de-
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termined through systematic experimentation and
analysis. In the Progressive Selection (Li et al.,
2024), the window size is set to 20, the number of
documents retrieved per query is 5, and the number
of candidate documents is 50 to ensure diversity.
The number of supporting documents is set to 5,
and the maximum number of iterations is 4. For
ASQA, QAMPARI, and NQ datasets, the retrieval
corpus is based on the Wikipedia dataset used in
ALCE (Gao et al., 2023), with the dense embed-
ding model BGE-large (Xiao et al., 2024) as the
retriever. For the ELI5 dataset, we use the Sphere
(Piktus et al., 2021) corpus and follow ALCE (Gao
et al., 2023), employing BM25 (Robertson et al.,
2009) for document retrieval due to the higher cost
and slower speed of dense retrievers on large-scale
web corpora. For the ALCE benchmark, the ex-
ample sizes for the ASQA, QAMPARI, and ELI5
datasets are 948, 1000, and 1000, respectively. To
ensure consistency with the ALCE evaluation, we
randomly select 1000 samples from the develop-
ment set of the NQ dataset to assess our approach.

B Supplementary Experiments and
Analysis

B.1 Exp-8: Comparison with Baselines Using
the LLama Model

We further compared the performance of GGa-
trieval with several baselines using the LLama
model; results are shown in Table 7. GGatrieval
generally outperformed most baseline methods,
demonstrating its plug-and-play capability. Fur-
thermore, we observed that employing stronger
language models improved the performance across
all methods. This suggests that GGatrieval will
continue to offer practical value as increasingly
powerful language models are developed in the
future.



Dataset ASQA
EM-R Rec Prec Citation-F1
No reflection step  50.79 49.96 53.78 51.8
With reflection step 52.86 56.93 58.19 57.51

Table 8: Ablation Study of reflection step.

ASQA QAMPARI ELI5
NA in all docs 10100 25736 58128
NA in final docs 1712 1915 1153
PA in all docs 6081 10715 53438
PA in final docs 1663 1594 2571
FA in all docs 2596 3386 12418
FA in final docs 1305 1337 1239

Table 9: The number of different alignment labels.

ASQA QAMPARI ELIS
NA conversion rate  0.17 0.07 0.02
PA conversion rate 0.27 0.15 0.05
FA conversion rate 0.5 0.38 0.1

Table 10: The conversion rate of different alignment
labels.

ASQA QAMPARI ELIS

Total Examples 948 1000 1000
Total Docs of LLatrieval 402750 122000 126050
Total Docs of GGatrieval 18777 39837 123984

Table 11: Comparison of the number of documents
retrieved by GGatrieval and LLatrieval.

B.2 Exp-9: Ablation Study on Reflection
Steps

In the fine-grained semantic alignment strategy, the
reflection step directly influences document align-
ment outcomes, subsequently determining the qual-
ity of the final candidate documents. As shown
in Table 8, incorporating reflection significantly
improves performance, demonstrating that the re-
flective capability of the LLM enhances document
alignment, thus positively impacting the quality
and effectiveness of the final selected documents.

B.3 Exp-10: Analysis of Alignment Label
Proportions

We analyzed the quantities and conversion rates
of alignment labels in the final document selec-
tion, presented in Tables 9 and 10, where “ NA,”

“ PA” , and “ FA” represent “ No Alignment” ,
“ Partial Alignment” , and ““ Full Alignment” la-
bels, respectively. In the ASQA, QAMPARI, and
ELIS5 datasets, Full Alignment and Partial Align-
ment documents did not dominate the final selec-
tions, primarily due to uneven label distributions
and the limited availability of fully aligned docu-
ments. Nonetheless, Full Alignment documents
consistently exhibited the highest conversion rates
across all three datasets.

B.4 Statistics on Retrieved Documents for
LLatrieval and GGatrieval

In Table 11, we present the sample sizes and the to-
tal number of retrieved documents for each dataset
by LLatrieval and GGatrieval.

B.5 Further discussion

Q1. How should inference overhead be man-
aged?

* Compared to LLatrieval, GGatrieval intro-
duces higher latency, primarily because GGa-
trieval simulates human-like decision-making
in document selection, whereas LLatrieval
simply prompts the large model to judge docu-
ment quality. Analogous to human reasoning,
increased energy consumption and latency are
often unavoidable, but the improved accuracy
and verifiability of retrieved documents pro-
vide additional value. Notably, our approach
significantly reduces the number of retrieved
documents—by 95% on ASQA and by 67%
on QAMPARI—which indirectly helps con-
trol inference latency.

* Our method allows dynamic control over
alignment granularity via the threshold param-
eter and limits the maximum number of itera-
tions (e.g., maximum iterations T=4, window
size=20, and five documents retrieved per iter-
ation), enabling a trade-off between efficiency
and performance.

* As deep learning techniques and hardware
continue to advance, computational overhead
will become less of a concern.

Q2. How does GGatrieval contribute to multi-
hop question answering?

* For multi-hop QA tasks, our method enhances
the handling of cross-document and complex



semantic relations through two key mech-
anisms. The SCQA strategy supplements
query-relevant semantic information at the
level of syntactic constituents, which is partic-
ularly effective for meeting the requirements
of multi-hop questions from the perspective
of query subcomponents. The FGA strategy
prioritizes documents that contain the greatest
amount of information aligned with the query,
thus supporting more accurate multi-hop rea-
soning.

* Another crucial factor affecting multi-hop QA
performance is the generator; however, this
work primarily focuses on improving the qual-
ity of retrieved documents within the retrieval
mechanism.

Algorithm 1 GGatrieval

Input: Question ¢, document pool D., reranked document
pool D,, the large language model LLM, the Retriever R, the
maximum iteration 7', each iteration’s document candidates
quantity N
Output: Supporting Documents D s

I: Q<+q

2: D+ {}

3: C — {037 C’u, 007 Cc, C(LttTy Cadv, Csupp, Capp}

4: =LLM(Ig,Q)

5: fori € (1,T) do

6 if D # {} then
7: Q@ < SCQA strategy
8: end if
9: D. + R(Q,N)
10: for D} € D. do
11: D} < FGA strategy
12: end for
13: D, < Rerank D. with alignment label
14: for D} € SlidingWindow(D,) do
15: Dy < Use the LLM to select k docs from DUD;
16: end for
17: if Verify(q, Dy) — Yes then
18: break
19: end if
20: end for
21: Return Dy
C Algorithm of GGatrieval

Algorithm 1 outlines the workflow of GGa-
trieval. The process begins with parsing the
user query into syntactic constitutents C'
{057 CU7 Cm Cw Cattrv Cadvv Csuppv Capp} (Line
3~4), initiating the iterative process. In each it-
eration, the system applies the SCQA strategy
to retrieve a refined set of candidate documents
D, (Lines 6~9), ensuring that the retrieved docu-
ments are increasingly semantically aligned with
the query. Next, the FGA strategy is employed
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to assign alignment labels to each document in
D, (Lines 10~11). These documents are then re-
ordered based on the alignment labels and rele-
vance, resulting in a prioritized set D, (Line 13),
which includes documents that meet the verifia-
bility criteria. Finally, the system employs the
Progressive Selection and Document Verification
methods proposed by Li et al. (2024) to select and
validate the final supporting documents D s(Lines
14~18). GGatrieval defines a robust selection crite-
rion to establish clear retrieval objectives. Through
the iteration, the retrieval results are progressively
refined to yield documents that better align with
the retrieval goal, thereby enabling the LLM to
generate both accurate and verifiable answers.

D Instructions of GGatrieval

We show the overall instructions in Table 12, 13, 14,
15. The instructions for the progressive selection
process are identical to those used in LLatrieval(Li
et al., 2024).



# CONTEXT #

## Profile

You are a linguistics expert proficient in English grammar. You want to analyze the grammatical compo-
nents of a question.

## Skill
Analyze the grammatical structure of the given question from the perspectives of the subject, predicate,
object, attribute, adverbial, complement, etc.

# OBJECTIVE #

From the perspective of grammatical structure such as subject, predicate, object, attribute, adverbial or
complement, please parse the given question grammatically and return it in a standard format.
<question>

Question

</question>

## Output
Just output the syntactic components of the given question according to the standard format, do not output
any other content.

## Output Criteria (Very Important)
Be as objective as possible.

#STYLE #
Please generate specific content in a very rigorous style, following the writing habits of a linguistics
professor.

# REPONSE #
Standard format of syntactic components to the question.

Table 12: The instruction for syntactic parsing.
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# CONTEXT #

#i# Profile

You are a linguistics expert proficient in English grammar. You want to find the answer to a question in a
piece of text, but you are not sure if the text contains the answer to the question.

## Skill

1. Analyze the grammatical structure of the given text from the perspectives of the subject, predicate,
object, attribute, adverbial, complement, etc.

2. According to all grammatical components of the question to find the corresponding content that matches
or indicates in semantics in the given text.

# OBJECTIVE #

From the perspective of grammatical structure such as subject,predicate object, attribute, adverbial or
complement,etc, please judge whether the given text has sufficient content to semantically match or
indicate each syntactic component of the given question.And give your analysis steps.

<question>
Question
</question>

<syntactic component>
Components
</syntactic component>

<text>
Passage
</text>

## Rules

1. Output specific analysis steps.

2. Assume you do not know the answer to the question, and analyze and judge based solely on the content
of the given text.

3. Strictly follow the specified output format. Do not answer the given question.

## Output
-analysis steps.
-Judgement Result.

## Workflow

1. Analyze the text to find content semantically matches or indicates for each syntactic component of the
question.

2. Make an analysis result for each syntactic component.

#STYLE #
Please generate specific content in a very rigorous style, following the writing habits of a linguistics
professor.

# REPONSE #
Analysis steps and results.

Table 13: The instruction for Fine-grained Grounded Alignment.
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# CONTEXT #

Now there is a question, a syntactic components list for that question, a given text, and an analysis result
of semantic matching between the text and the question.I want to reflect on the given analysis results
and output a new list. Each element in the new list comes from the syntactic components list and can be
semantically matched or indicated with content from the given text.

# OBJECTIVE #

Please reflect on whether the analysis results are correct, provide the correct analysis with a conclusion
again.For each element in the syntactic components list, if it can find semantically matching or indicating
content in the given text, please put that element into a new list and output this new list,else,and rewrite a
more specific question by converting the missing components into synonymous descriptions.

<question>
Question
</question>

<syntactic component>
Components
</syntactic component>

<analysis results>
Analysis_Results
</analysis results>

<text>
Passage
</text>

## Output

-Analysis Steps:Correct analysis with a conclusion.

-Judgement Result:The syntactic components list.

-Rewrite Question:The question is rewritten by converting the missing components into synonymous
descriptions,and enclose it in “ «<” and ““ »>" symbols.

## Rules

1. Output specific correct analysis steps with a conclusion.

2. Each element in the final output list in the Judgement Result must be able to find semantic match or
indication in the given text.

3. Assume you do not know the answer to the question, and analyze and judge based solely on the content
of the given text.

4. Strictly follow the specified output format. Do not answer the given question.

5. The final output list must start with °’[* and end with ’]’.

6. Each element of the final output list in Judgement Result must come from the syntactic components
list,otherwise output a empty list.

7. Enclose the Rewrite Question in ““ «<” and ““ »>" symbols.

# REPONSE #

1. Analysis steps with a conclusion.

2. The final output list as Judgement Result,without any other content.
3. A Rewrite Question enclosed with “ «<” and * »>" symbols.

Table 14: The instruction for Reflection and Query Optimization.
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# OBJECTIVE #

Please generate a paragraph related to the given question, such that for every grammatical component of
the question, there is a semantically matching grammatical component in the paragraph, and the paragraph
can provide an answer to the question.

## DEMONSTRATION

Who directed a movie written by Ken Hixon?//relative paragraph:Fear and Loathing in Las Vegas (film)
Fear and Loathing in Las Vegas is a 1998 American psychedelic satirical road film adapted from Hunter S.
Thompson’s novel of the same name. It was co-written and directed by Terry Gilliam, starring Johnny
Depp as Raoul Duke and Benicio del Toro as Dr. Gonzo. The two embark on an initially assigned journey
with journalistic purpose which turns out to be an exploration of the Las Vegas setting under the effect of
psychoactive substances. The film received mixed reviews from critics and was a financial failure.

Who’s job is in the LA County Sheriff’s Department?//relative paragraph:Jim McDonnell (sheriff) James
McDonnell (born 1959) is an American law enforcement official who served as the 32nd Sheriff of the
County of Los Angeles in California. McDonnell was elected as L.A. County’s 32nd sheriff on November
4, 2014, defeating former Undersheriff Paul Tanaka. He replaced interim sheriff John Scott on December
1, 2014, when he was sworn in. Previously he served as the Chief of Police in Long Beach, California and
before that in the Los Angeles Police Department, reaching the rank of Assistant Chief. McDonnell grew
up in a working-class neighborhood in Brookline, Massachusetts.

Who worked for a military branch of the Kingdom of Prussia?//By the end of Frederick’s reign, the army
had become an integral part of Prussian society and numbered 200,000 soldiers, making it the third largest
in Europe after the armies of Russia and Austria. The social classes were all expected to serve the state
and its army — the nobility led the army, the middle class supplied the army, and the peasants composed
the army. Minister Friedrich von Schrotter remarked that, ““ Prussia was not a country with an army, but
an army with a country” . Frederick the Great’s successor, his nephew Frederick William II (1786-97).

What Indonesian mosques are located in the province of South Sulawesi?//However, such concerns were
allayed along with the development and progress of the renovations since the groundbreaking by then
governor of Palembang Zainal Basri Palaguna in October 9, 1999. Great Mosque of Makassar Great
Mosque of Makassar is a mosque located in Makassar, Indonesia, and the main mosque of South Sulawesi
Province. The construction begun in 1948 and completed in 1949. Since then the mosque underwent a
renovation from 1999 to 2005. The mosque can accommodate up to 10,000 worshipers, making it one of
the largest mosques in Southeast Asia.

{Question}

Table 15: The instruction of generating semantically aligned pseudo-documents.
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