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Abstract001

Retrieval-Augmented Generation (RAG) sys-002
tems bolster large language models (LLMs)003
by integrating retrieval mechanisms to over-004
come limitations in knowledge scope. How-005
ever, traditional retrieval mechanisms, which006
predominantly operate at the sentence level, of-007
ten fail to capture complete semantics at finer008
syntactic constituent granularities, degrading009
generation quality. To address this, we propose010
GGatrieval (Fine-grained Grounded Alignment011
Retrieval for Verifiable Generation), a novel012
framework that enhances retrieval by targeting013
syntactic constituent interactions. Specifically,014
drawing inspiration from human cognitive pro-015
cesses, GGatrieval introduces a document selec-016
tion criterion and assigns categorical labels via017
a Fine-grained Grounded Alignment strategy.018
These labels enable document reranking and019
drive a Semantic Compensation Query Aug-020
mentation strategy, yielding enriched queries021
that retrieve documents tightly aligned with022
the original query. Experiments on the ALCE023
benchmark and the extended Natural Questions024
datasets demonstrate GGatrieval’s superior per-025
formance over established baselines, with abla-026
tion studies validating the effectiveness of our027
selection criterion and classification methods.028

1 Introduction029

Retrieval-Augmented Generation (RAG) systems030

integrate large language models (LLMs) with tar-031

geted retrieval mechanisms to address knowledge032

coverage limitations of generative models (Lewis033

et al., 2020). By retrieving relevant external knowl-034

edge, RAG improve output accuracy (Khandelwal035

et al., 2019; Min et al., 2020), mitigates LLM hal-036

lucinations (Cheng et al., 2024), and incorporates037

current real-world information (Gupta et al., 2024),038

often without additional model training (Izacard039

et al., 2023a).040

The retrieval mechanism in RAG systems com-041

prises three pivotal stages: Pre-retrieval, Retrieval,042

enteria
Doc: Live in Chicago (EP) Live in Chicago is a bonus EP
release by American guitarist, composer, and vocalist Trey
Anastasio, who is best known as a founder of the legendary 
rock band Phish...

Doc: Trey Anastasio, and his first release since the breakup of 
Phish in August 2004...

Doc: He will fill one of two open board seats on Lincolnville's 
five-seat board...

Question: What music group does Trey Anastasio belong to?

Which segment
can match this? This is a doc match 

the criteria！(a)

(b)

Figure 1: Document Selection Criteria and Document
Taxonomy. (a) refers to human cognitive process for
acquiring standard documents. (b) refers to examples of
labels for different document categories.

and Post-retrieval. In the Pre-retrieval stage, in- 043

dexing leverages methods like graphs, product 044

quantization (PQ) (Liu et al., 2023a), and locality- 045

sensitive hashing (LSH) (Datar et al., 2004), 046

employing approximate nearest neighbor search 047

(ANNS) (Arya et al., 1998) for efficiency. Query 048

manipulation, including query expansion, reformu- 049

lation, and prompt-based rewriting (Izacard and 050

Grave, 2021; Wang et al., 2023; Chan et al., 2024; 051

Zheng et al., 2023), refines queries to address am- 052

biguities, significantly boosting retrieval accuracy. 053

The Retrieval stage employs search and ranking 054

techniques such as CRAG, IRCOT, and FLARE 055

(Yan et al., 2024a; Trivedi et al., 2023; Jiang et al., 056

2023), optimizing document relevance via few-shot 057

learning and confidence-based strategies. Retrieval 058

strategies—basic, iterative, recursive, conditional, 059

and adaptive (Shao et al., 2023; Kang et al., 2023; 060

Yue et al., 2024; Asai et al., 2024)—tailor the pro- 061

cess to specific tasks, enabling dynamic, context- 062
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sensitive retrieval. In the Post-retrieval stage, re-063

ranking, using unsupervised and supervised meth-064

ods alongside data augmentation (Ram et al., 2023;065

Ma et al., 2024; Sun et al., 2023), prioritizes per-066

tinent documents, while filtering techniques like067

Self-RAG and RECOMP (Asai et al., 2024; Xu068

et al.) eliminate irrelevant content, enhancing out-069

put quality. Collectively, these stages ensure RAG070

systems retrieve and refine information effectively,071

improving relevance and accuracy in knowledge-072

intensive tasks.073

Limitation. However, conventional retrieval mech-074

anisms typically operate at the sentence level, lead-075

ing to semantic incompleteness at the syntactic076

constituent granularity. This deficiency means re-077

trieved documents may lack the semantic infor-078

mation needed fully address queries, ultimately079

limiting the generation quality of RAG systems.080

Our approach. The meaning of complex expres-081

sions derives from their fundamental components082

(Drozdov et al., 2022). Syntactic parsing partic-083

ularly crucial for sentence understanding (Lesmo084

and Lombardo, 1992). Consequently, a human cog-085

nitive process for selecting retrieval documents can086

be summarized as follows, also as shown in Fig-087

ure 1(a): (1) Decompose the user query into basic088

syntactic constituents; (2) Identify continuous tex-089

tual segments in candidate documents that semanti-090

cally match these constituents; (3) Determine that091

a candidate document fully supports query-answer092

generation if it contains a segment aligning with all093

query constituents.094

Inspired by these insights, we propose GGa-095

trieval (Fine-grained Grounded Alignment096

Retrieval for Verifiable Generation), a framework097

that enhances retrieval by aligning information098

with the user query at the syntactic constituent099

level and validates it through Verifiable Generation100

(Gao et al., 2023). Specifically, we introduce a101

novel document selection criterion, which assesses102

whether a continuous textual segment within a103

retrieval document semantically aligns with every104

syntactic constituent of the query. Based on this105

criterion, we define category labels for retrieval106

documents, as shown in Figure 1(b), derived107

through a Fine-grained Grounded Alignment108

(FGA) strategy. These labels enable document109

re-ranking and underpin a Semantic Compensation110

Query Augmentation (SCQA) strategy. By111

performing semantic compensation at the syntactic112

constituent granularity, SCQA generates diverse,113

semantically rich augmented queries, retrieving114

documents highly aligned with the original query. 115

Experiments on the ALCE benchmark (Gao 116

et al., 2023) and extended Natural Questions (NQ) 117

dataset (Kwiatkowski et al., 2019) demonstrate that 118

GGatrieval outperforms mainstream baselines. Ab- 119

lation studies and analysis validate the effectiveness 120

of our document selection criterion and the role of 121

document labels. Notably, on the ELI5 dataset, 122

GGatrieval improves Claim F1 by 22% and Cita- 123

tion F1 by 28%. 124

Contributions. Our key contributions are summa- 125

rized below. 126

• We propose a novel document selection crite- 127

rion, enabling precise document classification 128

and validating its effectiveness. 129

• We propose a FGA strategy, enhancing docu- 130

ment verifiability within RAG systems, thus 131

improving the credibility of generated out- 132

comes. 133

• We propose a SCQA strategy to bridge the 134

semantic gap between queries and target docu- 135

ments, thereby enhancing retrieval document 136

quality. 137

• Extensive experiments across various datasets 138

and retrieval optimization baselines demon- 139

strate the superior performance of our ap- 140

proach compared to existing methods. 141

2 Related Work 142

2.1 Verifiable Generation 143

Verifiable generation refers to producing text that 144

can be independently traced and validated through 145

explicit citations. Current methodologies fall into 146

two main categories. The first involves directly em- 147

bedding citations during text generation by lever- 148

aging the inherent capabilities of language models. 149

For instance, Weller et al. (2024) prompt LLMs 150

with citation cues (e.g., “according to Wikipedia”), 151

while Lee et al. (2023) systematically evaluate and 152

provide feedback on text quality, guiding models to- 153

ward improved verifiability. The second, retrieval- 154

based approach emphasizes accurate citations by 155

incorporating external sources, such as webpages 156

or documents. Notably, WebGPT (Nakano et al., 157

2021) and LaMDA (Thoppilan et al., 2022) con- 158

struct large-scale training datasets from web and 159

Wikipedia resources, enabling citation-rich outputs. 160

Additionally, Li et al. (2024) iteratively refine ci- 161

tation quality by aligning retrieved content with 162
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Figure 2: Overview of GGatrieval at inference. Our approach defines categorical labels {Full Alignment, Partial
Alignment, No Alignment} for documents (Section 3.1) and employs a FGA strategy (Section 3.2) to assign
appropriate labels to each document. Furthermore, based on these categorical labels, we use a SCQA (Section 3.3)
strategy to retrieve high-quality documents.

generated responses. Our method adopts the latter163

retrieval-oriented paradigm, facilitating rigorous164

comparison of retrieval mechanisms within RAG165

frameworks.166

2.2 Retrieval mechanisms167

The retrieval mechanism in RAG systems com-168

prises three critical stages: Pre-retrieval, Retrieval,169

and Post-retrieval, each enhancing precision and170

contextual relevance. In the Pre-retrieval stage, effi-171

cient indexing utilizes graphs, product quantization172

(PQ) (Liu et al., 2023a), and locality-sensitive hash-173

ing (LSH) (Datar et al., 2004), supported by approx-174

imate nearest neighbor search (ANNS) (Arya et al.,175

1998). Query manipulation techniques, including176

query expansion, reformulation, and prompt-based177

rewriting (Izacard and Grave, 2021; Wang et al.,178

2023; Chan et al., 2024; Zheng et al., 2023), refine179

input queries to address ambiguity and enhance180

retrieval accuracy. The Retrieval stage incorporates181

search and ranking approaches such as Atlas, AAR,182

IRCOT, and FLARE (Izacard et al., 2023b; Yu et al.,183

2023; Trivedi et al., 2023; Jiang et al., 2023), utiliz-184

ing strategies like few-shot learning and dynamic185

adaptation (Shao et al., 2023; Kang et al., 2023;186

Yue et al., 2024; Asai et al., 2024). Post-retrieval,187

re-ranking and filtering methods—including Self-188

RAG, RECOMP, and CRAG (Ram et al., 2023; 189

Ma et al., 2024; Asai et al., 2024; Xu et al.; Yan 190

et al., 2024a)—further refine results, ensuring RAG 191

systems deliver highly relevant and accurate infor- 192

mation for knowledge-intensive applications. 193

3 Methods 194

Figure 2 presents an overview of GGatrieval dur- 195

ing inference. This method enhances document 196

reliability through an optimized retrieval mech- 197

anism, thereby improving overall system perfor- 198

mance. Specifically, upon receiving a user query, 199

the system initially retrieves candidate documents 200

using a conventional retriever. It then applies the 201

FGA strategy (Section 3.2) to assign category la- 202

bels (Section 3.1) to each document. Subsequently, 203

the system re-ranks these candidate documents ac- 204

cording to their matching degrees and relevance 205

scores, selecting the final retrieval documents via 206

a progressive selection algorithm, which are then 207

verified. It then applies the FGA strategy (Section 208

3.2) to assign category labels (Section 3.1) to each 209

document. Otherwise, a SCQA strategy (Section 210

3.3) is added to refine the query iteratively until a 211

predefined iteration limit is reached. For more de- 212

tails regarding the specific algorithmic procedure, 213
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please refer to Appendix C.214

3.1 Selection Criterion and Document215

Taxonomy216

Inspired by human cognitive processes for docu-217

ment selection, as shown in Figure 1(a), we pro-218

pose a novel document selection criterion: whether219

a document contains a continuous text segment se-220

mantically aligning with all syntactic constituents221

of the query. Based on this, we define document222

labels into three types:223

Full Alignment: A candidate document contains a224

continuous text segment semantically matches all225

syntactic constituents of the query.226

Partial Alignment: A candidate document con-227

tains a continuous text semantically matches at228

least one syntactic constituent of the query, but229

does not match all syntactic constituents.230

No Alignment: A candidate document contains no231

continuous text segment that semantically matches232

any syntactic constituent of the query.233

Examples are shown in Figure 1(b). We use the234

FGA strategy (Section 3.2) to label retrieval docu-235

ments. Subsequently, which are then re-ranked and236

filtered to support generation effectively.237

3.2 Fine-grained Grounded Alignment238

We propose a FGA strategy, which assigns specific239

category label to each retrieval document to repre-240

sent the degree of semantic alignment between the241

retrieved document and the user query.242

Query Syntactic Parsing: Given a user query Q,243

the system decomposes it into essential syntactic244

constituents such as subject, predicate, and object:245

C = {Cs, Cv, Co, Cc, Cattr, Cadv, Csupp, Capp}
= LLM(IQ, Q)

(1)246

where IQ denotes the instruction for syntactic247

parsing, and C is the set of extracted syntac-248

tic constituents from query Q. The components249

Cs,Cv,Co,Cc,Cattr,Cadv,Csupp and Capp corre-250

spond to subject, predicate, object, predicative, at-251

tribute, adverbial, complement, and apposition, re-252

spectively. Leveraging LLM for shallow parsing253

enables comparable performance to traditional su-254

pervised methods without additional training or255

complex technical processing, improving the effi-256

ciency of system implementation.257

Fine-grained Grounded Alignment: For each258

syntactic constituent of the query, the system an-259

alyzes candidate documents D to identify seman-260

tically matching fragments, yielding both an ana- 261

lytical process and the matched constituents. This 262

process can be formulated as: 263

AnalysisResult = LLM(IDC , Ci, D) (2) 264

where IDC prompts the LLM to analyze and 265

match query syntactic constituents within docu- 266

ment D. Ci denotes each syntactic constituent 267

in C, Analysisresult includes both the matching 268

analysis and the corresponding results. Documents 269

aligned with more syntactic constituents are more 270

likely to support accurate answers. This process 271

mirrors human strategies for document selection, 272

demonstrating the potential of LLM-driven interac- 273

tion with external corpora at the syntactic level. 274

Result Reflection: As emphasized by Liu et al. 275

(2024), LLMs enhance performance through self- 276

reflection capabilities. Therefore, we incorporate a 277

reflection step to reassess the previous analysis as 278

follows: 279

L(Q,D) = LLM(IR, AnalysisResult) (3) 280

Here, IR instructs the LLM to reflect on the 281

AnalysisResult, yielding a final list of matched 282

syntactic constituents L(Q,D) from the user query 283

for document D. 284

Document Labeling: For document classifica- 285

tion, we define the following symbols: let |Q| 286

be the number of syntactic constituents in the 287

query Q, and |L(Q,D)| the numberin L(Q,D). 288

Based on the document classification in Section 289

3.1, documents are labeled as follows: “ Full 290

Alignment” if |L(Q,D)|=|Q|, “ Partial Alignment” 291

if 0< |L(Q,D)|<|Q|, and “ No Alignment” if 292

|L(Q,D)|=0. These labels support subsequent doc- 293

ument re-ranking and filtering, and also provide the 294

semantic foundation for SCQA strategy (Section 295

3.3). 296

3.3 Semantic Compensation Query 297

Augmentation 298

Dense retrievers excel at finding documents that 299

are semantically related to the original query 300

(Karpukhin et al., 2020; Lewis et al., 2020). Build- 301

ing on this, we propose a SCQA strategy, which 302

generates augmented queries to retrieve highly se- 303

mantically relevant documents: 304

Query Diversification: Full Alignment documents 305

meet the target retrieval criterion and thus require 306
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no further processing. However, for Partial Align-307

ment or No Alignment documents, we generate syn-308

onymous queries based on syntactic constituents309

missing from L(Q,D), as represented by:310

Q′ = {LLM(ICi
s , Ci) for Ci in C

if Ci not in L(Q,D) else Ci}
(4)311

If a component Ci is not in L(Q,D), ICi
S prompts312

the LLM generates a synonymous description, oth-313

erwise, the original component is retained. Original314

and synonymous components jointly reconstruct315

the query, yielding diversified updated queriy Q′.316

This method leverages the diversity of L(Q,D)317

to generate multiple queries that are semantically318

similar but differ in form.319

Semantic Compensation Query Augmentation:320

Dense retrievers typically perform semantic sim-321

ilarity matching at the sentence level. Although322

query diversification enriches the original queries323

from various syntactic perspectives, there remain324

notable semantic differences at the level of syntac-325

tic constituent granularity between these queries326

and the target document. To bridge this semantic,327

we propose compensating semantic information328

at the syntactic constituent level, constructing en-329

hanced queries that closely align with the target330

documents. The detailed implementation includes:331

Dpseudo = LLM(Ipseudo, Q
′), if

|L(Q,D)|
|Q|

< τ

(5)332

Q′′ =

{
Q+D, if |L(Q,D)|

|Q| ≥ τ

Q′ +Dpseudo , if |L(Q,D)|
|C| < τ

(6)333

A document is considered high-aligned if334
|L(Q,D)|

|Q| ≥ τ , and Low-aligned otherwise. The335

threshold τ is user-defined and adjustable, control-336

ling the intensity of semantic compensation and337

computational cost. For High-aligned documents338

D, we directly concatenate the query Q and the doc-339

ument D to form augmented queries. Given their340

semantic alignment, such concatenation enriches341

the query’s semantic content. For Low-aligned342

documents, in order to compensate semantic in-343

formation, we use Ipseudo to instruct the LLM to344

generate pseudo-documents Dpseudo aligned with345

every query syntactic constituent of the updated346

query Q′, then we concatenated them to form aug-347

mented queries. This strategy dynamically updates348

query Q at each retrieval iteration, bridging seman- 349

tic gaps between the query and target documents. 350

Consequently, the system retrieves documents with 351

high grounded alignment. Compared to LLatrieval 352

(Li et al., 2024), GGatrieval reduces retrieval vol- 353

ume by 95% on the ASQA dataset and by 67% 354

on the QAMPARI dataset, enhancing retrieval effi- 355

ciency (Appendix B.4). 356

4 Experiment Settings 357

4.1 Datasets and Evaluation Metrics 358

In this study, experiments were conducted on the 359

ALCE benchmark (Gao et al., 2023). Given that 360

ALCE primarily focuses on multi-hop question 361

answering, we expanded the LLatrieval baseline 362

by incorporating a representative open-domain 363

single-hop QA dataset—Natural Questions (NQ) 364

(Kwiatkowski et al., 2019)—to achieve a compre- 365

hensive evaluation of GGatrieval. (1) ASQA (Stel- 366

makh et al., 2022): An open-domain long-form 367

QA dataset providing comprehensive and explana- 368

tory long answers to ambiguous factual questions. 369

Answering questions from this dataset requires in- 370

tegrating multiple sources of information, resolv- 371

ing contextual ambiguities, and correlating vari- 372

ous short answers; hence, ASQA is classified as a 373

multi-hop dataset. (2) QAMPARI (Amouyal et al., 374

2023): A challenging open-domain QA benchmark 375

specifically designed to handle multi-answer ques- 376

tions distributed across different paragraphs. (3) 377

ELI5 (Fan et al., 2019): Developed by Facebook AI 378

Research, designed to enhance AI models’ capabil- 379

ities in addressing complex explanatory questions 380

and generating paragraph-level, multi-sentence an- 381

swers. (4) NQ: The Natural Questions dataset, de- 382

veloped by Google Research, primarily used for 383

evaluating machine reading comprehension tasks, 384

emphasizing answer localization and extraction. 385

We evaluate the system’s correctness and the ver- 386

ifiability of the documents using the ALCE frame- 387

work proposed by Gao et al. (2023). For more 388

details of datasets and evaluation metrics, please 389

refer to Appendix A.1. 390

4.2 Baselines 391

To conduct a comprehensive evaluation, we se- 392

lected seven representative baselines from the three 393

stages of retrieval mechanisms, highlighting the 394

advantages of GGatrieval in terms of document 395

verifiability and overall system accuracy. 396
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Dataset ASQA QAMPARI ELI5 Overall
Correct Citation Correct Citation Correct Citation

Correct Citation F1
EM-R Rec Prec F1 F1 Rec Prec F1 Claim Rec Prec F1

BM25 36.57 36.79 38.98 37.86 10.21 18.95 19.67 19.3 11.65 41.28 41.4 23.47 19.48 26.88
BGE-E-large 51.57 53.63 55.95 54.73 12.06 26.42 27.48 26.93 - - - - - -

CRAG 46.29 47.15 50.19 48.59 11.9 20.1 20.73 20.41 12.79 48.07 48.96 48.49 23.66 39.16
GGatrieval 52.86 56.93 58.19 57.51 17.85 35.44 36.58 35.98 14.21 56.16 56.26 56.17 28.31 49.89

Table 1: Comparison with Baselines in the Retrieval stage (USING gpt-3.5-turbo), The bolded numbers indicate the
best performance.

Dataset ASQA QAMPARI ELI5 Overall
Correct Citation Correct Citation Correct Citation

Correct Citation F1
EM-R Rec Prec F1 F1 Rec Prec F1 Claim Rec Prec F1

RankGPT 49.76 51.48 54.71 53.04 16.4 33.1 34.24 33.66 11.6 42.38 43.12 42.74 25.92 43.15
LLatrieval 50.8 53.54 55.75 54.58 16.86 34.09 34.9 34.46 11.62 43.47 44.85 43.88 26.43 44.31
GGatrieval 52.86 56.93 58.19 57.51 17.85 35.44 36.58 35.98 14.21 56.16 56.26 56.17 28.31 49.89

Table 2: Comparison with Baselines in the Post-retrieval stage (USING gpt-3.5-turbo).

Dataset ASQA QAMPARI
EM-R Citation-F1 Correct-F1 Citation-F1

Query2Doc 50.44 53.04 16.76 33.26
MuGI 50.76 51.71 16.52 32.23

GGatrieval 52.12 57.16 16.86 35.57

Table 3: Comparison with baselines in the Pre-retrieval
stage (USING gpt-3.5-turbo).

Dataset NQ
Correct-F1 Rec Prec Citation-F1

BM25 20.08 31.28 33.61 32.41
BGE-E-large 26.06 31.5 34.95 33.13

CRAG 23.98 23.7 26.19 24.588
RankGPT 27.83 33.45 36.76 35.03
LLatrieval 27.3 32.64 36.03 34.25
GGatrieval 28.68 34.51 37.58 35.98

Table 4: Comparison with baselines on the NQ dataset
(USING gpt-3.5-turbo).

Pre-retrieval stage: (1) MuGI (Zhang et al., 2024),397

which utilizes LLMs to generate multiple pseudo-398

reference documents combined with the original399

query to enhance sparse and dense retrieval effec-400

tiveness; and (2) Query2Doc (Wang et al., 2023),401

employing a few-shot prompting approach to gener-402

ate pseudo-documents related to the query through403

LLMs, which are then appended to the original404

query to enhance expressiveness.405

Retrieval stage: (1) BM25 (Robertson et al.,406

2009), a probabilistic model widely used in in-407

formation retrieval for assessing the relevance be-408

tween queries and documents; (2) BGE Large409

(Liu et al., 2023b), a general embedding model 410

efficiently converting textual data into low- 411

dimensional dense vectors, enabling effective se- 412

mantic similarity computation and retrieval; and 413

(3) CRAG (Yan et al., 2024b), introducing a 414

lightweight retrieval evaluator for assessing the rel- 415

evance and quality of retrieved documents given a 416

specific query. 417

Post-retrieval stage: (1) RankGPT (Sun et al., 418

2023), which directly generates document rankings 419

through language modeling; and (2) LLatrieval (Li 420

et al., 2024), which improves retrieval quality via 421

language model feedback, thereby supporting more 422

accurate and verifiable generation. For details of 423

baselines, please refer to Appendix A.2. 424

4.3 Implementation Details 425

We utilize the Verifiable Generation (Gao et al., 426

2023; Li et al., 2024) paradigm for both answer 427

generation and evaluation. The APIs of OpenAI’s “ 428

gpt-3.5-turbo” language model and the open-source 429

“ Meta-Llama3-8B-Instruct” model are used for 430

GGatrieval, with the temperature set to 0 to mini- 431

mize random variation. The threshold τ (Section 432

3.3) for document alignment categorizing is set to 433

0.66, determined through systematic experimen- 434

tation and analysis. The number of supporting 435

documents is set to 5, and the maximum number 436

of iterations is 4. For ASQA, QAMPARI, and 437

NQ datasets, the retrieval corpus is based on the 438

Wikipedia dataset used in ALCE (Gao et al., 2023), 439

with the dense embedding model BGE-large (Xiao 440

et al., 2024) as the retriever. For the overall imple- 441
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mentation details, please refer to Appendix A.3.442

4.4 Main Results443

Exp-1: Comparison with baselines in the Pre-444

retrieval stage. We evaluated GGatrieval against445

two query expansion baselines in the Pre-retrieval446

stage, MuGI and Query2Doc, on ASQA and QAM-447

PARI datasets. To ensure a fair comparison, only448

the initial application of GGatrieval’s SCQA strat-449

egy was employed. As shown in Table 3, GGa-450

trieval outperformed the best baseline by 4.8% for451

Correct and 8.4% for Citation-F1 on ASQA, and by452

0.5% for Correct and 7% for Citation-F1 on QAM-453

PARI. Notably, larger improvements in Citation-F1454

suggest GGatrieval retrieves more reliable docu-455

ments, while baseline methods sometimes relied456

on lower-quality documents coincidentally produc-457

ing correct answers.458

Exp-2: Comparison with Baselines in the Re-459

trieval stage. We assessed GGatrieval against con-460

ventional retrieval methods, BM25 and BGELarge,461

and a trained retriever, CRAG, using the ALCE462

benchmark. As shown in Table 1, GGatrieval sur-463

passed the best baseline by 2.5% in Correct and464

2.98% in Citation-F1 on ASQA. On QAMPARI, it465

achieved substantial improvements of 48% in Cor-466

rect and 33.6% in Citation-F1. For the ELI5 dataset,467

GGatrieval improved Claim by 11.1% and Citation-468

F1 by 15.83%. These results demonstrate that the469

optimizations applied by GGatrieval in both the Pre-470

retrieval(SCQA) and Post-retrieval(FGA) stages471

are critical to its effectiveness.472

Exp-3: Comparison with Baselines in the Post-473

retrieval stage. We compared GGatrieval with two474

baselines, RankGPT and LLatrieval, with results475

detailed in Table 2. On ASQA, GGatrieval im-476

proved Correct by 4.1% and Citation-F1 by 5.4%.477

On QAMPARI, it enhanced Correct by 5.9% and478

Citation-F1 by 4.4%. The most significant improve-479

ments occurred on ELI5, with a 22.3% increase in480

Claim and a 28% increase in Citation-F1. The ELI5481

dataset exhibits greater performance improvements482

because its queries contain more redundant infor-483

mation, leading to a higher number of syntactic484

components and a greater diversity of queries. This485

increased query diversity enables GGatrieval to ac-486

cess more reliable documents. Detailed statistics487

are shown in Table 11 in Appendix B.4.488

To evaluate the generality and robustness of our489

GGatrieval, we conducted experiments using the490

Meta-Llama3-8B-Instruct model. Please refer to491

Appendix B.1 for more details.492

ASQA QAMPARI
EM-R Cite Correct-F1 Cite

Final Result 58.30 61.30 17.90 35.42
— Full Alignment 46.79 53.43 13.43 28.52
— Partial Alignment 48.38 53.13 15.04 33.65
— No Alignment 50.14 56.14 16.60 34.88

Table 5: Ablation study for excluding documents with
different labels. “ —” signifies that a specific category
of document has been eliminated. The bolded numbers
indicate the worst performance.
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Figure 3: Cross-dataset analysis of label proportions.
The bars above the dashed line represent system perfor-
mance, while the bars below the dashed line indicate the
proportion of documents with different labels.

Exp-4: Comparison with Baselines on the NQ 493

Dataset To evaluate GGatrieval’s effectiveness 494

in single-hop question-answering tasks, we per- 495

formed experiments on the NQ dataset, benchmark- 496

ing it against multiple baselines. As shown in Ta- 497

ble 4, GGatrieval consistently outperformed all five 498

baselines from both the Retrieval and Post-retrieval 499

stages. In particular, GGatrieval achieved a 3% im- 500

provement in Correct scores and a 2.7% increase in 501

Citation-F1 over the strongest baseline. These re- 502

sults demonstrate the effectiveness of GGatrieval in 503

both single-hop and multi-hop question answering 504

tasks. 505

4.5 Ablation Study and Analysis 506

Exp-5: Ablation Study on Alignment Labels. 507

We investigated the effect of alignment labels by 508

systematically excluding documents labeled as 509

“Full Alignment”, “Partial Alignment”, and “No 510

Alignment” from the candidate retrieval set. Ta- 511

ble 5 presents results for ASQA and QAMPARI 512

datasets. To maintain comparability, remaining 513

documents were re-ranked by alignment degree 514
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and relevance, filling any gaps caused by exclusion.515

Excluding “ Full Alignment” documents caused516

the most significant performance drop, followed517

by “ Partial Alignment” , while “ No Alignment”518

exclusions had minimal impact. This establishes a519

clear hierarchy of importance: “ Full Alignment” >520

“ Partial Alignment” > “ No Alignment” , corrobo-521

rated by additional analysis in Exp-10 (Appendix522

B.3).523

Figure 3 reveals a correlation between docu-524

ment category proportions and GGatrieval’s per-525

formance improvements across datasets. On ELI5,526

performance notably improved with a higher pro-527

portion of “ Partial Alignment” documents and528

fewer “ No Alignment” ones. This is because529

ELI5 queries often contain redundant information,530

where “ Partial Alignment” documents prove valu-531

able. For instance, in the query “ Please briefly532

explain, whether Jordan is the greatest player in533

NBA history,” alignment with the latter segment534

suffices. Overall, these findings indicate that “ Full535

Alignment” documents are most likely to support536

query-answer generation, “ Partial Alignment” la-537

bels enhance system robustness, and “ No Align-538

ment” labels can serve as criteria for document539

exclusion.540

Dataset ASQA QAMPARI

EM-R Cite Correct-F1 Cite

Origin 51.57 54.73 12.06 26.93

+SCQA 51.97 55.03 15.32 32.82

+SCQA & FGA 52.12 57.16 16.86 35.57

Table 6: Ablation Study of GGatrieval Components.

Exp-6: Ablation Study of GGatrieval Com-541

ponents. We further analyzed the contributions542

of individual GGatrieval modules on the ASQA543

and QAMPARI datasets. Starting from a base-544

line retrieval system, we incrementally added the545

SCQA and Fine-grained Grounded Alignment546

(FGA) strategies. Results in Table 6 demonstrate547

that each component improves performance, af-548

firming their complementary roles in enhancing the549

system. Additional ablation experiments on the550

reflection step within the FGA strategy, detailed in551

Appendix B.2, further confirm its effectiveness.552

Exp-7: Component Interactions Across Iter-553

ations. We investigated the interplay between554

query updates, document retrieval, and overall per-555

formance across four iterations using ASQA and556
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Figure 4: Impact of interactions among components.
The solid line represents the evaluation metric, while the
dashed line indicates the distribution of Full Alignment
labels within the sample.

QAMPARI datasets. Figure 4 illustrates perfor- 557

mance metrics alongside query update number and 558

the distribution of “ Full Alignment” documents 559

over iterations. The largest performance gain oc- 560

curred after the second iteration, aligning with a 561

decrease in samples lacking “ Full Alignment” doc- 562

uments and an increase in those with five such 563

documents. Performance stabilized thereafter. No- 564

tably, gains tracked closely with the rising propor- 565

tion of “ Full Alignment” documents, emphasizing 566

their pivotal role. Query update frequency showed 567

weak correlation with performance, suggesting that 568

semantic query augmentation primarily enhances 569

retrieval by increasing highly aligned documents. 570

Among 1,000 samples per dataset, fewer than 30 571

had sufficient “ Full Alignment” documents, while 572

over 600 had none, indicating that expanding their 573

availability in the corpus could further boost perfor- 574

mance. These results also highlight the significant 575

potential of interacting with retrieval documents at 576

the level of syntactic constituent. 577

5 Conclusion 578

Inspired by LLatrieval, we propose GGatrieval, a 579

novel framework to address the semantic informa- 580

tion deficiency issue in retrieval mechanisms. Un- 581

like traditional methods, our approach introduces 582

a new criterion for document selection, which are 583

then used to classify retrieved documents. Based 584

on this classification, we develop two strategies: 585

FGA and SCQA. Together, these strategies opti- 586

mize the retrieval mechanism, ensuring that the re- 587

trieved documents meet verifiability standards and 588

improve overall system performance. Experimen- 589

tal results demonstrate that GGatrieval outperforms 590

various types of baselines and achieves superior 591

results. 592
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Limitations593

• We preliminarily explored interactions be-594

tween queries and retrieved documents at the595

syntactic constituent level. However, log-596

ical relationships among these components597

were not modeled, and hallucination in LLMs598

may introduce alignment errors. Future work599

will focus on enhancing alignment accuracy600

through deep learning or reinforcement learn-601

ing methods.602

• Similar to human cognitive processes, our603

method incurs additional latency and compu-604

tational overhead due to its simulation of hu-605

man reasoning. However, over the years we606

have seen the model algorithm optimization,607

acceleration mechanisms advance and hard-608

ware performance increase, which can help609

improve the efficiency of model inference.610
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A Experiment Setting886

A.1 Datasets and Evaluation Metrics887

In this study, experiments were conducted on the888

ALCE benchmark (Gao et al., 2023). Given that889

ALCE primarily focuses on multi-hop question890

answering, we expanded the LLatrieval baseline891

by incorporating a representative open-domain892

single-hop QA dataset—Natural Questions (NQ)893

(Kwiatkowski et al., 2019)—to achieve a compre-894

hensive evaluation of GGatrieval.895

(1) ASQA (Stelmakh et al., 2022): An open-896

domain long-form QA dataset providing compre-897

hensive and explanatory long-form answers to898

ambiguous factual questions. Answering ques-899

tions from this dataset requires integrating multiple900

sources of information, resolving contextual am-901

biguities, and correlating various short answers;902

hence, ASQA is classified as a multi-hop dataset.903

We evaluate our approach using the development904

set of ASQA, which includes 948 questions, each905

with two annotations.906

(2) QAMPARI (Amouyal et al., 2023): A challeng-907

ing open-domain QA benchmark specifically de-908

signed to handle multi-answer questions distributed909

across different paragraphs. For instance, a typical910

question is: “ Which players were drafted by the911

Brooklyn Nets?” Such distributed-answer scenar-912

ios frequently appear in real-world contexts. We913

utilize the development set of QAMPARI, compris-914

ing 1000 QA pairs, for evaluation.915

(3) ELI5 (Fan et al., 2019): Developed by Facebook916

AI Research, ELI5 is the first large-scale open-917

domain dataset designed to improve AI models’918

capabilities in handling complex explanatory ques-919

tions and generating multi-sentence, paragraph-920

level answers. Successfully addressing ELI5 ques-921

tions requires cross-document and cross-sentence922

reasoning, categorizing this dataset as multi-hop923

QA. To assess answer correctness, we adopt the924

methodology from Gao et al. (2023), evaluating925

whether model predictions entail the sub-claims of926

standard answers.927

(4) NQ: The Natural Questions dataset, developed928

by Google Research, is an open-domain QA bench-929

mark primarily designed for evaluating machine930

reading comprehension, emphasizing answer local-931

ization and extraction. To maintain consistency932

with the ALCE evaluation, we randomly select933

1000 samples from the NQ development set to as-934

sess our method.935

This study assesses retrieval effectiveness936

through verifiability of cited documents and eval- 937

uates text generation quality of the optimized 938

retrieval-augmented generation (RAG) system. Re- 939

garding correctness, the ASQA dataset employs Ex- 940

act Match Recall (EM-R) to measure whether gen- 941

erated answers encompass multiple correct short 942

answers. QAMPARI and NQ evaluates gener- 943

ated entity lists using precision-matched F1 scores 944

against gold-standard answers. The ELI5 dataset 945

assesses the entailment relationship between gener- 946

ated text and standard-answer claims. For verifia- 947

bility, we adopt the evaluation framework proposed 948

by Gao et al. (2023), measuring Citation Recall, Ci- 949

tation Precision, and their harmonic mean, Citation 950

F1, to determine whether cited documents fully 951

and accurately support the generated answers. This 952

multi-dimensional evaluation approach not only 953

provides a comprehensive assessment of model per- 954

formance but also underscores the critical impact of 955

document retrieval quality on the generated outputs. 956

Following ALCE (Gao et al., 2023), for ASQA 957

and QAMPARI, we use aliases of short answers 958

provided by the dataset and normalize the model 959

output and the short answers when measuring ex- 960

act match. For ASQA, we use its sub-questions 961

as the question to eliminate the original question’s 962

ambiguity, for simplicity. 963

A.2 Baselines 964

To achieve a comprehensive evaluation, we selected 965

seven representative baselines from the three stages 966

of retrieval mechanisms, highlighting GGatrieval’s 967

advantages in terms of document verifiability and 968

overall system accuracy. 969

In the Pre-retrieval stage, we selected two query 970

augmentation baselines: (1) MuGI [65], which em- 971

ploys LLMs to generate multiple pseudo-reference 972

documents combined with the original query to en- 973

hance sparse and dense retrieval effectiveness; (2) 974

Query2Doc (Wang et al., 2023), utilizing a few- 975

shot prompting strategy with LLMs to generate 976

pseudo-documents relevant to the query, subse- 977

quently appended to the original query to enhance 978

its expressiveness. Specifically, we employed the 979

BM25+MuGI (ChatGPT-3.5) method from MuGI 980

and the Query2Doc method for query augmenta- 981

tion. Subsequently, the document retrieval and 982

answer generation processes of these query aug- 983

mentation baselines were kept consistent with our 984

proposed method and evaluated on the ASQA and 985

QAMPARI datasets. To ensure fairness, we ex- 986

plicitly evaluated GGatrieval’s performance in the 987
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Dataset ASQA QAMPARI ELI5 Overall
Correct Citation Correct Citation Correct Citation

Correct Citation F1
EM-R Rec Prec F1 F1 Rec Prec F1 Claim Rec Prec F1

BM25 31.03 23.5 24.58 24.02 5.97 7.34 8.25 7.76 10.88 23.93 26.56 25.18 15.96 18.99
BGE-E-large 40.59 33.83 37.79 35.7 6.55 11.62 13.88 12.62 - - - - 23.57 24.16

CRAG 33.92 33.86 36.28 35.05 5.91 7.0 8.34 7.6 11.19 29.19 32.16 30.61 17.01 24.42
RankGPT 40.17 36.59 38.68 37.61 9.24 16.8 19.7 18.13 11.2 24.89 28.52 26.58 20.20 27.44
LLatrieval 40.58 40.13 42.94 41.5 6.93 13.7 14.52 14.09 11.23 27.96 32.9 30.2 19.58 28.6
GGatrieval 41.37 39.7 42.92 41.22 9.5 18.06 21.13 19.47 11.64 30.41 33.7 32.0 20.84 30.9

Table 7: Comparison with Baselines Using the LLama Model

initial iteration of semantic compensation query988

augmentation, thereby eliminating potential influ-989

ences from multiple iterations. In the Retrieval990

stage, we compared our approach with two stan-991

dard retrievers and one trained retriever: (1) BM25992

(Robertson et al., 2009), a probabilistic model993

widely utilized in information retrieval to evalu-994

ate relevance between queries and documents; (2)995

BGE Large (Liu et al., 2023b), a general embed-996

ding model efficiently converting text data into997

low-dimensional dense vectors, facilitating effec-998

tive semantic similarity calculation and retrieval;999

(3) CRAG (Yan et al., 2024b), which introduces1000

a lightweight retrieval evaluator for assessing the1001

relevance and quality of retrieved documents given1002

a specific query. For a fair comparison, we utilize1003

only the retriever trained in CRAG to retrieve from1004

the same corpus as GGatrieval. The top five ranked1005

retrieved documents are then used to complete1006

the final generation task. In the Post-retrieval1007

stage, we selected two representative baselines: (1)1008

RankGPT (Sun et al., 2023), directly generating1009

document rankings through language modeling;1010

and (2) LLatrieval (Li et al., 2024), improving re-1011

trieval quality through language model feedback,1012

thus supporting more accurate and verifiable gener-1013

ation.1014

A.3 Implementation Details1015

We utilize the Verifiable Generation (Gao et al.,1016

2023; Li et al., 2024) paradigm for both answer gen-1017

eration and evaluation, aiming to assess the verifia-1018

bility and accuracy of the generated responses and1019

compare the effectiveness of various retrieval mech-1020

anisms. The APIs of OpenAI’s “ gpt-3.5-turbo” lan-1021

guage model and the open-source “ Meta-Llama3-1022

8B-Instruct” model are used for implementing FGA1023

strategy, SCQA strategy, and answer generation,1024

with the temperature set to 0 to minimize random1025

variation. The threshold τ (Section 3.3) for doc-1026

ument alignment categorizing is set to 0.66, de-1027

termined through systematic experimentation and 1028

analysis. In the Progressive Selection (Li et al., 1029

2024), the window size is set to 20, the number of 1030

documents retrieved per query is 5, and the number 1031

of candidate documents is 50 to ensure diversity. 1032

The number of supporting documents is set to 5, 1033

and the maximum number of iterations is 4. For 1034

ASQA, QAMPARI, and NQ datasets, the retrieval 1035

corpus is based on the Wikipedia dataset used in 1036

ALCE (Gao et al., 2023), with the dense embed- 1037

ding model BGE-large (Xiao et al., 2024) as the 1038

retriever. For the ELI5 dataset, we use the Sphere 1039

(Piktus et al., 2021) corpus and follow ALCE (Gao 1040

et al., 2023), employing BM25 (Robertson et al., 1041

2009) for document retrieval due to the higher cost 1042

and slower speed of dense retrievers on large-scale 1043

web corpora. For the ALCE benchmark, the ex- 1044

ample sizes for the ASQA, QAMPARI, and ELI5 1045

datasets are 948, 1000, and 1000, respectively. To 1046

ensure consistency with the ALCE evaluation, we 1047

randomly select 1000 samples from the develop- 1048

ment set of the NQ dataset to assess our approach. 1049

B Supplementary Experiments and 1050

Analysis 1051

B.1 Exp-8: Comparison with Baselines Using 1052

the LLama Model 1053

We further compared the performance of GGa- 1054

trieval with several baselines using the LLama 1055

model; results are shown in Table 7. GGatrieval 1056

generally outperformed most baseline methods, 1057

demonstrating its plug-and-play capability. Fur- 1058

thermore, we observed that employing stronger 1059

language models improved the performance across 1060

all methods. This suggests that GGatrieval will 1061

continue to offer practical value as increasingly 1062

powerful language models are developed in the 1063

future. 1064

13



Dataset ASQA

EM-R Rec Prec Citation-F1

No reflection step 50.79 49.96 53.78 51.8

With reflection step 52.86 56.93 58.19 57.51

Table 8: Ablation Study of reflection step.

ASQA QAMPARI ELI5
NA in all docs 10100 25736 58128
NA in final docs 1712 1915 1153
PA in all docs 6081 10715 53438
PA in final docs 1663 1594 2571
FA in all docs 2596 3386 12418
FA in final docs 1305 1337 1239

Table 9: The number of different alignment labels.

ASQA QAMPARI ELI5
NA conversion rate 0.17 0.07 0.02
PA conversion rate 0.27 0.15 0.05
FA conversion rate 0.5 0.38 0.1

Table 10: The conversion rate of different alignment
labels.

ASQA QAMPARI ELI5

Total Examples 948 1000 1000
Total Docs of LLatrieval 402750 122000 126050
Total Docs of GGatrieval 18777 39837 123984

Table 11: Comparison of the number of documents
retrieved by GGatrieval and LLatrieval.

B.2 Exp-9: Ablation Study on Reflection1065

Steps1066

In the fine-grained semantic alignment strategy, the1067

reflection step directly influences document align-1068

ment outcomes, subsequently determining the qual-1069

ity of the final candidate documents. As shown1070

in Table 8, incorporating reflection significantly1071

improves performance, demonstrating that the re-1072

flective capability of the LLM enhances document1073

alignment, thus positively impacting the quality1074

and effectiveness of the final selected documents.1075

B.3 Exp-10: Analysis of Alignment Label1076

Proportions1077

We analyzed the quantities and conversion rates1078

of alignment labels in the final document selec-1079

tion, presented in Tables 9 and 10, where “ NA,”1080

“ PA” , and “ FA” represent “ No Alignment” , 1081

“ Partial Alignment” , and “ Full Alignment” la- 1082

bels, respectively. In the ASQA, QAMPARI, and 1083

ELI5 datasets, Full Alignment and Partial Align- 1084

ment documents did not dominate the final selec- 1085

tions, primarily due to uneven label distributions 1086

and the limited availability of fully aligned docu- 1087

ments. Nonetheless, Full Alignment documents 1088

consistently exhibited the highest conversion rates 1089

across all three datasets. 1090

B.4 Statistics on Retrieved Documents for 1091

LLatrieval and GGatrieval 1092

In Table 11, we present the sample sizes and the to- 1093

tal number of retrieved documents for each dataset 1094

by LLatrieval and GGatrieval. 1095

B.5 Further discussion 1096

Q1. How should inference overhead be man- 1097

aged? 1098

• Compared to LLatrieval, GGatrieval intro- 1099

duces higher latency, primarily because GGa- 1100

trieval simulates human-like decision-making 1101

in document selection, whereas LLatrieval 1102

simply prompts the large model to judge docu- 1103

ment quality. Analogous to human reasoning, 1104

increased energy consumption and latency are 1105

often unavoidable, but the improved accuracy 1106

and verifiability of retrieved documents pro- 1107

vide additional value. Notably, our approach 1108

significantly reduces the number of retrieved 1109

documents—by 95% on ASQA and by 67% 1110

on QAMPARI—which indirectly helps con- 1111

trol inference latency. 1112

• Our method allows dynamic control over 1113

alignment granularity via the threshold param- 1114

eter and limits the maximum number of itera- 1115

tions (e.g., maximum iterations T=4, window 1116

size=20, and five documents retrieved per iter- 1117

ation), enabling a trade-off between efficiency 1118

and performance. 1119

• As deep learning techniques and hardware 1120

continue to advance, computational overhead 1121

will become less of a concern. 1122

Q2. How does GGatrieval contribute to multi- 1123

hop question answering? 1124

• For multi-hop QA tasks, our method enhances 1125

the handling of cross-document and complex 1126
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semantic relations through two key mech-1127

anisms. The SCQA strategy supplements1128

query-relevant semantic information at the1129

level of syntactic constituents, which is partic-1130

ularly effective for meeting the requirements1131

of multi-hop questions from the perspective1132

of query subcomponents. The FGA strategy1133

prioritizes documents that contain the greatest1134

amount of information aligned with the query,1135

thus supporting more accurate multi-hop rea-1136

soning.1137

• Another crucial factor affecting multi-hop QA1138

performance is the generator; however, this1139

work primarily focuses on improving the qual-1140

ity of retrieved documents within the retrieval1141

mechanism.1142

Algorithm 1 GGatrieval
Input: Question q, document pool Dc, reranked document
pool Do, the large language model LLM, the Retriever R, the
maximum iteration T , each iteration’s document candidates
quantity N
Output: Supporting Documents Df

1: Q← q
2: D ← {}
3: C ← {Cs, Cv, Co, Cc, Cattr, Cadv, Csupp, Capp}
4: = LLM(IQ, Q)
5: for i ∈ (1, T ) do
6: if D ̸= {} then
7: Q← SCQA strategy
8: end if
9: Dc ← R(Q,N)

10: for D∗
c ∈ Dc do

11: D∗
c ← FGA strategy

12: end for
13: Do ← Rerank Dc with alignment label
14: for D∗

o ∈ SlidingWindow(Do) do
15: Df ←Use the LLM to select k docs from D∪D∗

o

16: end for
17: if Verify(q,Df )→ Yes then
18: break
19: end if
20: end for
21: Return Df

C Algorithm of GGatrieval1143

Algorithm 1 outlines the workflow of GGa-1144

trieval. The process begins with parsing the1145

user query into syntactic constitutents C =1146

{Cs, Cv, Co, Cc, Cattr, Cadv, Csupp, Capp} (Line1147

3∼4), initiating the iterative process. In each it-1148

eration, the system applies the SCQA strategy1149

to retrieve a refined set of candidate documents1150

Dc (Lines 6∼9), ensuring that the retrieved docu-1151

ments are increasingly semantically aligned with1152

the query. Next, the FGA strategy is employed1153

to assign alignment labels to each document in 1154

Dc (Lines 10∼11). These documents are then re- 1155

ordered based on the alignment labels and rele- 1156

vance, resulting in a prioritized set Do (Line 13), 1157

which includes documents that meet the verifia- 1158

bility criteria. Finally, the system employs the 1159

Progressive Selection and Document Verification 1160

methods proposed by Li et al. (2024) to select and 1161

validate the final supporting documents Df (Lines 1162

14∼18). GGatrieval defines a robust selection crite- 1163

rion to establish clear retrieval objectives. Through 1164

the iteration, the retrieval results are progressively 1165

refined to yield documents that better align with 1166

the retrieval goal, thereby enabling the LLM to 1167

generate both accurate and verifiable answers. 1168

D Instructions of GGatrieval 1169

We show the overall instructions in Table 12, 13, 14, 1170

15. The instructions for the progressive selection 1171

process are identical to those used in LLatrieval(Li 1172

et al., 2024). 1173
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# CONTEXT #
## Profile
You are a linguistics expert proficient in English grammar. You want to analyze the grammatical compo-
nents of a question.

## Skill
Analyze the grammatical structure of the given question from the perspectives of the subject, predicate,
object, attribute, adverbial, complement, etc.

# OBJECTIVE #
From the perspective of grammatical structure such as subject, predicate, object, attribute, adverbial or
complement, please parse the given question grammatically and return it in a standard format.
<question>
Question
</question>

## Output
Just output the syntactic components of the given question according to the standard format, do not output
any other content.

## Output Criteria (Very Important)
Be as objective as possible.

# STYLE #
Please generate specific content in a very rigorous style, following the writing habits of a linguistics
professor.

# REPONSE #
Standard format of syntactic components to the question.

Table 12: The instruction for syntactic parsing.
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# CONTEXT #
## Profile
You are a linguistics expert proficient in English grammar.You want to find the answer to a question in a
piece of text, but you are not sure if the text contains the answer to the question.

## Skill
1. Analyze the grammatical structure of the given text from the perspectives of the subject, predicate,
object, attribute, adverbial, complement, etc.
2. According to all grammatical components of the question to find the corresponding content that matches
or indicates in semantics in the given text.

# OBJECTIVE #
From the perspective of grammatical structure such as subject,predicate object, attribute, adverbial or
complement,etc, please judge whether the given text has sufficient content to semantically match or
indicate each syntactic component of the given question.And give your analysis steps.

<question>
Question
</question>

<syntactic component>
Components
</syntactic component>

<text>
Passage
</text>

## Rules
1. Output specific analysis steps.
2. Assume you do not know the answer to the question, and analyze and judge based solely on the content
of the given text.
3. Strictly follow the specified output format. Do not answer the given question.

## Output
-analysis steps.
-Judgement Result.

## Workflow
1. Analyze the text to find content semantically matches or indicates for each syntactic component of the
question.
2. Make an analysis result for each syntactic component.

# STYLE #
Please generate specific content in a very rigorous style, following the writing habits of a linguistics
professor.

# REPONSE #
Analysis steps and results.

Table 13: The instruction for Fine-grained Grounded Alignment.

17



# CONTEXT #
Now there is a question, a syntactic components list for that question, a given text, and an analysis result
of semantic matching between the text and the question.I want to reflect on the given analysis results
and output a new list. Each element in the new list comes from the syntactic components list and can be
semantically matched or indicated with content from the given text.

# OBJECTIVE #
Please reflect on whether the analysis results are correct, provide the correct analysis with a conclusion
again.For each element in the syntactic components list, if it can find semantically matching or indicating
content in the given text, please put that element into a new list and output this new list,else,and rewrite a
more specific question by converting the missing components into synonymous descriptions.

<question>
Question
</question>

<syntactic component>
Components
</syntactic component>

<analysis results>
Analysis_Results
</analysis results>

<text>
Passage
</text>

## Output
-Analysis Steps:Correct analysis with a conclusion.
-Judgement Result:The syntactic components list.
-Rewrite Question:The question is rewritten by converting the missing components into synonymous
descriptions,and enclose it in “ «<” and “ »>” symbols.

## Rules
1. Output specific correct analysis steps with a conclusion.
2. Each element in the final output list in the Judgement Result must be able to find semantic match or
indication in the given text.
3. Assume you do not know the answer to the question, and analyze and judge based solely on the content
of the given text.
4. Strictly follow the specified output format. Do not answer the given question.
5. The final output list must start with ’[’ and end with ’]’.
6. Each element of the final output list in Judgement Result must come from the syntactic components
list,otherwise output a empty list.
7. Enclose the Rewrite Question in “ «<” and “ »>” symbols.

# REPONSE #
1. Analysis steps with a conclusion.
2. The final output list as Judgement Result,without any other content.
3. A Rewrite Question enclosed with “ «<” and “ »>” symbols.

Table 14: The instruction for Reflection and Query Optimization.
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# OBJECTIVE #
Please generate a paragraph related to the given question, such that for every grammatical component of
the question, there is a semantically matching grammatical component in the paragraph, and the paragraph
can provide an answer to the question.

## DEMONSTRATION
Who directed a movie written by Ken Hixon?//relative paragraph:Fear and Loathing in Las Vegas (film)
Fear and Loathing in Las Vegas is a 1998 American psychedelic satirical road film adapted from Hunter S.
Thompson’s novel of the same name. It was co-written and directed by Terry Gilliam, starring Johnny
Depp as Raoul Duke and Benicio del Toro as Dr. Gonzo. The two embark on an initially assigned journey
with journalistic purpose which turns out to be an exploration of the Las Vegas setting under the effect of
psychoactive substances. The film received mixed reviews from critics and was a financial failure.

Who’s job is in the LA County Sheriff’s Department?//relative paragraph:Jim McDonnell (sheriff) James
McDonnell (born 1959) is an American law enforcement official who served as the 32nd Sheriff of the
County of Los Angeles in California. McDonnell was elected as L.A. County’s 32nd sheriff on November
4, 2014, defeating former Undersheriff Paul Tanaka. He replaced interim sheriff John Scott on December
1, 2014, when he was sworn in. Previously he served as the Chief of Police in Long Beach, California and
before that in the Los Angeles Police Department, reaching the rank of Assistant Chief. McDonnell grew
up in a working-class neighborhood in Brookline, Massachusetts.

Who worked for a military branch of the Kingdom of Prussia?//By the end of Frederick’s reign, the army
had become an integral part of Prussian society and numbered 200,000 soldiers, making it the third largest
in Europe after the armies of Russia and Austria. The social classes were all expected to serve the state
and its army — the nobility led the army, the middle class supplied the army, and the peasants composed
the army. Minister Friedrich von Schrötter remarked that, “ Prussia was not a country with an army, but
an army with a country” . Frederick the Great’s successor, his nephew Frederick William II (1786–97).

What Indonesian mosques are located in the province of South Sulawesi?//However, such concerns were
allayed along with the development and progress of the renovations since the groundbreaking by then
governor of Palembang Zainal Basri Palaguna in October 9, 1999. Great Mosque of Makassar Great
Mosque of Makassar is a mosque located in Makassar, Indonesia, and the main mosque of South Sulawesi
Province. The construction begun in 1948 and completed in 1949. Since then the mosque underwent a
renovation from 1999 to 2005. The mosque can accommodate up to 10,000 worshipers, making it one of
the largest mosques in Southeast Asia.

{Question}

Table 15: The instruction of generating semantically aligned pseudo-documents.
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