
YOLO-MARL: You Only LLM Once for Multi-Agent Reinforcement
Learning

Yuan Zhuang1†, Yi Shen2†, Zhili Zhang1, Yuxiao Chen3 and Fei Miao1∗

Abstract— Advancements in deep multi-agent reinforcement
learning (MARL) have positioned it as a promising approach for
decision-making in cooperative games. However, it still remains
challenging for MARL agents to learn cooperative strategies
for some game environments. Recently, large language models
(LLMs) have demonstrated emergent reasoning capabilities,
making them promising candidates for enhancing coordination
among the agents. However, due to the model size of LLMs,
it can be expensive to frequently infer LLMs for actions that
agents can take. In this work, we propose You Only LLM
Once for MARL (YOLO-MARL), a novel framework that
leverages the high-level task planning capabilities of LLMs to
improve the policy learning process of multi-agents in coop-
erative games. Notably, for each game environment, YOLO-
MARL only requires one time interaction with LLMs in the
proposed strategy generation, state interpretation and planning
function generation modules, before the MARL policy training
process. This avoids the ongoing costs and computational
time associated with frequent LLMs API calls during train-
ing. Moreover, the trained decentralized normal-sized neural
network-based policies operate independently of the LLM.
We evaluate our method across two different environments
and demonstrate that YOLO-MARL outperforms traditional
MARL algorithms. The Github repository of our code can be
found at https://github.com/paulzyzy/YOLO-MARL.

I. INTRODUCTION

MARL has emerged as a powerful paradigm for addressing
complex decision-making challenges in multi-agent systems.
With the rising applications of multi-agent systems, it is
increasingly crucial for individual agents to cooperate or
compete in dynamic environments without relying on cen-
tralized control [1]. In cooperative Markov games, agents
work together to maximize joint rewards. However, existing
MARL approaches often struggle with learning effective
distributed policies, particularly in tasks characterized by
sparse rewards, dynamic environments, and large action
spaces.

Concurrently, LLMs have demonstrated remarkable ca-
pabilities as high-level semantic planners by leveraging in-
context learning and extensive prior knowledge [2]. Recent
studies have showcased LLMs deployed as embodied agents
[3], [4], as well as their use in guiding reinforcement learning
(RL) as ELLM, which leverages LLMs to suggest goals [5],
and work focusing on aligning LLM-provided actions with
RL policies [6]. Despite these promising developments, in-
tegrating LLMs into multi-agent settings remains largely un-

† These authors contributed equally to this work.
1University of Connecticut
2University of Pennsylvania
3NVIDIA
∗Corresponding author: Fei Miao (fei.miao@uconn.edu)

explored. Moreover, repeated interactions with LLMs during
long-episode or complex tasks can be both time-consuming
and computationally prohibitive, particularly when training
over tens of millions of steps.

Motivated by these challenges, we propose YOLO-MARL,
a novel framework that integrates the high-level planning
capabilities of LLMs with MARL policy training, as shown
in Fig. 1. The key innovation of YOLO-MARL is its re-
quirement for only a one-time interaction with the LLM per
game environment. Once the strategy generation, state inter-
pretation, and planning function generation modules produce
the necessary guidance, the MARL training process proceeds
without further LLM involvement. This design substantially
reduces the communication overhead and computational cost
typically associated with LLM inferences. Moreover, YOLO-
MARL demonstrates its strong generalization capability and
simplicity for application since it only requires basic un-
derstanding of new environments from users. We validate
our framework on a sparse reward multi-agent environment:
Level-Based Foraging environment [1] as well as the MPE
environment [7], and our results show that YOLO-MARL
outperforms several MARL baselines, such as [7]–[9]. To the
best of our knowledge, this work represents one of the first
trials to fuse the high-level reasoning and planning abilities
of LLMs with MARL, pointing a new direction for scalable
and efficient multi-agent coordination [10].

In summary, our proposed method YOLO-MARL has the
following advantages:
• This framework synergizes the planning capabilities of

LLMs with MARL to enhance the policy learning in
challenging cooperative game environments. In particu-
lar, our approach exploits the LLM’s wide-ranging rea-
soning ability to generate high-level planning functions
to facilitate agents in coordination.

• YOLO-MARL requires minimal LLMs involvement,
which significantly reduces computational overhead and
mitigates communication connection instability con-
cerns when invoking LLMs during the training process.

• Our approach leverages zero-shot prompting and can be
easily adapted to various game environments, with only
basic prior knowledge required from users.

An overview of YOLO-MARL is presented in Fig. 1, and
all related prompts, environments, and generated planning
functions are available in our GitHub repository.

II. PROBLEM FORMULATION

Markov game is defined as a multi-agent decision-making
problem when the interaction between multiple agents affect

https://github.com/paulzyzy/YOLO-MARL

Environment and Task Description
“This environment has N agents…”
“Your goal is…”
“You have to follow the rules of the game…”

LLM generated strategies:
“Goal and purpose…”
“Approach / Methodology…”
“Observation and task break down…”

Planning Function Generation

Strategy Generation

MARL Training

Reward Function

Actions:𝑎!

Assign
Task:𝑇!

Reward
𝑅
=
𝑟
+
'

! ∆𝑟

State Interpretation Function

LLM Generated Planning Function

LLM (Claude 3.5)

State Interpretation

Agents

Environment

LLM (Claude 3.5)

Raw
State:𝑆"

State
Interpretation
Function:𝐹#()

LLM Generated
Planning

Function:𝐹$()

Processed
State:𝑆%

Raw
State:𝑆"

Fig. 1: Depiction of our framework YOLO-MARL. (a). Strategy Generation: We pass basic environment and task description
into the LLM to get generated strategies for this specific environment. (b). State Interpretation: We process the global states
so that the format of global states will be more structured and organized for better comprehension by the LLM. (c).
Planning Function Generation: We chain together the environment and task description, LLM generated strategies and state
interpretation function. These prompts are then fed into the LLM to generate a Python planning function for this environment.
(d). MARL Training: The state interpretation function and the generated planning function are integrated into the MARL
training process. The LLM is no longer required for further interaction after the Planning Function Generation. The more
detailed explanation of MARL Training part can be found in Algorithm 1

the state dynamics of the entire system and the reward of
each agent under certain conditions [11]. In this work, we
consider a Markov game, or a stochastic game [12] defined
as a tuple G := (N ,S,A,{ri}i∈N , p,γ), where N is a set
of N agents, S = S1×·· ·× SN is the joint state space, A =
A1×·· ·×AN is the joint action space, with (Si,Ai) as the state
space and action space of agent i, respectively, γ ∈ [0,1) is the
discounting factor [11], [12]. The state transition p : S×A→
∆(S) is controlled by the current state and joint action, where
∆(S) represents the set of all probability distributions over
the joint state space S. Each agent has a reward function, ri :
S×A→R. At time t, agent i chooses its action ai

t according
to a policy π i : S→ ∆(Ai).

For each agent i, it attempts to maximize its expected sum
of discounted rewards, i.e. its objective function Ji(s,π) =
E
[
∑

∞
t=1 γ t−1ri

t(st ,at)|s1 = s,at ∼ π(·|st)
]
. In the literature,

MARL algorithms [7]–[9] have been designed to train neural
network-based policies πi(θi). For a cooperative game, one
shared reward function for all agents is widely used during
the training process, which is also considered in this work.

III. METHODOLOGY

In this section, we introduce YOLO-MARL, a framework
that leverages the high-level planning capabilities of LLMs
to enhance MARL. YOLO-MARL integrates four key com-
ponents: Strategy Generation, State Interpretation, Planning
Function Generation, and MARL training process with the
LLM generated Planning Function incorporated throughout.

Algorithm 1 YOLO-MARL Training Process
Require: Large Language Model LLM, State Interpretation func-

tion FS, MARL actor A , MARL algorithm MARLalg, Initial
Prompts Pinit

1: Hyperparameters: reward signal r′, penalty signal p′
2: PStrategy ∼ LLM(Pinit) // Strategy Generation
3: P = Pinit +PStrategy+FS // Chaining all the prompt for Planning

Function Generation
4: FT ∼ LLM(P) // Planning Function Generation: Sample func-

tions code from the LLM
5: MARL training with generated planning function
6: for each training step do
7: SI ← FS(Sv) // State Interpretation: Get processed global

observation SI from FS
8: T1,T2, . . .←FT (SI) // Assign tasks T to each agent
9: a1,a2, . . .←A (Sv) // Output actions from the actor

10: for each agent i do
11: if ai ∈Ti then
12: ∆ri← r′
13: else
14: ∆ri← p′
15: end if
16: end for
17: R ← r + ∑i ∆ri // Compute final reward for critic: More

details are in equation 1, 2
18: π(θ) =MARLalg(R) // Use R as the final reward for MARL

training
19: end for
20: return Trained MARL policy

A. Strategy Generation

To ensure applicability across diverse environments—even
for users with limited domain knowledge—we incorporate a

Strategy Generation Module, as shown in the blue box of Fig-
ure 1(a). In this module, the LLM receives basic environment
details (e.g., task descriptions, rules, and constraints) along
with a general guideline, and then autonomously outputs a
detailed strategy in a prescribed format without requiring
extensive human input or expertise.

The Strategy Generation is crucial for several reasons:
• Reducing User Burden: It alleviates the need for users to

comprehensively understand new environments, saving
time and effort.

• Enhancing Generalization: It enables the framework to
adapt to different environments with minimal prompt
modifications.

• Facilitating Planning Function Generation: The strate-
gies serve as vital components in the prompts used for
the Planning Function Generation Module. The results
of using YOLO-MARL but without Strategy Generation
Module are shown in ablation study B.1 .

The LLM-generated strategies are incorporated into the
prompt alongside other necessary information to facilitate
the subsequent planning function generation.

B. State Interpretation

In many simulation environments, observations are pro-
vided as vectors, with each component encoded in a non-
semantic format. Although such representations are effective
for training deep RL models, they pose challenges for LLMs
that require context to interpret each component correctly.

We propose the State Interpretation Module to assist the
LLM in interpreting the environment state. By providing a
semantically meaningful representation of the state, the LLM
can successfully generate executable planning functions for
training. Formally, given the current environment state in
vector form Sv, we define an interpretation function FS
such that FS(Sv)→ SI , where SI provides more explicit and
meaningful information about each state component.

Recent works like [13] and [14] have demonstrated the
success of enhancing LLMs performance by providing rele-
vant environment code. In the same manner, we include the
interpretation function FS in the prompting pipeline, format-
ted as Pythonic environment code as shown in the purple box
in Figure 1(b). The State Interpretation Module significantly
reduces the risk of the LLM generating erroneous functions
with outputs incompatible with the training procedures. An
ablation study on the effectiveness of this module can be
found in Sec B.2.

C. Planning Function Generation

A crucial component of our method is leveraging the
LLM to perform high-level planning instead of handling low-
level actions. We combine all the prompts from the previous
modules and input them into the LLM. The LLM then
generates a reasonable and executable planning function that
can be directly utilized in the subsequent training process.

To be more concise, given any processed state SI , we de-
fine an assignment planning function as FT (SI)→Ti ∈T ,
where T = {T1, ...,Tn} is a set of target assignments that

each agent can take. We define the assignment set T over
the action space such that an action can belong to multiple
assignments and vice versa. For example, if the assignment
space is defined as T = {Landmark 0,Landmark 1}, and
landmark 0 and landmark 1 are located at the top right
and top left positions relative to the agent respectively, then
taking the action ”UP” can be associated with both assign-
ments. Conversely, we can have multiple actions correspond
to an assignment. For instance, moving towards ”Landmark
0” may involve actions like ”UP” and ”RIGHT”.

The Planning Function Generation will only be required
once for each new environment you try to use. After you
interact with the LLM to get generated planning function,
you can directly use it in the later training process with
different MARL algorithms. This is referred to the red
module in Fig. 1(c).

D. MARL training with Planning function incorporation

To incorporate the planning function into MARL training,
we add an extra reward term to the original reward provided
by environments. Specifically, we define the final reward R
used by the critic as:

R = r+∑
i

∆ri. (1)

Here, r is the original reward from the environment.
For each agent i, ∆ri is an additional reward or penalty
that determined based on whether the action taken by the
agent aligns with the task assigned by the planning function.
Specifically:

∆ri =

{
r′, if ai ∈Ti

p′, if ai /∈Ti
(2)

Notably, we don’t need to interact with the LLM during
the entire training process, nor do we need to call the plan-
ning function after the policy has been trained. The training
process MARLalg(R) takes R as the reward function, uses the
same state and action space. We follow the standard MARL
algorithms and evaluation metrics within the literature, such
as [8], [9], and [7]. Our method, as shown in the greed box
in Fig. 1(d), is highly efficient compared to approaches that
interact with LLMs throughout the whole training process
or directly use LLMs as agents. In practice, using the
LLM’s API to generate the planning function incurs minimal
cost—less than a dollar per environment—even when using
the most advanced LLM APIs.

IV. EXPERIMENTS

In this section, we evaluate our method across
three different environments: MPE and LBF. We use
claude-3-5-sonnet-20240620 for the experiments.1

1We mainly use the Claude 3.5 Sonnet model for the LLM in our work:
https://www.anthropic.com/news/claude-3-5-sonnet

https://www.anthropic.com/news/claude-3-5-sonnet

A. Setup

Baselines. In our experiments, we compare the MARL
algorithm MADDPG [7], MAPPO [8] and QMIX [9] and
set default hyper-parameters according to the well-tuned
performance of human-written reward, and fix that in all
experiments on this task to do MARL training. Experiment
hyper parameters are listed in Appendix.

Metrics. To assess the performance of our method, we
use the mean return in evaluation for all other environments.
During evaluation, we rely solely on the default return values
provided by the environments for both the baseline and our
method, ensuring a fair comparison.

B. Results

Level-Based Foraging. Level-Based Foraging (LBF) [1]
is a challenging sparse reward environment designed for
MARL training. In this environment, agents must learn to
navigate a path and successfully collect food, with rewards
only being given upon task completion. To evaluate our
framework in a cooperative setting, we selected the 2-player,
2-food fully cooperative scenario. In this setting, all agents
must work together and coordinate their actions to collect the
food simultaneously. The environment offers an action space
consisting of [NONE, NORTH, SOUTH, WEST, EAST,
LOAD], and we define the task set as [NONE, Food i,
..., LOAD]. Using the relative positions of agents and food
items, we map assigned tasks to the corresponding actions
in the action space and calculate the reward based on this
alignment. We evaluated our framework over 3 different
seeds, with the results shown in Figure 3 and Table 2. LLM
assist the MARL algorithm by providing reward signals, our
framework significantly outperformed the baseline, achieving
a maximum improvement of 105 % in mean return and a 2x
faster convergence rate among all tested MARL algorithms.
According to the results, our framework is effective across all
the baseline algorithms, with particularly large improvements
observed in QMIX and MADDPG, and a faster convergence
rate for MAPPO. To assess the variability in the quality of
our generated functions, we present the results of three differ-
ent generated functions in Figure 5 and Table I in Appendix.
The results demonstrate that our framework consistently
generates high-quality functions, with each achieving similar
improvements across all baseline algorithms.

Multi-Agent Particle Environment. We evaluate our
framework in Multi-Agent Particle Environment (MPE) [7]
simple spread environment which is a fully cooperative
game. This environment has N agents, N landmarks. At a
high level, agents must learn to cover all the landmarks while
avoiding collisions. It’s action space is consist of [no action,
move left, move right, move down, move up]. We define the
assignment for each agent to take to be [Landmark i,...,No
action]. During training, based on the global observation,
we obtain the relative position of each agent with respect
to the landmarks. Similar to LBF, we map each assignment
of agent back to the corresponding action space and then
reward the action of policy in action space level. We evaluate
our approach on 3-agent and 4-agent scenarios using QMIX

and MADDPG as baselines. As shown in Figure 4, our
framework(colored line) outperform the baseline(black line)
algorithm in mean returns by 7.66% and 8.8% for 3-agent
scenario, and 2.4% and 18.09% for 4-agent scenario with
QMIX and MADDPG respectively. These improvements
demonstrate the effectiveness of our framework in enhancing
coordination among agents to cover up all the landmarks.

V. CONCLUSION

We propose YOLO-MARL, a novel framework that lever-
ages the high-level planning capabilities of LLMs to enhance
MARL policy training for cooperative games. By requiring
only a one-time interaction with the LLM for each envi-
ronment, YOLO-MARL significantly reduces computational
overhead and mitigates instability issues associated with
frequent LLM interactions during training. This approach
not only outperforms traditional MARL algorithms but also
operates independently of the LLM during execution, demon-
strating strong generalization capabilities across various en-
vironments.

We evaluate YOLO-MARL across two different envi-
ronments: the MPE environment and the LBF environ-
ment. Our experiments showed that YOLO-MARL outper-
forms or achieve competitive results compared to baseline
MARL methods. The integration of LLM-generated high-
level assignment planning functions facilitated improved
policy learning in challenging cooperative tasks. Finally, we
mention a possible way to incorporate reward generation to
our framework and we will step further.

REFERENCES

[1] G. Papoudakis and L. Schäfer, “Benchmarking Multi-Agent Deep
Reinforcement Learning Algorithms in Cooperative Tasks,” arXiv
preprint arXiv:2006.07869, 2021.

[2] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[3] H. Zhang, W. Du, J. Shan, Q. Zhou, Y. Du, J. B. Tenenbaum, T. Shu,
and C. Gan, “Building cooperative embodied agents modularly with
large language models,” arXiv preprint arXiv:2307.02485, 2023.

[4] S. S. Kannan, V. L. N. Venkatesh, and B.-C. Min, “Smart-llm: Smart
multi-agent robot task planning using large language models,” arXiv
preprint arXiv:2309.10062, 2024.

[5] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta,
and J. Andreas, “Guiding pretraining in reinforcement learning with
large language models,” arXiv preprint arXiv:2302.06692, 2023.

[6] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh, “Reward Design
with Language Models,” arXiv preprint arXiv:2303.00001, 2023.

[7] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Envi-
ronments,” arXiv preprint arXiv:1706.02275, 2020.

[8] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,
“The Surprising Effectiveness of PPO in Cooperative, Multi-Agent
Games,” arXiv preprint arXiv:2103.01955, 2022.

[9] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “QMIX: Monotonic Value Function Factorisa-
tion for Deep Multi-Agent Reinforcement Learning,” arXiv preprint
arXiv:1803.11485, 2018.

[10] C. Sun, S. Huang, and D. Pompili, “Llm-based multi-agent rein-
forcement learning: Current and future directions,” arXiv preprint
arXiv:2405.11106, 2024.

[11] M. L. Littman, “Markov games as a frame-
work for multi-agent reinforcement learning,”
https://www.sciencedirect.com/science/article/pii/B9781558603356500271,
1994.

[12] G. Owen, “Game theory,” https://books.google.com/books?id=pusfAQAAIAAJ,
1982.

[13] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman,
Y. Zhu, and A. Anandkumar, “EUREKA: HUMAN-LEVEL RE-
WARD DESIGN VIA CODING LARGE LANGUAGE MODELS,”
arXiv preprint arXiv:2310.12931, 2024.

[14] T. Xie, S. Zhao, C. H. Wu, Y. Liu, Q. Luo, V. Zhong, Y. Yang, and
T. Yu, “Text2Reward: Automated Dense Reward Function Generation
for Reinforcement Learning,” arXiv preprint arXiv:2309.11489, 2023.

[15] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-
son, “Counterfactual multi-agent policy gradients,” arXiv preprint
arXiv:1705.08926, 2017.

[16] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-
agent learning,” arXiv preprint arXiv:1706.05296, 2017.

[17] T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P.-
Y. Oudeyer, “Grounding large language models in interactive en-
vironments with online reinforcement learning,” arXiv preprint
arXiv:2302.02662, 2023.

[18] F. Lin, E. L. Malfa, V. Hofmann, E. M. Yang, A. Cohn, and J. B. Pier-
rehumbert, “Graph-enhanced large language models in asynchronous
plan reasoning,” arXiv preprint arXiv:2402.02805, 2024.

[19] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang,
D.-A. Huang, Y. Zhu, and A. Anandkumar, “Minedojo: Building open-
ended embodied agents with internet-scale knowledge,” Advances in
Neural Information Processing Systems, vol. 35, pp. 18 343–18 362,
2022.

[20] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2023.

[21] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla, O. Wiest,
and X. Zhang, “Large language model based multi-agents: A survey
of progress and challenges,” arXiv preprint arXiv:2402.01680, 2024.

[22] G. Li, H. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem, “Camel:
Communicative agents for” mind” exploration of large language model
society,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[23] S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang,
Z. Wang, S. K. S. Yau, Z. Lin, L. Zhou et al., “Metagpt: Meta
programming for multi-agent collaborative framework,” arXiv preprint
arXiv:2308.00352, 2023.

[24] S. S. Kannan, V. L. Venkatesh, and B.-C. Min, “Smart-llm: Smart
multi-agent robot task planning using large language models,” arXiv
preprint arXiv:2309.10062, 2023.

[25] B. Yu, H. Kasaei, and M. Cao, “Co-navgpt: Multi-robot cooperative vi-
sual semantic navigation using large language models,” arXiv preprint
arXiv:2310.07937, 2023.

[26] S. Hu, T. Huang, F. Ilhan, S. Tekin, G. Liu, R. Kompella, and L. Liu,
“A survey on large language model-based game agents,” arXiv preprint
arXiv:2404.02039, 2024.

[27] R. Gong, Q. Huang, X. Ma, H. Vo, Z. Durante, Y. Noda, Z. Zheng, S.-
C. Zhu, D. Terzopoulos, L. Fei-Fei, and J. Gao, “Mindagent: Emergent
gaming interaction,” arXiv preprint arXiv:2309.09971, 2023.

[28] S. Wu, L. Zhu, T. Yang, S. Xu, Q. Fu, Y. Wei, and H. Fu, “Enhance
reasoning for large language models in the game werewolf,” arXiv
preprint arXiv:2402.02330, 2024.

[29] H. Li, Y. Q. Chong, S. Stepputtis, J. Campbell, D. Hughes, M. Lewis,
and K. Sycara, “Theory of mind for multi-agent collaboration via large
language models,” arXiv preprint arXiv:2310.10701, 2023.

[30] W. Ma, Q. Mi, X. Yan, Y. Wu, R. Lin, H. Zhang, and J. Wang,
“Large language models play starcraft ii: Benchmarks and a chain
of summarization approach,” arXiv preprint arXiv:2312.11865, 2023.

APPENDIX

A. Related Work

1) Multi-Agent Reinforcement Learning: MARL has at-
tracted significant attention for its potential to address com-
plex, decentralized problems. A popular paradigm is cen-
tralized training with decentralized execution. Methods like
QMIX [9] and MADDPG [7] employ centralized critics dur-
ing training to coordinate agents, while allowing independent
execution at test time. In cooperative environments, COMA
[15] and VDN [16] enable agents to share rewards and max-
imize joint returns. Despite these advances, many existing
MARL algorithms struggle in sparse-reward settings and
have difficulty learning fully cooperative policies. Moreover,
only limited work has explored the integration of LLMs with
MARL [10], leaving open questions about leveraging LLMs
for multi-agent decision-making.

2) Large Language Models for RL and Decision-Making:
Recent studies have incorporated LLMs into the RL training
process to enhance performance. For instance, [5] improve
agent exploration by aligning LLM-suggested goals with
observed behaviors, while [17] generate actions conditioned
on language-based prompts during online RL. Similarly, [6]
uses LLMs to provide scalar rewards that guide training.
However, many of these approaches focus on single-agent
settings or require extensive interactions with LLMs during
training. And [18] highlights the limitations of LLMs in
handling complex low-level tasks. Other works, such as [19],
studies a multi-task RL problem. SayCan [2] grounds LLMs
via value functions of pretrained skills to execute abstract
commands on robots. [20] finds that code-writing LLMs
can be re-purposed to write robot policy code. Additionally,
studies like [13] and [14] exploit LLMs’ prior knowledge and
code-generation capabilities to produce reward functions. In
contrast, our approach leverages LLMs to generate planning
functions, thereby enhancing MARL without continuous
LLM involvement.

3) Large Language Models for Multi-Agent Systems:
LLM-based multi-agent systems have been employed in
diverse applications requiring varied agent roles and collabo-
rative decision-making [10], [21]. Camel [22] and MetaGPT
[23] deploy multiple LLM agents for tasks like brainstorming
and software development. SMART-LLM [24] decomposes
multi-robot task planning into subgoals, and Co-NavGPT
[25] uses LLMs as global planners for cooperative navi-
gation. Other research has focused on applying LLMs in
strategic gaming environments [26]–[30]. Unlike these ap-
proaches, which use LLMs directly as agents or decision-
makers, our method harnesses the planning capabilities of
LLMs to train compact, efficient MARL policies.

B. Ablation Study

In this section, we conduct the ablation studies mainly in
LBF 2 players 2 food fully cooperative environment since
rewards in LBF are sparser compared to MPE [1]. We refer
to IV-B for more information about the environment.

1) Comparison between YOLO-MARL with and without
Strategy Generation: In this section, we examine the impact
of the Strategy Generation Module on the performance of
the YOLO-MARL framework. Specifically, we compare the
standard YOLO-MARL with a variant that excludes the
Strategy Generation Module to assess its significance.

According to our tests, the Strategy Generation Module
plays an important role in the YOLO-MARL method. As
shown in Figure 7 , without the LLM generated strategy, we
obtain a worse-performing planning function. Interestingly,
the mean returns of evaluations for the functions without
the LLM generated strategy are not always close to zero,
indicating that the generated planning functions are not
entirely incorrect. Based on this, we could confirm that the
Strategy Generation Module would help Planning Function
Generation Module provides better solutions to this game.
Moreover, giving the strategy also helps stabilize the quality
of the generated code. We observe a higher risk of obtaining
erroneous functions without supplying the strategy.

2) Comparison between YOLO-MARL with and without
State Interpretation: To demonstrate how the State Inter-
pretation Module enhances our framework, we present two
failure case snippets:

• Without the Interpretation Function: The interpretation
function is omitted entirely from the prompting pipeline.

• Providing Raw Environment Code Directly: Raw envi-
ronment source code is fed directly to the LLM.

The LLM is unable to infer the type of state and attempts
to fetch environment information via a non-existent key if
no preprocessing code provided. And if environment code is
provided without dimensional context for each component,
the LLM is likely to make random guesses. In both scenarios,
the absence of explicit state interpretation hinders the LLM’s
ability to generate accurate and executable planning func-
tions. These failures underscore the importance of the State
Interpretation Module in bridging the gap between vectorized
observations and the LLM’s requirement for semantically
meaningful input.

By incorporating the State Interpretation Module, we
enable the LLM to understand the environment’s state rep-
resentation effectively. This results in the generation of
reliable planning functions that significantly enhance the

performance of our YOLO-MARL framework.
3) Comparison between YOLO-MARL and reward gen-

eration: In this section, we compare our YOLO-MARL
method with approaches that utilize the LLM for reward
generation without reward function template. We explore
two scenarios: reward generation without feedback and re-
ward generation with feedback. For the reward generation
without feedback, the reward function is generated at the
same stage as the planning function for fair comparison.
This means that we generate the reward function before
all the training process for each new environment. For the
reward generation with feedback, we first generate a reward
function just like the reward generation without feedback.
And then, iteratively, we will run a whole training process
on this environment and pass the feedback of this training
performance to the LLM, combined with previous prompts
and ask the LLM to refine the previous generated reward
function.

Our experiments show that relying solely on the LLM-
generated reward function leads to poor performance. As
shown in Figure 8, the mean return for the LLM-generated
reward function pair consistently falls below the performance
of all three MARL algorithms. This indicates that agents
are not learning effectively under the LLM-generated re-
ward function. However, we do observe a slight positive
return. This suggest the potential of using this framework
for reward shaping tasks, particularly in situations where
standard MARL algorithms struggle to learn in sparse reward
scenarios.

To investigate whether iterative refinement could improve
the LLM generated reward function, we supply the LLM with
the generated reward function from the prior iteration and
feedback on its performance. Despite this iterative process,
the LLM still fails to output a suitable reward function for the
LBF environment. The mean return of evaluations remains
close to zero, as shown in figure 6.

C. Additional Results

Fig. 2: Comparison between YOLO-MARL and MARL in the LBF environment across three seeds. The highest evaluation
return means during training are highlighted in bold. The corresponding results can be found in Figure 3. The M means one
million training steps. We run all the experiments on the same machine.

Mean Return after 0.2M / 0.4M / 1.5M / 2M Steps

QMIX MADDPG MAPPO

MARL 0.00/ 0.01/ 0.25/ 0.38 0.09/ 0.33/ 0.26/ 0.32 0.31/ 0.72/ 0.99/ 0.99
YOLO-MARL 0.01/ 0.02 / 0.60/ 0.78 0.13/ 0.38/ 0.39/ 0.44 0.93/ 0.98/ 0.99/ 0.99

(a) MADDPG (b) MAPPO (c) QMIX

Fig. 3: Results for LBF environment across 3 seeds: The solid lines indicate the mean performance, and the shaded areas
represent the range (minimum to maximum) across 3 different seeds.

(a) 3 Agents – MADDPG (b) 3 Agents – QMIX

(c) 4 Agents – MADDPG (d) 4 Agents – QMIX

Fig. 4: Results for MPE simple spread environment with 3 agents (top row a and b) and 4 agents (bottom row c and d).
The solid lines indicate the mean performance, and the shaded areas represent the range (minimum to maximum) across 3
different generated planning functions.

TABLE I: Comparison between YOLO-MARL and MARL in the LBF environment across three different generated planning
functions. The highest evaluation return means during training are highlighted in bold. The corresponding results can be
found in figure 5. The M means one million training steps. We use two different machines to generate planning functions
and run MARL and YOLO-MARL on the same machines where the planning functions are generated.

Mean Return after 0.2M / 0.4M / 1.5M / 2M Steps

QMIX MADDPG MAPPO

MARL 0.00/ 0.01/ 0.25/ 0.36 0.08/ 0.28/ 0.24/ 0.29 0.38/ 0.74/ 0.99/ 0.99
YOLO-MARL 0.00/ 0.03/ 0.69/ 0.95 0.18/ 0.40/ 0.42/ 0.47 0.94/ 0.97/ 0.99/ 0.99

(a) MADDPG (b) MAPPO (c) QMIX

Fig. 5: Results for LBF environment across 3 seeds: The solid lines indicate the mean performance, and the shaded areas
represent the range (minimum to maximum) across 3 different seeds.

(a) Iteration one (b) Iteration two

(c) Iteration three (d) Iteration four

Fig. 6: Results of only reward generation with feedback in the LBF environment. The total number of iteration is 4 and the
MARL algorithm we used here is MAPPO.

(a) MADDPG (b) MAPPO (c) QMIX

Fig. 7: Comparison between YOLO-MARL with and without using LLM generated strategies in LBF

(a) MADDPG (b) MAPPO (c) QMIX

Fig. 8: Comparison between YOLO-MARL and reward generation without feedback in LBF

	INTRODUCTION
	Problem Formulation
	Methodology
	Strategy Generation
	State Interpretation
	Planning Function Generation
	MARL training with Planning function incorporation

	Experiments
	Setup
	Results

	Conclusion
	References
	Appendix
	Related Work
	Multi-Agent Reinforcement Learning
	Large Language Models for RL and Decision-Making
	Large Language Models for Multi-Agent Systems

	Ablation Study
	Comparison between YOLO-MARL with and without Strategy Generation
	Comparison between YOLO-MARL with and without State Interpretation
	Comparison between YOLO-MARL and reward generation

	Additional Results

