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ABSTRACT

Low-Rank Adaptation (LoRA) has emerged as a widely used technique for adapt-
ing large language models (LLMs) to new domains, due to its modular design
and broad availability on platforms such as HuggingFace. This availability has
motivated efforts to reuse existing LoRAs for domain generalization. However,
existing methods often rely on explicit task labels or additional training, which
are impractical for deployment. Moreover, they typically activate a fixed number
of entire LORA modules, leading to parameter redundancy or insufficiency that de-
grade performance. In this paper, we propose HiLoRA, a training-free framework
that performs adaptive hierarchical routing over LoRA pools. Drawing on struc-
tural properties of LoRA, we define rank-one components (ROCs), in which each
rank parameter is regarded as an independent unit. For a given input sequence,
HiLoRA first adaptively selects a subset of LoORAs and determines their ROC al-
location based on Gaussian likelihoods at the sequence level. At the token level, it
further refines routing by activating only the most informative ROCs. We further
provide theoretical guarantees that HiLoRA selects the most relevant LoRAs with
high probability. Extensive experiments show that HiLoRA achieves substantial
improvements in domain generalization, with accuracy gains of up to 55% over
state-of-the-art baselines, while maintaining comparable inference throughput.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide variety
of tasks (Zhou et al., 2024} Naveed et al.| |2025)). However, adapting LLMs to specialized domains
or tasks requires computationally expensive full fine-tuning (Hu et al.| 2022)). To mitigate this cost,
parameter-efficient fine-tuning (PEFT) techniques have been developed (Ding et al.,2023). Among
them, Low-Rank Adaptation (LoRA) (Hu et al.,[2022; |Tian et al.|[2024) has become one of the most
effective and widely adopted methods. LoRA introduces lightweight low-rank matrices into selected
layers of an LLM, thereby substantially reducing the number of trainable parameters while preserv-
ing strong downstream task performance. Building on this success, community platforms such as
HuggingFace(HuggingFace, 2025) and ModelScope (ModelScopel 2025) now host thousands of
task-specific LORA modules trained across diverse domains. This rapidly expanding repository cre-
ates a unique opportunity: instead of training a new model for every task, one can directly exploit
existing LoRAs to achieve scalable multi-domain adaptation.

However, realizing this potential is highly non-trivial, as effectively utilizing community-shared Lo-
RAs introduces several challenges. First, explicit task labels of inputs are typically unavailable in
practice. If such labels were known, inputs from seen tasks could be directly routed to their spe-
cialized LoRAs, while unseen tasks could be aligned with related LoRAs based on task similarity.
Without labels, however, distinguishing between seen and unseen cases and assigning appropriate
LoRAs becomes highly challenging. Second, For a given input, activating too many LoRAs or
entire modules leads to parameter redundancy and interference, whereas activating too few may
discard valuable knowledge, ultimately reducing accuracy (Cheng et al., [2025). Third, as reposito-
ries continue to expand with thousands of task-specific LoRAs, the routing mechanism must remain
computationally efficient to ensure scalability (Ostapenko et al., [2024).

Recent work has attempted to address the above challenges by integrating Mixture-of-Experts (MoE)
mechanisms with LoRAs (Ge et al.,[2025), where gating functions are designed to route inputs to a
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subset of LoRAs. However, these gating functions often rely on explicit task labels (Ma et al., 2024)
or require gradient-based training of additional gating parameters (Mugeeth et al.l [2024), which
restricts their applicability in practical deployment. Moreover, most methods rely on top-k gating
scores (Ostapenko et al.l 2024} [Zhao et al.l 2024), which lead to either excessive or insufficient
activations and thus limit adaptability. In parallel, some studies focus on LoRA merging, which
integrates multiple task-specific LoRAs into a single unified module to enhance cross-domain gen-
eralization by leveraging knowledge across tasks (Coleman et al., |2024; Zhao et al.| 2025a)). These
approaches impose a uniform architecture across tasks, which limits flexibility and degrades perfor-
mance in scenarios involving diverse tasks. A more detailed discussion of related work is provided
in Appendix[A] This motivates the following research question:

Can we adaptively leverage a large collection of specialized LoRA modules to support both seen
and unseen tasks without retraining or explicit task labels?

In this paper, we highlight three key observations about the
structure of LoRA, derived from empirical analysis and ex-
perimental evidence. (i) Each rank-one direction in a LoRA
is formed by pairing a row vector from the down-projection
matrix with a corresponding column vector from the up-
projection matrix. Since these directions function indepen-
dently, one can treat each pair as a rank-one component (ROC),
which serves as the basic unit of LoRA. (ii) Within a LoRA,
the down-projection vectors across ROCs exhibit strong ran-
domness and primarily serve as scaling factors that modulate
the effect of the corresponding up-projection vectors. (iii) In
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contrast, the up-projection vectors show clear clustering pat-
terns, often forming multiple groups within the same LoRA.
These clusters capture distinct semantic aspects of the LoRA’s
adaptive capacity.

Building on these insights, we propose HiLoRA, a hierarchi-
cal LoRA routing framework designed to adaptively support

Figure 1: Average accuracy over
ten NLI tasks, with five seen tasks
and five unseen tasks. HiLoRA
achieves the best performance and
approaches the accuracy of task-
specific LoRAs. Detailed results
are shown in Tab.[Il

robust domain generalization. To the best of our knowledge,
HiLoRA is the first method to introduce hierarchical routing at the granularity of ROCs, while also
providing theoretical guarantees for LoRA identification through error bounds. At the sequence
level, HiLoRA narrows the candidate space and improves robustness by activating only a subset
of LoRAs based on input-LoRA similarity. To enable comparison between inputs and LoRAs that
reside in different parameter spaces, each LoRA is represented as a Gaussian distribution fitted to a
small set of sampled embeddings, and similarity is measured using Gaussian likelihoods. This prob-
abilistic formulation not only allows reliable distinction between seen and unseen tasks, but also
provides confidence signals that guide the adaptive determination of both the number of activated
LoRAs and their ROC allocation. At the token level, the down-projection vectors within ROCs are
used to further select the most informative ROCs, refining routing without introducing additional
parameters or requiring training. We summarize our contributions as follows.

* New Insight. We identify the ROC as the fundamental semantic unit of LoRA and show both the
feasibility and necessity of performing routing at this fine-grained granularity.

* Hierarchical LoRA Routing Framework. HiLoRA constructs a dynamic LoRA pool, where
each LoRA is represented as a Gaussian distribution fitted from samples of its training dataset. At
the sequence level, the Gaussian likelihood scores between the input and LoRAs are calculated.
The maximum score determines both the number of activated LoRAs and the overall ROC budget,
while normalized scores guide probabilistic sampling for ROC allocation. At the token level,
routing is further refined by selecting ROCs with stronger down-projection responses.

* Theoretical Guarantee. We derive error bounds for LoRA identification, providing the first
formal guarantees that Hi LoRA preserves the corresponding LoRAs for seen tasks and the closest
LoRAs for unseen tasks with high probability, thereby ensuring robust routing across domains.

* Experimental Performance. As shown in Fig.[I|for a representative case, Hi LoRA consistently
outperforms state-of-the-art baselines in both within-cluster and cross-cluster evaluations, achiev-
ing accuracy gains of up to 55% on LLaMA2-7B and 13% on FLAN-T5-large, while maintaining
practical inference throughput.
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2 PRELIMINARIES

Basic Formulation of LoRA. LoRA (Hu et al.| 2022) achieves performance comparable to full fine-
tuning by freezing the pretrained weights W, and inserting trainable low-rank matrices AW into
selected layers, yielding W’ = W, + AW. The update matrix is factorized as AW = BA, where
A € R"*4 s the down-projection matrix and B € R**" is the up-projection matrix, with rank r < d.
This reduces the number of trainable parameters from d? to 2rd while retaining strong adaptability.

Given an input = € R?, the sub-module output y € R¢, originally computed as y = Woz, is
reformulated under LoRA adaptation as:
y=Wox + AWx = Wyx + BAx. 1)

Dyadic Product Representation. Let {a; }/_, denote the set of row vectors of A and {b;}/_,
denote the set of column vectors of B, where a;, b; € R?. Under this notation, the low-rank update
can be written as AW = BA = "7, (b:a; ), which expresses AW as a sum of r dyadic products,
each formed by the outer product of two vectors (a;, b;). Substituting this representation into the
forward computation yields:

v = Wiz + S0, (ba )z @

In this decomposition, each row of the down-projection matrix A is paired with the corresponding
column of the up-projection matrix B. The pair (a;, b;) acts as an indivisible unit, which we define
as a rank-one component (ROC). A ROC corresponds to one rank in LoRA and serves as the funda-
mental element of its adaptive capacity. Consequently, the ROC constitutes the minimal routing unit
of LoRA, and we next introduce an adaptive strategy to determine both the number and the selection
of ROC:s to activate for each input.

3 METHODOLOGY

3.1 HILORA FRAMEWORK

Problem Formulation. Consider a pre-trained LLM L and a pool of I task-specific LoRAs, denoted
as ® = {¢1, ¢2,...,ér}. It is implemented by inserting low-rank matrices into selected layers of L.
For clarity, the low-rank parameters of ¢; at a given layer are denoted as A; and B;, with rank r;.
Our objective is to design a routing mechanism that exploits the pool of LoRAs ® without requiring
additional training or explicit task labels. Such a mechanism should perform competitively on tasks
with corresponding LoRAs available in the pool (seen tasks), while also generalizing to inputs from
domains lacking specialized LoRAs (unseen tasks).
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Figure 2: Scatter plots of the first two principal components derived from vectors in LoRA projection
matrices specialized for five NLI tasks. The boxes highlight examples where optimal routing for an
unseen task (pink) would involve selecting only the vectors aligned with relevant semantics.

Motivating Observations. The functional distinction between the down- and up-projection matri-
ces follows directly from the structure of the LoRA update. Each rank-one component operates as
(b;,a; )x = (a; x), b;, indicating that the down-projection vector a; governs the activation strength
of the component, whereas the semantic direction of the update is entirely determined by the up-
projection vector b;. This interpretation aligns with prior observations (Zhu et al., [2024} [Tian et al.,
2024). To further validate this distinction and examine additional properties of ROCs, we visualize
LoRA parameters using Principal Component Analysis (PCA) (Abdi & Williams, [2010). In partic-
ular, vectors obtained by slicing the projection matrices along the rank dimension, i.e., {a;, b; }i—1,
are projected into a two-dimensional space. We analyze five LoRAs fine-tuned on different NLI
tasks, with the resulting scatter plots shown in Fig. [2] where vectors sharing the same color and
shape are drawn from the same LoRA. To ensure that the reported observations are not limited to
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these cases, additional visualizations are provided in the Appendix [C.2] To further substantiate our
claims, we also compute cosine similarities for both the down- and up-projection matrices at the
rank-component level and aggregate the statistics, as presented in Appendix [C.2] (Fig. [DI2).

Three key observations arise from these visualizations. (i) The down-projection vectors of ROCs
exhibit a highly dispersed distribution and show little alignment with task semantics. This confirms
that down-projection vector a primarily functions as a scaling factor, rather than encoding domain-
specific information. (ii) In contrast, the up-projection vectors of ROCs within a given LoRA exhibit
clear task-dependent patterns. These vectors often form multiple distinct clusters, with each clus-
ter representing a different semantic fragment of the LoRA’s adaptive capacity. (iii) For domain
generalization, activating an entire LoRA introduces parameter redundancy and interference, since
unrelated clusters are involved simultaneously. Taken together, these observations suggest that effec-
tive routing should selectively activate only those clusters or vectors aligned with relevant semantics.
As illustrated in Fig. [2] when the pink LoRA corresponds to an unseen task, the optimal routing se-
lectively activates only specific clusters (e.g., the red box selects purple and blue clusters, while the
green box selects orange and blue clusters). Similarly, in the fourth subfigure, the activated ROCs
originate from the purple, blue, and orange clusters, although the precise cluster assignments differ.

Workflow of HiLoRA. Motivated by these ob-

servations, routing at the granularity of ROCs | a) Input-Aware ROC Allocation fEne &
is highly desirable. However, directly select-  |[LoRaPool  |[ Data | e
ing ROCs from the entire LoRA pool faces two &7 dy/ || Semples Compute probm
main challenges. First, the candidate space B\ /B @ Sample by 7
is excessively large, which makes exhaustive A3/ \dy r VS0 Aiocation
selection computationally infeasible. Second, By B\ ([ Transai e folowing senfonce 1 3
the space is noisy, as ROCs from different : |
LoRAs vary in relevance and quality, making  |b) Token-level ROC Routing x

it difficult to evaluate them under a unified | G o G B a5 o~
criterion. To address these issues, we intro- ! W * %&
duce HiLoRA, an adaptive hierarchical routing 7 T 7 7
framework over a pool of task-specific LoORAs Bilon o b Aa| | BeLn L B b
designed to achieve training-free domain gener- © =0 o—Yy

alization. Given an input sequence , HiLoRA
operates in two stages. (i) Input-Aware ROC Al-
location: At the sequence level, the framework measures the similarity between « and each LoRA
¢ using Gaussian likelihoods. Based on these probabilistic similarities, it selects a subset of LoORAs
and assigns an appropriate number of ROCs to each. (ii) Token-Level ROC Routing: At the token
level, the framework further refines adaptation by dynamically routing each token in x to the most
relevant ROCs within the subset of LoRAs selected in stage (i). In both stages, comparisons are
performed under a unified criterion, which ensures fair evaluation across LoRAs and their ROCs.
The overview of our framework HiLoRA is illustrated in Fig. 3]

Figure 3: Overview of Hi LoRA architecture.

3.2 INPUT-AWARE ROC ALLOCATION

At the sequence level, the goal is to identify candidate LoRAs from the pool and allocate a suitable
number of ROCs to each, according to their relevance to the input. A key challenge arises because
the input representations and LoRA parameters reside in distinct spaces, which prevents direct com-
parison. To address this issue, inspired by retrieval-based methods, each LoRA can be represented
by a small set of samples drawn from its training dataset (Zhao et al.| 2024)). Instead of embedding
LoRAs and inputs into a shared space and computing cosine similarity, we approximate each LoRA
with a Gaussian distribution fitted to the sampled embeddings. This yields a probabilistic repre-
sentation that enables more robust matching (Cha et al.l [2021}; |Li et al. 2023). This probabilistic
representation provides an information-theoretic characterization: inputs from seen tasks attain high
likelihood under their corresponding LoRA distributions, while inputs from unseen tasks can still be
aligned by evaluating their likelihood across all source distributions. Moreover, the resulting proba-
bilities guide stochastic allocation of ROCs, which not only reduces over-reliance on a single LoRA
but also encourages exploration across multiple relevant candidates.

Formally, let £ denote a sentence embedding model and ¢ denote an instruction. The instructed
embedding of an input x is given by z = E(c ® x), where @& denotes concatenation. Following
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Zhao et al.| (2024), we set the instruction to “Represent the sentence for similar task retrieval” to
encourage sequence-level similarity. For each LoRA module ¢;, we randomly sample m domain-
specific examples, obtain their instructed embeddings {z\", ..., 2}, and fit a Gaussian distribution:

pi(z) = N(z | pi, i), whereuz—*ZJ 125 722':7ZJ V(=2 =) (28 = ) el 3)

where I is the identity matrix and ¢ is a small constant. The term eI prevents degeneracy by ensuring
that 3; remains full-rank and well-conditioned, which is essential when the number of samples is
small or when the empirical covariance is nearly singular. For a given input &, we then compute
its log-likelihood under each LoRA distribution as the similarity score: s;(x) = (1/d)log pi(2),Vi €
{1,...,I}, where d denotes the embedding dimension. Since inputs may come from either seen or
unseen tasks, with seen tasks typically producing higher scores. Therefore, two cases are considered
depending on whether a positive score is present:

_ J{i | si(x) >0}, if max; si(x) > 0,
Cla) = {argtopf si(x), if max;s;(x) <0, “

where ¢ = [|max; s;(2)|]. A positive maximum score indicates that at least one LoRA is well
aligned with the input, so we retain only LoRAs with a positive score. Otherwise, the Top-c LoRAs
are selected, thereby expanding the candidate set to the degree of misalignment. A more negative
maximum score indicates that all LoRAs exhibit low compatibility with the input, and increasing
the number of candidates in such cases improves the chance of capturing a relevant LoRA.

Because the set of activated LoRAs C(x) varies across inputs, the ROC budget also needs to adapt
dynamically. Using a fixed number of ROCs can easily become suboptimal: when only a few LoRAs
are selected, a static budget may introduce redundancy, whereas selecting many LoRAs may lead to
insufficient capacity. Therefore, the total ROC budget is defined as O(x) = v - 37, ¢, i, Where
v € (0, 1) is a scaling factor. A large value of v may introduce redundancy and interference, whereas
a small value may exclude essential information. Thus, ~ is set to balance accuracy and efficiency
by activating a compact yet sufficient set of ROCs. To allocate ROCs, we use Gaussian-likelihood
scores as they offer a principled measure of input-LoRA alignment, enabling proportionally allocat-
ing more ROC:s to better-matched LoRAs. Concretely, the scores of selected LoRAs are normalized

into probabilities: ;(x) = %,W € C(z). Using these probabilities, the ROC alloca-
jeC(a

tion {0; }scc(x) 1S sampled from a multinomial distribution with parameters O(x) and 7 (), subject
to the per-LoRA capacity constraint o; < r;.

3.3 TOKEN-LEVEL ROC ROUTING

ROC Routing within Chosen LoRAs. At the token level, routing is refined by operating on the
granularity of ROCs. As discussed in Sec. B;fl, the down-projection vectors mainly act as scaling
factors. Therefore, the projection value a '« provides a natural criterion for ROC selection, with
larger values indicating stronger relevance between the token and the corresponding ROC. This
criterion helps reduce redundancy by prioritizing the most informative ROCs while filtering out
those with limited contribution or potential interference. Formally, for each layer and each token,
and for every LoRA i € C(x) selected at the sequence level, we compute the projection values A;x.
The most informative ROCs are then identified by selecting the indices of the top-o; components
ranked by projection value: J; = argtop;’ ‘(a);x). The LoRA output for this layer is then obtained

by aggregating the contributions of all activated ROCs: y' = 3=, () > ;c5, bis (a;z).

It is important to emphasize that this routing introduces no additional parameters or retraining. Since
projection values a "« are required for all activated ROCs, the only extra computation arises from
evaluating projections of ROCs that are ultimately not selected. This overhead is minimal compared
to the overall forward pass, ensuring efficiency while preserving robust adaptation.

Variance Normalization for Adaptive ROCs. In HiLoRA, the number of activated ROCs is
adaptive and may range from 1 to >./_, r;, where r; is the rank of LoRA ¢;. This variabil-
ity can cause fluctuations in the scale of the aggregated LoRA output, which in turn may re-
duce the stability of model performance. Empirical findings in (Zhao et al., 2025a) show that
LoRA outputs are approximately distributed as zero-mean Gaussians, with variance that grows
with the number of activated ROCs. To mitigate this effect, we normalize the aggregated out-
put by a scaling factor /7(x)/O(x), where 7(x) = m > icc(z) i 18 the average rank of the
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selected LoRAs (Vaswani et al.| 2017). Therefore, the output of a given layer for input « becomes:
Yy =Woz + \/T/O(®) X, () 2, bij(ai;). This variance normalization property has been for-
mally established in Theorem 3.1 of (Zhao et al.,2025a). For clarity and completeness, we restate it
as a Lemma[2]in Appendix

3.4 THEORETICAL ANALYSIS

We present the error bounds of LoRA identification in HiLoRA under two scenarios: (i) in-
distribution (ID) inputs from seen tasks, and (ii) out-of-distribution (OOD) inputs from unseen tasks.

Error Bound for ID Inputs. For inputs from seen tasks, we provide a Top-k error bound that
measures the probability of the corresponding LoRA being excluded from the selected set.

Lemma 1 For any two distributions i, j with class-conditional Gaussians N (pi, 3;) and N (pj,3;)

and prior probabilities r;, ;, the Bayes error rate satisfies: P2 (i,7) < /77 exp(— Bij ), where
1 T(Zx\ 7! L1 @) 2]

Bij = 5(mi — 1j) ( 7 ) (i = pj) + glog ~—re=reer.

In this paper, priors are not incorporated in the score. The same derivation yields the simplified form

P2 (i,7) < exp(—Bij;). Based on this Lemma, we have the following error bound.

Theorem 1 For an input x with true label t;, the prediction is determined by the top-k scores s;(x).
The probability that the LoRA corresponding to t; is not included in the Top-k set K is bounded as:

Pr(i ¢ K) < 3., exp(— Bij). ®)

Theorem|[I] shows that for ID inputs, the probability of excluding the correct LoRA decreases in two
ways: (1) it drops exponentially as task distributions become more separable (larger B;;); and (2) it
decreases proportionally with the size of the Top- set.

Error Bound for OOD Inputs. For an input « from unseen tasks, no exact task-specific LoRA
exists in the pool, suppose it comes from an unknown target distribution g. Define the information-
theoretically closest source domain as ¢* := argmin;eq,... .1y DkrL(q || p:)-

Theorem 2 Let the prediction be based on the top-k scores si(z). For any o € (0,1] and Mi =
;! —|—a2;1 —aX;' = 0, the probability that the LoRA i* is excluded from the Top-k set K satisfies:

Pr(i* ¢ K) < 350, CLIMAITY exp(d (hA) T (M2)'hE — KL), ©)
where b = 3i'pg + o 'p; — o33 pe, KL= 3pe B 'pe + S B ey —
pi S5 i), CL = exp(—§ log |Z5] 4 § log [+ | — 5 log [Zql).

Here, M7 is a weighted precision matrix combining the covariance information of ¢, j, and ¢*, while
the condition MZ - 0 guarantees that the quadratic form is well-defined and divergence is finite; h?,
is a mean—precision vector measuring the displacement of ¢ relative to j and ¢* under covariance-
adjusted weighting; K7, is a correction term involving second-order statistics, capturing quadratic
differences in alignment; C, is a scale factor derived from covariance determinants, quantifying
relative volume mismatch. Theorem 2] shows that for OOD inputs, the probability of excluding the
closest LORA decreases in two ways: (1) it drops exponentially when the unseen distribution g is
better aligned with ¢* and more distinct from other source domains j; (2) it decreases proportionally
with the size of the Top-k set.

Remarks. Theorem [I]and Theorem [2] highlight two key insights. (i) When domains are well sepa-
rated and the LoRA pool spans diverse tasks, the error bounds are tight, ensuring strong guarantees
in both ID and OOD cases. This condition is often met in practice, as task domains are generally
distinguishable, and open-source repositories already provide a rich collection of LoRAs across di-
verse tasks. (ii) Increasing k tightens the bound, but excessively large values introduce redundancy
and interference. To balance this trade-off, Hi LoRA adaptively adjusts the size of the activated set
based on input-LoRA similarity, retaining the corresponding or closest LoRA with high probability
while avoiding unnecessary overhead and parameter interference. We further validate these theoret-
ical assumptions empirically in Appendix [D] showing that domain separability, divergence terms,
and OOD conditions are consistently satisfied across tasks, reinforcing the practical relevance of our
error bounds.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Models. We use a subset of tasks from FLAN-v2 (Wei et al.l |2022), and organize
them into ten clusters: Natural Language Inference (NLI), Question Answering (QA), Sentiment
Analysis, Translation, Commonsense Reasoning, Paraphrase, Struct-to-Text, Coreference Resolu-
tion, Text Correction, and Word-level tasks, following the categorization in [Wei et al.|(2022). We
construct the LoRA pool by downloading task-specific LoRAs for the selected tasks from Hug-
gingFace. Since evaluation metrics vary across tasks, we adopt task-dependent measures including
accuracy, F1 score, BLEU, and ROUGE-1, 2, L. Details of the selected tasks, their grouping, and
metrics are provided in Appendix As backbone models, we use two representative LLMs:
LLaMA2-7B, LLaMA2-13B (Touvron et al., 2023 and FLAN-TS5-large (Chung et al., [2024)).

Baselines. We compare HiLoRA with the following state-of-the-art methods. (i) Hi LoRA-GS:
a variant of HiLoRA that applies only sequence-level routing. (ii) HiLoRA-ROC: a variant of
HiLoRA that applies only token-level routing by ranking all ROCs across LoRAs and selecting
the top-k. (iii) Retriever (Zhao et al |[2024): a sequence-level method that retrieves the top-k
LoRAs based on cosine similarity between input and LoRA embedding. (iv) LEGO (Zhao et al.,
2025a): a ROC-level merging method that clusters all ROCs into k groups, merges each cluster
into a new ROC, and applies the merged clusters to all tasks. (v) Arrow (Ostapenko et al., [2024):
a token-level routing approach that builds gating vectors from the first right singular vector of the
LoRA update BA. (vi) Phatgoose (Mugeeth et al.,[2024): a token-level routing method where
gating vectors are trained separately for each task. (vii) Ensemble (Miihlematter et al.l|2024): an
ensemble method that combines all LoRAs by averaging their outputs. (viii) Merged (Ostapenko
et al.| 2023): a method where all LoRAs are merged into a single module shared across tasks.

Implementation Details. We set the inference batch size to 32. For each seen task, m = 20 domain-
specific samples from the corresponding dataset are used to fit a Gaussian distribution. The sentence
embedding model £ is implemented with instructor-base (Su et al., 2023)), an instruction-tuned en-
coder that produces task-aware representations. The scaling factor v is fixed at 40%. Following
(Zhao et al.| [2024), we set the parameter k = 3 for all LoRA-level routing methods, and correspond-
ingly k£ = 24 for all ROC-level routing methods. All experiments are conducted in PyTorch on a
system with Ubuntu 22.04, Intel Xeon Platinum 8558P processors (192 CPUs), 2.0 TiB of memory,
and NVIDIA H100 GPUs with 80GB memory.

Table 1: Performance on the NLI cluster using LLaMA2-7B, LLaMA2-13B and FLAN-T5-large.
Tasks with a white background are set as seen tasks, while those with a gray background are set as
unseen tasks. For each task, the best accuracy among all methods is in bold, and the second best is
underlined.

Methods | LoRA | HiLoRA HiLoRA-GS HiLoRA-ROC Retriever LEGO Arrow Phatgoose Ensemble Merged
LLaMA2-7B
ANLI-r1 46.40 45.00 42.10 38.90 36.10 37.00 38.90 37.00 35.80 31.70
ANLI-r2 40.10 40.60 38.70 36.20 36.40 37.70 36.40 36.40 36.80 32.60
ANLI-r3 36.92 37.67 36.17 35.92 35.25 34.75 36.25 35.42 34.50 31.08
CB 80.00 68.00 70.00 64.00 66.00 66.00 64.00 74.00 68.00 56.00
MNLI 77.66 76.33 74.06 70.78 74.22 71.91 60.51 62.58 67.66 39.92
MNLI-mis | 79.69 78.59 74.69 69.38 75.78 71.80 60.82 62.34 68.75 40.59
QNLI 77.27 78.28 77.23 59.02 62.19 58.71 59.02 59.80 57.89 45.23
RTE 72.96 74.44 75.56 65.93 65.93 71.11 75.56 74.07 71.48 53.70
SNLI 67.42 69.45 68.13 69.34 70.94 67.46 59.06 57.89 62.58 35.27
WNLI 72.86 65.71 62.29 48.57 47.14 50.00 48.57 52.86 50.00 50.00
Avg ‘ 65.13 ‘ 63.41 61.89 55.80 56.99 56.64 53.91 55.24 55.35 41.61
LLaMA2-13B
Avg ‘ 74.00 ‘ 72.86 72.47 67.39 70.32 69.04 63.12 65.31 65.99 36.00
FLAN-T5-Large
Avg ‘ 67.81 ‘ 67.70 64.85 66.53 66.76 56.20 57.81 55.29 56.19 53.03

4.2 MAIN RESULTS

Experimental results are reported under two evaluation settings: (i) the within-cluster setting eval-
uates performance when test tasks originate from the same cluster as the seen tasks, and (ii) the
cross-cluster setting measures generalization to tasks from unseen clusters.
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Within-cluster Setting. In this setting, experiments are conducted on ten NLI tasks, with half
designated as seen tasks and the other half as unseen tasks. Results are summarized in Tab.
while per-task accuracy for LLaMA2-13B and T5-large is provided in the Appendix [C.3] due to
page limits. From the table, it can be observed that the proposed HiLoRA substantially outperforms
all baselines on both seen and unseen tasks, improving average accuracy by 6-22% on LLaMA2-
7B, up to 36% on LLaMA2-13B, and roughly 14% on T5-large. More specifically: (i) On seen
tasks, HiLoRA achieves performance comparable to the oracle setting (LoRA in Tab. [T) where
each input is served by its task-specific LoORA, and in some cases even surpasses it, e.g. ANLI-r3
and QNLI. This indicates that Hi LoRA not only identifies the task-specific LoRA corresponding to
the given input but also leverages useful ROCs from other LoRAs to further enhance performance.
(i1) On unseen tasks, HiLoRA also delivers consistently strong results, demonstrating its ability
to generalize by aligning inputs with semantically related LoRAs and refining predictions through
selective ROC activation. (iii) The gains are particularly notable on LLaMA, which relies more
heavily on LoRA adaptation than T5-large. Since T5-large has already been extensively pretrained
on FLAN-style tasks, the relative contribution of LoRA adaptation is smaller compared to LLaMA.
Methods such as Retriever, Arrow, Phatgoose, and Ensemble activate a fixed number
of LoRAs (or even all of them) without accounting for conflicts or redundancies among ROCs,
leading to parameter interference or insufficiency that ultimately degrades performance. LEGO,
while incorporating ROC clustering and merging, remains input-agnostic and retains all clusters,
thereby failing to eliminate parameter redundancy. The Merged baseline performs worst due to
severe parameter interference when all LoRAs are combined into a single module. In contrast,
HiLoRA employs a hierarchical routing strategy: at the sequence level, it prunes irrelevant LoRAs
via Gaussian similarity sampling, and at the token level, it selects only the most effective ROCs.
This design reduces parameter redundancy and prevents interference, and explains the consistent
performance gains observed across both seen and unseen tasks.

Table 2: Performance of LLaMA2-7B and FLAN-T5-large under the cross-cluster setting. For tasks
with multiple evaluation metrics, the average score across metrics is computed first, and the cluster
score is then obtained by averaging over all tasks in the cluster. For each cluster, the best result
among all methods is in bold, and the second best is underlined.

Methods \ LoRA \ HiLoRA HiLoRA-GS HiLoRA-ROC Retriever LEGO Arrow Phatgoose Ensemble Merged

LLaMA2-7B
NLI 63.13 46.54 44.23 45.00 43.78 42.89 42.29 43.78 43.57 11.69
QA 59.66 46.95 43.56 43.19 43.55 46.67 39.37 45.10 44.89 10.09
Senti. 59.87 54.43 49.88 54.00 50.12 52.93 40.76 53.00 50.26 4.19
Trans. 21.98 20.78 21.80 14.92 9.50 16.45 20.93 20.47 20.77 11.91
Common. | 67.11 52.76 50.27 51.29 44.99 50.14 50.83 50.88 52.03 15.24
Paraph. 66.88 53.08 50.11 42.73 54.51 39.91 45.09 47.31 49.06 7.61
StT 4451 28.31 28.18 24.86 27.32 15.89 27.71 28.01 27.21 24.94
Corefe. 47.95 61.59 62.04 59.30 59.02 58.79 61.04 58.23 60.70 6.98
Text-Corr. | 54.73 30.98 33.21 25.73 26.14 24.04 29.35 29.58 29.93 6.34
Word 67.02 46.13 4551 43.08 46.73 38.61 45.73 45.43 43.09 11.47
FLAN-T5-Large
NLI 67.81 63.49 58.65 63.21 62.04 52.18 50.59 62.08 52.75 49.11
QA 67.39 63.44 61.73 63.08 60.87 60.03 59.40 63.13 60.39 58.51
Senti. 59.18 58.55 58.14 58.49 57.73 58.11 57.96 58.13 58.00 57.94
Trans. 18.97 18.79 18.80 18.55 18.88 18.77 18.74 18.61 18.77 18.65
Paraph. 78.33 75.18 74.91 68.00 72.52 73.63 72.85 74.76 73.97 72.96
StT 60.18 59.85 59.83 59.42 59.88 59.80 59.79 59.76 59.79 59.75
Corefe. 63.13 63.89 61.63 63.61 62.04 60.95 60.95 62.07 62.04 60.68
Text-Corr. | 54.91 54.83 54.21 53.68 54.01 54.56 54.45 54.68 54.63 54.21
Word 71.55 73.35 72.22 64.01 72.10 73.86 72.59 73.63 73.91 73.40

Cross-cluster Setting. In this setting, each cluster is treated as unseen in turn, while the remaining
clusters serve as seen. For LLaMA2-7B and LLaMA2-13B, the LoRA pool contains all 50 task-
specific modules, while for T5-large, only 33 modules are included due to the limited availability
of community-provided LoRAs. Performance is evaluated on all tasks within the unseen cluster,
with average results reported in Tab. [2]and detailed metrics provided in Appendix [C.3] The results
of LLaMA2-13B are also provided in Appendix This configuration is more challenging than
the within-cluster settings, as unseen tasks may differ substantially in semantics from the seen ones.
Nevertheless, Hi LoRA achieves strong cross-domain generalization, yielding accuracy gains of up
to 55% on LLaMA2-7B and 13% on T5-large. Although it does not always attain the highest score
in every cluster, its performance is consistently within 2.5% of the best and remains superior to
all baselines. These results highlight the routing capability of HiLoRA, which mitigates parame-
ter redundancy and interference even when adapting to previously unseen clusters. Interestingly,
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Ensemble performs relatively better in this setting than in the within-cluster case, since activat-
ing a larger number of LoRAs helps capture broader information, which is beneficial for serving
tasks from unseen clusters. These observations further highlight the advantage of HiLoRA, which
adaptively determines the number of activated LoRAs according to input-LoRA similarity, thereby
preserving sufficient information while avoiding redundancy as formalized in Eq. ().

4.3 FURTHER ANALYSIS

Performance of Input Mapping. To evaluate the
input routing capability of HiLoRA, we visualize
the similarities among task embeddings across dif-
ferent tasks. Fig.[d] presents a heatmap, where tasks
from the same cluster are grouped by green boxes.
Three observations can be made: (i) Task embed-
dings within the same domain exhibit higher simi-
larity, indicating that HiLoRA effectively captures
relationships across related tasks. (ii) The similar-
ity values exhibit a substantially broader range (—22
to 5) compared with the narrower interval of —1 to
1 obtained by Retriever (see
Appendix[C.3). This broader contrast sharpens intra-
cluster cohesion while maintaining clear separation
across clusters, thereby improving task alignment
and reducing the risk of mismatching semantically
different tasks. (iii) Unlike other methods, HiLoRA
adaptively determines the number of activated Lo-
RAs based on input-LoRA similarity, (i.e., Eq.(@)). As shown in Fig.[4] for easy cases such as seen
tasks, Hi LoRA activates only 1-2 LoRAs, whereas in the cross-cluster setting it scales up to 11 Lo-
RAs to handle more dissimilar tasks. This dynamic adaptation and flexibility reduces redundancy
while ensuring sufficient coverage. Consequently, to sustain robust performance, the LoRA pool
requires a number of modules and reasonable task coverage.

Figure 4: Input-LoRA similarity heatmap
produced by HiLoRA, where tasks from the
same cluster are enclosed within green boxes
for clarity.

Table 3: Performance sensitivity to sample size, synthetic samples, and embedding models. In
within-cluster setting, tasks with a white background are set as seen tasks, while those with a gray
background are set as unseen tasks.

| Within-cluster setting I Cross-cluster setting
Factors | 2-sample 5-sample 10-sample 20-sample | Al-sample | MPNet || 2-sample 5-sample 10-sample 20-sample | MPNet
ANLIr1 43.30 45.00 45.00 45.00 35.80 45.00 29.40 30.70 30.50 30.70 31.90
ANLI2 38.40 39.60 38.70 40.60 38.80 39.30 27.20 28.70 30.40 34.50 34.90
ANLI13 38.75 37.83 37.75 37.67 34.75 36.75 30.67 29.50 28.58 31.67 31.75
CB 64.00 66.00 66.00 68.00 66.00 68.00 74.00 74.00 76.00 70.00 74.00
MNLI 71.80 78.36 78.44 76.33 67.66 73.24 51.84 53.24 53.28 50.74 48.24
MNLI_mis 73.16 80.86 81.05 78.59 66.76 73.55 52.03 53.91 53.36 51.29 49.57
QNLI 59.22 69.06 68.20 78.28 59.34 65.80 45.61 44.38 43.48 46.84 44.77
RTE 72.22 71.85 71.85 74.44 67.41 73.33 59.63 57.78 58.15 62.22 61.85
SNLI 69.06 69.77 69.88 69.45 68.55 70.20 42.97 42.27 42.77 40.31 39.30
WNLI 54.29 60.00 64.29 65.71 50.00 61.43 47.14 48.57 48.57 47.14 45.71
Avg ‘ 58.42 61.83 62.12 63.41 ‘ 55.51 ‘ 60.66 H 46.05 46.30 46.51 46.54 ‘ 46.20

Sensitivity of Input Mapping. We evaluate the robustness of Hi LoRA with respect to three factors
that affect its input routing behavior: (i) the number of samples per LoORA m, 1 (ii) the use of
synthetic proxy samples generated by GPT (with generation prompts provided in Appendix [C.4),
and (iii) the choice of embedding model E. Experiments are conducted on NLI tasks under both
within-cluster and cross-cluster settings, with results summarized in Tab. El The results indicate that
HiLoRA remains robust across all tested conditions. More specifically: (i) Reducing m leads to
only a small accuracy drop (at most 5% on average), and the method remains competitive even with
two samples, which is the minimum needed to fit a Gaussian distribution. The within-cluster setting
is slightly more sensitive, consistent with the need for more accurate Gaussian fitting when tasks are
highly similar. (ii) Synthetic samples yield lower accuracy than real training data, but Hi LoRA still
performs on par with or better than baselines. In practice, small amounts of task-related examples
are typically available from public LoRA repositories, making this assumption reasonable. (iii)
Substituting the instructor-tuned embedder with a standard model (MPNet-base-v2
@[)) results in only a modest degradation (< 3%), indicating that Hi LoRA is not overly sensitive
to the embedding backbone.
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Compared with some single-level routing
methods, HiLoRA incurs a throughput reduction of about 7-30%, but still achieves up to 90% higher
throughput compared to Phatgoose. Considering the substantial performance gains observed in
both within-cluster and cross-cluster settings, this moderate reduction in throughput is acceptable.
In addition, we observe that the throughput of HiLoRA decreases more slowly as the number of
seen tasks grows. This behavior arises from two factors. First, although the input-LoRA mapping
latency increases with larger LoRA pools, this component constitutes only a small fraction of the to-
tal inference time. Second, the number of selected LoRAs can change in two characteristic ways: (i)
If at least one LoRA yields a positive similarity score, the selected set expands only when additional
positive-score LoRAs appear as more seen tasks are added. (ii) If all similarity scores are negative,
the maximum negative score tends to decrease as more LoRAs are included, leading to a smaller
selected set. Once a positive-score LoRA appears, the system transitions back to case (i). These two
mechanisms together explain the gradual and occasionally non-monotonic latency patterns observed
at the per-task level. However, because throughput is computed as an average over all tasks in the
test set, the aggregated trend becomes smoother and exhibits a modest decline followed by slow
stabilization as the LoRA pool continues to grow. Detailed latency breakdowns for each individual
task are provided in Appendix [C.3|(Tab. [g).

Ablation Study. Here, we conduct an ablation study on the scaling factor ~, which controls the
number of total ROCs activated. Experiments are performed under both within-cluster and cross-
cluster settings, and the evaluation covers all NLI tasks. As shown in Fig. [] setting v = 40%
yields the best overall performance. To further examine the generality of this behavior, we also
evaluate the effect of v on cross-cluster Translation and Struct-to-Text tasks. The complete results
are provided in Appendix [C.3] (Tab. [§). We observe that the optimal value of ~ differs across task
families, reflecting variations in task complexity and the degree of semantic alignment between the
target task and the LoRA pool. Larger values of v activate excessive ROCs, potentially introducing
parameter redundancy and interference that reduce performance. Conversely, smaller values may
exclude too many informative ROCs, typically leading to insufficient representation capacity and
performance degradation. Overall, these results indicate that selecting an appropriate scaling factor
is essential for achieving both efficiency and robust performance in Hi LoRA.

5 CONCLUSION

In this paper, we present Hi LoRA, a training-free framework for adaptive hierarchical routing over
pools of task-specific LoRAs to support robust domain generalization. Hi LoRA builds on structural
insights into LoRA by treating each ROC as the minimal routing unit. At the sequence level, it
adaptively selects candidate LoRAs and allocates ROCs using Gaussian likelihoods, narrowing the
search space and improving robustness. At the token level, routing is further refined by selecting the
most informative ROCs, which reduces redundancy and alleviates interference. Theoretical analysis
and extensive experiments demonstrate that HiLoRA reliably identifies relevant LoRAs, substan-
tially improves domain generalization, and maintains efficiency with only a moderate reduction in
inference throughput.

Despite its strengths, Hi LoRA has several limitations. It relies on a small number of task-specific
samples to construct Gaussian representations, which may not always be accessible and could raise
privacy concerns. Moreover, the token-level routing mechanism is empirically validated but lacks
formal theoretical guarantees. The current routing strategy does not explicitly consider load balanc-
ing, which may affect efficiency under large-batch or large-pool scenarios. Future research could
focus on addressing these limitations to broaden the practical applicability of the approach.

10
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The formulation of
HiLoRA, including the definition of rank-one components and the hierarchical routing framework, is
described in detail in Sec. [3] with complete theoretical analyses and proofs provided in Appendix B}
All datasets and task clusters are drawn from widely used public benchmarks, and the corresponding
preprocessing steps and evaluation protocols are fully documented in Appendix Experimental
configurations, including hyperparameter choices, routing parameters, and hardware settings, are
reported in Sec. ] and additional empirical results are provided in Appendix [C.3] To further sup-
port reproducibility and enable reuse, we will release source code and scripts for dataset preparation
upon publication.
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A RELATED WORK

Recent advances in extending LoRA for cross-domain adaptation fall into two primary directions:
MoE-style routing and LoRA merging.

MokE-style Routing. These methods extend LoRA adaptation by dynamically activating subsets of
LoRAs through gating functions (Mao et al) 2025)). At the sequence level, routing is performed
using task-level similarity or global gating scores to select LoRA experts for the entire input, as
in MoA (Feng et al., 2024) and MoLE (Wu et al,, [2024). At the token level, methods such as
LoRA-Switch (Kong et al., [2024) and Arrow (Ostapenko et al., 2024) introduce token-wise gating
to activate different LoRAs for different positions. Hybrid strategies combine these two levels, e.g.,
HMOoRA (Liao et al.| 2025) and MoLoRA (Hou et al.| |2025)), aiming to balance efficiency and flex-
ibility. Beyond entire LoRA routing, rank-level routing has also been explored, where each rank is
treated as a micro-expert and subsets are activated, as in SMoRA (Zhao et al., [2025b). Although
these methods demonstrate the benefits of dynamic expert selection, they exhibit two key limita-
tions: (i) they typically require training additional gating parameters, which undermines scalability
and hinders deployment in training-free scenarios, and (ii) they impose a fixed activation budget,
which reduces adaptability when handling diverse or unseen tasks. In contrast, our work introduces
a hierarchical routing framework that performs training-free selection at the sequence level and fur-
ther refines routing at the ROC level, enabling finer-grained control that reduces redundancy and
improves robustness across both seen and unseen domains.

LoRA Merging. These methods aim to combine multiple task-specific LoORAs into a single unified
module to support domain generalization (Huang et al.| 2024; (Coleman et al., [2024} [Qorbani et al.,
2025)). ZipLoRA achieves effective style and subject composition by directly merging independently
trained LoRAs (Shah et al., |2024)) for vision and text generation. LoRA-LEGO introduces rank-
wise clustering and re-assembly of LoRA ranks to construct merged adapters with adjustable capac-
ity (Zhao et al.,|2025a)). Beyond heuristic merging, recent works explore more principled strategies:
Closed-Form Merging (LoRM) derives analytical solutions for merging parameter-efficient modules
in federated continual learning settings (Salami et al., [2025)), while Adaptive LoRA Merge with Pa-
rameter Pruning further enhances robustness in low-resource domains by combining merging with
pruning and lightweight fine-tuning (Miyano & Arase, 2025). While these approaches enhance
cross-domain generalization by leveraging knowledge across tasks, they enforce a one-size-fits-all
merged model. This limits flexibility and often degrades performance in scenarios involving diverse
or unseen tasks. Our work addresses these limitations by designing an adaptive routing framework
that adaptively selects LoRAs at the sequence level and refines the choice at the ROC level, provid-
ing task-aware composition while reducing redundancy and interference.

B THEORETICAL DEMONSTRATION

B.1 ARIANCE NORMALIZATION PROPERTY

For completeness, we restate the variance normalization property, originally established as Theo-
rem 3.1 in|Zhao et al.| (2025a)). As the full proof is already provided in the cited work, we omit the
derivation here and present the result in the form of a lemma below.

Lemma 2 (Theorem 3.1 in (Zhao et al.,2025a)) Let A, € R¥*", By € R"™™% and Ay € R,
By € R¥* where all entries are independently sampled from the standard normal distribution
N(0,1). If the product A;Bs is rescaled by the factor \/r/k, then the variance of the entries in
A, B coincides with that of the normalized product: Var(A1B1) = Var(,/} A2Bs).

B.2 PRrROOF oF LEMMA[I

The Bayes error for the optimal (MAP) decision rule is:

PRI = [minfrni(). wps )bz < [ \frni(a) mny () ds

:\/ﬂ'iﬂ'j/ pi(z)pj(z)dz = /mi7; p(pi,pj)s
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where the first inequality follows from the elementary bound mina,b < +/ab for a,b > 0, and
p(pi, p;) == [ /Pip; denotes the Bhattacharyya coefficient (affinity) between p; and p;.

For k € {3, j}, the Gaussian densities are:

pr(2) = (2m) V2| exp (= 42— ) TSNz - ).
Thus, we have:
pi(2)p;(2) = (2m) 2 S e (— 3z - ) TRz - @) e,
where 7' = (7' + ¥YHe = X - 3(E7'w 4+ Xj'wpy), with ¢ =
i(u?EZlm B ey - 2ﬂT2‘1ﬂ).
Integration yields:

ppispy) = | TS, 7 e OS2,

Using standard matrix identities, we have:
T(Erx;) < (1/2 1/4 1/4 |Ei+zj‘
C = §(pi — 1j) (T) (i —py),  |SIY2E7HAE Y = eap(—5 log —=2—=).

VIEd[%]

Substituting them into p(p;, p;) gives:

AN =5
p(pi,p;) = exp| —%(p; — Hj)T<ZTJ) (i — pj) — 3log ——=2—==| = exp(—B;j).

* VR
Therefore, we proved:
PQ(i,5) < mm; plpi,p;) = 7 exp( — Byj).
B.3 PROOF OF THEOREM/[I]

Pairwise Error. For a given input « and label(z) = ¢;, define the pairwise overtake events as
Aij = {pj (Z) > pi(z)}, 7 # 1. For A»;j, we have:

Pr(Ayj | label(x) =t;) = / pi(z)dz = / min{p;(z), p;(z)}dz (7)
{pj(2)>pi(2)} {pj(z)>pi(z)}

IN

/miﬁ{pmpj} dz < /\/Pipj dxr = p(pi,p;) = exp(—DB;j),

where the first equality follows from the definition of the error event: under class 7, misclassification
occurs precisely when p;(z) > p;(z); the second equality holds because, on the region {p;(z) >
pi(2)}, we have min{p;(2), p;(z)} = pi(2); the inequality is obtained by extending the domain of
integration; and the last two equality uses the Bhattacharyya coefficient, as established in Lemmal[I]

Top-k Error. Let N1 = 3., 14,,. denote the number of rivals that beat i. Then the Top-k error
event under label(x) = i is { N1 > k}. Now, we have the following analysis:

E[Ny | label(x) = t;]

Pr(N; > k| label(x) = t;) < A
1
= - > Pr(Ay; | label(z) = t;)
g
1
< %Zel‘p(—Bi,j%
j#i

where the first inequality applies the Markov’s inequality; the equality follows from computing
E[N1] and substituting the pairwise error terms; and the final inequality then uses the bound in

Eq. (7).
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B.4 PROOF OF THEOREM[Z]

For any competitor j # ¢*, consider the event p;(z) > pi(z). For any o € (0, 1], the Markov-
Chernoff technique gives:

Pr (p;(2) > pi-(2)) = Pr((ﬁ(fz)))a 2 1) < B[(23)]

zr~q

where The first equality holds because, for any « > 0, the event {p; > p;+} is equivalent to
{(Pp—f*) > 1}; and the first inequality then follows from Markov’s inequality: if a random vari-
able X > 0, then for any ¢ > 0, Pr(X >¢) < %.

Lemma 3 Let ¢ = N(py, %), pj = N(pj, X;), and pi = N (=, X+ ) be full-rank d-variate

Gaussians. For any o € (0,1], assume M}, := ;' +aX;' —a St = 0.
Then the a-moment of the likelihood ratio admits the closed form as follows:

Eeu[(242)'] = €1 M3 exp(d ()T (M)7'HE, — K1),

pix (2)

where hl, = S g+ a3 s —a B3 e, K3 = g B9 g + 5 (1) 5 0y — p S5 pae ), C4 =
exp( — Slog|X;| + 5 log |Xix| — %log\EqD.

Proof. By Chernoff/Markov’s trick (see (Chernoff, [1952)), we have:
E, {(Z’;&%) } = /d q(z)exp (a(logpj(z) — log p;« (z))) dz.
R

Write each log-density in quadratic form: log p(z) = —%log(2m) — 1 log || -4 (z—p) "=~ (2 —

p). Collecting the constant (determinant) terms yields the prefactor C’((lq). Collecting the quadratic
and linear terms in z gives:

—3z Muz+hiz— Ko, Mo=3"+a%;'—aX]},
with h,, K, as stated. Completing the square and using the multivariate Gaussian integral
Jexp(—22TAz +b"2)dz = (2m)Y2|A|7Y/2exp(3b" A~1b) (valid for A > 0), and noticing

that (277)’“ 2 cancels with the corresponding factor in ¢, we obtain the claimed closed form.

If ¢ = ps» (e, pg = py» and Xy = 3;»), then we have:

Eznpie [(;7((?)) } = /pi*(z)l_apj(z)a dz = Pa(pi*,pj),
where the right-hand side is the standard multivariate Gaussian Chernoff a-coefficient:
|33/ |35 |72 a(l —a)
12 XP{ )
a3+ (1 - a) 3
as given in|Nielsen| (2014, Eq. (35)).

palpir,pj) = (1 = )T (@25 + (1= ) i) ™ (5 — m*)> ,

Let No = 7. .. 1p,>p,. . denote the number of rivals that beat i*. Then the Top- error event under
z ~ qis {Ng > k}. Similar to the proof of Theorem|I] we have:

Pr(Ny > k|z~q) < M
= 1 Y P() 2 pe () | 2~ )
JF#*
1 pi(2) \*
< 2 E[(EF) ]
JF#*
1 . . . L _
== 7 C MY exp(d (h)T(MI) M — K)
A
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C EXPERIMENTAL SUPPLEMENTARY MATERIAL

C.1 DETAILS OF EVALUATION DATASETS AND METRICS

We employ a subset of the FLAN-v2 datasets (Wei et al., 2022)) for domain generation. FLAN-v2
datasets is a large-scale instruction-tuning corpus that integrates diverse Natural Language Under-
standing (NLU) and Natural Language Generation (NLG) tasks into an instruction-response format.
A detailed summary of the selected datasets together with their associated evaluation metrics is pro-
vided below.

Natural Language Inference. Natural language inference tasks require models to determine logical
relations (entailment, contradiction, or neutrality) between pairs of sentences. We use the following
datasets: (1) ANLI (v1-v3); (2) CB; (3) MNLI (matched, mismatched); (4) QNLI; (5) RTE; (6)
SNLI; (7) WNLI. All datasets in this cluster are evaluated using accuracy as the metric.

Question Answering. Question answering tasks evaluate the ability to retrieve or generate correct
answers from passages or knowledge bases. We use the following datasets: (1) ARC (Challenge,
Easy); (2) BoolQ; (3) MultiRC; (4) NaturalQuestions; (5) OpenBookQA; (6) ReCoRD; (7) SQuAD
(v1-v2); (8) TriviaQA. For ARC, BoolQ, OpenBookQA, and ReCoRD, accuracy is used as the
evaluation metric. For the remaining datasets, both accuracy and F1 score are reported.

Sentiment Analysis. Sentiment analysis tasks involve classifying the polarity or emotional tone of
text, such as positive or negative sentiment. We use the following datasets: (1) Sentiment140; (2)
SST2. For Sentiment140, both accuracy and F1 score are reported, while SST2 is evaluated using
accuracy only.

Translation. Translation tasks test the capacity to generate fluent and semantically correct text
across different languages. We use the following datasets: (1) ParaCrawl_EnEs; (2) WMT14_EnFr;
(3) WMT16_CsEn; (4) WMT16_DeEn; (5) WMT16_FiEn; (6) WMT16_RoEn; (7) WMT16_RuEn;
(8) WMT16_TrEn. All translation tasks are evaluated using BLEU, which measures n-gram overlap
between system outputs and reference translations.

Commonsense Reasoning. Commonsense reasoning tasks require leveraging everyday knowledge
and logical inference to choose or generate plausible answers. We use the following datasets: (1)
COPA; (2) HellaSwag; (3) PIQA; (4) StoryCloze. All datasets in this cluster are evaluated using
accuracy as the metric.

Paraphrase. Paraphrase tasks assess whether two sentences express the same underlying meaning,
despite differences in wording. We use the following datasets: (1) GLUE_MRPC; (2) GLUE_QQP;
(3) STS-B; (4) PAWS_Wiki. MRPC and QQP are evaluated with both accuracy and F1, while STS-B
and PAWS_Wiki are evaluated using accuracy.

Struct-to-Text Generation. These tasks focus on converting structured data, such as triples or tables,
into coherent natural language text. We use the following datasets: (1) CommonGen; (2) DART;
(3) E2E_NLG; (4) Gigaword; (5) WebNLG_En. All datasets in this cluster are evaluated using
ROUGE (ROUGE-1,2,L) and BLEU, since n-gram overlap captures the informativeness and fluency
of generated text.

Coreference Resolution. Coreference tasks require identifying expressions in text that refer to the
same entity. We use the following datasets: (1) Definite Pronoun Resolution; (2) WSC. Both datasets
are evaluated using accuracy.

Text Correction. Text correction tasks involve detecting and fixing grammatical errors or inconsis-
tencies in sentences. We use the following datasets: (1) CoLA; (2) FixPunct; (3) TrueCase. All
datasets in this cluster are evaluated using accuracy.

Word-level Tasks. Word-level tasks examine lexical semantics and basic text processing such as
contextual meaning and segmentation. We use the following datasets: (1) WiC; (2) Word_Segment.
WiC is evaluated using accuracy, while Word_Segment is evaluated using both accuracy and F1.

Accuracy is sufficient when tasks have clear-cut, single-label predictions, such as classification or
multiple-choice settings, where each prediction is either entirely correct or incorrect. In contrast,
tasks with span-based, multi-label, or imbalanced data distributions may yield partially correct pre-
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dictions. In these cases, F1 score is reported alongside accuracy, as it balances precision and recall
and provides a more sensitive evaluation of partial correctness.

C.2 EXTENDED VISUALIZATION OF LORA PROJECTIONS

In the main text, we reported scatter plots of the first two principal components obtained from vectors
in LoRA projection matrices fine-tuned on five NLI tasks, focusing on two representative layers. To
further validate these findings, Fig.[7]presents results from additional layers, which reveal consistent
structural patterns across model depth. We additionally extend the analysis to tasks drawn from
different clusters (As shown in Fig. EI) where similar trends are observed. Taken together, these
results provide stronger empirical support for the key observations discussed in Sec. [3.1]

Furthermore, Fig. PHI2] provide a comparison between the cosine similarity distributions of LoRA’s
down-projection matrices and up-projection matrices under within-cluster and cross-cluster settings.
For down-projection matrices, the within-cluster and cross-cluster distributions are nearly identi-
cal: both are centered at zero with indistinguishable variance and tail mass. This suggests that the
down-projection matrices behave almost like random projections and do not encode task-specific
information. In contrast, the similarity distributions of up-projection matrices are noticeably more
concentrated. Under the within-cluster setting, the up-projection matrices exhibit higher cosine sim-
ilarity than in the cross-cluster setting, indicating that the up-projection matrices share more struc-
ture within the same cluster. This further confirms the distinct functional roles of the down- and
up-projection matrices: down-projection matrices behave closer to task-agnostic random projection,
whereas up-projection matrices capture meaningful cluster-level structure.
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Figure 7: Scatter plots of the first two principal components derived from vectors in LoRA query
and value projection matrices in layer 13 across five NLI tasks.
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Figure 8: Scatter plots of the first two principal components derived from vectors in LoRA query
and value projection matrices in layers 10 and 13 across six tasks from different clusters.

C.3 FuLL EXPERIMENTAL RESULTS

Tab. [ reports the per-task accuracy of different methods on the NLI cluster using LLaMA2-13B
and FLAN-T5-large. Comprehensive performance under the unseen cluster setting is reported for all
tasks, including detailed metrics for each task and evaluation criterion. Results for LLaMA2-7B and
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LLaMA2-13B are shown in Tab. [5|and Tab. [6] and results for FLAN-T5-large are shown in Tab.
Fig. [13] shows a heatmap of cosine similarities produced by Retriever across tasks, with tasks
from the same cluster grouped by green boxes. Tab. [§]reports the per-batch input-mapping latency
and inference latency across all NLI tasks under different LoRA-pool sizes. Tab. [0 summarizes the
performance of Hi LoRA under different settings of the scaling factor - across various task types.

Table 4: Detailed performance on the NLI cluster using LLaMA2-13B and FLAN-T5-large. Tasks
with a white background are set as seen tasks, while those with a gray background are set as un-
seen tasks. For each task, the best accuracy among all methods is in bold, and the second best is
underlined.

Methods | LoRA | HILoORA HiLoRA-GS HiLoRA-ROC Retriever LEGO Arrow Phatgoose Ensemble Merged
LLaMA2-13B
ANLI rl 60.30 ‘ 62.70 60.60 58.80 61.80 58.30 47.40 55.60 52.00 24.70
ANLI 12 47.30 48.60 47.00 46.20 48.50 443 041.00 43.70 41.40 24.30
ANLI 13 49.92 ‘ 48.92 47.75 49.08 49.75 47.17 44.92 47.33 46.42 26.42
CB 88.00 86.00 84.00 80.00 82.00 84.00 80.00 76.00 84.00 38.00
MNLI 87.97 ‘ 87.58 87.34 82.58 86.56 85.47 70.00 76.45 75.35 37.30
MNLIL.mis | 89.80 89.49 88.63 83.79 88.87 85.70 71.02 75.94 76.41 36.64
QNLI 82.66 ‘ 83.13 82.66 56.29 77.89 68.95 67.97 70.98 69.96 44.73
RTE 80.74 75.19 75.56 73.33 74.81 72.59 78.89 73.33 76.30 52.59
SNLI 81.91 ‘ 81.84 81.99 76.72 81.60 79.65 67.19 75.23 72.38 32.46
WNLI 71.43 67.14 67.14 67.14 51.43 64.29 62.86 58.57 65.71 42.8
AVG ‘ 74.00 ‘ 72.86 72.47 67.39 70.32 69.04 63.12 65.31 65.99 36.00
FLAN-T5-Large
ANLI-r1 60.20 ‘ 60.40 61.20 57.90 60.70 60.60 60.80 61.30 60.70 60.80
ANLI-r2 43.30 42.20 42.70 41.00 42.80 42.50 43.70 42.90 43.50 43.40
ANLI-r3 44.50 ‘ 43.08 44.42 42.42 44.25 44.17 45.25 44.67 4433 4433
CB 78.00 78.00 78.00 78.00 78.00 78.00 80.00 78.00 78.00 78.00
MNLI 88.59 \ 89.12 84.77 89.00 88.16 64.69 61.76 66.52 63.52 58.87
MNLI-mis | 89.14 88.91 82.07 88.52 88.67 62.93 68.79 64.10 61.05 56.76
QNLI 82.54 82.70 82.54 82.70 82.70 82.38 81.95 81.02 82.38 80.66
RTE 78.89 61.15 61.11 61.48 62.59 62.96 63.70 60.00 63.70 57.04
SNLI 60.08 ‘ 80.00 60.31 80.00 68.44 13.75 17.85 10.14 13.28 6.13
WNLI 52.86 51.43 51.43 44.29 51.29 50.00 54.29 44.29 51.43 44.29
Avg ‘ 67.81 ‘ 67.70 64.85 66.53 66.76 56.20 57.81 55.29 56.19 53.03

C.4 SYNTHETIC SAMPLE GENERATION

In addition to using real training samples, we also evaluate a setting where the sequence-level rout-
ing in HiLoRA is based on synthetic task examples generated by a large language model (LLM).
The goal is to approximate the instruction format and semantic characteristics of each task without
accessing its original training data.

For each task (e.g., QNLI), we prompt the LLM to generate m = 20 synthetic examples that follow
the same input style as the corresponding FLAN instruction, while avoiding any direct use of the
original dataset. The prompt we use is conceptually as follows:

“ Following the format below, generate 20 synthetic samples for the QNLI task
without relying on the original dataset. Each sample should be provided as a
JSON object with a single "inputs" field that contains the full instruction-style
text. The overall JISON structure should be:
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Table 5: Per-task performance of LLaMA2-7B under the cross-cluster setting.

Tasks/Methods \ Metric \ LoRA \ HiLoRA HiLoRA-GS HiLoRA-ROC Retriever LEGO Arrow Phatgoose Ensemble Merged
ANLL1 ACC | 4640 | 30.70 2730 2770 3000 2820 3130 29.40 2090 2140
ANLL2 ACC | 4010 | 3450 3250 30.20 3430 3030 3220 31.50 3300 22.00
ANLLT3 ACC | 3692 | 3167 30.42 30.67 3133 2942 3058  30.08 2975 16.17
CB ACC | 80.00 | 70.00 62.00 72.00 6600 6000 5200  64.00 64.00 4.00
MNLI ACC | 7766 | 5074 49.65 49.92 4895 4934 4512 4785 4535 0.94
MNLI_mis ACC | 7969 | 5129 49.45 50.59 4945 5082 4566 4805 4637 121
QNLI ACC | 7727 | 46.84 42.62 46.56 4223 4141 4797 44580 47.19 8.59
RTE ACC | 5296 | 62.22 5741 52.96 7259 5074 5815 5593 5630 3926
SNLI ACC | 6742 | 4031 41.00 40.23 1582 4008 3418 3906 36.68 051
WNLI ACC | 7286 | 47.14 49.86 49.14 4714 4857 4571 47.14 47.14 2.86
AVGNLI | | 63.13 | 4654 23 45.00 1378 4289 4229 4378 4357 11.69
ARC_C ACC | 4043 | 3474 30.78 30.43 3431 3233 3000 3276 31.90 043
ARC_E ACC | 4017 | 4864 4428 45.89 4750 4674 4157 4606 4542 0.55
Bool.Q ACC | 8523 | 7836 75.86 6434 7721 7543 6445 7641 7609 2121
MUltRC ACC | 6215 | 3648 34.49 40.82 3336 39057 3258 344l 35.08 3.52
Fl 6586 | 3821 36.10 42.99 3493 4128 3494 36.58 36.84 13.15

NaturalQuestions ACC | 1895 | 1203 9.38 5.90 8.59 1340 9.88 13.48 11.80 035
stions FI 2982 | 2039 18.45 11.33 1713 2142 1782 2137 19.65 9.13
OpenBookQA ACC | 5820 | 45.60 44.60 45.40 3860 4580 4300  42.80 4520 020
RecoRD ACC | 9287 | 6981 6351 66.45 7230 68.19 6626  65.18 6278 3542
SQUAD A1 ACC | 5520 | 4465 40.90 39.80 4035 4578 2551 4340 42.97 242
- Fl 7491 | 6425 59.47 58.99 6001 6375 4189 6198 6236 2143
SQUAD.v2 ACC | 6434 | 2645 2457 24.41 1926 2648 1477 2406 2578 035
- Fl 7380 | 36.03 34.01 35.56 3042 3651 2335 33.99 35.16 9.06

. ACC | 5402 | 47.19 4113 43.95 3727 4908 4277 4746 46.99 3.91
TriviaQA FI 6027 | 5896 5473 54.95 4981 59.14 5335 5879 5833 2288
AVG_QA | | 59.66 | 4695 43.56 43.19 4355 4667 3937 45.10 44.89 10.09
Sentiment140 ACC | 43.06 | 43.27 40.61 44.49 3959 4273 3184 4222 4041 449
Fl 4470 | 4426 41.91 45.51 4134 4368 3305 4367 4108 12.05

SST2 ACC | 7586 | 63.10 5851 62.99 5077 6264 4908  63.06 59.77 0.11
AVG_Sentiment | | 5987 | 5443 49.88 54.00 5012 5293 4076 53.00 50.26 419
ParaCrawl EnEs BLUE | 29.05 | 27.18 28.61 18.15 1525 1931 2701 2611 2534 1112
WMT14_EnFr BLUE | 3049 | 3023 30.95 2320 1257 2579 2967  29.83 2091 15.64
WMT16_CsEn BLUE | 1967 | 18.56 19.37 12.55 752 1410 1826 1804 18.29 11.76
WMT16_DeEn BLUE | 2672 | 27.26 27.40 20.06 1122 2167 2657 2619 26.61 16.12
WMT16_FiEn BLUE | 1458 | 14.63 15.36 1031 540 1120 1458 1423 14.50 9.04
WMT16_RoEn BLUE | 2491 | 22.80 22.87 16.19 1201 1757 2247 2213 233 13.72
WMT16_RuEn BLUE | 2227 | 17.84 2154 13.33 1008 1682 2099 1946 2131 12.50
WMTI16_TrEn BLUE | 8.11 774 8.33 554 191 512 793 779 7.88 5.39
AVG_Translation 2198 | 2078 21.80 14.92 9.50 1645 2093 2047 2077 1191
COPA ACC | 7200 | 65.00 66.00 66.00 7100 6800 5900  62.00 6300 20.00
HellaSwag ACC | 7176 | 2887 242 26.41 285 2355 2898 2391 26.99 0.00
PIQA ACC | 6175 | 5372 50.98 48.58 5322 4770 5175 52.90 51.64 1.80
StoryCloze ACC | 6294 | 6348 61.66 64.17 3289 6128 6358 6471 6647  39.14
AVG_Commonsense | | 67.11 | 5276 5027 5129 4499 5014 5083 5088 52.03 1524
ACC | 68.00 | 6525 65.75 53.50 5850 3675 5325  59.50 5875 17.50

GLUEMRPC Fl 68.00 | 6525 65.75 53.50 5850 3675 5325 59.50 5875 19.50
GLUE.QQP ACC | 7613 | 64.80 67.66 53.44 6812 5871 6309  56.80 64.73 223
: Fl 76.13 | 64.80 67.66 53.44 68.12 5871  63.09  56.80 64.73 3.01
STSB ACC | 3482 | 17.83 2033 16.78 1978 1595 1727 1678 16.43 021
PAWS_Wiki ACC | 8855 | 64.45 46.68 47.19 7164 4824 4676 5617 56.33 9.10
AVG Paraphrase | | 66.88 | 53.08 50.11 27 5451 3991 4509 4731 49.06 7.61
ROUGE-1 | 54.60 | 4327 44.89 43.08 4303 2414 3970 3895 3743 3544

CommonGen ROUGE2 | 23.18 | 14.05 13.88 221 8.65 147 1048 1226 11.26 9.68
ROUGEL | 4782 | 3684 3630 2831 251 2170 3257 3379 247 2793

BLEU | 1195 | 674 7.1 0.27 3.90 008 420 5.60 5.08 3.71

ROUGE-1 | 72.16 | 52.74 52.89 5178 5303 3526 4997 5033 50.61 42.9

DART ROUGE2 | 47.78 | 25.66 25.48 2379 2449 1603 2605 2608 2619 2106
ROUGEL | 5607 | 39.76 39.68 3874 3944 2832 3927 39.19 3945 3372

BLEU | 3644 | 14.99 14.60 13.19 1320 639 1455 1574 15.26 10.43

ROUGE-1 | 73.04 | 56.60 5855 47.01 5166 1873 59.00  57.95 5615 54.62

BIENLG ROUGE-2 | 44.84 | 29.79 2929 2120 2765 924 3325 3276 3178 29.99
- ROUGELL | 5267 | 4128 4145 33.49 3945 1672 4366 4381 231 40.50
BLEU | 3179 | 17.99 16.56 775 1380 028 2117 1894 1824 20.17

ROUGE-1 | 3628 | 2528 2524 226 2518 2464 2543 26.50 2631 2292

Gigavord ROUGE-2 | 1607 | 858 8.57 7.46 8.31 827 864 9.50 9.55 7.76
ROUGE-L | 3290 | 21.67 2170 19.11 2063 2121 2190 2290 22.90 19.54

BLEU | 1032 | 3.30 337 2.82 3.08 342 337 409 403 3.19

ROUGE-1 | 7837 | 4801 48.29 52.02 5328 3222 4527 4501 4299 4394

WebNLG.En ROUGE2 | 56.19 | 24.95 2553 2593 2666 1557 2409 24.60 290 2376
ROUGEL | 6252 | 39.14 39.16 023 4280 28.15 3765 3752 3571 35.89

BLEU | 4518 | 15.60 15.02 14.60 1462 592 1394 1473 13.65 11.58

'AVG_Text_Generation | | 4451 | 2831 28.18 24.86 2732 1589 2771 2801 2721 2494
DPR ACC | 4589 | 60.18 61.07 56.61 5804 5857 6107 5946 5839 6.96
WSC ‘ ACC ‘ 50.00 ‘ 63.00 63.00 62.00 60.00 5900 6100  57.00 63.00 7.00
AVG coreference | | 4795 | 6159 62.04 5930 5002 5879 6104 5823 60.70 6.98
CoLA ACC | 6224 | 5549 5530 53.18 5482 5578 5578 5520 5530 5.20
FixPunct ACC | 3469 | 2285 2285 17.93 2109 1594 2113 21.09 21.17 6.60
TrueCase ACC | 6727 | 1461 2148 6.00 2.50 039 1113 1445 13.32 7.23
AVG Text Correct | | 5473 | 3098 321 2573 2614 2404 2935 2958 2993 6.34
WIC ACC | 5778 | 49.68 49.68 49.68 5063 4937 5149 5032 48.95 0.16
Word.Segment ACC | 6246 | 2570 23.44 18.87 1957 1457 2407 2406 2378 10.74
: Fl 90.07 | 60.04 5924 54.07 6607 4113 5588  57.03 5867 34.80
AVG_Word | | 67.02 | 4628 4551 43.08 4673 3861 4573 4543 43.09 11.47
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Table 6: Per-task performance of LLaMA-13B under the cross-cluster setting.

Tasks/Methods | Metric | LoRA | HILORA HiLoRA-GS HiLoRA-ROC Retriever LEGO Arrow Phatgoose Ensemble Merged
ANLLr1 ACC | 6030 | 41.00 38.50 30.80 3710 3230 4420 36.80 42.80 0.00
ANLL2 ACC | 4730 | 41.00 36.80 29.80 3580 3100 4080 3820 39.70 0.10
ANLLT3 ACC | 4992 | 4017 37.50 3242 3725 3192 4058  37.42 4033 0.00
CB ACC | 88.00 | 82.00 70.00 74.00 7400 6800 7400  74.00 72.00 0.00
MNLI ACC | 8797 | 6242 60.94 40.74 6098 4566 6180 5582 62.19 0.04
MNLI_mis ACC | 8980 | 62.93 6137 39.92 6191 4602 6301 5633 63.09 0.00
QNLI ACC | 8266 | 61.84 57.66 43.55 5203 4219 6168 5527 63.95 0.00
RTE ACC | 8074 | 7222 64.07 5037 7222 5333 7370 65.93 72.96 0.00
SNLI ACC | 8191 | 53.59 5121 30.94 3582 3930 5621 5375 56.09 0.00
WNLI ACC | 7143 | 61.43 67.14 4429 5286  47.14 5857 4571 5714 2429
AVG_NLI | | 7400 | 57.86 5452 41.68 5200 4369 5746  S192 57.03 2.44
ARC_C ACC | 4888 | 49.48 48.79 47.76 4741 4103 4698 481 4853 0.00
ARC_E ACC | 5898 | 58.77 589 58.26 5822 5492 572 5822 58.69 0/00
Bool.Q ACC | 8934 | 8527 84.84 84.8 8234 8445 8371  83.09 8336 28.00
MultiRC ACC | 6793 | 4344 4371 4375 4875 4062 4066 3555 39.88 0.00
Fl 7158 | 45.19 45.17 45.22 5104 4247 4333 3851 4264 12.25

NaturalQuestions ACC | 1992 | 1496 14.30 2.97 1238 17.11 1680 1625 16.80 055
Fl 3087 | 2600 25.15 15.53 2383 2778 2686  25.64 26.84 9.93

OpenBookQA ACC | 6380 | 5320 5220 51.60 4960 5100 5320 5420 53.60 020
Record ACC | 9519 | 8021 80.58 80.6 8135 7741 764 75.9 7817 3688
SQUAD.v1 ACC | 5734 | 49.49 45.04 45.27 4531 4527 4820 4173 48.12 0.04
- FI 7576 | 6852 64.90 65.44 6608 6459 6819  68.32 68.56 1529
SQUAD.v2 ACC | 7078 | 3487 31.99 31.95 2061 2820 3211 3152 3156 0.00
- FI 8071 | 4538 1282 1281 4131 3889 4263 4195 236 5.66
Tivia0A ACC | 6078 | 4484 5473 17.07 5086 5520 5727 5115 5738 2.03
FI 6742 | 70.04 68.11 3571 6472 6711 6961 684 6947 2368

AVG_QA | | 5533 | 5433 49.59 2739 5359 5224 5403 53.50 54.10 9.99
Sentiment140 ACC | 4204 | 44.69 4430 35.10 4122 4490 4306 43.06 5347 0.20
Fl 4359 | 46.09 45.63 39.48 43.56 4592 4501  44.84 4538 9.47

SST2 ACC | 7632 | 7494 74.83 75.52 61.84 746 7471 7437 74.48 0.00
AVG_Sentiment | | 5957 | 60.17 59.95 56.40 5212 6000 5937  59.16 59.45 242
COPA ACC | 7200 | 7600 75.00 67.00 7200 6800 7400  72.00 74.00 3.00
HellaSwag ACC | 9078 | 4590 39.45 45.59 4441 27.19 3410 3594 39.26 0.00
PIQA ACC | 6672 | 5552 5634 56.07 5760 5175 5568 54.92 57.81 077
StoryCloze ACC | 7770 | 7037 7241 70.11 3936 6679 7380  73.16 7401 1.60
AVG_Commonsense 7680 | 61.95 60.80 53.69 5334 5343 5940  59.01 6127 134
ACC | 8925 | 7175 70.00 63.75 6925 6850 7075 6825 69.50 18.00

GLUE MRPC Fl 8925 | 7175 70.00 6375 6925 6850 7075  68.25 6950 2075
GLUE.QQP ACC | 8488 | 7586 76.17 4547 69.02 5562 5789 4395 5133 6.41
: Fl 8488 | 75.86 76.17 45.65 69.02 5562 5789 4395 5133 3410
STSB ACC | 4499 | 1609 18.38 8.70 1894 1462 1706 1671 17.62 0.00
PAWS_Wiki ACC | 9379 | 8078 79.18 62.42 68.67 5395 5945 514l 57.15 10.08
AVG Paraphrase | | 7823 | 6lL.12 60.93 4511 5647 4817 5129 4508 48.90 12.43
ROUGE-1 | 55.16 | 44.13 46.71 34.99 4715 3402 4399 4194 4424 3374

CommonGen ROUGE2 | 25.11 | 14.14 15.38 1.56 2.69 504 1479 1399 14.70 9.96
ROUGEL | 4878 | 36.58 39.41 2350 3135 2687 3747 3653 3777 27.09

BLEU | 13.05 | 7.2 8.36 0.51 024 178 7124 6.52 711 2.68

ROUGE-1 | 7434 | 53.06 5337 49.68 5210 3115 5366  49.81 5422 4632

DART ROUGE2 | 50.87 | 26.48 26.46 247 2373 1491 2911 2669 2033 2421
ROUGEL | 5892 | 4034 40.36 3725 3843 2631 4199 40.12 0214 3600

BLEU | 4153 | 1566 16.08 12.18 1231 332 1690 1333 17.37 9.61

ROUGE-1 | 72.92 | 6345 6032 54.20 6277 1331 6519  62.38 6540 5460

I ROUGE2 | 4555 | 34.42 31.70 2428 3341 538 3635 3437 3635 29.90
- ROUGEL | 5334 | 46.14 4415 37.42 4467 1199 4701 4557 4706 3975
BLEU | 3250 | 20.73 19.46 8.06 2085 004 2126  17.51 20.93 18.72

ROUGE-1 | 36.99 | 2580 2535 2246 2488 2515 2679 2827 2700 21.03

Gigavord ROUGE2 | 1638 | 882 8.50 7.29 8.17 840  9.67 10.47 9.61 6.85
ROUGEL | 3325 | 22.13 21.82 19.26 2030 2149 2317 2477 2332 18.03

BLEU | 1038 | 3.63 3.32 2.61 3.05 321 427 4.99 4.25 2.58

ROUGE-1 | 8L.11 | 5150 54.92 50.51 5378 3295 5009 4844 5083 4455

WebNLG.En ROUGE-2 | 60.23 | 27.70 30.25 25.08 2662 1671 2879 2838 2899 2445
8 ROUGE-L | 6537 | 42.50 44.49 41.10 4308 3017 4205 4125 4231 36.40

BLEU | 5229 | 16.26 18.92 1421 14.21 263 1536 12.04 16.48 9.53

'AVG_Text_Generation | | 4640 | 3006 30.47 2443 2824 1574 3076 2937 3097 2480
DPR ACC | 90.54 | 6411 64.46 61.61 6339 6161 6446 6321 6411 0.18
WsC ‘ ACC ‘ 67.00 ‘ 59.00 55.00 52.00 6500 4500 5100  43.00 47.00 2.00
AVG Coreference | | 7877 | 6156 5973 56.80 6420 5331 5773 53l 5555 1.09
CoLA ACC | 69.08 | 63.78 62.52 5376 5819 5578 6349 63.01 63.20 0.00
FixPunct ACC 452 | 2266 27 1223 2332 1621 2227 2211 23.16 137
TrueCase ACC | 7285 | 3434 2941 6.76 1074 516 3199 3289 4141 121
AVG Text Correct | | 6238 | 4026 3821 2425 3075 2572 3925 39.34 259 0.86
WIC ACC | 73.65 | 58.57 55.87 54.60 5286 5143 5500  S7.14 58.41 0.16
Word.Segment ACC | 7406 | 3035 31.02 2387 2238 1355 2841 2646 3755 3.20
: Fl 9334 | 60.61 6237 54.18 6542 3596 6252  63.54 6271 39.59
AVG_Word | | 7868 | 5203 5128 46.81 4838 3809 5023 5107 5177 10.78
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Table 7: Per-task performance of FLAN-TS5-large under the cross-cluster setting.

Tasks/Methods | Metric | LoRA | HILORA HiLoRA-GS HiLoRA-ROC Retriever LEGO Arrow Phatgoose Ensemble Merged
ANLLrl ACC 6020 | 57.90 59.20 54.00 6060  60.70  60.50 60.00 60.60 60.60
ANLL2 ACC 4330 | 4270 42.20 41.40 4200 4280  43.10 42.90 43.00 4270
ANLLs3 ACC 4450 | 43.42 44.50 41.83 4383 4400  44.00 4425 43.92 44.00
CB ACC 78.00 | 78.00 78.00 80.00 80.00  78.00  78.00 82.00 78.00 78.00
MNLI ACC 8859 | 81.76 82.50 83.48 8340 5824  56.52 79.49 59.10 50.78
MNLI_mis ACC 89.14 | 82.66 83.40 83.87 84.77 5562 50.20 79.10 5637 4820
QNLI ACC 8254 | 81.09 80.78 82.38 8223 7793 7578 80.98 78.44 74.10
RTE ACC 78.89 | 74.07 67.04 74.81 7333 5926 5333 72.96 60.00 52.59
SNLI ACC 60.08 | 36.13 10.35 38.87 10.27 379 164 23.40 3.83 1.52
WNLI ACC 5286 | 57.14 38.57 5143 6000 4143 42386 55.71 4429 38.57
AVG NLI \ | 67.81 | 63.49 58.65 63.21 6204 5218 5059 62.08 5275 49.11
Bool.Q ACC 8727 | 79.22 76.09 81.60 80.70 7473  73.05 80.04 7523 70.39
MultRC ACC 5531 | 54.02 53.48 5242 5320 5297 5359 54.02 53.24 52.77
it Fl 5871 | 57.19 56.76 55.64 56.53 5630  56.94 57.12 56.53 56.11
SQUAD.v ACC 4266 | 3621 3430 3633 2738 3027 2945 35.00 30.94 29.92
uAD-v Fl 6425 | 59.92 57.50 57.56 5123 5392 53.01 58.28 5431 53.29
SQUAD.Y2 ACC 66.56 | 65.39 64.26 64.34 62.97 63.09 6246 64.77 63.09 61.91
UAD-V Fl 77.13 | 7639 75.36 75.16 7424 7427 7367 7578 74.53 73.30
AVG QA \ | 6739 | 63.44 61.73 63.08 60.87 60.03  59.40 63.13 60.39 58.51
Sentiment140 ACC 4204 | 41.84 41.63 41.63 4163 4163  41.63 41.43 41.63 41.63
entiment Fl 43.18 | 4341 43.10 4321 43.09 4301 43.10 42.82 43.02 43.02
SST2 ACC 7575 | 7448 73.91 76.55 7310 7391 7356 74.14 73.68 73.56
AVG_Sentiment \ | 59.18 | 5855 58.14 58.49 57.73 5811 57.96 58.13 58.00 57.94
ParaCrawl EnEs BLEU | 27.15 | 2678 26.80 2630 26.93 2671 26.61 26.66 26.72 26.53
WMT16_RoEn BLEU | 2081 | 20.79 20.93 20,51 20.83 2087 20.97 2079 20.88 20.88
WMT16_TrEn BLEU 8.94 8.81 8.66 8.84 8.86 874  8.65 8.37 8.71 8.55
AVG_Translation | | 1897 | 1879 18.80 18.55 18.88 1877 1874 18.61 18.77 18.65
ACC 89.00 | 81.75 82.00 76.50 7700 8075 8025 81.50 81.00 81.25

GLUE MRPC Fl 89.00 | 8175 82.00 76.50 7700 8075 8025  81.50 81.00 8125
GLUE.OOP ACC 8543 | 8336 82.42 79.45 8219 7840  76.02 82.19 7832 70.78
-QQ Fl 8543 | 83.40 82.89 79.45 8219 8141  80.16 82.19 81.60 80.51

STSB ACC 4429 | 41.99 41.23 31.89 3795 4039 3942 4157 41.30 41.02
PAQS_Wiki ACC 9461 | 93.59 93.75 84.14 9293 9348  93.63 93.79 93.63 93.95
AVG_Paraphrase \ | 7833 | 75.18 74.91 68.00 7252 7363 7285 74.76 73.97 72.96
ROUGE-1 | 76.03 | 75.82 75.75 75.95 75.85 7577 75.79 75.66 75.72 75.60

DART ROUGE-2 | 54.63 | 5439 5422 54.27 54.38 5421 5432 54.17 54.19 54.11
ROUGE-L | 61.99 | 61.76 61.52 61.61 61.78 6162  61.66 61.50 61.48 61.43

BLEU | 4656 | 46.66 46.73 4578 4657 4665 4676 46.53 46.68 46.72

ROUGE-1 | 73.08 | 73.48 73.27 73.95 7355 7323 73.09 73.29 73.19 73.14

FENLG ROUGE-2 | 4657 | 46.73 46.62 46.92 4677 4663 4647 46.66 46.57 46.53
ROUGE-L | 54.16 | 5421 54.04 54.40 5425 5415 53.96 54.12 54.04 53.97

BLEU | 3527 | 3543 3537 35.02 3544 3533 3512 3538 35.28 3523

ROUGE-1 | 8334 | 8250 82.71 81.77 82.61 8270 8278 82.49 82.75 82.71

WebNLG.E ROUGE-2 | 6451 | 63.24 63.39 62.52 63.35 6329 6335 63.26 63.36 63.27
¢ n ROUGE-L | 69.18 | 68.12 68.19 67.77 68.25 68.04  67.98 68.02 68.03 67.96
BLEU | 5689 | 55.83 56.18 53.07 5572 5598 5626 56.11 56.16 56.36

AVG_Text_Generation | | 60.18 | 59.85 59.83 59.42 59.88 59.80  59.79 59.76 59.79 59.75
DPR ACC 86.25 | 76.79 76.25 7821 76.07 7589 75.89 77.14 76.07 75.36
WSC ACC 4000 | 51.00 47.00 57.00 4800 4600  46.00 47.00 48.00 46.00
AVG Coreference | | 63.12 | 63.89 61.62 63.61 6204 6095 6095 62.07 62.04 60.68
CoLA ACC 6426 | 58.00 56.55 59.25 56.17 5694  56.36 56.84 56.94 56.45
FixPunct ACC 4125 | 3945 40.16 3727 39.61 4047 4055 4039 40.62 40.62
TrueCase ACC 5922 | 67.03 65.94 64.53 66.25 6629 6645 66.80 6633 65.55
AVG_TextCorrect | | 5491 | 54.83 5421 53.68 54.01 5456  54.45 54.68 54.63 5421
WIC ACC 6698 | 6571 65.40 48.25 6540 6603 63381 64.92 66.19 65.40
Word S . ACC 6391 | 67.15 67.34 66.72 6707 7062 7020 71.53 7055 70.35
ord-segmen Fl 8833 | 90.83 90.74 92.82 90.52 9276 9256 93.15 92.72 92.47
AVG_Word \ | 7155 | 7335 7222 64.01 7210 7386 7259 73.63 73.91 73.40
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Figure 13: Input-LoRA similarity heatmap produced by Ret riever, where tasks from the same
cluster are enclosed within green boxes for clarity.

Table 8: Per-batch input-mapping and inference latency across tasks under varying pool sizes (dif-
ferent number of seen tasks).
Type | Poolsize | ANLLTl ARCC Sentimentl40 ParaCrawl COPA GLUE MRPC COMMON GEN DPR COLA  WIC

5 0.0612  0.0596 0.0266 0.0578 0.0259 0.0490 0.0291 0.0286  0.0356  0.0445

10 0.0597 0.0595 0.0440 0.0617 0.0225 0.0449 0.0304 0.0316 0.0391 0.0493

15 0.0705 0.0576 0.0340 0.0637 0.0303 0.0465 0.0333 0.0451  0.0423  0.0481

Manpin 20 0.0807 0.0630 0.0494 0.0652 0.0396 0.0537 0.0398 0.0389  0.0474  0.0486
pping 25 0.0821 0.0749 0.0424 0.0664 0.0304 0.0525 0.0423 0.0417  0.0487  0.0683

30 0.0886  0.0789 0.0490 0.0668 0.0336 0.0599 0.0378 0.0401  0.0431  0.0605

35 0.0910  0.0759 0.0580 0.0627 0.0343 0.0672 0.0408 0.0466  0.0420 0.0673

40 0.1026  0.0809 0.0566 0.0862 0.0390 0.0725 0.0453 0.0404 0.0411 0.0615

5 4.0765 2.2196 1.8765 14.5083  1.0900 0.5494 2.1211 1.2808 0.8343  0.8477

10 10.0089  1.4993 1.7331 19.8633 1.0506 0.6800 2.1986 1.6111 0.8586 1.4085

15 10.6356  1.5529 1.9547 21.3176  1.1875 0.4262 2.3208 1.5352 09120 1.0494

Inference 20 7.1220 1.5537 1.9695 19.8872  1.1717 0.4234 2.1853 1.4684 09324 1.0237
25 8.6094 1.5760 1.9752 21.2259  1.2098 0.4206 2.4156 1.4883 09311 1.1112

30 9.7096 1.5021 1.9194 20.3829  1.1304 0.4111 2.1553 1.4695 0.9009 0.9758

35 10.1859  1.7774 1.9127 20.1784  1.1404 0.3770 22162 1.4004 0.8978 0.9948

40 10.8998  1.7849 1.8663 19.9678  1.2508 0.3633 2.1733 1.4737  0.8520 0.9701

{
"model_name": "<task_name>",
"sample": [
{
"inputs": "<instruction-style input 1>"
b
{
"inputs": "<instruction-style input 2>"
by
]
}

D EMPIRICAL VALIDATION OF THEORETICAL GUARANTEES

To complement the theoretical analysis in Sec. [3] we empirically examine whether the assumptions
required by Theorem{T|and Theorem 2] hold in practice, and whether the resulting bounds behave as
predicted.

Domain Separability. We begin by evaluating the separability of task domains by computing
the pairwise KL divergence between the Gaussian distributions fitted for each LoRA. As shown
in Fig[T4fa), most task pairs exhibit large KL values, with an average divergence of 1432. These
results indicate that the task domains are well separated in practice. This observation confirms that
the key assumption required by Theorem [T] and Theorem [2]is satisfied, since greater inter-domain
divergence corresponds to a lower probability of routing error.
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Table 9: Performance of Hi LoRA under different values of the scaling factor -y across multiple task
types.

v | 20% 40% 60% 80% 100%

Within-NLI | 62.9569 63.4682 62.8199 62.6141 61.8909
Cross-NLI 44.0750 46.4861 454724 445162 44.2294
Cross-Trans. | 19.5152  20.7552 21.2560 21.5565 21.8029
Cross-StT 27.5563 28.1187 28.7055 28.6063 28.1832
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(a) KL Divergence (b) Bhattacharyya Distance
Figure 14: (a) KL divergence and (b) Bhattacharyya distance computed across all task pairs used in
our experiments.

Verification of Theorem I} For Theorem [I] we analyze B;;, the Bhattacharyya distance between
Gaussian distributions of task pairs, which determines the exponential decay term in the error bound.
As shown in Fig[T4|b), B;; is strictly positive across all pairs and typically large, with an average
value of 108.35. These results indicate that task domains are well separated in practice. Such sub-
stantial divergence ensures that the bound in TheorenyI]is operationally meaningful, as greater do-
main separability significantly reduces the probability that the correct LoRA is excluded from the
Top-k set.
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Figure 15: Satisfaction rate of the positive-definiteness condition M7 > 0 in Theoremacross task
pairs under varying a.

Verification of Theorem [2} To validate Theorem [2} we examine the feasibility condition M =
¢ 4 aXj !t — aXi* ! = 0. Since each covariance inverse (371) is positive definite, the matrix
Mo’ remains positive definite when « is sufficiently small, because the sum of positive-definite
matrices is positive-definite and the subtraction term is scaled down by «. Thus, from a theoretical
standpoint, the condition is expected to hold with high probability for small and moderate «. We
empirically verify this by evaluating the proportion of task pairs satisfying MZ - 0 across different
values of . As shown in Fig.[T3] the condition indeed holds with high probability when « is small
or moderate, confirming that the assumptions required by our OOD error bound are realistic in our
experimental setting.

Taken together, these results show that the assumptions under which our theoretical bounds become
tight are frequently met in practice. The fitted task distributions are well separated, the key ID
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divergence term B; ; is sufficiently large, and the OOD conditions hold with high probability. These
empirical findings validate that Hi LoRA’s theoretical guarantees are not merely abstract but translate
into reliable behavior in real-world applications.

E LLM USAGE

Large Language Models (LLMs) were used solely to aid in the writing and polishing of the
manuscript. LLMs, specifically ChatGPT, were employed exclusively as writing assistants in the
preparation of this manuscript. Their role was limited to improving the presentation quality of the
text, including tasks such as rephrasing sentences, correcting grammar, enhancing readability, and
improving the overall flow of exposition. The use of LLMs was confined to linguistic refinement,
and they were not involved in generating, verifying, or shaping any scientific ideas.

All research contributions, including the formulation of research questions, algorithmic design, the-
oretical derivations, and experimental studies, were conceived and executed entirely by the authors.
Their contribution was restricted to stylistic and grammatical adjustments, with no bearing on the
substance of the research.

The authors retain full responsibility for the entire content of this work, including any text improved
with LLM assistance. We have carefully ensured that the usage of LLMs complies with ethical
standards and does not introduce plagiarism, fabrication, or other forms of scientific misconduct.
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