
The worst graph layout algorithm ever
Sara Di Bartolomeo *

Northeastern University
Matěj Lang †

Masaryk University
Cody Dunne ‡

Northeastern University

⇒

Figure 1: By maximizing edge crossings with our method (WORSTISFIMAL), a conventional layout of a graph with 33 edges and
23 nodes can go from just 4 crossings (left) to an impressive 59 crossings (right). A thrilling and provably-optimally-worst result!

ABSTRACT

Graph layout algorithms strive to improve the utility of node-link
visualizations or graph drawings by optimizing for readability cri-
teria. One such criteria that has been widely used is to count edge
crossings. Prior work has focused solely on minimizing the number
of edge crossings, including provably-optimal layout algorithms
for layered graphs. The research community has completely ig-
nored the other side of the coin—can we optimally maximize edge
crossings? This paper answers this question in the affirmative. Our
WORSTISFIMAL layout algorithm produces the most unreadable
layered graph drawing. It does so by using linear programming
to produce a provably-optimally-awful solution. We hope that this
groundbreaking result opens up an entirely new field of inquiry for
graph drawing researchers—optimally-worst layout algorithms.

1 INTRODUCTION

Researchers interested in visualizing graphs have been working
endlessly to improve graph drawing algorithms. Graph layout al-
gorithms try to improve the readability of a graph by positioning
nodes on the screen so that certain readability metrics are respected,
either intentionally or via heuristics that tend to produce good results
quickly. Amongst these readability criteria, the most important is
to minimize the number of edge crossings [19, 35]. Thus, the holy
grail of graph drawing has been to find an algorithm that produces
a drawing with the fewest edge crossings—ideally combining this
capability with a fast running time [39, 21].

There is, however, an alarming dearth of research on doing the
opposite: maximizing the number of crossings. Just as it is more
challenging to ride a unicycle than a bicycle, we argue that ignoring
this second complimentary “wheel” of research undermines the
stability of graph drawing as a field. To encourage discussion and
widespread dissemination of this potentially-earthshaking limitation
(i.e. if the wheeled vehicle of the graph drawing community tips
over) we term it the unicycle fallacy of graph drawing.

In addition to serving as a call to action for the community, this
paper also provides the first groundwork to address the challenge
of the unicycle fallacy. We provide a provably-optimally-worst

*e-mail: dibartolomeo.s@northeastern.edu
†e-mail: langm@mail.muni.cz
‡e-mail: c.dunne@northeastern.edu

layout algorithm for layered graph drawings which maximizes the
number of edge crossing, which we term WORSTISFIMAL. Our
Integer Linear Programming formulation allows us to use solvers
to compute layouts which are guaranteed to have the most edge
crossings possible. An example of how bad our results are is il-
lustrated with a small graph in fig. 1. We claim the title of “worst
layout algorithm ever” because this layout algorithm is optimal in
its awfulness (at least for this readability criteria). The results are
literally unbeatable in badness.

The question which arises naturally is: is this layout algorithm
useful? The obvious answer is that it is not useful at all—but we
believe that further research is necessary in order to verify this
hypothesis. However, in the immortal words of GLaDOS, a pioneer
in the field of bad outcomes:1

We do what we must
because we can.

This paper provides several fundamental contributions:
1. Identifying and raising awareness of the unicycle fallacy of

graph drawing, which may affect the fundamental stability of
the field.

2. The formulation of the first provably-optimally-worst layered
graph layout algorithm for maximizing edge crossings using
Integer Linear Programming—WORSTISFIMAL.

3. A free and open-source reference implementation of
WORSTISFIMAL as a JavaScript library, which we hope will
accelerate research in this area.

4. The design and results of an initial user study to evaluate the
efficacy of optimally-worst layout algorithms.

2 SUPPLEMENTAL MATERIAL

A copy of this paper along with all supplemental materials is avail-
able at https://osf.io/pjctw. We have provided sufficient materials
for future researchers and practitioners to reproduce and replicate
our results. Including these materials will also provide readers with
the baseline code necessary to easily extend our results for creating
optimally-worst layouts using other criteria.

3 BACKGROUND

The discipline of representing graphs visually is called graph draw-
ing [4]. Graphs have been used extensively in all fields of human
knowledge: relevant examples include beaucoup convoluted visual-
izations aimed at exposing the inner workings of neural networks

1https://half-life.fandom.com/wiki/Still Alive

https://orcid.org/0000-0001-9517-3526
https://orcid.org/0000-0002-5249-815X
https://orcid.org/0000-0002-1609-9776
https://osf.io/pjctw
https://half-life.fandom.com/wiki/Still_Alive


[45, 36], several endeavors to get humans interested in SQL queries
[15, 28], and the many attempts at explaining the plot of the move
The Matrix using graphs2 [41, 42, 22, 34, 33, 24, 47, 46, 31, 17].

Research on how to best represent a network as a node-link vi-
sualization started as early as 1934 with Moreno [29], followed by
the first attempts at computational layout approaches in the 1960s
[43, 44, 26]. Research on graph layout algorithms has been ongoing
since then, producing both general-purpose and specialized layout
algorithms, but the problem is still open, and the general agreement
is that there is no universal layout solution that embraces all the
possible applications and use cases [23, 5].

Our novel approach for computing provably-optimally-worst lay-
outs for layered graphs is based on methods that use Integer Linear
Programming [7, 12, 30, 8, 13, 20, 24, 14, 47] to optimize graph
readability, especially the methods proposed by Zarate et al. [49] and
formulated as a modular library for optimal layered graph drawing
by Di Bartolomeo et al. [16]. Although much research has been
conducted based on these methods, to the best of our knowledge,
none of them have focused on maximizing the number of crossings.

Readability metrics: Scientists have developed several readabil-
ity criteria for visualizations [35, 19], and algorithms to implement
those criteria in practice [19, 27]. The number of crossings has been
proven to be the metric that most negatively influences the readabil-
ity of a graph [35, 19], which is why we focus on edge crossings
for this fundamental research. Other metrics of interest, but which
other researchers have only done in reverse, include maximizing
node-node overlaps, maximizing edge length, minimizing angles
between crossing edges, and minimizing the angle between all the
edges incident to a node.

Although this paper focuses on maximizing the number of edge
crossings, lengthy discussions have been going on about how to
count the number of crossings [32, 37]. We do not wish to have
a say in this discussion, and to avoid any confusion we state that
we use the rectilinear crossing number. This approach counts
crossings between edges but considers edges as rectilinear segments,
as defined in Pach and Tóth [32]. This is in contrast to the pairwise
crossing number, which counts every intersection only once, and
the crossing number, which doesn’t have the rectilinear edge re-
striction. Using the rectilinear crossing number prevents the graph
from being able to have infinite crossings, as we allow bends [3].

A discussion about the effect of optimizing the opposite of read-
ability metrics beyond the rectilinear crossing number can be found
in section 8.

4 METHOD

Linear programming guarantees that the solution is optimal within
the allowed boundaries given by the constraints. Previous re-
searchers have developed linear programming solutions for pro-
ducing drawings with the fewest possible crossings [16, 49]. Our
method builds upon these results.

A graph layout algorithm based on linear programming is defined
by formulating a problem in terms of an objective function and
constraints. The objective function for minimizing crossings could
look like this example from STRATISFIMAL LAYOUT [16], using
the notation from table 1:

Minimize ∑
k∈L

∑
u1w1,u2w2∈Ek

u1w1 ̸=u2w2

cu1w1,u2w2 (1)

The objective function can be read as “minimize the sum of
crossings for each layer k, for each pair of edges u1w1 and u2w2
in layer k”. The boolean variable cu1w1,u2w2 is equal to 1 if the two
edges cross, and to 0 if the two do not cross.

To the best of our knowledge, no research exists on how to pro-
duce the maximum number of crossings. This is surprising given

2Inspired by xkcd’s beautiful charts: https://xkcd.com/657/

Definitions:
G = {N,E} The graph (network) consists of a set of

nodes N and edges E.
Nk The nodes in layer k.

L = {1,2, . . . , ℓ} The set of ℓ layers in G.
u1w1 An edge between nodes u1 and w1.

Decision variables:
xu1,u2 The relative vertical order of nodes.

Boolean equal to 1 if u1 is above u2, 0
otherwise.

cu1w1,u2w2 Indicates if edges u1w1 and u2w2 cross.
Boolean equal to 1 if they cross, 0 other-
wise.

Table 1: The notation used in this paper.

the simplicity of the solution to this problem—though clever solu-
tions often seem simple in hindsight. Indeed, it is enough to just
change the first word in the optimization function:

Maximize ∑
k∈L

∑
u1w1,u2w2∈Ek

u1w1 ̸=u2w2

cu1w1,u2w2 (2)

This simple change will instruct the solver to return a graph layout
algorithm with the maximum number of crossings. Now, in order
for this to work, we also need to add to the problem formulation a
few constraints, which stay exactly the same between minimizing
and maximizing crossings. These constraints mostly serve to relate
variables such as determining the position of the nodes based on the
presence or absence of a crossing. Here we provide an overview of
these constraints and their effects. Please see the STRATISFIMAL
LAYOUT paper [16] for a more thorough discussion.

The first constraint we need is how we tie the crossing number,
c, to the relative position of the nodes. The x variables define the
relative position of the nodes thus:

xu1,u2 =

{
1, iff u1 is above u2
0 otherwise.

Imagine two pairs of connected nodes, each pair having one of its
nodes on one layer (parallel axis) and the other on a separate layer.
Here are all the possible relative positions of these four nodes:

u1

u2

w1

w2

u1

u2

w2

w1

u2

u1

w1

w2

u2

u1

w2

w1

We deduce from this picture that two edges cross when their
incident nodes are in inverted positions on the two different layers.
More precisely, the two edges cross when (1) u1 is above u2 but w1
is below w2 (second case pictured) OR (2) u2 is above u1 but w2 is
below w1 (third case pictured).

Based on the above intuition, we can write a constraint that ties
together the values of the x and c variables thus:

cu1w1,u2w2 + xu2,u1 + xw1,w2 ≥ 1
cu1w1,u2w2 + xu1,u2 + xw2,w1 ≥ 1

(3)

(∀k ∈ L : ∀u1w1,u2w2 ∈ E<
k , where u1w1 ̸= u2w2)

The above constraint will be repeated for every edge in the graph.
If we replace the variables with actual values from our illustration

https://xkcd.com/657/


Vader

Leia

Obi-Wan

R2-D2

C-3PO

Luke

Chewie

Han

Jabba

Vader

Leia

Obi-Wan

R2-D2

C-3PO

Luke

Chewie

Han

Greedo

Jabba

Vader

Leia

Obi-Wan

R2-D2

C-3PO

Luke

Chewie

Han

Jabba

Vader

Obi-Wan

R2-D2

C-3PO

Luke

Leia

Chewie

Han

Jabba

Vader

R2-D2

Luke

C-3PO

Leia

Chewie

Han

Jabba

Vader

R2-D2

Luke

C-3PO

Leia

Chewie

Han

Jabba

Vader

R2-D2

Luke

Chewie

Han

C-3PO

Leia

Jabba

Vader

Luke

R2-D2

Chewie

Han

C-3PO

Leia

Jabba

Vader

Luke

R2-D2

Chewie

C-3PO

Leia

Han

Jabba

Lando

Vader

Luke

R2-D2

Chewie

C-3PO

Leia

Han

Jabba

Luke

R2-D2

Vader

Lando

Chewie

C-3PO

Leia

Han

Jabba

Yoda

Luke

R2-D2

Vader

Boba Fett

Lando

Chewie

C-3PO

Leia

Han

Jabba

Yoda

Luke

R2-D2

Vader

Lando

Boba Fett

Chewie

C-3PO

Leia

Han

Jabba

Yoda

Luke

Vader

R2-D2

Lando

Chewie

C-3PO

Leia

Boba Fett

Han

Jabba

Yoda

Luke

Vader

R2-D2

Lando

Chewie

C-3PO

Leia

Boba Fett

Han

Jabba

Yoda

Vader

Luke

Chewie

R2-D2

C-3PO

Leia

Lando

Boba Fett

Han

Jabba

Yoda

Vader

Luke

Chewie

Leia

R2-D2

C-3PO

Lando

Boba Fett

Han

Jabba

Yoda

Vader

Luke

Chewie

Leia

R2-D2

C-3PO

Lando

Boba Fett

Han

Jabba

Yoda

Vader

Luke

Chewie

Leia

R2-D2

C-3PO

Lando

Boba Fett

Han

Jabba

Yoda

Vader

Luke

Chewie

Leia

R2-D2

C-3PO

Lando

Han

Vader

Luke

Chewie

Leia

R2-D2

C-3PO

Lando

Han

Emperor

Vader

Luke

Chewie

Leia

R2-D2

C-3PO

Han

Lando

Emperor

Vader

Luke

Lando

Chewie

Leia

R2-D2

C-3PO

Han

Emperor

Vader

Luke

Lando

Chewie

Leia

R2-D2

C-3PO

Han

Luke

Lando

Chewie

Leia

R2-D2

C-3PO

Han

(a)
Vader

Leia

R2-D2

C-3PO

Obi-Wan

Chewie

Han

Luke

Jabba

R2-D2

C-3PO

Obi-Wan

Luke

Leia

Vader

Chewie

Han

Greedo

Jabba

Chewie

Han

R2-D2

C-3PO

Obi-Wan

Luke

Jabba

Leia

Vader

Vader

C-3PO

R2-D2

Leia

Luke

Han

Chewie

Obi-Wan

Jabba

Luke

R2-D2

Jabba

Leia

C-3PO

Han

Chewie

Vader

C-3PO

Leia

Vader

R2-D2

Luke

Chewie

Han

Jabba

R2-D2

Luke

Han

Chewie

Jabba

C-3PO

Leia

Vader

Vader

Leia

R2-D2

C-3PO

Han

Chewie

Luke

Jabba

Han

Leia

R2-D2

C-3PO

Chewie

Luke

Vader

Jabba

Jabba

Lando

Leia

R2-D2

Han

Vader

C-3PO

Luke

Chewie

Jabba

Leia

C-3PO

Han

Chewie

Luke

R2-D2

Vader

Lando

Vader

Luke

R2-D2

Jabba

Leia

C-3PO

Han

Chewie

Lando

Boba Fett

Yoda

Han

Vader

Lando

C-3PO

Boba Fett

Leia

Chewie

R2-D2

Luke

Yoda

Jabba

Boba Fett

Han

Leia

C-3PO

Chewie

Lando

Luke

Vader

R2-D2

Yoda

Jabba

Leia

R2-D2

C-3PO

Chewie

Lando

Han

Jabba

Boba Fett

Yoda

Vader

Luke

Lando

Yoda

Han

Jabba

Boba Fett

Vader

Leia

R2-D2

C-3PO

Luke

Chewie

Han

Jabba

Lando

Boba Fett

C-3PO

R2-D2

Yoda

Leia

Luke

Chewie

Vader

Luke

Yoda

Vader

R2-D2

C-3PO

Han

Jabba

Lando

Boba Fett

Chewie

Leia

Yoda

Leia

R2-D2

Luke

C-3PO

Han

Chewie

Jabba

Lando

Boba Fett

Vader

Yoda

Vader

Luke

Leia

R2-D2

C-3PO

Han

Chewie

Lando

Luke

Vader

Leia

R2-D2

C-3PO

Han

Chewie

Lando

Emperor

Vader

Leia

R2-D2

C-3PO

Luke

Han

Chewie

Lando

Emperor

Lando

Chewie

Han

C-3PO

R2-D2

Leia

Luke

Vader

Emperor

Lando

Luke

Vader

Chewie

Han

C-3PO

R2-D2

Leia

Chewie

Han

C-3PO

R2-D2

Leia

Lando

Luke

(b)

Figure 2: A storyline [31] of the original Star Wars trilogy with two layouts, each respecting the constraints on position that storylines impose.
E.g., characters that appear in scenes together are drawn nearby vertically in the visualization and scenes are ordered on linear axes from left
to right in the order they appear. (a) is laid out to have the fewest possible crossings—37. We created it using the optimal layout algorithm
detailed in STRATISFIMAL LAYOUT [16]. (b) instead lays out the storyline to have as many crossings as possible using our WORSTISFIMAL
approach. We now have 1953 crossings—a 5178% increase over the state of the art and provably optimally worst!

of relative positions, we will be able to see that c will necessarily
turn out to be 1 in configurations in which the relative position of
nodes creates a crossing. For example, consider the second case we
illustrated above:

u1

u2

w2

w1
cu1w1,u2w2 +0+0 ≥ 1

The value of cu1w1,u2w2 , which is restricted to be 1 or 0 by defini-
tion (table 1), must be 1 to satisfy this constraint.

The crossings constraint, though, is insufficient to fully capture
the problem. We need another constraint to define transitivity in the
relative positions of nodes—plainly, the fact that if node u1 is above
node u2, and node u2 is above node u3, then node u1 is necessarily
above node u3. Writing this as constraints we get:

xu1,u2 + xu2,u3 − xu1,u3 ≥ 0
−xu1,u2 − xu2,u3 + xu1,u3 ≥−1

(4)

(∀k ∈ L : ∀u1,u2,u3 ∈ Nk, where u1 ̸= u2 ̸= u3 ̸= u1)

These two sets of constraints—the crossing constraint in eq. (3)
and the transitivity constraint in eq. (4)—are, together with the
optimization function in eq. (2), enough to create a layered graph
layout algorithm that optimally maximizes edge crossings.

At this point, we feed the model made of constraints and objective
function to an LP solver. The solver will assign values to variables
according to the objective function. From the variable values, we
can then create the visualization layout, as shown with two examples
in figs. 1 and 2.

For solvers, we are particularly fond of Gurobi3 or glpk.js,4 the
latter of which can run in a browser, but any LP solver can be used
for the purpose.

5 USEFULNESS

In the field of graph drawing, no justification for the functional
utility of solving a problem is often provided or requested. Indeed,
solely scientific curiosity about a problem is often enough to justify
spending time on it.

3https://www.gurobi.com/
4https://github.com/hgourvest/glpk.js

However, we spent some time trying to come up with cases
in which maximizing crossings could be useful. The following
subsections will enumerate three different cases in which it might
be desirable to maximize the number of crossings.

5.1 The best baseline for comparing other algorithms

number of nodes

n
u

m
b

er
 o

f 
cr

o
ss

in
g

s

number of nodes
n

u
m

b
er

 o
f 

cr
o

ss
in

g
s

A key feature of our WORSTISFIMAL layout algorithm is that it
produces provably-optimally-worst layouts in regards to the num-
ber of edge crossings. Thus, it can serve as a benchmark against
which other layout algorithms, especially heuristics, can be com-
pared. Between our method and STRATISFIMAL LAYOUT [16],
which conversely produces provably-optimally-best layouts, we now
have concrete upper and lower bounds with which to evaluate the ef-
ficacy of a layered graph layout algorithm. Naturally, any researcher
searching for a straw man against which to compare their approach
should use WORSTISFIMAL, which is virtually guaranteed to be
worse than even a random layout!

5.2 Obfuscating circuits

The layout of electronic circuits has been a field of study adjacent
to graph drawing. In circuit design, connected elements (circuit
components) must be positioned on a plane (the circuit board) while

https://www.gurobi.com/
https://github.com/hgourvest/glpk.js


(a) (b)

Figure 3: Two examples of seemingly complex-by-design highway
interchanges: (a) The Big-I interchange in Texas, which is a five-
level interchange, as it appears on Google Maps. (b) The board
game Tokyo Highway, in which the goal is maximizing intersections
between highways.

following strict criteria. Crossings within a plane could create short
circuits. The problem has been explored by Sugiyama [40], included
in a survey of graph layout problems [18], and explored by many
representatives of graph drawing [1]—all with the goal of making
the graph more readable.

However, because a good layout might aid in the readability of
the circuit, it can also lead to the electronic devices being more
susceptible to reverse engineering, modifications, and industrial
espionage. The area of circuit obfuscation focuses on deterring
such activities by making it difficult to understand the circuit design
[48]. Provably-optimally-worst layout algorithms can play a role in
creating such obfuscated designs.

5.3 Designing complex highway interchanges

Designers of highway interchanges seem particularly fond of cross-
ings, at least for when their designs are viewed from above. It is
almost as if they derive some perverse pleasure from creating in-
tertwined and convoluted structures that confuse unaware drivers
just trying to get from A to B. A real-world example of this phe-
nomenon can be seen in fig. 3(a), showing a five-level interchange in
Texas. There have even been board games created that indoctrinate
interchange design hobbyists into these antisocial schools of design
thinking (fig. 3(b)).

6 USER STUDY

To validate that the provably-optimally-worst layouts created by
WORSTISFIMAL are actually bad from a user perspective, we con-
ducted a rigorous user study. We recruited 3 participants for our
experiment. We asked our participants (P1, P2, P3) to comment
on WORSTISFIMAL visualizations and offer their feedback. P1
commented: “These visualizations are horrible.” Likewise, P2 said:
“I am an expert at reading graphs, and I hate these.” P3 went even
further, stating: “I don’t even see the point.”

Overall, based on the results of our extensive investigation, we
deem that these comments reflect positively on our intentions when
conducting this research.

7 DISCUSSION

Note: The entire contents of paper is a joke intended to raise aware-
ness of optimal layout algorithms, graph drawing readability criteria,
and curious academic conventions. The WORSTISFIMAL technique
described in section 4 does work and did generate the visualizations
in the paper, but we did not actually run a user study. Several of our
statements throughout the paper, esp. regarding the motivations of
others, should be supplemented with a large chunk of NaCl.

8 FUTURE WORK: MORE METRICS TO OPTIMIZE

This paper provides the first formulation for a layered graph layout
algorithm that maximizes edge crossings, creating the first spokes
in the second wheel graph drawing needs to address the unicycle
fallacy. However, there is much more to be done to fill out that wheel
and bring stability to our field.

To guide future researchers in populating these spokes, we now
provide a set of metrics that we believe will be most productive for
the community to address. Some of these are based on research that
has been previously done regarding readability criteria [35, 19].

Maximizing edge length: Another
classic metric for graph layout al-
gorithms is minimizing edge length.
However, while the worst number
of crossings is a finite number, edge
length is not—the worst value for
edge length would be infinite, mak-
ing the graph difficult to visualize
on a finite plane. We leave this chal-
lenge for future research.

Hard to read angles: In general,
in a non-planar graph, it is ad-
visable to position nodes so that
edges that cross form ample angles—
preferably 70°according to Huang
et al. [25]. Ample angles help users
to follow the intended path after a
crossing. Optimizing for acute an-
gles, or, even better, overlapping
edges will improve the unreadability
of the result.

Group overlap maximization: In
some instances, graphs might have
groups of nodes that should be kept
adjacent [38, 11]. Avoiding over-
laps between groups of nodes is of-
ten a constraint in layout algorithms.
Keeping the groups as distinct as
possible helps greatly in understand-
ing group membership. Conversely,
in order to disrupt the readability of
a visualization, we could try to draw
every group such that its bounds
or its membership overlaps with as
many other groups as possible.



Maximizing edge bendiness: Some
layout techniques allow for edges to
have bends. While bends can be use-
ful to avoid crossings, they reduce
the readability of a graph. Steps for
reducing edge bendiness are indeed
a common inclusion in graph layout
algorithms [16]. We wonder what a
graph would look like if we instead
maximized the bendiness of edges.

Rocketshipness: We took in-
spiration from Alberto Cairo’s
Datasaurus [9], in which he extends
Anscombe’s argument [2, 10, 6] that
data points with the same summary
statistics can have many different
shapes, thus it’s important to plot
them properly to understand the dis-
tribution. Alberto Cairo reinforces
this argument by drawing a dinosaur
with the same summary statistics.
We consider a similar idea by op-
timizing the graph to resemble—as
much as possible—the shape of a
rocketship while maintaining the
same summary statistics. While
Anscombe’s summary statistics for
a scatterplot are X and Y average po-
sition and standard deviation, sum-
mary statistics for a graph layout can
be, for example, the number of cross-
ings, edge length, or aspect ratio.

Another key challenge for future researchers is to extend our
WORSTISFIMAL layout algorithm to work on other types of graphs
and more general layouts. It is important to note that our current
formulation of the problem only works on layered graphs. Extend-
ing it to non-layered graphs would open up plenty of incredible
possibilities for making highly-unreadable graph layouts.

9 CONCLUSION

This paper details and raises awareness of the unicycle fallacy of
graph drawing which may affect the fundamental stability of our
field. We also provide the first provably-optimally-worst layout
algorithm for layered graphs that maximizes edge crossings. Our
use of Integer Linear Programming guarantees optimality, but also
long run times and high usage of computational resources. We
discuss the utility of this approach, both theoretically and from a
user perspective, and how it can be extended by future researchers to
fill in the spokes of the second wheel of the graph drawing bicycle.

ACKNOWLEDGMENTS

We thank Jane Adams for randomly coming up with this idea during
a meeting and Michael Davinroy for providing witty comments
about the results.

The work in this paper is inspired by our previous research on
graph layout algorithms [16, 17] which was supported by NSF grant
IIS-2145382.

REFERENCES

[1] D. Adolphson and T. C. Hu. “Optimal linear ordering”. SIAM Journal
on Applied Mathematics, 25(3):403–423, 1973. DOI: 10.1137/0125042.

[2] F. J. Anscombe. “Graphs in statistical analysis”. The American Statisti-
cian, 27(1):17–21, 1973. DOI: 10.1080/00031305.1973.10478966.

[3] S. Bald, M. P. Johnson, and O. Liu. “Approximating the maximum recti-
linear crossing number”. In Computing and Combinatorics, pages 455–
467, 2016. DOI: 10.1007/978-3-319-42634-1 37.

[4] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice Hall PTR,
1st edition, 1998.

[5] J. Blythe, C. McGrath, and D. Krackhardt. “The effect of graph layout
on inference from social network data”. In Graph Drawing, pages 40–
51, 1996. DOI: 10.1007/BFb0021789.

[6] T. Boger, S. B. Most, and S. L. Franconeri. “Jurassic mark: inattentional
blindness for a datasaurus reveals that visualizations are explored, not
seen”. In 2021 IEEE Visualization Conference (VIS), pages 71–75,
2021. DOI: 10.1109/VIS49827.2021.9623273.

[7] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jünger, G. W.
Klau, P. Mutzel, and R. Weiskircher. “A branch-and-cut approach to
the crossing number problem”. Discrete Optimization, 5(2):373–388,
2008. DOI: 10.1016/j.disopt.2007.05.006.

[8] C. Buchheim, D. Ebner, M. Jünger, G. W. Klau, P. Mutzel, and
R. Weiskircher. “Exact crossing minimization”. In Graph Drawing,
pages 37–48, 2006. DOI: 10.1007/11618058 4.

[9] A. Cairo. Download the Datasaurus: never trust summary statis-
tics alone; always visualize your data, 2016. URL: http : / / www .
thefunctionalart . com/2016/08/download- datasaurus- never- trust -
summary.html. Accessed July 10, 2022.

[10] S. Chatterjee and A. Firat. “Generating data with identical statistics but
dissimilar graphics”. The American Statistician, 61(3):248–254, 2007.
DOI: 10.1198/000313007X220057.

[11] S. Chaturvedi, C. Dunne, Z. Ashktorab, R. Zachariah, and B. Shnei-
derman. “Group-in-a-box meta-layouts for topological clusters and
attribute-based groups: space-efficient visualizations of network com-
munities and their ties”. Computer Graphics Forum, 33(8):52–68, 2014.
DOI: 10.1111/cgf.12400.

[12] M. Chimani, C. Gutwenger, and P. Mutzel. “Experiments on exact
crossing minimization using column generation”. In Experimental
Algorithms, pages 303–315, 2006. DOI: 10.1007/11764298 28.

[13] M. Chimani, P. Mutzel, and I. Bomze. A new approach to exact crossing
minimization. In Algorithms - ESA 2008, pages 284–296. 2008. DOI:
10.1007/978-3-540-87744-8 24.

[14] M. Chimani and T. Wiedera. “An ILP-based Proof System for the
Crossing Number Problem”. In 24th Annual European Symposium on
Algorithms (ESA 2016), volume 57 of Leibniz International Proceed-
ings in Informatics (LIPIcs), 29:1–29:13, 2016. DOI: 10.4230/LIPIcs.
ESA.2016.29.

[15] S. Di Bartolomeo, G. Pepe, D. F. Savo, and V. Santarelli. “Sparqling:
painlessly drawing sparql queries over graphol ontologies.” In VOILA@
ISWC, pages 64–69, 2018.

[16] S. Di Bartolomeo, M. Riedewald, W. Gatterbauer, and C. Dunne.
“STRATISFIMAL LAYOUT: a modular optimization model for laying
out layered node-link network visualizations”. IEEE Transactions on
Visualization and Computer Graphics. VIS/TVCG:1–1, 2022. DOI:
10.1109/TVCG.2021.3114756. VIS ’21. Preprint & Supplemental
Material: https://osf.io/qdyt9.

[17] S. Di Bartolomeo, Y. Zhang, F. Sheng, and C. Dunne. “Sequence Braid-
ing: visual overviews of temporal event sequences and attributes”. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1353–
1363, 2021. DOI: 10.1109/TVCG.2020.3030442.

[18] J. Dı́az, J. Petit, and M. Serna. “A survey of graph layout problems”.
ACM Computing Surveys, 34(3):313–356, 2002. DOI: 10.1145/568522.
568523.

[19] C. Dunne, S. I. Ross, B. Shneiderman, and M. Martino. “Readability
metric feedback for aiding node-link visualization designers”. IBM
Journal of Research and Development, 59(2/3):14:1–14:16, 2015. DOI:
10.1147/JRD.2015.2411412.

[20] G. Gange, P. J. Stuckey, and K. Marriott. Optimal k-level planarization
and crossing minimization. In Graph Drawing, pages 238–249. 2011.
DOI: 10.1007/978-3-642-18469-7 22.

[21] E. Gansner, E. Koutsofios, S. North, and K.-P. Vo. “A technique for
drawing directed graphs”. IEEE Transactions on Software Engineering,
19(3):214–230, 1993. DOI: 10.1109/32.221135.

https://doi.org/10.1137/0125042
https://doi.org/10.1137/0125042
https://doi.org/10.1080/00031305.1973.10478966
https://doi.org/10.1080/00031305.1973.10478966
https://doi.org/10.1007/978-3-319-42634-1_37
https://doi.org/10.1007/978-3-319-42634-1_37
https://doi.org/10.1007/978-3-319-42634-1_37
https://doi.org/10.1007/BFb0021789
https://doi.org/10.1007/BFb0021789
https://doi.org/10.1007/BFb0021789
https://doi.org/10.1109/VIS49827.2021.9623273
https://doi.org/10.1109/VIS49827.2021.9623273
https://doi.org/10.1109/VIS49827.2021.9623273
https://doi.org/10.1109/VIS49827.2021.9623273
https://doi.org/10.1016/j.disopt.2007.05.006
https://doi.org/10.1016/j.disopt.2007.05.006
https://doi.org/10.1016/j.disopt.2007.05.006
https://doi.org/10.1007/11618058_4
https://doi.org/10.1007/11618058_4
http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
https://doi.org/10.1198/000313007X220057
https://doi.org/10.1198/000313007X220057
https://doi.org/10.1198/000313007X220057
https://doi.org/10.1111/cgf.12400
https://doi.org/10.1111/cgf.12400
https://doi.org/10.1111/cgf.12400
https://doi.org/10.1111/cgf.12400
https://doi.org/10.1007/11764298_28
https://doi.org/10.1007/11764298_28
https://doi.org/10.1007/11764298_28
https://doi.org/10.1007/978-3-540-87744-8_24
https://doi.org/10.4230/LIPIcs.ESA.2016.29
https://doi.org/10.4230/LIPIcs.ESA.2016.29
https://doi.org/10.4230/LIPIcs.ESA.2016.29
https://doi.org/10.4230/LIPIcs.ESA.2016.29
https://doi.org/10.1109/TVCG.2021.3114756
https://doi.org/10.1109/TVCG.2021.3114756
https://doi.org/10.1109/TVCG.2021.3114756
https://osf.io/qdyt9
https://doi.org/10.1109/TVCG.2020.3030442
https://doi.org/10.1109/TVCG.2020.3030442
https://doi.org/10.1109/TVCG.2020.3030442
https://doi.org/10.1145/568522.568523
https://doi.org/10.1145/568522.568523
https://doi.org/10.1145/568522.568523
https://doi.org/10.1147/JRD.2015.2411412
https://doi.org/10.1147/JRD.2015.2411412
https://doi.org/10.1147/JRD.2015.2411412
https://doi.org/10.1007/978-3-642-18469-7_22
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135


[22] E. D. Giacomo, W. Didimo, G. Liotta, F. Montecchiani, and A. Tappini.
Storyline visualizations with ubiquitous actors. In Lecture Notes in
Computer Science, pages 324–332. 2020. DOI: 10.1007/978-3-030-
68766-3 25.

[23] H. Gibson, J. Faith, and P. Vickers. “A survey of two-dimensional graph
layout techniques for information visualisation”. Information Visual-
ization, 12(3-4):324–357, 2013. DOI: 10.1177/1473871612455749.

[24] M. Gronemann, M. Jünger, F. Liers, and F. Mambelli. Crossing min-
imization in storyline visualization. In Lecture Notes in Computer
Science, pages 367–381. 2016. DOI: 10.1007/978-3-319-50106-2 29.

[25] W. Huang, P. Eades, and S.-H. Hong. “Larger crossing angles make
graphs easier to read”. Journal of Visual Languages & Computing,
25(4):452–465, 2014. DOI: 10.1016/j.jvlc.2014.03.001.

[26] D. E. Knuth. “Computer-drawn flowcharts”. Communications of the
ACM, 6(9):555–563, 1963. DOI: 10.1145/367593.367620.

[27] O.-H. Kwon, T. Crnovrsanin, and K.-L. Ma. “What would a graph look
like in this layout? a machine learning approach to large graph visual-
ization”. IEEE Transactions on Visualization and Computer Graphics,
24(1):478–488, 2018. DOI: 10.1109/tvcg.2017.2743858.

[28] A. Leventidis, J. Zhang, C. Dunne, W. Gatterbauer, H. Jagadish, and
M. Riedewald. “Queryvis: logic-based diagrams help users understand
complicated sql queries faster”. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’20, pages 2303–2318, 2020. DOI: 10.1145/3318464.3389767. URL:
https://doi.org/10.1145/3318464.3389767.

[29] J. L. Moreno. Who shall survive?: A new approach to the problem of
human interrelations. Nervous and mental disease publishing co, 1934.

[30] M. Nollenburg and A. Wolff. “Drawing and labeling high-quality metro
maps by mixed-integer programming”. IEEE Transactions on Visual-
ization and Computer Graphics, 17(5):626–641, 2011. DOI: 10.1109/
tvcg.2010.81.

[31] M. Ogawa and K.-L. Ma. “Software evolution storylines”. In Proceed-
ings of the 5th international symposium on Software visualization -
SOFTVIS ’10, 2010. DOI: 10.1145/1879211.1879219.

[32] J. Pach and G. Tóth. “Which crossing number is it anyway?” Journal of
Combinatorial Theory, Series B, 80(2):225–246, 2000. DOI: 10.1006/
jctb.2000.1978.

[33] K. Padia, K. Bandara, and C. Healey. “Yarn: generating storyline visu-
alizations using htn planning”. en. Proceedings of Graphics Interface
2018, Toronto:26–33, 2018. DOI: 10.20380/GI2018.05.

[34] K. Padia, K. H. Bandara, and C. G. Healey. “A system for generating
storyline visualizations using hierarchical task network planning”. Com-
puters & Graphics, 78:64–75, 2019. DOI: 10.1016/j.cag.2018.11.004.

[35] H. Purchase. “Which aesthetic has the greatest effect on human under-
standing?” In Graph Drawing, pages 248–261, 1997. DOI: 10.1007/3-
540-63938-1 67.

[36] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller.
“Evaluating the visualization of what a deep neural network has
learned”. IEEE Transactions on Neural Networks and Learning Sys-
tems, 28(11):2660–2673, 2017. DOI: 10.1109/TNNLS.2016.2599820.

[37] M. Schaefer. “The graph crossing number and its variants: a survey”.
Electronic Journal of Combinatorics, 1000, 2013.

[38] B. Shneiderman and C. Dunne. “Interactive network exploration to
derive insights: filtering, clustering, grouping, and simplification”. In
Graph Drawing, pages 2–18, 2013. DOI: 10.1007/978-3-642-36763-
2 2.

[39] K. Sugiyama, S. Tagawa, and M. Toda. “Methods for visual understand-
ing of hierarchical system structures”. IEEE Transactions on Systems,
Man, and Cybernetics, 11(2):109–125, 1981. DOI: 10.1109/TSMC.
1981.4308636.

[40] N. Sugiyama, S. Nemoto, K. Kani, T. Ohtsuki, and H. Watanabe. “An
integrated circuit layout design program based on a graph-theoretical
approach”. In 1970 IEEE International Solid-State Circuits Conference.
Digest of Technical Papers, volume XIII, pages 86–87, 1970. DOI:
10.1109/ISSCC.1970.1154803.

[41] Y. Tanahashi and K.-L. Ma. “Design considerations for optimizing
storyline visualizations”. IEEE Transactions on Visualization and Com-
puter Graphics, 18(12):2679–2688, 2012. DOI: 10.1109/tvcg.2012.212.

[42] Y. Tanahashi, C.-H. Hsueh, and K.-L. Ma. “An efficient framework
for generating storyline visualizations from streaming data”. IEEE

Transactions on Visualization and Computer Graphics, 21(6):730–742,
2015. DOI: 10.1109/tvcg.2015.2392771.

[43] W. T. Tutte. “Convex representations of graphs”. Proceedings of the
London Mathematical Society, s3-10(1):304–320, 1960. DOI: 10.1112/
plms/s3-10.1.304.

[44] W. T. Tutte. “How to draw a graph”. Proceedings of the London Math-
ematical Society, s3-13(1):743–767, 1963. DOI: 10.1112/plms/s3-
13.1.743.

[45] F.-Y. Tzeng and K.-L. Ma. “Opening the black box - data driven vi-
sualization of neural networks”. In VIS 05. IEEE Visualization, 2005.
Pages 383–390, 2005. DOI: 10.1109/VISUAL.2005.1532820.

[46] T. C. van Dijk, M. Fink, N. Fischer, F. Lipp, P. Markfelder, A. Ravsky,
S. Suri, and A. Wolff. Block crossings in storyline visualizations. In
Lecture Notes in Computer Science, pages 382–398. 2016. DOI: 10.
1007/978-3-319-50106-2 30.

[47] T. C. van Dijk, F. Lipp, P. Markfelder, and A. Wolff. Computing sto-
ryline visualizations with few block crossings. In Lecture Notes in
Computer Science, pages 365–378. 2018. DOI: 10.1007/978-3-319-
73915-1 29.

[48] K. Zamiri Azar, H. M. Kamali, S. Roshanisefat, H. Homayoun, C. P.
Sotiriou, and A. Sasan. “Data flow obfuscation: a new paradigm for
obfuscating circuits”. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 29(4):643–656, 2021. DOI: 10.1109/TVLSI.2021.
3060345.

[49] D. C. Zarate, P. L. Bodic, T. Dwyer, G. Gange, and P. Stuckey. “Optimal
sankey diagrams via integer programming”. In 2018 IEEE Pacific
Visualization Symposium (PacificVis), pages 135–139, 2018. DOI: 10.
1109/PacificVis.2018.00025.

https://doi.org/10.1007/978-3-030-68766-3_25
https://doi.org/10.1007/978-3-030-68766-3_25
https://doi.org/10.1177/1473871612455749
https://doi.org/10.1177/1473871612455749
https://doi.org/10.1177/1473871612455749
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1145/367593.367620
https://doi.org/10.1145/367593.367620
https://doi.org/10.1109/tvcg.2017.2743858
https://doi.org/10.1109/tvcg.2017.2743858
https://doi.org/10.1109/tvcg.2017.2743858
https://doi.org/10.1109/tvcg.2017.2743858
https://doi.org/10.1145/3318464.3389767
https://doi.org/10.1145/3318464.3389767
https://doi.org/10.1145/3318464.3389767
https://doi.org/10.1145/3318464.3389767
https://doi.org/10.1109/tvcg.2010.81
https://doi.org/10.1109/tvcg.2010.81
https://doi.org/10.1109/tvcg.2010.81
https://doi.org/10.1109/tvcg.2010.81
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1006/jctb.2000.1978
https://doi.org/10.1006/jctb.2000.1978
https://doi.org/10.1006/jctb.2000.1978
https://doi.org/10.20380/GI2018.05
https://doi.org/10.20380/GI2018.05
https://doi.org/10.20380/GI2018.05
https://doi.org/10.1016/j.cag.2018.11.004
https://doi.org/10.1016/j.cag.2018.11.004
https://doi.org/10.1016/j.cag.2018.11.004
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1007/978-3-642-36763-2_2
https://doi.org/10.1007/978-3-642-36763-2_2
https://doi.org/10.1007/978-3-642-36763-2_2
https://doi.org/10.1007/978-3-642-36763-2_2
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/ISSCC.1970.1154803
https://doi.org/10.1109/ISSCC.1970.1154803
https://doi.org/10.1109/ISSCC.1970.1154803
https://doi.org/10.1109/ISSCC.1970.1154803
https://doi.org/10.1109/tvcg.2012.212
https://doi.org/10.1109/tvcg.2012.212
https://doi.org/10.1109/tvcg.2012.212
https://doi.org/10.1109/tvcg.2015.2392771
https://doi.org/10.1109/tvcg.2015.2392771
https://doi.org/10.1109/tvcg.2015.2392771
https://doi.org/10.1112/plms/s3-10.1.304
https://doi.org/10.1112/plms/s3-10.1.304
https://doi.org/10.1112/plms/s3-10.1.304
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1109/VISUAL.2005.1532820
https://doi.org/10.1109/VISUAL.2005.1532820
https://doi.org/10.1109/VISUAL.2005.1532820
https://doi.org/10.1007/978-3-319-50106-2_30
https://doi.org/10.1007/978-3-319-50106-2_30
https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1109/TVLSI.2021.3060345
https://doi.org/10.1109/TVLSI.2021.3060345
https://doi.org/10.1109/TVLSI.2021.3060345
https://doi.org/10.1109/TVLSI.2021.3060345
https://doi.org/10.1109/PacificVis.2018.00025
https://doi.org/10.1109/PacificVis.2018.00025
https://doi.org/10.1109/PacificVis.2018.00025
https://doi.org/10.1109/PacificVis.2018.00025

	Introduction
	Supplemental Material
	Background
	Method
	Usefulness
	The best baseline for comparing other algorithms
	Obfuscating circuits
	Designing complex highway interchanges

	User study
	Discussion
	Future work: more metrics to optimize
	Conclusion

