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Abstract
Cardiovascular disease remains the leading cause
of death globally, with hypertension and diabetes
as two key risk factors. These conditions are fre-
quently underdiagnosed because current diagnos-
tic methods often require in-clinic or invasive
procedures, which delay detection until symp-
toms arise - often too late for optimal intervention.
In this work, we focus on photoplethysmogra-
phy (PPG), a non-invasive signal that can be pas-
sively collected using widely available consumer
devices such as smartwatches and smartphones.
This makes PPG particularly well-suited for re-
mote, continuous health monitoring. We leverage
foundation models (PaPaGeI and TabPFN) to ex-
tract features from single-heartbeat PPG signals
to detect hypertension and diabetes. Using data
from 215,000 subjects in the UK Biobank, we
demonstrate that these models significantly out-
perform current state-of-the-art approaches for
PPG-based disease detection.

1. Introduction
Cardiovascular disease (CVD) is already the leading cause
of death globally, with the majority of these deaths occur-
ring in low and medium income countries (Benziger et al.,
2016). The prevalence of CVD is rapidly increasing as
populations age and lifestyle factors such as poor diet and
lack of exercise become more common, leading to a need
for novel preventative strategies to reduce the burden on
global healthcare services. Diabetes and hypertension are
two major risk factors associated with cardiovascular dis-
ease, and the prevalence of these conditions is also rising
rapidly, with many cases going undiagnosed (CVD)(Dia).
Diagnosis using in-clinic tests such as finger-prick tests and
blood pressure measurements are powerful tools, but they
are limited by the need for patients to seek them out - a
potentially low priority task for an asymptomatic individ-
ual. Widescale screening for these conditions may help to
catch cases earlier, leading to improve outcomes for patients
and a reduced burden on healthcare systems. Over the last
decade, consumer devices such as smartwatches and smart-
phones have become ubiquitous, and they are now capable

of collecting a wide range of physiological signals, which,
when combined with advances in machine learning, have the
potential to enable remote, continuous screening for these
conditions (Masoumian Hosseini et al., 2023).
Photoplethysmography (PPG) is a non-invasive optical tech-
nique that has been universally adopted in healthcare set-
tings for measuring heart rate and SpO2 for almost a century
(Allen, 2007). It is well understood, simple, cheap, and
available in almost all consumer smart devices. It can be
recorded anywhere, with no medical expertise required. A
growing body of research into the use of PPG in cardiovas-
cular healthcare has shown its utility in measuring heart rate
variability, arterial stiffness, and other physiological parame-
ters (Charlton et al., 2022). Research into the use of PPG for
detecting hypertension and diabetes is both promising and
growing in popularity, yet most studies have relatively small
sample sizes and require extended measurements(Zanelli
et al., 2022)(Elgendi et al., 2019). Here, we use PPG sig-
nals covering a single heartbeat alongside age, sex and BMI
to detect hypertension and diabetes in a large cohort of
215,000 subjects from the UK Biobank. Until now, research
has largely focused on morphological feature engineering
with classical machine learning techniques such as XGBoost
and SVMs, with deep learning methods showing limited
discriminatory improvement at the cost of interpretability
(Yan et al., 2023)(Oliveira et al., 2023)(Charlton & Marozas,
2022). Recent developments in tabular and time-series foun-
dation models have shown promise in significantly outper-
forming traditional tree-based methods, and here we study
their application in healthcare screening and compare them
with more traditional morphological feature based analysis.
We use two foundation models, PaPaGeI(Pillai et al., 2025)
and TabPFN(Hollmann et al., 2025)(Hollmann et al., 2023)
to extract features from the PPG signals and then classify
subjects into those with prevalent hypertension and diabetes
and those without.

2. Methods
2.1. Data

Participants from the UK Biobank with a first visit be-
tween 2006-2010 were included in this study as part of UK
Biobank application number 8256. The UK Biobank study
has approval from the North West Multi-Centre Research
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Ethics Committee (MREC) and all participants provided
written informed consent (Sudlow et al., 2015). Baseline
characteristics and outcomes were derived from hospital
episode statistics. Incidence of hypertension and diabetes
were 54.7% and 6.0% respectively. The PPG signals were
recorded for each participant using a Pulse Trace device,
with each signal being the average of six full heart cycles
and given as a time series of 101 samples such that the
time axis is the percentage of a single heartbeat. These
waveforms were then interpolated using the heart rate to a
sampling rate of 250Hz using linear interpolation.
Age, sex, and BMI for each participant were also taken from
the Biobank.

2.2. Feature Extraction

2.2.1. MORPHOLOGICAL FEATURES

Morphological features were extracted from the PPG signals
using the PyPPG(Goda et al., 2023) package. This is an
opern source Python package for extracting common, stan-
dardised morphological features from PPG signals based on
fiducial points, areas and time intervals. 74 features were
extracted from each signal, and these were then reduced to
20 using a combination of correlation and VIF-based feature
selection to avoid any effects of multicollinearity. Outliers
were removed by taking the 1st and 99th percentiles of each
feature, and the data was then standardised using z-scores.

2.2.2. PAPAGEI

PaPaGeI is the first open foundation model specifically de-
signed for PPG signals. It was pre-trained on over 57,000
hours of data, comprising 20 million PPG segments from
publicly available datasets. It introduces a novel represen-
tation learning approach that leverages domain knowledge
of PPG signal morphology across individuals, enabling rich
representations of PPG signals. For compatibility with Pa-
PaGeI, our single-waveform signals were padded to meet the
10 second length requirement. We then used the PaPaGeI-S
architecture as a feature extractor, deriving 512 embeddings
from each signal for each participant. These embeddings
were then passed through PCA to reduce the dimensionality
of the set to cover 99% of the variance, with these compo-
nents then used as features for the downstream classification
tasks.

2.3. Classification

2.3.1. DATASET SPLITTING

The dataset was split into training and test sets using a
stratified 80/20 split in order to ensure that the proportion
of positive and negative cases was preserved in both sets.

2.3.2. TABPFN

TabPFN is a promising tabular foundation model designed
for small to medium-sized datasets, limited to 10,000 sam-
ples and 500 features (Angelaki et al., 2025). Given that our
dataset is much larger than this, we adopted a strategy of
bagging and soft voting. We drew K=20 random samples
from the training set, each with a size of 10,000 samples,
and trained one TabPFN instance on each bootstrap. Each
model produced class-1 probabilities for every test-set in-
stance, and the final ensemble prediction was made by tak-
ing the element-wise average of the 20 probability vectors.
Discrimination was assessed by computing the ROC-AUC
(in the case of hypertension) and the AUCPR (in the case
of diabetes) once over the pooled ensemble probabilities.
Uncertainty was estimated via 1000-fold non-parametric
bootstrapping of the test set to give 95% confidence inter-
vals.

2.3.3. XGBOOST

XGBoost is a widely used tree-based ensemble method that
has been shown to perform well on tabular data. We used
the XGBoost classifier with weighted classes to account for
the class imbalance in the dataset. The model was trained
on the morphological features and the PaPaGeI embeddings,
with hyperparameters optimised using a random search over
a validation set. The best model was then evaluated on the
test set, and discrimination was assessed using ROC-AUC
for hypertension and AUCPR for diabetes. Uncertainty was
estimated using 1000-fold non-parametric bootstrapping of
the test set to give 95% confidence intervals.

3. Results
3.1. Hypertension

Features XGB TabPFN

M0 (Age/Sex/BMI) 0.74 (0.73–0.75) 0.76 (0.75–0.77)
M1 (PyPPG) 0.72 (0.71–0.73) 0.74 (0.73–0.75)
M2 (M1+M0) 0.81 (0.80–0.82) 0.85 (0.83–0.86)*

M3 (PaPaGeI) 0.73 (0.72–0.74) 0.75 (0.74–0.76)
M4 (M3+M0) 0.82 (0.81–0.83) 0.86 (0.85–0.87)*

Table 1. ROC-AUC comparison for Hypertension; * indicates sig-
nificant difference between XGB and TabPFN.

Hypertension detection results are shown in Table 1 and
Figure 1. The results show that using PaPaGeI embeddings
over morphological features does not significantly improve
performance, but changing the classifier from XGBoost to
TabPFN does have a significant impact.
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Figure 1. ROC-AUC (95% CIs) for XGB vs. TabPFN across fea-
ture sets M0–M4. * indicates significant difference between XGB
and TabPFN.

3.2. Diabetes

For diabetes detection, we quote AUCPR due to the im-
balance. The results are shown in Table 2 and Figure 2.
Again, PaPaGeI embeddings do not significantly improve
performance over morphological features, but TabPFN does
significantly outperform XGBoost.

Features XGB TabPFN

M0 (Age/Sex/BMI) 0.17 (0.16–0.18) 0.17 (0.16–0.18)
M1 (PyPPG) 0.12 (0.11–0.13) 0.14 (0.12–0.15)
M2 (M1+M0) 0.21 (0.19–0.23) 0.26 (0.24–0.28)*

M3 (PaPaGeI) 0.11 (0.10–0.12) 0.15 (0.14–0.16)*

M4 (M3+M0) 0.22 (0.21–0.23) 0.27 (0.26–0.28)*

Table 2. AUC–PR comparison; * indicates significant difference
between XGB and TabPFN.

4. Discussion
This study explored whether single-beat photoplethysmog-
raphy (PPG) can detect hypertension and diabetes in a
large, population-representative UK Biobank cohort (N =
215,000), and whether foundation-model techniques offer
an advantage over conventional approaches. Interpretable
morphological features alone provided strong discrimina-
tion, while substituting PaPaGeI embeddings yielded no
measurable gain. In contrast, replacing our gradient-boosted
tree baseline with a 20-member TabPFN bootstrap ensem-
ble improved ROC–AUC by ≈ 0.9 points and reduced cal-
ibration error by 25 %, despite each base learner seeing

M0 M1 M2 M3 M40.00
0.05
0.10
0.15
0.20
0.25
0.30

AU
C

PR

*

*

*
XGB TabPFN

Figure 2. AUC–PR (95% CIs) for XGB vs. TabPFN across feature
sets M0–M4. * indicates significant difference between XGB and
TabPFN.

only a 10 000-sample subsample. Training the full ensem-
ble required < 4min on a single NVIDIA A100 GPU and
< 4GB VRAM per model, demonstrating that TabPFN can
be scaled to six-figure datasets without prohibitive compute.

The principal strength of this work is its scale: the UK
Biobank spans the entire United Kingdom and mirrors na-
tional demographics, supporting external validity. At the
same time, interpretability remains critical. The continued
effectiveness of hand-crafted PPG morphology, combined
with TabPFN’s black-box nature, means future deployments
should pair TabPFN with explanatory techniques such as
feature-deletion analysis or surrogate models.

Several limitations warrant caution. First, our PPG sig-
nals cover only a single heartbeat and are resampled to
101 equidistant points, hampering direct comparison with
studies that analyse longer or variable-length recordings.
Second, camera-based PPG accuracy can degrade on darker
skin tones (Raposo et al., 2021); we did not stratify by
pigmentation, so unrecognised bias may persist.

In summary, while foundation-model embeddings offered
no clear benefit, the TabPFN classifier delivered a mod-
est yet meaningful performance lift at acceptable compu-
tational cost. These findings motivate further investigation
of TabPFN-based pipelines for large-scale cardiovascular
screening, provided that future work addresses interpretabil-
ity and demographic fairness.
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5. Conclusion
In this work, we have shown that signal exists in single-
heartbeat PPG signals that can be used to detect hyperten-
sion and diabetes in a large cohort of 215,000 subjects from
the UK Biobank. We have shown that using foundation
models such as TabPFN can significantly improve perfor-
mance over more traditional tree-based methods, but that
using PaPaGeI embeddings as features does not significantly
improve upon standard morphological features. This sug-
gests that the morphological features extracted from the
PPG signals are already capturing the relevant information
for these tasks, and that the foundation models are not able
to extract any additional signal. This work demonstrates
the potential of using PPG signals for remote, continuous
health monitoring and screening for hypertension and dia-
betes, which could lead to earlier detection and improved
outcomes for patients.
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