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TAVRNN: TEMPORAL ATTENTION-ENHANCED
VARIATIONAL GRAPH RNN CAPTURES NEURONAL
DYNAMICS AND BEHAVIOR

ABSTRACT

We introduce Temporal Attention-enhanced Variational Graph Recurrent Neural
Network (TAVRNN), a novel framework for analyzing the evolving dynamics
of neuronal connectivity networks in response to external stimuli and behavioral
feedback. TAVRNN captures temporal changes in network structure by modeling
sequential snapshots of neuronal activity, enabling the identification of key connec-
tivity patterns. Leveraging temporal attention mechanisms and variational graph
techniques, TAVRNN uncovers how connectivity shifts align with behavior over
time. We validate TAVRNN on two datasets: in vivo calcium imaging data from
freely behaving rats and novel in vitro electrophysiological data from the DishBrain
system, where biological neurons control a simulated environment during the game
of pong. We show that TAVRNN outperforms previous baseline models in clas-
sification, clustering tasks and computational efficiency while accurately linking
connectivity changes to performance variations. Crucially, TAVRNN reveals that
high game performance in the DishBrain system correlates with the alignment of
sensory and motor subregion channels, a relationship not evident in earlier models.
This framework represents the first application of dynamic graph representation of
electrophysiological (neuronal) data from DishBrain system, providing insights
into the reorganization of neuronal networks during learning. TAVRNN’s ability to
differentiate between neuronal states associated with successful and unsuccessful
learning outcomes, offers significant implications for real-time monitoring and
manipulation of biological neuronal systems.

1 INTRODUCTION

The field of artificial intelligence has from the outset used natural systems, refined over evolutionary
timescales, as templates for its models (1). Neuroscience has been a significant source of inspiration,
from the McCulloch-Pitts neuron and the parallel distributed architectures of connectionism and
deep learning, to the contemporary call for Neuro-AI as a paradigm for research in AI (2). Progress
leveraging the neurocomputational capacity of biological neurons requires more advanced machine
learning methods to enable better prediction and interpretation of behavior from neuronal activity.
The understanding gained from these efforts may offer the potential for more refined machine learning
algorithms that require less data and energy.
Past attempts to examine higher-order neuronal dynamics typically isolate the temporal evolution of
neuronal signals (3; 4; 5). However, the specific network dynamics integral to the neuronal learning
process, particularly the unit-population relationship, have yet to be fully explored. Analysis at either
level can be informative but fail to explain behavioral outcomes sufficiently (6; 7). To address this
gap we analyzed the spiking activity at the single unit level of in vivo calcium imaging data from the
hippocampus of freely behaving rats (8) and in vitro electrophysiological data from the DishBrain
system (6). Within the DishBrain framework, in vitro neuronal networks are intricately combined
with in silico computing via high-density multi-electrode arrays (HD-MEAs). Through real-time
closed-loop structured stimulation and recording, these biological neuronal networks (BNNs) are
then embedded in a simplified Pong-game and showcase self-organized adaptive electrophysiological
dynamics. We propose a novel approach: investigating the temporal trajectories of a single neuron
data in synchronization with the online evolution of behavior. Exploring the evolving structure and
functional connectivity of BNN in this integrated manner, we aim to provide a more comprehensive
understanding of the neuronal mechanisms driving adaptive learning in real-time environments.
By analyzing the simultaneous evolution of neuronal and behavioral data, this method reveals crucial
insights into the links between population-level neuronal activity and behavior. Moreover, it extends
beyond this scope by examining interactions between individual neurons and uncovering the patterns
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that underlie learning and neuronal information processing in a system such as the DishBrain system.
The dynamic interplay between neurons within the network not only facilitates information processing
and response generation but also reveals how learning modulates synaptic interactions, affecting
signal transmission across the network. This approach enhances our understanding of both cellular
and network-level processes critical to learning, with significant implications for neuroscience and
artificial intelligence. It also holds promise for informing the development of advanced learning
algorithms and innovative treatments for neurological disorders.

2 BACKGROUND

2.1 LARGE-SCALE NEURONAL RECORDINGS AND LEARNABLE LATENT EMBEDDINGS TO LINK
BRAIN AND BEHAVIOR

Simultaneous recordings from large neuron populations offer rich electrophysiological data crucial
for understanding brain function. A key challenge in neuroscience is linking these high-dimensional
recordings to neurocomputational processes and ensuing behavior, a task that spans a wide range
of recording schemes and datasets. In this work, we utilize two exemplar datasets: a high-density
microelectrode arrays (HD-MEA) recordings of in vitro neurons and hippocampal data from behaving
rats, allowing us to explore the connection between neuronal dynamics and behavior across different
scales (9). Progress in Synthetic Biological Intelligence (SBI) requires innovative methods to analyze
neuronal data and link brain function to behavior. Network models allow the study of simultaneous
recordings from biological neuronal networks (BNNs), emphasizing the role of neuronal assemblies
in memory (10) and stimulus processing (11). Although neuronal latent embeddings offer insights
into behavior-related neuronal correlates, there is a paucity of nonlinear techniques that can adeptly
and flexibly utilize combined behavioral and observed neuronal data to elucidate the underlying
neuronal dynamics. Conversely, existing nonlinear methods for associating neuronal and behavioral
data, in a single model, usually investigate the temporal trajectory of the entire neuronal population
as a whole, neglecting the interaction-based network of single neurons. These methods also struggle
to track individual neuron activity and uncover the evolving connectivity that facilitates adaptive
learning (3). Population-wide analysis of neuronal recordings demands a novel theoretical framework
for advancing the algorithmic understanding of intelligence.

2.2 NODE EMBEDDING TECHNIQUES

Node embedding techniques translate network nodes into vectors within a low-dimensional latent
space, enabling traditional vector-based machine learning methods (12). Current approaches typically
treat networks as static, assuming fixed node and edge sets throughout the learning process (13; 14; 15;
16; 17; 18). These methods often apply static embeddings to network snapshots, which simplifies the
inherently time-varying nature of neuronal dynamics and the resulting temporal network dependencies,
potentially overlooking the evolving characteristics of neuronal networks (19). Several techniques
have been developed to account for the temporal evolution of networks (20; 21; 22; 23), but they
often represent each node with a deterministic vector in a low-dimensional space (24), failing to
capture the uncertainty in node embeddings that arises from integrating node attributes and network
structure. This limitation underscores the need for probabilistic embedding techniques that reflect the
uncertain, dynamic nature of node characteristics and interactions over time.
To address these shortcomings, the Graph Recurrent Neural Network (GRNN) was proposed to extend
traditional graph convolutional networks to dynamic networks (25). However, GRNN struggled to
fully capture the complex interaction between network topology and node attributes due to its reliance
on unimodal distributions. To improve the modeling of sparse dynamic networks, the Variational
Graph Recurrent Neural Network (VGRNN) (26) was introduced, but it still faced challenges in
emphasizing relevant historical information and distinguishing the varying importance of past time
steps. Our model enhances GRNN by incorporating high-level latent random variables, providing
richer and more interpretable latent representations. We propose an improvement to the VGRNN
framework by introducing a temporal attention mechanism that evaluates the topological similarity of
the network across time steps, accounting for varying time lags to better capture complex network
dynamics. This approach provides a deeper understanding of how network structures evolve over
time and, in systems like DishBrain , offers insights into the neuronal mechanisms driving adaptive
learning in in vitro neuronal assemblies.
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Figure 1: a) Schematic of rat hippocampus data collection and neuronal data over a 25-second window during
traversal of a 1.6 m track. The track’s ends are color-labeled in the behavioral plot, showing the rat’s position. b)
The low-dimensional neuronal data representation for the two ends using TAVRNN. c) Schematic illustration
of the DishBrain feedback loop, game environment, and electrode configurations. Sample Gameplay and Rest
session spike rasterplots are shown from N = 900 electrodes. d) Hit/miss ratio for the three top and bottom
performing windows during gameplay averaged over all cultures and lower-dimensional representation of the
neuronal data for a sample culture for the best (High1) and worst (Low1) performing windows using TAVRNN.

3 DATASETS

Rat hippocampus dataset We used the dataset from (8), consisting of multicellular recordings
from 120 putative pyramidal neurons in the CA1 hippocampal subfield of male Long–Evans rats
using silicon probes. Rats ran on a 1.6-meter linear track, receiving water rewards at both ends
(Fig. 1a), with spiking data recorded at 40 Hz for 254 seconds. The rat’s position on the track was
simultaneously recorded (Fig. 1b) and served as ground truth to validate TAVRNN in a downstream
classification task to link population neuronal activity to the rat’s position on the track, which, based
on previous evidence, is thought to be encoded by place cells in the hippocampus (27).

DishBrain cell culture dataset The DishBrain system, integrated in real-time with the MaxOne
MEA software (Maxwell Biosystems, AG, Switzerland), facilitates closed-loop stimulation and
recording of cultured cortical networks during engagement in a simplified version of Pong (6).
Neuronal activity from 24 cultures across 437 sessions (262 ’Gameplay’, 175 ’Rest’) was recorded at
20 kHz using an HD-MEA with 900 channels. During Gameplay, sensory stimulation was delivered
via 8 electrodes using rate coding (4Hz–40Hz) for the ball’s x-axis and place coding for the y-axis.
Paddle movement was controlled by the level of electrophysiological activity in counterbalanced
"motor areas" (Fig. 1c). In the "motor regions," activity in half of each subregion moved the paddle
"up" (Lup, Rup) and the other half moved it "down" (Ldown, Rdown). Cultures received feedback
via the same sensory regions, such that unpredictable 150 mV stimulations at 5 Hz were introduced
when they missed the ball as random external inputs into the system. This was applied to arbitrary
locations among the 8 sensory electrodes, at varied intervals lasting up to 4 seconds. A configurable
4-second rest period ensued before the next rally commenced. During Rest sessions, activity was
recorded to move the paddle without stimulation or feedback, while outcomes were still recorded.
Gameplay and Rest sessions lasted 20 and 10 minutes, respectively, with spiking events from all
channels extracted in each session. Further details on this system are provided in Appendix A.1, A.2,
A.3. Behavioral data was collected by measuring the cultures’ ability to intercept the ball, quantified
by the number of ‘hits’. Each rally ended with a ‘miss’, resetting the ball to a random position for a
new episode. The hit/miss ratio was defined as the ratio of accurate hits to the number of missed balls
(i.e. number of rallies played). This dataset was used in a downstream clustering task with regions
applied as labels to observe how channels clustered at different performance levels.

Preprocessing For the rat hippocampal recording, we used binary spiking data from 120 neurons
across 10,178 time points at 40 Hz. We selected time windows of spiking activity when the rat was
within the first and last 0.2 meters of the track, yielding 85 crossings (Fig. 1b). These varying length
time windows were subsequently labeled as 1 for the beginning and -1 for the end of the track for
the downstream classification task. To ensure that the covariance matrix is not ill-conditioned in
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these time windows, according to the Marchenko-Pastur distribution (28; 29; 30), we compared it to
a shuffled control, preserving neuron identity while shuffling time points independently. This process
was repeated 1000 times to estimate confidence intervals, considering only correlations beyond the
95% confidence bounds in the analysis. For further details, see Appendix A.6.
For each of the 24 neuronal cultures in the DishBrain system, spiking activity from all Gameplay
and Rest trials was down-sampled from a sampling frequency of 20KHz by applying a binary OR
operation within 50 ms time bins. A value of 1 was assigned if a spike occurred in any trial within
the bin, and 0 otherwise. This process produced 24 binary spiking time series (one per culture),
each with 900 channels, and 24,000 time points during Gameplay and 12,000 during Rest. To
investigate the single-unit interactions and dynamics of the underlying neuronal networks and their
variations in game performance, we then segmented each Gameplay or Rest session into sliding
windows of 2 minutes, each overlapping by half a window (i.e., 1 minute). This method generated 19
snapshots during Gameplay and 9 during Rest sessions. The selected window size ensured that the
covariance matrices were not ill-conditioned based on Marchenko-Pastur distribution from random
matrix theory (28). We computed the hit/miss ratio for each time window by averaging results across
all trials for each culture. The three time windows with the highest and lowest hit/miss ratios were
classified respectively as the best (High1,2,3) and worst (Low1,2,3) performing windows. High1,2,3

were chosen for the main comparative analyses in the following sections (see Fig. 1d for average
performance levels in these six time windows and Appendix A.4 for additional comparisons).

4 METHODOLOGY

4.1 TEMPORAL NETWORK CONSTRUCTION

Within each window of either dataset, we constructed a network adjacency matrix representing
functional connectivity using zero-lag Pearson correlations as edges and 120 neurons or 900 channels
as nodes. We employed graph kernels for selecting the connectivity inference method (Pearson
correlation) and determining the cutoff threshold for the DishBrain dataset (see Appendix A.5).
The functional connectivity between nodes from both datasets was represented as edges in a matrix.
For each time window t, the corresponding temporal network is represented by a graph Gt ≡ (V,E),
where vi ∈ V represents a specific channel, and eij ∈ E denotes the connectivity edge between
nodes vi and vj . The structure of these dynamic network graphs Gt is captured in time-resolved
adjacency matrices At = [at,ij ], with elements in {0, 1}N×N , where N is the number of nodes.
These matrices are generated by applying a threshold (as obtained from the graph kernels - see
Appendix A.5) to the functional connectivity matrices, retaining only the connections above that
threshold based on absolute correlation values and setting the remainder to zero. Note that given
this input structure, TAVRNN is capable of handling temporal graphs from time windows of varying
lengths as in the rat hippocampal dataset in this study. Additionally, each dynamic graph Gt includes
node features Xt = [xt,1, . . . , xt,N ]⊤ in RN×D, where xt,i corresponds to the feature vector of each
node vi, calculated from the connection weights of each node and D is the number of features.

4.2 TEMPORAL ATTENTION-ENHANCED VARIATIONAL GRAPH RNN (TAVRNN)

In this section, a probabilistic TAVRNN framework is developed to extract representative latent em-
beddings of the dynamic connectivity networks in a purely unsupervised manner. Fig. 2 summarises
the pipeline of the introduced framework in this section. The Python implementation of our proposed
framework is available at the following Github Repository.

4.2.1 SPATIOTEMPORAL VARIATIONAL BAYES

We present a spatiotemporal variational Bayes objective function designed to maximize the lower
bound on the log model-evidence known as the evidence lower bound (ELBO) written as log pθ(A|X )
or equivalently minimize its negative value known as the variational free energy (VFE). This objective
is applied to a series of adjacency matrices A = {At}Tt=0 from dynamic networks, based on the
sequence of node features X = {Xt}Tt=0, where T is the length of the sequence. Introducing a
latent embeddings sequence Z = {Zt}Tt=0, the VFE LV FE(θ, ϕ) can be written via importance
decomposition as:

LV FE(θ, ϕ) = −Eqϕ(Z|X ,A)

[
log

pθ(A,Z|X )

qϕ(Z|X ,A)

]
. (1)

4
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Figure 2: A schematic illustration of the TAVRNN framework.

Here, the subscripts θ and ϕ represent the parameters of the GNN that model the generative distribution
pθ(A,Z|X ) and the posterior distribution qϕ(Z|X ,A), respectively. Using the following general
ancestral factorizations:

pθ(A,Z|X ) =

T∏
t=0

pθ(At|Z≤t,X ,A<t)× pθ(Zt|X ,A<t,Z<t), (2)

qϕ(Z|X ,A) =

T∏
t=0

qϕ(Zt|X ,A≤t,Z<t), (3)

Eq. equation 1 is expanded to yield the sequential VFE (sVFE) as follows:

LsV FE(θ, ϕ) = −
T∑

t=0

[
Eqϕ(Z≤t|X,A≤t,Z<t)

[
log pθ(At|Z≤t,X ,A<t)

]
+ DKL

[
qϕ(Zt|X ,A≤t,Z<t)∥pθ(Zt|X ,A<t,Z<t)

]]
. (4)

Here, A≤t and A<t refer to the partial sequences up to the tth and (t−1)th time samples, respectively.
DKL represents the (positive-valued) Kullback-Leibler divergence (KLD).
Since we want Zt to represent all the information of At, we replace pθ(At|Z≤t,X ,A<t) in Eq.
equation 4 by pθ(At|Zt). Noting that Eq. equation 4 holds for any arbitrary density function qϕ, we
restrict our options to the density functions that satisfy the following equation:

qϕ(Zt|X ,A≤t,Z<t) = qϕ(Zt|X≤t,A≤t,Z<t) (5)

This allows us to use a simple recurrent neural network for modeling qϕ. Also, to compute
pθ(Zt|X ,A<t,Z<t) using a recurrent neural network, we simplify it by using a surrogate term
pθ(Zt|X≤t,A<t,Z<t). Applying the above substitutions into Eq. equation 4 gives:

LsV FE(θ, ϕ) = −
T∑

t=0

[
Eqϕ(Z≤t|X≤t,A≤t,Z<t)

[
log pθ(At|Zt)

]
+ DKL

[
qϕ(Zt|X≤t,A≤t,Z<t)∥pθ(Zt|X≤t,A<t,Z<t)

]]
. (6)

The conditional probabilities in Eq. equation 6 capture the inherent causal structure and temporal
coherence of the temporal spiking activity networks. This sVFE underpins the TAVRNN framework.

4.2.2 RECURRENT GRAPH NEURAL NETWORK

Here, we describe a model parameterization using a graph RNN for the sVFE Eq. 6. Initially,
the conditional latent prior and approximate posterior in Eq. 6 are assumed to follow Gaussian

5
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distributions:
pθ(Zt|X<t,A<t,Z<t) = N (µprior

t ,Σprior
t ) (7a)

qϕ(Zt|X≤t,A≤t,Z<t) = N (µenc
t ,Σenc

t ), (7b)

with isotropic covariances Σprior
t = Diag(σprior2

t ),Σenc
t = Diag(σenc2

t ), and Diag(·) denoting the
diagonal function. To enable gradient descent optimization of the sVFE (Eq. 6), the pairs of mean
and standard deviation in Eq. 7 are modeled as:

(µprior
t ,Σprior

t ) = φprior
θ (Ht−1) (8a)

(µenc
t ,Σenc

t ) = Φenc
ϕ (φx

θ(Xt),Ht−1,At). (8b)

In this configuration, the prior model φprior
θ , the measurement feature model φx

θ, and the state feature
model φz

θ are designed as fully connected neural networks. Meanwhile, the encoder model Φenc
ϕ is

implemented as a GNN. The memory-embedding recurrent states Ht in Eq. 8 are derived as follows:
Ht = Φrnn

θ (φx
θ(Xt), φ

z
θ(Zt),Ht−1,At), (9)

where the recurrent model Φrnn
θ is implemented as a spatial-aware Gated Recurrent Unit (GRU). Ac-

cording to Eq. 9, Ht functions as the memory embeddings for the historical path Z≤ t,X< t,A< t.
Subsequently, the likelihood of the adjacency matrix in Eq. 2 is modeled as a Bernoulli distribution:

pθ(At|Zt) = Bernoulli(Ât), (10)
where Ât is the reconstructed adjacency matrix, derived using a matrix product followed by sigmoid
activation:

Ât = σ(Zt × ZT
t ). (11)

In summary, the end-to-end integration of the prior (Eq. 8a), encoder (Eq. 8b), recurrent module (Eq.
9), and inner-product decoder (Eq. 11) forms a probabilistic recurrent graph autoencoder. This model
first constructs sequential stochastic hierarchical latent embedding spaces on {Zt,Ht}Tt=0 and then
utilizes these embeddings to perform stochastic estimation of the adjacency matrices {Ât}Tt=0. By
optimizing the sVFE (Eq. 6) with respect to the model parameters {θ, ϕ}, these embedding spaces
adapt to capture a wide array of stochastic spatiotemporal variations across dynamic networks in an
entirely unsupervised manner. Further details of the method are provided in Appendix A.7 and A.9.

4.2.3 TEMPORAL ATTENTION-BASED MESSAGE PASSING AND SPATIALLY-AWARE GRU

To more accurately reflect spatiotemporal dependencies, we reparameterized the recurrent model (Eq.
9) to include a spatially-aware GRU. This modification facilitates dynamic updates of the recurrent
states over time. The update gate St, reset gate Rt, and candidate activation H̃t are calculated as:

St = σ(Φxz(X,At) + Φhz(Ht−1,At)) (12)
Rt = σ(Φxr(X,At) + Φhr(Ht−1,At)) (13)

H̃t = tanh(Φxh(X,At) + Φhh(Rt ⊙Ht−1,At)) (14)
Finally, the output of the GRU will be computed as:

Ĥt = St ⊙Ht−1 + (1− St)⊙ H̃t (15)

These equations describe the forward pass of our spatially-aware GRU, improving its capacity to
process and incorporate spatial information through time, where X = [φx(Xt), φz(Zt)]

T . Although
Ĥt could serve as the final value for Ht, given the temporal nature of our graph data, we consider a
global state for the entire graph at each time step. While the GRU adds memory to the states, in our
GNN structure, each node’s state updates based on local information from its neighbors. For this
reason, we add a hypothetical node to the graph which is connected to all other nodes. The state of
this node is supposed to represent the global state of the graph. According to the dynamic nature of
the graph’s state, we let the model compute the final value of Ht through an attention mechanism on
Ĥt, Ht−1, Ht−2, . . . and Ht−w (see Fig. 2). Mathematical details of this temporal attention module
are presented in Appendix A.8. Using the above equations, Ht serves as memory embeddings that
capture graph-structured temporal information from previous latent state sequences. This model
replaces the conventional GRU’s FCNNs with single-layer GNNs {Φxz,Φhz,Φxr,Φhr,Φxh,Φhh}
that incorporate a message passing scheme. This adaptation enables the GRU to efficiently leverage
both the spatial topologies and temporal dependencies in dynamic graph data.
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4.3 BASELINES

We used the following unsupervised node-level embedding methods as baselines since our datasets and
study focus on unlabeled node sets (see Appendix A.10): 1) VGAE (31): Unsupervised framework
using a variational auto-encoder with a graph convolutional network encoder and an inner product
decoder. 2) DynGEM (20): Deep auto-encoder model to generate node embeddings at each time
snapshot t, initialized from the embedding at t − 1. 3) DynAE (32): Autoencoder model using
multiple fully connected layers for both encoder and decoder to capture highly non-linear interactions
between nodes at each time step and across multiple time steps. 4) DynRNN (32): RNN-based model
using LSTM networks as both encoder and decoder to capture long-term dependencies in dynamic
graphs. 5) DynAERNN (32): Employs a fully connected encoder to acquire low-dimensional hidden
representations, passed through an LSTM network and a fully connected decoder. 6) GraphERT
(33): Leverages graph embedding representation using transformers with a masked language model
on sequences of graph random walks.

5 RESULTS

We first evaluate all methods on a classification task using the rat hippocampal dataset, where the
ground truth labels are available and correspond to the rat’s position on the track. After demonstrating
TAVRNN’s competitiveness with state-of-the-art temporal graph embedding methods, we proceed to
the DishBrain dataset for a clustering task. In this setting, characterized by higher dimensionality and
intricate single-unit dynamics across varying game performance levels, TAVRNN proves its strength,
significantly outperforming all baseline methods.

5.1 RAT HIPPOCAMPUS DATASET

Table 1 presents a comparison of the TAVRNN model and baseline methods in the classification
task using the rat hippocampal dataset across multiple evaluation metrics. Among the methods, only
GraphERT achieved a higher accuracy than TAVRNN, although TAVRNN closely approached its
performance and surpassed GraphERT in terms of recall.

Table 1: Comparison of classification performance on rat hippocampal data.
Method Accuracy (%) Recall (%) Precision (%) F1-Score (%)

VGAE 64.71 ± 12.89 77.78 ± 3.08 71.91 ± 2.68 74.73 ± 7.31
DynGEM 62.35 ± 12.11 77.50 ± 18.43 62.72 ± 12.72 69.33 ± 10.30
DynAE 56.47 ± 10.80 51.67 ± 11.30 59.29 ± 12.14 54.30 ± 8.71
DynRNN 57.65 ± 11.41 68.89 ± 27.58 67.39 ± 21.59 68.13 ± 9.54
DynAERNN 70.59 ± 13.92 77.78 ± 11.31 76.52 ± 18.34 77.14 ± 11.26
GraphERT 93.91 ± 2.48 94.27 ± 3.46 94.31 ± 2.56 94.39 ± 2.27
TAVRNN 91.76 ± 6.80 94.56 ± 4.80 88.56 ± 10.97 91.46 ± 6.30

Next, we performed an ablation test, by using four additional variations of our proposed model to
test if adding each structure helps the downstream task. The results in Table 2 outline that removing
Temporal Attention, replacing the Spatial-aware GRU with a conventional GRU, or replacing the
Variational Graph Autoencoder with a simpler Graph Autoencoder all lead to significant performance
drops across all evaluation metrics for TAVRNN.

Table 2: Ablation study of the proposed TAVRNN framework.
Model Specification Accuracy (%) Recall (%) Precision (%) F1-Score (%)
Graph Autoencoder + Conventional GRU 74.12 ± 10.26 86.39 ± 12.92 75.93 ± 19.95 77.72 ± 6.72
Graph Autoencoder + Spatial-aware GRU 84.71 ± 12.11 86.39 ± 10.84 84.59 ± 15.26 85.47 ± 10.71
Graph Autoencoder + Spatial-aware GRU + Temporal Attention 87.06 ± 12.00 91.73 ± 8.31 87.22 ± 15.28 88.10 ± 10.06
Variational Graph Autoencoder + Spatial-aware GRU 88.24 ± 4.32 90.83 ± 5.41 87.78 ± 9.63 88.72 ± 7.72
Variational Graph Autoencoder + Spatial-aware GRU + Temporal Attention 91.76 ± 6.80 94.56 ± 4.80 88.56 ± 10.97 91.46 ± 6.30

5.2 TIME COMPLEXITY ANALYSIS

We also analyzed the time complexity of all baseline methods and compared them to TAVRNN.
Table 3 provides the order of time complexity for one forward pass on all the n cells for one time
window in all methods. In this table, hmax stands for the maximum dimensionality of the hidden
layers in different algorithms. See Appendix A.10 for more details on how the time complexities
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are computed and meaning of various symbols in the Table. As demonstrated in Table 3, all
the methods except GraphERT have similar orders of time complexities, but different constant
coefficients. Fig. 3 shows the log-log plot of these time complexities against the number of nodes
using all the coefficients and hyper parameters as reported in the original paper for each algorithm.
It shows that TAVRNN and VGAE exhibit the lowest time complexity, making them the most
computationally efficient methods. In contrast, GraphERT shows the highest complexity, leading
to a significant increase in run time as the number of nodes in the input graph grows. This large
time complexity is consistent with many constant coefficients we see for GraphERT in Table 3.

Table 3: One forward pass time complexity for one time window.
Method Complexity
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Figure 3: Time complexity of all methods on a log-log plot.

5.3 DISHBRAIN DATASET

Next, we move to test TAVRNN per-
formance on the DishBrain dataset.
Fig. 4a-b shows the connectivity net-
works for the top and bottom three
time windows across all trials for a
sample culture, ranked by hit/miss ra-
tio during both Gameplay and Rest.
The heatmaps display pairwise Pear-
son correlations between channels
for each window. The nodes in these
heatmaps are sorted by channel type
on the HD-MEA, belonging to Sens,
Lup, Rup, Ldown, or Rdown regions.
Across all recorded cultures, Game-
play sessions showed higher average
weight, lower modularity, and lower
clustering coefficients compared to Rest. Fig. 4c compares these metrics for the best and worst time
windows in both Gameplay and Rest, revealing significant differences between the two states but
no significant difference between High1 and Low1 during Gameplay. Fig. 4d shows the evolution
of these metrics with increasing hit/miss ratio during Gameplay sessions across all recordings. Fig.

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

a) Gameplay

c)

d)

b) Rest
High³

Low¹

High²

Low²

High¹ High³ High² High¹

Low³ Low¹ Low² Low³

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Sens

Rdown
Rup

Ldown
Lup

Se
ns

R do
wn R up

L do
wn L up

Se
ns

R
do
w
n

L d
ow
n

R
up L u
p

Se
ns

R
do
w
n

L d
ow
n

R
up L u
p

Se
ns

R
do
w
n

L d
ow
n

R
up L u
p

c)###
###

###

###

###
###

###

###

###
###

###

##

b)

a)
c)###

###

###

###

###
###

###

###

###
###

###

##

b)

a)

c)
###

###

###

###

###
#########

###
###

###

##

b) a)
c)

###
###

###

###

###
#########

###
###

###

##

b) a)c)###
###

###

###

###
###

###

###

###
###

###

##

b)

a)
c)###

###

###

###

###
###

###

###

###
###

###

##

b)

a)

Low1 Low2 Low3 High3 High2 High1

100

200

300

400

Av
er

ag
e 

W
ei

gh
t

High1 Low1 High1 Low1

Time Interval

0.0

0.1

0.2

0.3

0.4

M
od

ul
ar

it
y 

In
de

x Status
Gameplay
Rest

c)
###

###

###

###

###
#########

###
###

###

##

b) a)
c)

###
###

###

###

###
#########

###
###

###

##

b) a)

High1 Low1 High1 Low1

Time Interval

0

200

400

600

Av
er

ag
e 

W
ei

gh
t Status

Gameplay
Rest

Low¹High¹ Low¹High¹ Low¹High¹ Low¹High¹ Low¹High¹ Low¹High¹

High³
Low¹

High²
Low²

High¹
Low³

High³
Low¹

High²
Low²

High¹
Low³

High³
Low¹

High²
Low²

High¹
Low³

c)###
###

###

###

###
###

###

###

###
###

###

##

b)

a)

H
ig

h³

Lo
w

¹

H
ig

h²

Lo
w

²

H
ig

h¹

Lo
w

³

c)###
###

###

###

###
###

###

###

###
###

###

##

b)

a)

H
ig

h³

Lo
w

¹

H
ig

h²

Lo
w

²

H
ig

h¹

Lo
w

³

c)###
###

###

###

###
###

###

###

###
###

###

##

b)

a)

H
ig

h³

Lo
w

¹

H
ig

h²

Lo
w

²

H
ig

h¹

Lo
w

³

High³

Low¹

High²

Low²

High¹

Low³

High³

Low¹

High²

Low²

High¹

Low³

High1 Low1 High1 Low1

Time Interval

0.0

0.2

0.4

0.6

0.8

Cl
us

te
ri

ng
 C

oe
ff

ic
ie

nt Status
Gameplay
Rest

Low1 Low2 Low3 High3 High2 High1

0.05

0.10

0.15

0.20

M
od

ul
ar

it
y 

In
de

x

Low1 Low2 Low3 High3 High2 High1
0.1

0.2

0.3

0.4

0.5

Cl
us

te
ri

ng
 C

oe
ff

ic
ie

nt

Sens

Rdown

Ldown
Rup
Lup

Se
ns

R
do
w
n

L d
ow
n

R
up L u
p

Se
ns

R
do
w
n

L d
ow
n

R
up L u
p

Se
ns

R
do
w
n

L d
ow
n

R
up L u
p

Sens

Rdown

Ldown
Rup
Lup

Sens

Rdown

Ldown
Rup
Lup

c)
###

###

###

###

###
#########

###
###

###

##

b) a)
c)

###
###

###

###

###
#########

###
###

###

##

b) a)

Sens

Rdown

Ldown
Rup
Lup

High³

Low¹

High²

Low²

High¹

Low³

Figure 4: Functional connectivity networks for High1,2,3 and Low1,2,3 windows in aggregated trials
of a) Gameplay and b) Rest for a sample culture. Average weight, modularity index, and clustering
coefficient for c) High1 and Low1 across all sessions. Error bands = 1 SE. ###p < 0.001,
##p < 0.01. d) Same metrics for High1,2,3 and Low1,2,3 in Gameplay across all recordings. Error
bars = 95% confidence intervals. e) Pairwise Games-Howell post-hoc test between groups.
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5a-b visualizes the embeddings for the same sample networks from Fig. 4 using all methods. Nodes
are color-coded by their subregions on the HD-MEA. TAVRNN reveals that during high game
performance, nodes from different subregions (e.g., Sens or motor subregions for Up and Down
movements) form distinct clusters. The clusters become increasingly distinct as game performance
reaches its highest level (High1). Notably, the Sens cluster overlaps with motor clusters even at
peak performance, suggesting co-activation of a subgroup of Sens cluster with each motor region.
This clustering was not detected in the functional connectivity networks of the spiking activity (see
for example Fig. 4) but does accord with previous electrophysiological analysis (6). TAVRNN outper-
forms the other baselines in separating the clusters based on the corresponding channel’s subregion
label due to its ability to incorporate temporal history of network activity. Additionally, TAVRNN’
attention layer enhances its effectiveness. This layer assesses the relevance of historical network
activities by comparing their functional connectivity with the current snapshot, thereby significantly
influencing the representation in the embedding space and leading to improved performance over
the rest. This demonstrates that successful adaptive learning requires synchronous activity between
subregions, even as the modularity index of functional connectivity networks decreases during better
performance. Our findings uncover the latent topology of the temporal networks revealing that
clustering of subregions during successful behavior, as seen in the embedding space, highlights
functional modules co-activated during optimal performance, which are not necessarily spatially
proximate (see Fig. 1c). Absence of such clustering during poor performance or Rest (see Fig. S4
for these results) implies a disruption in the coordinated activity of these modules suggesting that
adaptive learning involves dynamic reorganization of neuronal circuits to optimize behavior.

Figure 5: t-SNE visualization of the channels in the embedding space for High1,2,3 windows of
Gameplay using TAVRNN and all baseline methods for aggregated trials of a sample culture. Each
channel is color-coded based on the predefined subregion it belongs to as shown in Fig. 1c. Results
from additional cultures, Rest sessions, and Low1,2,3 windows are represented in Appendix A.4.

Table 4 represents the comparison results during the best performing Gameplay session (High1)
across all cultures in terms of the Silhouette, Adjusted Rand Index (ARI), Homogeneity, and Com-
pleteness scores on the clustering task where channels are labeled based on their role (Sens, Up, or
Down). We found that TAVRNN outperforms all baseline methods on all metrics. The Silhouette
score, which assesses the degree of separation among clusters, indicated some overlap in High1

sessions. This suggests that a complete separation of clusters may not be optimal for the transmission
of information between sensory and motor subregions, reflecting a functional co-activation required
among channels within these clusters for goal-directed tasks. The ARI evaluated the alignment
between true and predicted labels where even TAVRNN showed deviations from perfect alignment,
highlighting the challenges of predefined neuron classifications in the DishBrain platform. This
discrepancy stems from the absence of a definitive ground truth for defining motor subregions,
complicating accurate neuron segregation. Notably, the DishBrain platform was originally designed
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Table 4: Clustering scores on the best (High1) performing windows over all Gameplay sessions.
Method Silhouette ARI Homogeneity Completeness

VGAE 0.5385 ± 0.0337 - 0.0014 ± 0.0004 0.0307 ± 0.0012 0.0218 ± 0.0006
DynGEM 0.4220 ± 0.0354 0.0035 ± 0.0056 0.0043 ± 0.0041 0.0044 ± 0.0041
DynAE 0.4133 ± 0.0366 0.0006 ± 0.0026 0.0022 ± 0.0019 0.0022 ± 0.0019
DynRNN 0.5551 ± 0.0270 0.0168 ± 0.0143 0.0145 ± 0.0107 0.0149 ± 0.0110
DynAERNN 0.6051 ± 0.0121 0.1391 ± 0.0365 0.1053 ± 0.0312 0.1059 ± 0.0415
GraphERT 0.5513 ± 0.0400 0.6277 ± 0.1409 0.6046 ± 0.1110 0.6261 ± 0.0945
TAVRNN 0.6505 ± 0.0215 0.8072 ± 0.0372 0.7076 ± 0.0357 0.7171 ± 0.0331

considering various motor subregion configurations for Up and Down paddle movements, with the
final regions selected based on optimal performance in experimental cultures (6). Our results indicate
that neurons assigned specific roles based on their subregions did not always align with their expected
activity patterns, emphasizing the complexity of predicting neuronal behavior in biological systems.
Note that the GraphERT method leverages a representation of the entire graph through the CLS token
(33), yielding high accuracy in tasks that rely on global network data, such as the classification in rat
hippocampus dataset. However, importantly, while TAVRNN demonstrates comparable performance
in that task, it significantly outperforms GraphERT in a task where the dynamics of individual nodes
are crucial such as the clustering in DishBrain dataset. Where single-unit activity is the focus of
representation learning rather than population-level behavior, TAVRNN excels by efficiently capturing
the temporal latent dynamics of individual nodes in the graph. Additionally, our method exhibits
robust performance across datasets with significantly different sampling frequencies, ranging from 40
Hz to 20 kHz for the rat and DishBrain datasets.
Overall, our framework provides a valuable tool to facilitate the optimization of neuronal clusters for
specific tasks in simulated environments, enhancing the design and efficacy of future experiments.
Homogeneity and completeness metrics revealed that clusters contained neurons from multiple
classes and did not group all neurons of a class together, even during optimal performance. This
indicates a more distributed and nuanced representation of sensory and motor functions within the
neuronal network, blurring the predefined boundaries between regions. Our findings highlight the
complex interplay of neuronal activity in clustered environments and emphasize the potential of our
framework to enhance the understanding and design of future experiments in neuronal clustering and
task-specific roles in both biological and simulated systems.

6 CONCLUSIONS

By employing a sophisticated representation learning framework, our approach applies a nonlinear
dimensionality reduction technique that preserves critical information from individual neurons over
time as a groundbreaking method to explore adpative learning in biological neurons. This is different
from previous dimensionality reduction methods that examined the temporal trajectory of the entire
population as a whole (3). Our methodology enable dissection of the intricate dynamics between
single units that underpin successful and unsuccessful behavioral outcomes of neuronal populations.
Notably, our TAVRNN framework successfully identified interpretable attributes that correlate with
good and poor performance of live biological neurons in a simulated environment of pong such as
in the DishBrain system. Our findings suggest that in such a system, adaptive learning is facilitated
by the dynamic reorganization of neuronal circuits and co-activation of distinct neuronal clusters,
optimizing behavioral responses. Moreover, assessing the understanding of the spatial layout of
individual channels on the HD-MEA showed that these co-activations are not confined to spatially
adjacent subpopulations. Instead, a more complex pattern of self-organization emerges among
neuronal subregions that are spatially distant from each other. This indicates a complex pattern of
self-organization among distanced neuronal subpopulations, driven endogenously rather than by
exogenous influences. These insights open new avenues for targeting specific neuronal mechanisms
in skill acquisition and could inform future interventions aimed at enhancing learning and memory,
both in health and clinical settings. This finding not only advances our understanding of neuronal
behavior in learning tasks but also challenges existing paradigms about the spatial requirements for
neuronal co-activation and learning efficacy. A current limitation of our framework is its reliance on
undirected networks of functional connectivity. Future iterations could benefit from incorporating
directed networks, which would allow for the differentiation between inhibitory and excitatory
relationships among channels by using signed correlation values. Additionally, exploring tasks such
as link prediction using our framework also represents a promising direction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al.
A deep learning framework for neuroscience. Nature neuroscience, 22(11):1761–1770, 2019.

[2] Anthony Zador, Sean Escola, Blake Richards, Bence Ölveczky, Yoshua Bengio, Kwabena
Boahen, Matthew Botvinick, Dmitri Chklovskii, Anne Churchland, Claudia Clopath, et al.
Catalyzing next-generation artificial intelligence through neuroai. Nature communications,
14(1):1597, 2023.

[3] Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings
for joint behavioural and neural analysis. Nature, 617(7960):360–368, 2023.

[4] Jason Manley, Sihao Lu, Kevin Barber, Jeffrey Demas, Hyewon Kim, David Meyer, Fran-
cisca Martínez Traub, and Alipasha Vaziri. Simultaneous, cortex-wide dynamics of up to 1
million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron, 2024.

[5] Moein Khajehnejad, Forough Habibollahi, Richard Nock, Ehsan Arabzadeh, Peter Dayan, and
Amir Dezfouli. Neural network poisson models for behavioural and neural spike train data.
In Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 10974–10996. PMLR, 17–23 Jul 2022.

[6] Brett J Kagan, Andy C Kitchen, Nhi T Tran, Forough Habibollahi, Moein Khajehnejad, Bradyn J
Parker, Anjali Bhat, Ben Rollo, Adeel Razi, and Karl J Friston. In vitro neurons learn and
exhibit sentience when embodied in a simulated game-world. Neuron, 110(23):3952–3969,
2022.

[7] Moein Khajehnejad, Forough Habibollahi, Alon Loeffler, Brett Kagan, and Adeel Razi. On
complex network dynamics of an in-vitro neuronal system during rest and gameplay. In NeurIPS
2023 Workshop on Symmetry and Geometry in Neural Representations, 2023.

[8] Andres D Grosmark and György Buzsáki. Diversity in neural firing dynamics supports both
rigid and learned hippocampal sequences. Science, 351(6280):1440–1443, 2016.

[9] Brett J Kagan, Alon Loeffler, J Lomax Boyd, and Julian Savulescu. Embodied neural systems
can enable iterative investigations of morally relevant states. Journal of Neuroscience, 44(15),
2024.

[10] Mark D Humphries. Strong and weak principles of neural dimension reduction. arXiv preprint
arXiv:2011.08088, 2020.

[11] Ding Zhou and Xue-Xin Wei. Learning identifiable and interpretable latent models of high-
dimensional neural activity using pi-vae. Advances in Neural Information Processing Systems,
33:7234–7247, 2020.

[12] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node
embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1320–1329, 2018.

[13] Mohammadreza Armandpour, Patrick Ding, Jianhua Huang, and Xia Hu. Robust negative sam-
pling for network embedding. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pages 3191–3198, 2019.

[14] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

[15] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[16] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 385–394, 2017.

[17] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th international conference on
world wide web, pages 1067–1077, 2015.

[18] Moein Khajehnejad. Simnet: Similarity-based network embeddings with mean commute time.
PloS one, 14(8):e0221172, 2019.

[19] Daniel J Lurie, Daniel Kessler, Danielle S Bassett, Richard F Betzel, Michael Breakspear, Shella
Kheilholz, Aaron Kucyi, Raphaël Liégeois, Martin A Lindquist, Anthony Randal McIntosh,
et al. Questions and controversies in the study of time-varying functional connectivity in resting
fmri. Network neuroscience, 4(1):30–69, 2020.

[20] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for
dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.

[21] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[22] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019.

[23] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. Attributed network
embedding for learning in a dynamic environment. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, pages 387–396, 2017.

[24] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

[25] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured
sequence modeling with graph convolutional recurrent networks. In Neural Information Pro-
cessing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16,
2018, Proceedings, Part I 25, pages 362–373. Springer, 2018.

[26] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan
Zhou, and Xiaoning Qian. Variational graph recurrent neural networks. Advances in neural
information processing systems, 32, 2019.

[27] John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map: preliminary
evidence from unit activity in the freely-moving rat. Brain research, 1971.

[28] Vladimir Alexandrovich Marchenko and Leonid Andreevich Pastur. Distribution of eigenvalues
for some sets of random matrices. Matematicheskii Sbornik, 114(4):507–536, 1967.

[29] Peter J Bickel and Elizaveta Levina. Covariance regularization by thresholding. 2008.

[30] Jianqing Fan and Jinchi Lv. A selective overview of variable selection in high dimensional
feature space. Statistica Sinica, 20(1):101, 2010.

[31] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[32] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems, 187:104816,
2020.

[33] Moran Beladev, Gilad Katz, Lior Rokach, Uriel Singer, and Kira Radinsky. Graphert–
transformers-based temporal dynamic graph embedding. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pages 68–77, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[34] Maria Elisabetta Ruaro, Paolo Bonifazi, and Vincent Torre. Toward the neurocomputer: image
processing and pattern recognition with neuronal cultures. IEEE Transactions on Biomedical
Engineering, 52(3):371–383, 2005.

[35] Ildefons Magrans de Abril, Junichiro Yoshimoto, and Kenji Doya. Connectivity inference
from neural recording data: Challenges, mathematical bases and research directions. Neural
Networks, 102:120–137, 2018.

[36] Marlene R Cohen and Adam Kohn. Measuring and interpreting neuronal correlations. Nature
neuroscience, 14(7):811–819, 2011.

[37] Charles K Knox. Detection of neuronal interactions using correlation analysis. Trends in
Neurosciences, 4:222–225, 1981.

[38] Matteo Garofalo, Thierry Nieus, Paolo Massobrio, and Sergio Martinoia. Evaluation of the per-
formance of information theory-based methods and cross-correlation to estimate the functional
connectivity in cortical networks. PloS one, 4(8):e6482, 2009.

[39] Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2):461, 2000.

[40] Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. Model-free reconstruction of
excitatory neuronal connectivity from calcium imaging signals. 2012.

[41] Shinya Ito, Michael E Hansen, Randy Heiland, Andrew Lumsdaine, Alan M Litke, and John M
Beggs. Extending transfer entropy improves identification of effective connectivity in a spiking
cortical network model. PloS one, 6(11):e27431, 2011.

[42] David S Johnson. The np-completeness column. ACM Transactions on Algorithms (TALG),
1(1):160–176, 2005.

[43] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine
learning. 2008.

[44] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5:1–42, 2020.

[45] Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, Bastian Rieck, et al.
Graph kernels: State-of-the-art and future challenges. Foundations and Trends® in Machine
Learning, 13(5-6):531–712, 2020.

[46] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011.

[47] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019.

[48] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation
kernels: efficient graph kernels from propagated information. Machine learning, 102:209–245,
2016.

[49] Holger Fröhlich, Jörg K Wegner, Florian Sieker, and Andreas Zell. Optimal assignment kernels
for attributed molecular graphs. In Proceedings of the 22nd international conference on Machine
learning, pages 225–232, 2005.

[50] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics,
pages 488–495. PMLR, 2009.

[51] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pages 8–pp. IEEE, 2005.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[52] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[53] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

The Python implementation of our proposed framework and baseline methods is available at the
following Github Repository.

A.1 CELL CULTURE

Approximately 106 cells were plated on each Multielectrode Array. Neuronal cells were cultured
either from the cortices of E15.5 mouse embryos or differentiated from human induced pluripotent
stem cells via a dual SMAD inhibition (DSI) protocol or through a lentivirus-based NGN2 direct
differentiation protocols as previously described (6). Cells were cultured until plating. For primary
mouse neurons, this occurred at day-in-vitro (DIV) 0, for DSI cultures this occurred at between DIV
30 - 33 depending on culture development, for NGN2 cultures this occurred at DIV 3.

A.2 MEA SETUP AND PLATING

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) was used and is a high-
resolution electrophysiology platform featuring 26,000 platinum electrodes arranged over an 8 mm2.
The MaxOne system is based on complementary meta-oxide-semiconductor (CMOS) technology
and allows recording from up to 1024 channels. MEAs were coated with either polyethylenimine
(PEI) in borate buffer for primary culture cells or Poly-D-Lysine for cells from an iPSC background
before being coated with either 10 µg/ml mouse laminin or 10 µg/ml human 521 Laminin (Stemcell
Technologies Australia, Melbourne, Australia) respectively to facilitate cell adhesion. Approximately
106 cells were plated on MEA after preparation as per (6). Cells were allowed approximately one
hour to adhere to MEA surface before the well was flooded. The day after plating, cell culture media
was changed for all culture types to BrainPhys™ Neuronal Medium (Stemcell Technologies Australia,
Melbourne, Australia) supplemented with 1% penicillin-streptomycin. Cultures were maintained in a
low O2 incubator kept at 5% CO2, 5% O2, 36°C and 80% relative humidity. Every two days, half the
media from each well was removed and replaced with free media. Media changes always occurred
after all recording sessions.

A.3 DISHBRAIN PLATFORM AND ELECTRODE CONFIGURATION

The current DishBrain platform is configured as a low-latency, real-time MEA control system with
on-line spike detection and recording software. The DishBrain platform provides on-line spike
detection and recording configured as a low-latency, real-time MEA control. The DishBrain software
runs at 20 kHz and allows recording at an incredibly fine timescale. This setup captured neuronal
electrical activity and provided long-term, safe external electrical stimulation through biphasic pulses
that elicited action potentials in neurons, as detailed in previous studies (34). There is the option
of recording spikes in binary files, and regardless of recording, they are counted throughout 10
milliseconds (200 samples), at which point the game environment is provided with how many spikes
are detected in each electrode in each predefined motor region as described below. Based on which
motor region the spikes occurred in, they are interpreted as motor activity, moving the ‘paddle’ up
or down in the virtual space. As the ball moves around the play area at a fixed speed and bounces
off the edge of the play area and the paddle, the pong game is also updated at every 10ms interval.
Once the ball hits the edge of the play area behind the paddle, one rally of pong has come to an
end. The game environment will instead determine which type of feedback to apply at the end of the
rally: random, silent, or none. Feedback is also provided when the ball contacts the paddle under
the standard stimulus condition. A ‘stimulation sequencer’ module tracks the location of the ball
relative to the paddle during each rally and encodes it as stimulation to one of eight stimulation
sites. Each time a sample is received from the MEA, the stimulation sequencer is updated 20,000
times a second, and after the previous lot of MEA commands has completed, it constructs a new
sequence of MEA commands based on the information it has been configured to transmit based on
both place codes and rate codes. The stimulations take the form of a short square bi-phasic pulse that
is a positive voltage, then a negative voltage. This pulse sequence is read and applied to the electrode
by a Digital to Analog Converter (or DAC) on the MEA. A real-time interactive version of the game
visualiser is available at https://spikestream.corticallabs.com/. Alternatively, cells
could be recorded at ‘Rest’ in a Gameplay environment where activity was recorded to move the
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paddle but no stimulation was delivered, with corresponding outcomes still recorded. Using this
spontaneous activity alone as a baseline, the Gameplay characteristics of a culture were determined.
Low level code for interacting with Maxwell API was written in C to minimize processing latencies-so
packet processing latency was typically <50 µs. High-level code was written in Python, including
configuration setups and general instructions for game settings. A 5 ms spike-to-stim latency was
achieved, which was substantially due to MaxOne’s inflexible hardware buffering. Fig. S1 illustrates
a schematic view of Software components and data flow in the DishBrain closed loop system.
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Figure S1: a, b) Schematics of software used for DishBrain. a) Software components and data flow
in the DishBrain closed loop system. Voltage samples flow from the MEA to the ‘Pong’ environment,
and sensory information flows from the ‘Pong’ environment back to the MEA, forming a closed loop.
The blue rectangles mark proprietary pieces of hardware from MaxWell, including the MEA well
which may contain a live culture of neurons. The green MXWServer is a piece of software provided
by MaxWell which is used to configure the MEA and Hub, using a private API directly over the
network. The red rectangles mark components of the ‘DishServer’ program, a high-performance
program consisting of four components designed to run asynchronously, despite being run on a
single CPU thread. The ‘LAN Interface’ component stores network state, for talking to the Hub, and
produces arrays of voltage values for processing. Voltage values are passed to the ‘Spike Detection’
component, which stores feedback values and spike counts, and passes recalibration commands back
to the LAN Interface. When the pong environment is ready to run, it updates the state of the paddle
based on the spike counts, updates the state of the ball based on its velocity and collision conditions,
and reconfigures the stimulation sequencer based on the relative position of the ball and current
state of the game. The stimulation sequencer stores and updates indices and countdowns relating
to the stimulations it must produce and converts these into commands each time the corresponding
countdown reaches zero, which are finally passed back to the LAN Interface, to send to the MEA
system, closing the loop. The procedures associated with each component are run one after the
other in a simple loop control flow, but the ‘Pong’ environment only moves forward every 200th
update, short-circuiting otherwise. Additionally, up to three worker processes are launched in parallel,
depending on which parts of the system need to be recorded. They receive data from the main
thread via shared memory and write it to file, allowing the main thread to continue processing data
without having to hand control to the operating system and back again. b) Numeric operations in
the real-time spike detection component of the DishBrain closed loop system, including multiple
IIR filters. Running a virtual environment in a closed loop imposes strict performance requirements,
and digital signal processing is the main bottleneck of this system, with close to 42 MB of data to
process every second. Simple sequences of IIR digital filters is applied to incoming data, storing
multiple arrays of 1024 feedback values in between each sample. First, spikes on the incoming data
are detected by applying a high pass filter to determine the deviation of the activity, and comparing
that to the MAD, which is itself calculated with a subsequent low pass filter. Then, a low pass filter
is applied to the original data to determine whether the MEA hardware needs to be re-calibrated,
affecting future samples. This system was able to keep up with the incoming data on a single thread
of an Intel Core i7-8809G. Figures adapted from (6).
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A.4 ADDITIONAL RESULTS

In this section, we present the learned representations of the three best performing windows in terms
of the culture’s hit/miss ratios during Gameplay for two additional cultures in Figs. S2 and S3.
The figures repeatedly demonstrate TAVRNN’s outperformance over the other baseline methods in
identifying clusters of channels that belong to the same region on the HD-MEA.
Additionally, Fig. S4 represents t-SNE visualization of the learned representations of the three best and
three worst windows based on hit/miss ratios (High1,2,3 and Low1,2,3) during Gameplay and Rest,
as modeled by TAVRNN for all aggregated trials of an additional sample culture. These visualizations
reveal an absence of distinguishable clusters during the rest state or during low-performing periods of
gameplay. However, as we progress to time windows associated with higher performance levels in
the game, distinct clustering patterns emerge. Notably, channels from the motor regions associated
with Up and Down movements form distinct, cohesive clusters, despite the spatial separation of
these channels (within each of the Up or Down subregions) on the HD-MEA. Similarly, channels
from the Sens region group together into a separate cluster.

Figure S2: t-SNE visualization of the channels in the embedding space for High1,2,3 windows of
Gameplay using TAVRNN and all baseline methods for aggregated trials of an additional sample
culture. Each channel is color-coded based on the predefined subregion it belongs to as shown in Fig.
1c.
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Figure S3: t-SNE visualization of the channels in the embedding space for High1,2,3 windows of
Gameplay using TAVRNN and all baseline methods for aggregated trials of another sample culture.
Each channel is color-coded based on the predefined subregion it belongs to as shown in Fig. 1c.

Figure S4: t-SNE visualization of the channels in the embedding space using TAVRNN during the top
and bottom three windows (High1,2,3 and Low1,2,3) in terms of hit-miss-ratio during Gameplay and
Rest for aggregated trials of a sample culture. Each channel is color-coded based on the predefined
subregion it belongs to as shown in Fig. 1c.
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A.5 CONNECTIVITY INFERENCE MECHANISMS

Methods for inferring connectivity are broadly categorized into two types: model-free and model-
based approaches. Model-free methods rely on descriptive statistics and do not presuppose any
specific underlying data generation mechanism, making them versatile for initial analyses. In contrast,
model-based methods involve hypothesizing a mathematical model to elucidate the underlying
biological processes by estimating its parameters and structure. Typically, these methods analyze
time-series data, such as spike trains from individual neurons. However, recent advances have enabled
studies to integrate spike inference with connectivity analysis directly from time-series data (35). In
this work, we focus on utilizing the model-free methods.

Model-free methods do not presuppose any specific mechanisms underlying the observed data,
offering a simpler alternative to model-based approaches. However, these methods do not facilitate the
generation of activity data crucial for model validation or predictive analysis. Model-free techniques
are primarily divided into two categories: those employing descriptive statistics such as Pearson
correlation coefficient (PC) and cross-correlation (CC) and those utilizing information-theoretic
measures such as Mutual information (MI), and Transfer entropy (TE) (35; 36; 37; 38; 39; 40; 41).

A.5.1 GRAPH KERNELS

In light of the diversity of connectivity inference methods discussed previously, each method can
generate distinct graph representations from identical datasets. To extract meaningful insights from
these varied representations, it is essential to employ a comparison methodology. However, graph
comparison is computationally challenging. Ideally, one would verify if two graphs are exactly
identical, a problem known as graph isomorphism, which is NP-complete (42). This complexity
renders the task computationally prohibitive for large graphs.

To circumvent these difficulties, kernel methods offer a viable alternative. Kernels are functions
designed to measure the similarity between pairs, enabling the transformation of objects into a
high-dimensional space conducive to linear analysis methods. Graph kernels, specifically, facilitate
the comparison of graphs by evaluating their structure, topology, and other attributes, thus proving
instrumental in machine learning applications for graph data, such as clustering and classification
(43; 44; 45).

Graph kernels vary in their approach to measuring similarity. Some rely on neighborhood aggregation,
which consolidates information from adjacent nodes to form local feature vectors (46; 47; 48), while
others utilize assignment and matching techniques to establish correspondences between nodes in
different graphs (49). Additionally, some kernels identify and compare subgraph patterns (50), and
others analyze walks and paths to capture structural nuances (51).

Here we concentrate on neighborhood aggregation methods, particularly pertinent for analyzing
connectivity graphs derived from neuronal recordings, typically involving fewer than 1000 nodes
without definitive node labels. These methods are also foundational for the graph neural network
models. We exemplify this approach with the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm
(46), illustrating its application and effectiveness.

Weisfeiler-Lehman Algorithm The Weisfeiler-Lehman (WL) graph kernel is a sophisticated approach
for computing graph similarities, which leverages an iterative relabeling scheme based on the
Weisfeiler-Lehman isomorphism test. This method extends the basic graph kernel framework by
incorporating local neighborhood information into the graph representation, making it particularly
effective for graph classification tasks.

Consider a graph G = (V,E, ℓ), where V is the set of vertices, E is the set of edges, and ℓ : V → Σ
is a labeling function that maps each vertex to a label from a finite alphabet Σ. Initially, each vertex
is assigned a label based on its original label or degree.

Define ℓ0 = ℓ. At each iteration i, a new labeling ℓi is computed as follows:
ℓi+1(v) = HASH

(
ℓi(v), {{ℓi(u) | u ∈ N(v)}}

)
where N(v) denotes the set of neighbors of vertex v and {{·}} denotes a multiset, ensuring that the
labels of neighboring vertices are considered without regard to their order. The function HASH maps
the concatenated labels to a new, unique label. The algorithm continues iteratively, relabeling vertices
until the labels converge or no new labels are produced (Fig. S5).
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Iteration = 0
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Figure S5: Illustration of the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm. This diagram
demonstrates how the 1-WL algorithm initially encounters overlapping node labels and, through one
iteration, assigns unique labels to each node based on their positions within the graph.

After each iteration i, compute a feature vector ϕi(G) as the histogram of the labels across all vertices:

ϕi(G) =
(
#{v ∈ V | ℓi(v) = k}

)
k∈K

where K is the set of all possible labels at iteration i.

The WL kernel between two graphs G and G′ is defined as the sum of base kernel evaluations on the
corresponding histograms at each iteration:

K(G,G′) =

h∑
i=0

Kbase
(
ϕi(G), ϕi(G′)

)
where Kbase is typically chosen to be the linear kernel Kbase(ϕ, ϕ

′) = ϕ · ϕ′, and h is a predefined
number of iterations, determining the depth of neighborhood aggregation.

In this study, we analyzed 437 recording sessions, comprising 262 Gameplay and 175 Rest sessions,
to construct functional connectivity graphs. These graphs were derived using four distinct network
inference algorithms: Zero-lag Pearson Correlations (PC), Cross-Correlation (CC), Mutual Informa-
tion (MI), and Transfer Entropy (TE). For the PC analysis, connectivity matrices were thresholded at
varying levels t ∈ {0, 20, 40, 60, 80}%, retaining only the strongest connections as determined by
their absolute correlation values. For both CC and TE, we explored delay values d ∈ {1, 2, 3, 4}.
Each method produced 437 distinct networks.

Subsequently, a Weisfeiler-Lehman (WL) graph kernel with depth h = 4 was utilized to compute
the kernel matrix K, which was then employed in a Support Vector Machine (SVM) classifier to
distinguish between Gameplay and Rest sessions. Classification effectiveness was evaluated through
a 5-fold cross-validation on the DishBrain dataset, achieving the results summarized in Table S1.
Notably, classification performance for CC and TE improved with increasing delay values, reflecting
enhanced discriminative power of the graph kernels with longer embedding lengths. However,
this increase in delay also introduced greater computational complexity, presenting challenges in
scalability and traceability.

A.6 MARCHENKO-PASTUR DISTRIBUTION AND SHUFFLING PROCEDURE

In random matrix theory, the Marchenko-Pastur (MP) distribution describes the asymptotic behavior
of the eigenvalues of large-dimensional sample covariance matrices. Consider a random matrix
A ∈ Rp×n, where p represents the number of variables (e.g., neurons or channels) and n represents
the number of observations (e.g., time points). The sample covariance matrix is defined as:

C =
1

n
ATA

As both p and n grow large, while the ratio η = p
n remains constant, the empirical distribution of the

eigenvalues of C converges to the Marchenko-Pastur distribution (28):

7
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Table S1: Network inference method performance on DishBrain dataset
Network inference method Avg. accuracy Std. dev.

PC (t = 0%) 0.672 0.062
PC (t = 20%) 0.735 0.073
PC (t = 40%) 0.831 0.034
PC (t = 60%) 0.552 0.019
PC (t = 80%) 0.464 0.047
CC (d=1) 0.432 0.126
CC (d=2) 0.546 0.082
CC (d=3) 0.698 0.092
CC (d=4) 0.763 0.103
MI 0.722 0.057
TE (d=1) 0.657 0.073
TE (d=2) 0.688 0.112
TE (d=3) 0.731 0.028
TE (d=4) 0.794 0.063

ρ(λ) =

√
(λ+ − λ)(λ− λ−)

2πσ2λη

for λ ∈ [λ−, λ+], where σ is the variance of the entries of matrix A and:

λ± = σ2 (1±√
η)

2

In the case where η > 1, which holds for our data (p is large relative to n), the MP distribution
suggests that most of the eigenvalues will be close to zero. As a result, the sample covariance matrix
is likely to be ill-conditioned, and hence unreliable for further analysis.

A.6.1 SHUFFLING PROCEDURE FOR CORRELATION ANALYSIS

To account for potential spurious correlations due to ill-conditioning of the sample covariance matrix,
we perform a shuffling control procedure:

1. Shuffle Time Points: The time points of each channel are independently shuffled while
maintaining the channel identity. This process destroys any temporal correlation, ensuring
that the correlation between channels is not influenced by the original time structure.

2. Multiple Iterations: The shuffling procedure is repeated multiple times (e.g., we chose
1000 iterations) to build a null distribution of correlations for each pair of channels.

3. Confidence Intervals: Based on the null distribution obtained from the shuffled data, we
compute confidence intervals for each pair of channels. Correlation values from the original
data that lie outside of the 95% confidence interval are considered statistically significant.

This approach provides a robust method for identifying significant correlations in the presence of
potential ill-conditioning of the sample covariance matrix.

A.7 UNSUPERVISED SEQUENTIAL VFE (SVFE) LOSS

In a Variational Graph Auto Encoder (VGAE), an encoder network is responsible for learning the
latent embeddings {Zt}Tt=0, which capture the representation of nodes in a reduced-dimensional
space. The probablity of an edge between nodes i and j in the reconstructed graph is determined
by the inner product of their respective latent embeddings, Zt,i and Zt,j . This process is usually
accompanied by a sigmoid activation function to constrain the output values between 0 and 1:

ât,ij = σ(Zt,i · ZT
t,j). (S1)

8
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In this context, σ represents the sigmoid function, Zt,i refers to the ith row of the matrix Zt, and ât,ij
corresponds to the (i, j)th element of the matrix Ât, indicating the predicted probability of an edge
between nodes i and j at time t.

Considering that ât,ij indicates the probability of an edge, the likelihood of the observed adjacency
matrix At based on the embeddings can be independently modeled for each edge using a Bernoulli
distribution:

pθ(At|Z≤t,X<t,A<t) =

N∏
i,j=1

â
at,ij

t,ij (1− ât,ij)
1−at,ij . (S2)

In this case, at,ij represents the actual entry in the adjacency matrix At, signifying the presence,
absence, or weight (for weighted graphs) of an edge between nodes i and j.

The log-likelihood of the adjacency matrix, log pθ(At|Z≤t,X<t,A<t), can be expressed as the
negative binary cross entropy (BCE):

LBCE(θ, ϕ) =

N∑
i,j=1

[
at,ij log ât,ij + (1− at,ij) log(1− ât,ij)

]
. (S3)

We approximate the first expectation term in the sequential VFE (sVFE) using Monte Carlo integration
as follows:

Eqϕ(zt|x≤t) [log pθ(At|Z≤t,X<t,A<t)] =
1

M

M∑
k=1

LBCE(Zk
t ). (S4)

Here, k represents the particle index, and M refers to the number of particles, which may be set to 1
when the mini-batch size is sufficiently large (52).

Latent particles Zk
t are sampled from qϕ(Zt|X≤t,A≤t,Z<t) as described by Eq. (7b), utilizing the

reparameterization trick Zk
t = µenc

t + σenc
t ⊙ ϵkt , where ϵkt is drawn from N (0, I) and ⊙ represents

the Hadamard (element-wise) product. Recurrent state particles Hk
t are derived using Eq. (9), based

on Zk
t−1 and the previous time-step’s state Hk

t−1.

Additionally, an analytical solution for the Kullback-Leibler divergence DKL in the sequential VFE
Eq. (4) can be derived in closed form as:

DKL(θ, ϕ) =
1

2

N,D∑
i,j=1

[
σenc2
t,ij

σprior2
t,ij

− log
σenc2
t,ij

σprior2
t,ij

+
(µenc

t,ij − µprior
t,ij )

2

σprior2
t,ij

− 1

]
(S5)

This KLD loss is deterministic, thereby eliminating the need for Monte Carlo approximation. It
quantifies the statistical distance between the conditional prior as specified in Eq. (7a) and the
approximate posterior in Eq. (7b). Optimizing this measure strengthens the causality within the
latent space, as the prior Eq. (8a) focuses on the influence of preceding graphs and embeddings
{X < t,A < t,Z < t}.

By integrating Eq. (S4) and Eq. (S5) into Eq. (4), we formulate an unsupervised sVFE loss that
forms the foundation of the proposed TAVRNN framework:

9
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LTAVRNN(θ, ϕ) = LBCE(θ, ϕ) +DKL(θ, ϕ)

=
1

M

T∑
t=0

M∑
k=1

N∑
i,j=1

[
at,ij log σ

(
Zk

t × ZkT

t

)
+ (1− at,ij) log

(
1− σ

(
Zk

t × ZkT

t

))]
︸ ︷︷ ︸

LBCE(θ,ϕ)

+
1

2

T∑
t=0

N∑
i,j=1

[
(σenc

t,ij + ϵ)2

(σprior
t,ij + ϵ)2

− log
(σenc

t,ij + ϵ)2

(σprior
t,ij + ϵ)2

+
(µenc

t,ij − µprior
t,ij )

2

(σprior
t,ij + ϵ)2

− 1

]
︸ ︷︷ ︸

DKL(θ,ϕ)

.

(S6)

A.8 TEMPORAL ATTENTION MECHANISM

The goal of this section is to present the mathematical details of the temporal attention mechanism
for computing Ht for Ĥt and Ht−1, Ht−2, . . . Ht−w. Let the dh dimensional row vector si present
the global state of the graph at time step i. 1 Also let S be a (w + 1)× (w + 1) matrix that its i-th
row is equal to st−w−1+i. We compute the query vector q and the key matrix K as follows:

q = st ×Wq + bq (S7)

K = S×Wk + bk (S8)
Here, the dh × dk matrices Wq and Wk, and also the dk dimensional row vectors bq and bk are
learnable parameters of our model. Then, the attention vector α, which is a w + 1 dimensional row
vector, will be defined as:

α = softmax
(
q ×KT

√
dk

)
. (S9)

Let us define the value matrices as follows:

Vi = Ht−w−1+i ×Wv + bv ∀1 ≤ i ≤ w , (S10)

and
Vw+1 = Ĥt ×Wv + bv , (S11)

where the dh×dh matrix Wv and the dh dimensional row vector bv are the other learnable parameters
of our model.

Finally, the state matrix Ht will be computed as follows:

Ht =

w∑
i=1

αi ×Vi . (S12)

A.9 TAVRNN MODEL TRAINING HYPERPARAMETERS

All the experiments were run on a 2.3 GHz Quad-Core Intel Core i5. PyTorch 1.8.1 was used to build
neural network blocks.

We configured our TAVRNN model by employing graph-structured GRU-Attention with a single
recurrent hidden layer consisting of 32 units. The window size w in the attention mechanism is set to
the maximum possible for every time step, allowing the model to attend to all previous time steps,
including the very first one. The functions φx

θ and φz
θ in Eqs. (8b) and (9) are implemented using

a 32-dimensional fully-connected layer. For the function φprior
θ in Eq. (8a), we use two 32 and 8

dimensional fully-connected layers. To model µenc
t and Σenc

t we employ a 2-layer GCN with 32 and
8 layers, respectively. Our model is initialized using Glorot initialization (53). The learning rate for
training is set to 0.01. Training is performed over 1000 epochs using the Adam SGD optimizer (54).

The implementation of our proposed model is available at the following Github Repository.
1For i < t, si is equal to that row of Hi which corresponds to the hypothetical node that is connected to all

other nodes. Also, st is equal to the corresponding row of Ĥt.

10
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A.10 TIME COMPLEXITY ANALYSIS

In this section, we will compute the time complexity for each method. This analysis provides insights
into the computational cost and efficiency of different methods for representation learning of temporal
graph data. More specifically, we compute the time complexity of a forward pass on the entire set of
the graph nodes in one snapshot for each method.

A.10.1 GRAPHERT:

GraphERT is a Transformer-based model for temporal graphs. It uses multiple random walks with
different transition parameters p and q to capture the neighborhood structure around each node at
specific time steps. These random walks are fed into a Transformer, which learns node-to-node
interactions and their temporal relevance using multi-head attention.

Random Walks Generation:

For each graph snapshot, the algorithm generates γ × n× |p| × |q| random walks, where:

• γ is the number of random walks starting from each node for each pair of values assigned to
p and q.

• n is the number of nodes in the graph.
• |p| and |q| are the number of different values for the hyperparameters p and q.

The time complexity for generating the random walks is:

O(γ × n× |p| × |q| × L)

where L is the length of each random walk.

Transformer Processing:

Each random walk is processed by the Transformer. The time complexity of the Transformer is
dominated by the self-attention mechanism, which scales quadratically with the sequence length and
linearly with the number of attention heads.

For each random walk, the time complexity is:

O(L2 × hmax ×H × k)

where:

• L is the random walk length.
• hmax is the maximum dimensionality of the representation vectors used in different trans-

former layers. In the original implementation of GraphERT we have hmax = d, but in
general it can take any value larger than or equal to d.

• H is the number of attention heads.
• k is the number of layers in the Transformer.

Total Time Complexity:

The total number of random walks is γ × n× |p| × |q|. Combining the time complexity for random
walk generation and Transformer processing, the total time complexity for processing a single graph
snapshot is:

O
(
n · γ · |p| · |q| · (L+ L2 · hmax ·H · k)

)
∈ O

(
n · γ · |p| · |q| · (L2 · hmax ·H · k)

)
We can assume that γ, |p|, q, H and k are constant values, because they can be fixed values,
independent of the graph size (n) and the intended dimensionality of the final representations (d).

11
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Therefore, we can simplify the total complexity as follows:

O
(
(γ · |p| · |q| ·H · k) · n · L2 · hmax

)
∈ O

(
n · L2 · hmax

)
However, it is worth noting that the constant value of this running time is large enough to make
practical issues in real experiments. That is why GraphERT shows the most time complexity in Figure
3. Look at Table S2 for more details about the used values for the hyperparameters of this method.

Method Hyperparameter Description / Value

GraphERT

p (Return parameter) Bias for random walks to return to previous node
∈ [0.25, 0.5, 1, 2, 4]

q (In-out parameter) Bias for random walks to explore outward ∈
[0.25, 0.5, 1, 2, 4]

Random Walk Length (L) Length of each random walk (32)
Number of Random Walks (γ) Number of random walks per node (10)
Embedding Dimension (d) Size of node embeddings (8)
Attention Heads (H) Number of attention heads (4)
Transformer Layers (k) Number of Transformer layers (6)
Learning Rate Learning rate for the Adam optimizer (1e-4)

Table S2: Hyperparameters for GraphERT

A.10.2 VGAE:

To compute the time complexity of a Variational Graph Autoencoder (VGAE) with n nodes, e edges,
k Graph Convolutional Network (GCN) layers, and hidden dimensions h1, h2, . . . , hk, where the
final latent representation dimension is d, we need to analyze the time complexity at each layer of the
GCN. This will account for both node-wise and edge-wise operations.

Step 1: GCN Layer Operations

A GCN layer applies a linear transformation followed by neighborhood aggregation. The complexity
of a single GCN layer is typically determined by:

• Node-wise operations: These involve multiplying the node features by a weight matrix.
This has a time complexity of O(n · hin · hout), where hin is the input dimension of the layer
and hout is the output dimension.

• Edge-wise operations: These involve aggregating the features of neighboring nodes through
a message-passing operation over edges. This has a time complexity of O(e · hout).

Step 2: Time Complexity of Each GCN Layer

For the i-th GCN layer:

• Let the input feature dimension be hi−1 and the output feature dimension be hi.

• Node-wise multiplication has complexity O(n · hi−1 · hi).

• Edge-wise aggregation has complexity O(e · hi).

Thus, the total time complexity of the i-th layer is:

O(n · hi−1 · hi + e · hi)

Step 3: Summing Over All GCN Layers

We have k GCN layers with dimensions h0, h1, . . . , hk, where h0 = n is the input feature dimension
and hk = d is the output dimension. Therefore, the total time complexity for all layers is:

12
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TGCN =

k∑
i=1

(O(n · hi−1 · hi + e · hi))

Step 4: VGAE Encoder and Decoder

• Encoder: The encoder, which maps node features to a latent representation space (mean
and variance for the latent variables), has the same complexity as the GCN layers, so its
complexity is TGCN.

• Decoder: In VGAE, the decoder typically involves reconstructing the adjacency matrix
from the latent space. The reconstruction (e.g., using a dot product between latent vectors)
has a time complexity of O(n2 · d), as it involves calculating pairwise similarities between
all node pairs.

Step 5: Total Time Complexity of VGAE

Summing up the time complexity of the GCN-based encoder and the decoder, we get the overall time
complexity:

TVGAE = TGCN +O(n2 · d)

This expands to:

TVGAE =

k∑
i=1

(O(n · hi−1 · hi + e · hi)) +O(n2 · d)

Conclusion

Let us denote
k

max
i=1

hi by hmax. We know that n = h0 ≥ h1 ≥ . . . ≥ hk = d. So, hmax = h1 and the

time complexity of the VGAE is:

TVGAE = O

(
k∑

i=1

(n · hi−1 · hi + e · hi) + n2 · d

)
∈ O

(
n2 · hmax

)
s.t. h0 = n, hk = d

This reflects the complexities of both the encoder (GCN layers) and the decoder (adjacency matrix
reconstruction). The most significant term depends on the number of nodes, and the dimensions of
the latent space. Hyperparameters of the VGAE model and the values assigned to them in the original
paper are listed in Table S2.

Method Hyperparameter Description / Value

VGAE

Latent Dimension (d) Size of the latent space (dimension of node
embeddings) (8)

Graph Convolutional Layers (GCN) Number of convolution layers to capture graph
structure (2 layers)

Learning Rate Learning rate for the Adam optimizer (1e-2)
Hidden Dimension (h) Number of hidden units in the encoder GCN

layers (32)

Table S3: Hyperparameters for Variational Graph Autoencoder (VGAE)

13
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A.10.3 DYNGEM:

DynGEM uses a Multi-Layer Perceptron (MLP) autoencoder to generate low-dimensional embed-
dings for dynamic graphs at each snapshot. At time step t = 1, the model is trained on the first
snapshot of the graph using a randomly initialized deep autoencoder. For subsequent time steps,
embeddings and network parameters are initialized from the previous time step.

Given n nodes, k hidden layers with sizes h1, h2, . . . , hk, and the latent representation dimension d,
the time complexity of processing the input graph for each snapshot is:

O(n · (n · h1 + h1 · h2 + · · ·+ hk−1 · hk + hk · d))

Conclusion

Let us denote
k+1
max
i=1

hi by hmax. We know that n = h0 ≥ h1 ≥ . . . ≥ hk+1 = d. So, hmax = h1 and

the time complexity of the DynGEM is:

TDynGem = O

(
k+1∑
i=1

(n · hi−1 · hi)

)
∈ O

(
n2 · hmax

)
s.t. h0 = n, hk+1 = d

Hyperparameters of this method and the assigned values to them can be found in Table S4.

Method Hyperparameter Description / Value

DynGEM

Latent Dimension (d) Size of the latent space (dimension of
node embeddings) (8)

Number of layers in the encoder/decoder Autoencoder has 3 layers
Layer Sizes (h1, h2) Size of each layer in the autoencoder

(500,300)
L1 regularization coefficient (ν1) Encourages sparsity in the model’s

weights (1e− 6)
L2 regularization coefficient (ν2) Encouraging weight values to remain

small (1e− 6)
Learning Rate Learning rate (1e− 4)
Reconstruction Loss Weight (β) Weight for adjacency matrix recon-

struction (5)

Table S4: Hyperparameters for DynGEM

A.10.4 DYNAE:

DynAE extends a static MLP autoencoder to handle temporal graphs. It uses l look-back adjacency
matrices from past snapshots and feeds them into a deep autoencoder to reconstruct the current graph
based on previous graphs.

Given an input size of n · l (where n is the number of nodes and l is the number of leook-back
snapshots), and k layers in the autoencoder, with the latent representation dimension d, the time
complexity for the encoder is:

O(n · (n · l · h1 + h1 · h2 + · · ·+ hk · d)

Conclusion

Let us denote
k+1
max
i=1

hi by hmax. We know that n.l = h0 ≥ h1 ≥ . . . ≥ hk+1 = d. So, hmax = h1. In

addition, l can be considered as a constant number, and the time complexity of the DynAE is:
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TDynAE = O

(
k+1∑
i=1

(n · hi−1 · hi)

)
∈ O

(
n2 · hmax

)
s.t. h0 = n · l, hk+1 = d

Hyperparameters of this method and the assigned values to them can be found in Table S5.

Method Hyperparameter Description / Value

DynAE

Look-back (l) Number of previous snapshots used (2)
Latent Dimension (d) Size of the latent space (dimension of

node embeddings) (8)
Number of layers in the encoder/decoder Autoencoder has 3 layers
Layer Sizes (h1, h2) Size of each autoencoder layer (500,300)
L1 regularization coefficient (ν1) Encourages sparsity in the model’s

weights (1e− 6)
L2 regularization coefficient (ν2) Encouraging weight values to remain

small (1e− 6)
Learning Rate Learning rate (1e− 4)
Reconstruction Loss Weight (β) Weight for adjacency matrix reconstruc-

tion (5)

Table S5: Hyperparameters for DynAE

A.10.5 DYNRNN:

DynRNN is similar to DynAE, but it uses Recurrent Neural Networks (RNNs), specifically Long
Short-Term Memory (LSTM) networks, to capture temporal dependencies across snapshots. Each
node’s neighborhood at each snapshot is passed into the LSTM.

The time complexity for LSTM step i on one node is:

O(hi−1LSTM
· hiLSTM

+ h2
iLSTM

)

Given n nodes, kLSTM LSTM layers with sizes h1LSTM
, h2LSTM

, . . . , hkLSTM
and l snapshots, the

total time complexity for one snapshot is:

O
(
n·(n·l·h1LSTM

+h1LSTM
·h2LSTM

+· · ·+hk−1LSTM
·hkLSTM

+hkLSTM
·d+h2

1LSTM
+· · ·+h2

kLSTM
+d2)

)
Conclusion

Let us denote
k+1
max
i=1

hiLSTM
by hmax. We know that n · l = h0LSTM

≥ h1LSTM
≥ . . . ≥ hk+1LSTM

=

d. So, hmax = h1LSTM
. Is addition, l can be considered as a constant number, the time complexity of

the DynRNN is:

TDynRNN = O

(
k+1∑
i=1

(n · (hi−1LSTM
· hiLSTM

+ h2
iLSTM

))

)
∈ O

(
n2 · hmax

)
s.t. h0LSTM

= n · l, hk+1LSTM
= d

Hyperparameters of this method and the assigned values to them can be found in Table S6.
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Method Hyperparameter Description / Value

DynRNN

Look-back (l) Number of previous snapshots used (2)
Latent Dimension (d) Size of the latent space (dimension of node

embeddings) (8)
Number of RNN Layers Number of stacked LSTM layers (3)
Hidden State Size Number of hidden units in LSTM (500,300)
L1 regularization coefficient (ν1) Encourages sparsity in the model’s weights

(1e− 6)
L2 regularization coefficient (ν2) Encouraging weight values to remain small

(1e− 6)
Learning Rate Learning rate (1e− 4)
Reconstruction Loss Weight (β) Weight for adjacency matrix reconstruction (5)

Table S6: Hyperparameters for DynRNN

A.10.6 DYNAERNN:

DynAERNN combines the autoencoder from DynAE with the LSTM-based RNN from DynRNN.
The encoder compresses the neighborhood vectors of l snapshots into a low-dimensional space, which
the LSTM processes across time to capture temporal dependencies.

The total time complexity for DynAERNN is the sum of the autoencoder and LSTM complexities:

O(n · (n · l · h1 + h1 · h2 + · · ·+ hk−1 · hk)+

O
(
n·(hk·h1LSTM

+h1LSTM
·h2LSTM

+· · ·+hk−1LSTM
·hkLSTM

+hkLSTM
·d+h2

1LSTM
+· · ·+h2

kLSTM
+d2)

)
Conclusion

Let us denote max(
k

max
i=1

hi,
k+1
max
i=1

hiLSTM
) by hmax. We know that n · l = h0 ≥ h1 ≥ . . . ≥ hk =

h0LSTM
≥ h1LSTM

≥ . . . ≥ hk+1LSTM
= d. So, hmax = h1. In addition, l can be considered as a

constant number time complexity of the DynRNN is:

TDynAERNN = O

(
k∑

i=1

(n · hi−1 · hi) +

k+1∑
i=1

(n · (hi−1LSTM
· hiLSTM

+ h2
iLSTM

))

)
∈ O

(
n2 · h

)
s.t. h0 = n · l, h0LSTM

= hk, hk+1LSTM
= d

Hyperparameters of this method and the assigned values to them can be found in Table S7.

A.10.7 TAVRNN:

The time complexity of the TAVRNN framework is driven by several components, including GNN
layers, GRU operations, and an attention mechanism. Below, we break down the total complexity
into the time complexity of each component.

1. GNN and GRU Layers:

At each time step t, the model processes the graph using a combination of GNN layers and a
GRU-based RNN. The time complexity for these operations can be broken down as follows:

• Low-dimensional Embedding: first of all, each n-dimensional neighborhood vector is
mapped to a hGRU -dimensional embedding using a one layer feed forward network. The
time complexity of this part will be:

O(n2 · hGPU )
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Method Hyperparameter Description / Value

DynAERNN

Look-back (l) Number of previous snapshots used (2)
Latent Dimension (d) Size of the latent space (dimension of node

embeddings) (8)
Autoencoder Layer Sizes Size of each autoencoder layer (500,300)
Number of RNN Layers Number of stacked LSTM layers (3)
LSTM Hidden State Size Number of hidden units in LSTM (500,300)
L1 regularization coefficient (ν1) Encourages sparsity in the model’s weights

(1e− 6)
L2 regularization coefficient (ν2) Encouraging weight values to remain small

(1e− 6)
Learning Rate Learning rate (1e− 4)
Reconstruction Loss Weight (β) Weight for adjacency matrix reconstruction

(5)

Table S7: Hyperparameters for DynAERNN

• Graph Convolution (GNN): Similar to the VGAE mentioned above , the time complexity
of the GNN layer is:

TGNN =

k∑
i=1

(O(n · hi−1 · hi + e · hi))

• GRU Operation: Since the inner functions of our GPU cell is implemented by GCN layers,
the dominant term in the time complexity of the GPU cell in each time step is equal to:

O(n · h2
GRU + e · hGRU )

2. Temporal Attention Mechanism:

The attention mechanism aggregates past hidden states over a window of size w. The attention of the
model into the last w snapshots is computed in:

O(w · h)

where w is the attention window size and h is the hidden dimension. The time complexity of
computing the weighted average vectors for all the n node according to these computed attentions is:

O(n · w · h)

3. Reconstruction: Similar to VGAE, the reconstruction process in TAVRNN is through computing
the inner product of the final representation of each pair of the nodes, and its time complexity is:

O(n2 · d)

4. Overall Time Complexity for Each Time Step:

The overall time complexity at each time step is a combination of the initial projection to a low-
dimensional space using a feedforward layer, GNN and GRU computations, attention mechanism,
and reconstruction:

O(n ·(h1+h1 ·h2+ · · ·+hk ·d)+e ·(h1+ · · ·+hk)+n ·h2
GRU +e ·hGRU +(n+1) ·w ·h+n2 ·d)

Conclusion

Let us denote max(
k+1
max
i=1

hi, hGRU, h) by hmax. We know that n · l = h0 ≥ h1 ≥ . . . ≥ hk + 1 = d.

So, hmax = h1. We can infer that the time complexity of TAVRNN is:
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TTAVRNN = O
(∑k+1

i=1 (n · hi−1 · hi + e · hi) + n · h2
GRU + e · hGRU + n · w · h+ n2 · d

)
∈ O

(
n2 · hmax + n · w · h

)
s.t. h0 = 1, hk+1 = d

The summary of the time complexities for different methods is shown in Table S8.

Table S8: One forward pass time complexity for one time window (i.e. snapshot).
Method Complexity
VGAE O

(∑k
i=1(n · hi−1 · hi + e · hi) + n2 · d

)
∈ O

(
n2 · hmax

)
DynGEM O

(∑k+1
i=1 (n · hi−1 · hi)

)
∈ O

(
n2 · hmax

)
DynAE O

(∑k+1
i=1 (n · hi−1 · hi)

)
∈ O

(
n2 · hmax

)
DynRNN O

(∑k+1
i=1 (n · (hi−1LSTM · hiLSTM + h2

iLSTM
))
)

∈ O
(
n2 · hmax

)
DynAERNN O

(∑k
i=1(n · hi−1 · hi) +

∑k+1
i=1 (n · (hi−1LSTM · hiLSTM + h2

iLSTM
))
)

∈ O
(
n2 · hmax

)
GraphERT O

(
(γ · |p| · |q| · H · k) · n · L2 · hmax

)
∈ O

(
n · L2 · hmax

)
TAVRNN O

(∑k+1
i=1 (n · hi−1 · hi + e · hi) + n · h2

GRU + e · hGRU + n · w · h + n2 · d
)

∈ O
(
n2 · hmax + n · w · hmax

)
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