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ABSTRACT

Multi-step off-policy reinforcement learning is essential for reliable policy evalua-
tion, particularly in long-horizon settings, yet extending beyond one-step temporal-
difference learning remains difficult due to distribution mismatch between behavior
and target policies. This mismatch is further exacerbated at longer horizons, leading
to compounding bias and variance. Existing approaches fall into two categories:
conservative methods (e.g., Retrace), which guarantee convergence but often suf-
fer from high variance, and non-conservative methods (e.g., Peng’s Q(\) and
integrated algorithms like Rainbow), which often achieve strong empirical per-
formance but do not guarantee convergence under all exploration schemes. We
identify horizon selection as the central obstacle and relate it to the mixing time
of policy-induced Markov chains. Because mixing time is difficult to estimate
online, we derive a practical upper bound via a coupling-based analysis to guide
adaptive truncation. Building on this insight, we propose T4' (Time To Truncate
Trajectory), a stochastic and adaptive truncation mechanism within the Retrace
framework. We prove that T4 is non-conservative yet converges under arbitrary
behavior policies, and is robust to cap length tuning. T4 improves policy evaluation
and control performance over strong baselines on standard RL benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) fundamentally relies on policy evaluation—the competence to accu-
rately estimate the long-term impact of a policy on future rewards. Accurate policy evaluation is
crucial for consistent learning progress and effective decision-making, particularly in long-horizon
environments. Multi-step temporal-difference (TD) learning (Mahmood et al., 2017; Asis & Sutton,
2018; Harutyunyan, 2018; Sutton et al., 1998; Precup et al., 2001) leverages long-horizon trajectory
information by constructing truncated n-step returns, in which the tail is bootstrapped from )-values
at the truncation horizon. However, in off-policy RL, the training data are collected by behavior
policies whose distributions differ from the evolving target policy. This distribution mismatch inflates
the estimation error of the target policy’s action-value function, ™, as the truncation horizon n
grows, leading to compounding bias and variance. This raises a central question:

Can multi-step off-policy RL achieve reliable and convergent policy evaluation while effectively
mitigating distribution mismatch?

Prior methods have attempted to address this distribution-mismatch challenge by applying per-step
importance weighting to update the Q-function toward its Bellman fixed point (Precup et al., 2001;
Geist et al., 2014; Farajtabar et al., 2018). Kozuno et al. (2021) classify multi-step off-policy
evaluation methods into conservative and non-conservative categories. Conservative methods ensure
convergence under arbitrary behavior policies by modifying the policy evaluation operators, but often
incur high variance and instability due to correction ratios that can be excessively large or vanishingly
small Rowland et al. (2020). Non-conservative methods relax per-step corrections and often lack
general convergence guarantees or rely on restrictive assumptions on the behavior policy.

'Code available at https://anonymous. 4open.science/r/t4-BD20
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Estimating reliable weights from policy distributions re- hopper
mains challenging, especially as horizons grow, which oo
hinders the effective extension of one-step off-policy RL
to multi-step settings. We identify a key underlying cause:
the lack of principled trajectory truncation, which yields 3000
cumulative errors through the product of per-step correc-
tion ratios and the residual tail. Through controlled exper-
iments on MuJoco Hopper in Figure 1, we empirically
show that these cumulative errors scale rapidly with hori-
zon length, leading to unreliable policy evaluation and
degraded performance. In practice, multi-step methods
rarely use the full episode length but instead define a max-
imum cap length as an upper bound on the truncation 500
horizon, thereby introducing a hyperparameter that is of-
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This challenge can be further understood through the the- T3 — peng3  — nsteps3
oretical framework of (Duan et al., 2024), which connects —— T45  —— Peng-5  —— nstep-5
horizon selection to the mixing time of the underlying T4-10 Peng-10 nstep-10
Markov Decision Process (MDP) and to model misspec- T4-20 Peng-20 nstep-20
ification in value function approximation. However, esti-

mating an appropriate horizon online is non-trivial, since Figure 1: Effect of cap length. For

the mixing time is difficult to measure on the fly. each algorithm, the number after (—) in-
dicates the cap length.
To overcome this difficulty, we propose a stochastic and

adaptive truncation mechanism within the Retrace framework (Munos et al., 2016), which we call T4
(Time To Truncate Trajectory). We estimate an upper bound on the mixing time via a coupling-based
analysis of the Markov chains induced by the behavior and target policies (Johndrow & Mattingly,
2017a). This bound then guides our adaptive truncation strategy and enables T4 to balance the trade-
off between bias and variance. Theoretically, we prove that T4 is non-conservative yet converges
without imposing restrictions on behavior policy updates. Unlike prior multi-step methods that
require careful cap length tuning, T4 is robust to this hyperparameter and requires minimal tuning.
Despite its simplicity, we show that T4 consistently improves policy evaluation.

Contributions. Our main contributions are threefold. First, we demonstrate that naive extension of
the truncation horizon (cap length) amplifies cumulative errors in off-policy multi-step RL. Second,
we connect horizon selection to mixing time and derive an approximate upper bound via the coupling
argument to guide adaptive truncation, validating this both theoretically and empirically. Third, we
propose T4, a stochastic and adaptive truncation method built upon the Retrace framework, and
establish both its convergence guarantees and strong empirical performance.

2 PRELIMINARIES

We consider a MDP defined by the tuple (S,.A,P,Po,R,7), where S C R? is a finite state
space, A is a finite action space, P : S x A — A(S) is the transition probability mapping each
state-action pair to a distribution over next states, Py : S — [0, 1] is the initial state distribution,
R : S8 x A — [—Tmax, "max] 18 @ uniformly bounded reward function, and v € [0,1) is a discount
factor for the infinite-horizon RL setting. Given a policy m, we define the Bellman operator as
T™Q := R+~P"Q, where P™ denotes the transition operator induced by the environment dynamics
P and the policy 7. We use trajectories (s, at, 7t )i>0 ~ B, where 3(- | s) is behavior policy.

Since we focus on multi-step off-policy RL, we consider K -step off-policy evaluation using trajecto-
ries (s, ag, 7¢)1>0 generated by the behavior policy §. Specifically, we apply the (k — 1)-fold com-

position of the Bellman operator for the behavior policy 3, denoted by 77 (k=1 gSxA RS*A,
fork =1,..., K. We define uncorrected K -step return operator at iteration n as

K—1)

Qui1 =1t +yree1 + -+ Y e HYEPTQ, = 78 T Qn. (D)

from a behavior policy 8
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General Retrace. One of the main challenges in multi-step off-policy RL is that policy evaluation
can suffer from fixed-point bias (Munos et al., 2016) caused by the discrepancy between the target
and behavior policies (Rowland et al., 2020). To correct this discrepancy, Munos et al. (Munos et al.,
2016) proposed the general Retrace formulation, which addresses the fixed-point bias in off-policy
evaluation by introducing a sequence of correction coefficients, referred to as traces. We formally
define the general Retrace operator R, which corrects the distributional discrepancy arising in
off-policy evaluation:

o0 t
RQTL = Qn + Eﬂ Z(’)/)\)t (H C(Si, a‘i)) (rt + VEﬂ'n [Qn(8t+17 )] - QTL(SYH a’t)) ) (2)
t=0 i=1

where the sequence {c(s;, a;)} is referred to as the rrace, with the convention that H?Zl c(siya;) =1
for t = 0. Here, 7,, denotes the target policy at the n-th iteration, and the formulation also incorporates
a A-extension (Bertsekas & loffe, 1996), which smoothly interpolates between K -step returns and
the full Monte Carlo return. Multi-step off-policy RL algorithms can be expressed within the general
Retrace by specifying the trace. Depending on the choice of c¢;, these algorithms can be categorized
into conservative and non-conservative methods. An algorithm is referred to as conservative if it

satisfies 0 < ¢; < % for all ¢. Conservative methods prevent overestimation through the trace

constraint, thus their convergence are not affected by the update rule of the behavior policy f,,.

Mixing time and Truncation Length. While the standard retrace does not truncate the trajectories,
in practice, the choice of a truncation length plays a critical role in learning performance (Hessel et al.,
2018; Kozuno et al., 2021). In particular, longer truncation lengths can amplify the distributional
discrepancy between the behavior and target policies, thereby degrading the accuracy of off-policy
evaluation. We begin by defining the stationary distribution and mixing time. The key to our analysis
is to connect truncation lengths with the mixing time of the MDP under P”.

The stationary distribution p4 of the transition dynamics P? is defined as the unique distribution

to which the ¢-step state visitation distribution converges, i.e., ps®) (s1,82) = up(s2) ast — oo
for all s1,s2 € S. To analyze convergence to the stationary distribution, we introduce the notion of
coupling. Given two distributions v and v, over S, a probability distribution w over S x § is called
a coupling of v and v, if its marginals satisfy v1(z) = 3, csw(@,y) and v2(y) = 3, csw(z,y).

The mixing time Tmix of PP is defined as the smallest time ¢ at which the total variation distance
between the ¢-step transition distribution and the stationary distribution becomes smaller than a
threshold € > 0:

- i . B0 oy _ H <
Timix : Teagcmln {t : HP (s,") — pg v e}. 3)

Recent work by Duan et al. (Duan et al., 2024) established theoretical conditions for selecting
the truncation length in infinite-horizon ~y-discounted MDPs to improve the sample complexity of
policy evaluation. Specifically, they derived a lower bound on the truncation length K to control the
estimation error of the approximate @)-function. For uniformly bounded rewards, this lower bound is
given by
K = min (1
1

’ Q(Tmix)> I (4)

where 1/(1 — ) is referred to as the effective horizon determined by the discount factor +y. The lower
bound in Equation (4) provides a principled choice for K when training an approximate ()-function
and its corresponding policy. However, estimating the mixing time of the transition dynamics under
the behavior policy P remains challenging, as we lack access to the full transition probability matrix
of PP during learning iterations (Wolfer & Kontorovich, 2019).

Paper Organization. In Section 3, we introduce our main contribution, the stochastic operator T4,
and establish its convergence properties. T4 is designed not only as a stochastic extension of Retrace,
but also as a mechanism to adaptively estimate the truncation horizon during learning. Section 4
then connects trajectory truncation with mixing-time upper bounds, showing how the disagreement
probabilities encoded in T4 provide a principled way to approximate the mixing time of the behavior
policy and thus determine an appropriate truncation length without requiring direct access to the
mixing time itself.
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3 TIME TO TRUNCATE TRAJECTORY (T4) OPERATOR

Our goal is to estimate the target value function Q7 (s, a) from trajectories generated by an arbitrary
behavior policy 8. Beyond policy evaluation, we further show that T4 converges to the optimal value
function Q* (s, a) under arbitrary behavior policies. To connect trajectory truncation with the general
Retrace framework, we define a sequence of Bernoulli random variables (A;) corresponding to the
trace coefficients in Equation (2), with associated probabilities p = (p1, pa, . . .). For each step i, let
5P ~ Po(PP)t and ST ~ Po(P™)' denote the i-step state random variables generated respectively
by the behavior policy /3 and the target policy 7, starting from the same initial distribution Py. Each
A; then acts as an indicator of mismatch:

Ai=1{S] # ST}, pii=Pr(4; =1) = Pr(S] # ST) = E[4)]. ®)

By replacing the deterministic trace coefficients ¢; in Equation (2) with the Bernoulli indicators A;,
we obtain the stochastic version of the Retrace operator, which we refer to as the T4 operator:

[e%s) t
Rpa@ = Q+Eg, lz 7t<H /\Ai) (re + VE-Q(s141,) — Q(st, ar)) | - (6)

t=0 i=1

Once A; = 0 for the first time, all subsequent terms vanish. Whereas previous multi-step RL
approaches terminate the return at a fixed cap length—typically the episode length or a manually
chosen horizon—our method stochastically adapts the truncation point.

We now aim to establish a lower bound on the truncation length K in Equation (4) for off-policy RL.
Since off-policy learning involves both a behavior policy 3 and a target policy m, we upper bound the
total variation max,¢ s||P? ® (s,-) — pplTv using the discrepancy between the transition kernels P
and P™. In this setting, the mixing time is related to the total variation distance, which we analyze in
Section 4. Here, we estimate this quantity via the sampled Bernoulli variables in Equation (5), where
Pr(Sf # ST) represents the one-step discrepancy between the behavior and target policies. This
discrepancy is exactly the total variation distance between the induced state-transition distributions?.
Hence, it can be expressed as

a

pi = Pr(4;=1)=1- Z min{z Bla|s)P(s"| si,a), ZW(CL | si)P(s" | Si,a)} - (D

s'es
Before we present the theoretical relation between truncation length and mixing time in Section 4,

we first show that the T4 operator is a contraction mapping in the off-policy evaluation setting.

Theorem 1 (Contraction of Ry, »). Suppose p; < & almost surely for some € [0,1] and all i > 1.
Ify € (0,1) and X € [0, 1] further satisfy

. 1—7(1+4¢)
< —, A< 1, ————=, 8
¥ I _mln{ 3282 (8)
then for any Q-function, the operator R, » in Equation (6) has a unique fixed point Q™ and satisfies
HRP,)\Q - QTF”OOJ) < 77(’77 >‘a€) ”Q - QWHOOJN ©))
with contraction modulus
I 20
n(v,A €)= <1, (10)
L=98  1-7¢
where || - ||oo,p denotes the supremum norm weighted by p.

The proof is in Appendix D.

*This follows from the maximal coupling lemma; see Appendix A for a formal proof and further discussion.
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Remark. The assumption in Theorem 1 that p; < ¢ is mild, since p; is a Bernoulli probability and
thus always lies in [0, 1]. The bound merely introduces a uniform constant £ < 1, with the trivial
choice £ = 1 always valid. Smaller values of ¢ yield a sharper contraction modulus in Equation (10).

We note that Retrace enforces 0 < ¢; < 7(a;|s;)/B(a;|s;), ensuring that each update is a sub-convex
combination and thus strictly conservative. In contrast, T4 requires only the weaker condition
pr < & while still guaranteeing contraction. This relaxation provides greater flexibility, enabling
non-conservative updates without sacrificing convergence guarantees.

Theorem 1 shows that the T4 operator is a contraction mapping in the policy evaluation setting,
converging to the fixed point Q™. We next turn to the control setting, where the target policy is
updated online. As in Retrace, no restrictive assumptions on the behavior policies are required; under
arbitrary behavior policies, T4 converges to the optimal value function Q*.

Theorem 2 (Convergence in online control). Let a sequence of Q-functions (Q.,) be updated by the

T4 operator, i.e.,
Qn-{-l = Rp,)\Qn-

For arbitrary sequences of behavior policies ((3,,) and target policies (,,), we have Q,, — Q* in the
online control setting.

The proof is in Appendix E. Together, Theorems 1 and 2 establish that T4 achieves reliable conver-
gence both in policy evaluation and online control. We next analyze the relation between truncation
length and mixing time, which underpins the construction of the Bernoulli probabilities p;.

4 TRUNCATION LENGTH VIA MIXING-TIME UPPER BOUNDS

We now establish how the T4 operator provides a mechanism to approximate the mixing time of
the behavior policy 3 by relating trajectory truncation to discrepancies between transition kernels.
To this end, we introduce formal quantities that characterize the discrepancy between the transition
kernels of the behavior policy P” and the target policy P™.

Definition 1 (Uniform d-bounded kernel). We say that the transition kernel P* of a behavior policy
B is uniformly d-bounded if there exists d € (0,1) such that for all states s € S and any target
policy T,

H’Pﬁ(s, ) =P (s, ')HTV <d.

This condition ensures that the transitions do not change drastically across policies, enabling the
analysis of policy discrepancies. The notion of perturbed Markov chains is closely related to this
setting, where transition kernels under different policies can be viewed as small perturbations of a
given kernel. Such assumptions have been widely used in approximate Markov chain Monte Carlo
(MCMC) (Mitrophanov, 2005; Solan & Vieille, 2003; Johndrow & Mattingly, 2017b).

Assumption 1 (Cross-Doeblin Condition). There exists a constant p € (0, 1 — d) such that, for all
states s, s’ and any policies 3, , || P?(s,-) — P™(s <1-p.

!, ')HTV

The cross-Doeblin condition plays a central role in assessing the approximation quality of MCMC
algorithms (Mattingly et al., 2015; Johndrow & Mattingly, 2017a). In our context, it serves as a
regularity assumption ensuring that the transition distributions under any pair of states and policies
are sufficiently close. This allows us to model the target transition kernel P™ as a perturbation of the
behavior kernel P#, thereby facilitating the estimation of the mixing time of the behavior policy.

Lemma 1. For a given behavior policy 3 and transition kernel PP which is uniformly ergodic with
o, let jig denote the stationary distribution of PB. Then, for any policy 7 and initial state s, we have

d
1P* 75, = sl < [P7 06 =P 1k T

The proof is in Appendix F. Lemma 1 offers insight into how the convergence of P# is related to the

discrepancy between P” ® and P, By the coupling lemma (see Appendix A), the total variation
between two transition kernels is at most the probability that the coupled variables disagree; in our

PO (s, ) = PrO(s, )| <P(S} # S).

notation,
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Lemma 2. Let S ~ Py(PP)* and ST ~ Po(P™)* with the initial state distribution Py as the
random variables corresponding to the k-step state distributions. Let Ay be the Bernoulli indicator

defined in Equation (5), i.e., Ay, = 1{5’5 # SrywithPr(Ay =1) = Pr(S,fi # ST). Then,

> E[A] < d_ 1=0-p-df (E[Al] d ) (12)
k=1

S

= p+d t(p+d) Cp+d

The proof is provided in Appendix G. Lemma 2 establishes that the time-average probability of
disagreement between the two coupled processes decays over time. Equivalently, this suggests that
the processes eventually coalesce with high probability, and the relevant notion of convergence is
captured by the first meeting time between them. This motivates introducing the random variable
Tg,~, which directly quantifies the expected horizon until the two trajectories align. We now show
how this notion provides a principled way to determine the effective truncation length.

Theorem 3. Let the random variable Ty . denote the first meeting time of two processes, defined as
Thor ;:min{tzlzsfzsgf |So~7>0}. (13)

The random variable Tg . can then be used to refine the truncation length condition in Equation (4),
leading to the following formulation:

1
K = min <1—v ]E[TM]) : (14)

That is, the effective truncation length is determined by either the discount horizon 1/(1 — ~y) or the
expected meeting time E[Tg |, whichever is smaller.

Remark. By coupling arguments, the expected meeting time E[T3 | provides a lower bound on
the mixing scale, i.e., E[T ] = Q(7mix). Thus, the truncation length in Equation (14) is always at
least on the order of the intrinsic mixing time of the underlying Markov chain.

The proof and the formal connection between E[A,] and E[T} .| are in Section H. We first note
that the expectation E[T}s .| —the first meeting time between the two processes—can be estimated
by sampling the time until the first match from ¢ = 0. Let ¢’ denote the first time step such that
Sﬁ = 57, which implies A = 0. Since this is the first agreement point, we have Hf:l A; =0.
This construction leads to a natural truncation mechanism in the T4 operator: for all ¢ > ¢, the
temporal-difference (TD) error is set to zero, effectively stopping the credit assignment beyond the
first matching point. Specifically, we have

t
<H AA1> (’I"t + ’YEWQ(S,:+1, ) — Q(St, at)) =0 fort > t/ (15)
i=1

This truncation reflects the assumption that once the trajectories align, their future evolution can be
treated as equivalent, thereby eliminating the need for further correction beyond the meeting time.

4.1 PRACTICAL IMPLEMENTATION

Building on the theoretical results from Sections 3 and 4, we now present a practical instantiation of
the T4 operator that computes the truncation length. The goal is to mitigate distributional discrepancy
between the target and behavior policies and thereby reduce off-policy evaluation error.

Approximating disagreement probabilities. In theory, the Bernoulli variables A; are defined

through p; = Pr(S? # ST) in Equation (5), which requires access to the transition kernel P. Since
this is unavailable in the model-free RL, we approximate p; by measuring the overlap between the
two policies on the sampled action a;:

Pi =1 —min{B(a; | s;),7m(a; | s:)}. (16)

This proxy treats the shared support of 3 and 7 at (s;, a;) as the agreement probability, with its
complement serving as the chance of disagreement.
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Sampling the meeting time. Using these estimates, we form stochastic traces A= (12117 As, .. J)
with A; ~ Bernoulli(p;). The estimated meeting time 73 . is taken as the first index ¢ for which
flt = 0, and the truncation length is then defined as

K = min{[(1-7)"T, s }.

We also enforce K > 1 to avoid trivial truncations.

Integration with standard algorithms. The pseudocode in Algorithm 1 shows how T4 modifies a
generic actor-critic update such as SAC (Haarnoja et al., 2018) or TD3 (Fujimoto et al., 2018). The
only difference lies in lines 8-9, where each sampled history trajectory h; is explicitly truncated at
length K. The explicit stochastic truncation mechanism in T4 has two key benefits. First, it avoids
variance amplification from long products of importance weights, since trajectories are truncated
immediately after the first meeting point. Second, it reduces sensitivity to manually chosen cap

lengths: the effective horizon is adaptively determined by either the discount horizon (1 —~)~! or

the estimated meeting time T} , whichever is smaller.

5 EXPERIMENTS

We evaluate T4 under both SAC  Algorithm 1 Time to Truncate Trajectory (T4).
and TD3 backbones, and com-

pare against four baseline meth-
ods: the original one-step algo-
rithm, an uncorrected n-step vari-
ant, Retrace (Munos et al., 2016), for each step do

4
and Peng’s Q()\) (Kozuno ctal., > Observe s and t/ake a~ fo
2021). All methods use identi- & Get next state s’ ~ P(s, a) and reward r
7.
8

1: Initialize Q-function @y, target policy 74, behavior policy Sy
2: B <empty replay memory.
3: for each episode do

Store {(s,a,r,s')} in B

cal network architectures and hy- Sample history minibatch {A;}2., ~ B
ifi=1

perparameters as their one-step

baselines to ensure fair compar- 9 Truncate h; with K = min{(1 — )", T . }.
ison. Detailed update rules and 10 Update ¢ and ¢

full hyperparameter settings are 11 end for

provided in Appendix B. 12: end for

Figure 2 compares SAC-T4 with

four multi-step baselines across five MuJoCo tasks. SAC-T 4 consistently achieves strong performance
and converges faster than the baselines. SAC-Retrace which is a conservative method performs
comparably to T4 only on humanoid-v2 but lags behind elsewhere. Non-conservative methods
(Peng’s Q(A) and n-step) show mixed results and often underperform even the one-step SAC baseline.
Additional TD3-based results are reported in Figure 5 of Appendix. We also report the adaptive
truncation lengths computed by T4, shown in the lower-right panel of Figure 2. These results indicate
that fixed n-step baselines can suffer when the effective truncation horizon is shorter than the chosen
cap length n, while T4 remains stable. An ablation on the choice of truncation length in Figure 1
further confirms that T4 is robust to this hyperparameter. Extended analyses and additional results
are provided in the Appendix.

6 DISCUSSION

Truncation length should be adaptive. Our results highlight that the key difficulty in multi-step
off-policy RL lies in choosing an appropriate truncation horizon as illustrated in Figure 1. When
trajectories are sampled from a sequence of changing behavior policies, the effective horizon depends
not only on the discount factor but also on the mismatch between the behavior and target policies.
Thus, treating the truncation length K as a fixed cap length, as in conventional n-step methods, is
inherently problematic. This observation is consistent with prior empirical findings in both model-free
(Rainbow) and model-based (MBPO) papers, where adaptive horizons improved stability.

When Long Horizons Are Needed (large K). A large effective horizon arises when the behavior
policy mixes slowly or explores regions of the state space that the target policy has not yet adapted
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Figure 2: Performance with stochastic truncation. Across five MuJoCo benchmarks, our method
(T4) consistently outperforms multi-step baselines and achieves faster convergence. For baseline
comparisons, we follow the convention of (Kozuno et al., 2021) and fix the cap length to n = 5 for
all multi-step methods.
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Figure 3: Comparison with model-based RL. Unlike one-step SAC, T4 converges quickly toward
the strong model-based baseline MBPO.

to. In this case, the expected meeting time between trajectories is long, and algorithms that fix n
too small (e.g., n = 1) lose useful long-horizon information. This explains why one-step SAC lags
behind SAC-T4 in most environments: T4 adapts to maintain longer horizons (Figure 2). It can also
be interpreted that, in such long-horizon regimes, the conservative trace coefficients of Retrace cut
the updates too aggressively, discarding useful information and thereby degrading performance.

When Short Horizons Suffice (small K). Conversely, as policy improvement aligns the target
policy more closely with the behavior distribution, the trajectories meet earlier and the effective
horizon shrinks. In this regime, non-conservative methods like Peng’s Q(\) or uncorrected n-step
continue to propagate credit too far, leading to unstable updates. Our ablation in Fig. 1 confirms that
T4 remains robust even when the effective truncation length decreases during training.

Efficiency in model-based and sparse-reward settings. Beyond dense-reward benchmarks, T4
also demonstrates strong efficiency in both model-based comparisons and sparse-reward tasks. As
shown in Figure 3, T4 rapidly matches the sample efficiency of SAC-based MBPO while remaining
entirely model-free. In addition, Figure 4 highlights that T4 achieves near-optimal performance
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significantly faster than Peng’s method and n-step baselines in sparse-reward control, a regime where
prior success has mostly relied on model-based or skill-specific techniques.

Summary. Taken together, these findings support our theoretical analysis: the truncation horizon
must adapt to both the discount scale and the mixing time of the underlying policies. T4 provides a
principled mechanism to do so, explaining its robust performance across diverse tasks.

7 RELATED WORK

CartPole-BalanceSparse

Return-based off-policy and multi-step methods. Our work
builds on return-based off-policy algorithms (Mahmood & Sut- 10 /J'\\_/-’
ton, 2015; Munos et al., 2016; Harutyunyan et al., 2016; Precup, 500

2000; Daley & Amato, 2019) and analyses of stochastic temporal- A/—l

difference learning under Markovian sampling (Bhandari et al.,
2018; Mou et al., 2020). Prior multi-step approaches mitigate
off-policy mismatch primarily through (i) weight correction (e.g.,

Retrace, Tree-Backup, V-trace, adaptive traces) (Munos et al., 200 /
2016; Precup, 2000; Rowland et al., 2020), (ii) conservative up- —=—"

Average Return

1 2 3 3 5 6

dates and policy iteration schemes (Kozuno et al., 2021), (iii) Environment Steps ted
eligibility-trace formulations and expected traces (Singh & Sut- __ o 00 T4 lambda: 0.¢
ton, 1996; van Hasselt et al., 2021; Daley et al., 2023; Gupta et al., Peng lambda:1  —— T4 lambda: 1
2024), and (iv) model-based imagination to shorten effective hori- T4 lambda: 0.3 nstep

—— T4 lambda: 0.7

zons (Hafner et al., 2020; Janner et al., 2019). These methods
differ in how they trade off bias and variance when propagating
multi-step credit under off-policy data. These methods differ in
how they trade off bias and variance when propagating multi-step
credit under off-policy data. Large-scale RL systems such as R2D2 (Kapturowski et al., 2018) and
IMPALA (Espeholt et al., 2018) illustrate the importance of handling long multi-step returns in
practice: they employ fixed-length rollouts with truncated traces and off-policy corrections (e.g.,
V-trace) to stabilize learning under replay, rather than adaptively adjusting horizons.

Figure 4: T4 achieves near-
optimal performance much faster.

Why multi-step off-policy evaluation is hard. Even with small correction weights, long-tail
contributions from later parts of a trajectory can still inject estimation error during TD evaluation
when sampling is Markovian; this manifests as oscillatory behavior of the learned @Q-function (Kozuno
et al., 2021), and theoretically it relates to slow error decay in TD with dependent samples (Berthier
et al., 2022). A common way to avoid this is to cap traces, but fixed caps can be misaligned with the
environment’s mixing scale, leading to under-utilized long-horizon signal or high variance.

Alternatives to reweighting. Beyond trace reweighting, several methods address off-policy eval-
uation via resampling or distribution correction, including importance resampling (Schlegel et al.,
2019), stationary-distribution importance sampling (Yuan et al., 2021; Yang et al., 2020), per-decision
importance sampling (Precup, 2000), and covariate-shift correction (Gelada & Bellemare, 2019;
Hallak & Mannor, 2017). T4 is complementary to these directions: rather than estimating precise
ratios or stationary corrections, T4 stochastically truncates returns based on an estimated probability
of disagreement between target and behavior rollouts, thereby reducing sensitivity to fixed caps and
long products of correction weights while remaining compatible with standard actor—critic backbones.

8 CONCLUSION

We presented T4, a stochastic variant of Retrace that adaptively truncates trajectories at the estimated
meeting time. This mechanism mitigates off-policy discrepancies while preserving useful long-
horizon credit, consistently improving over one-step and multi-step baselines across diverse RL
benchmarks. Our analysis relies on a d-bounded kernel condition, which serves as a simplified
form of uniform ergodicity. Although we do not explicitly verify this assumption in our benchmark
environments, the empirical results suggest that T4 remains effective even without strict mixing
guarantees. Future work includes extending T4 to model-based settings for tighter horizon control
and developing practical diagnostics to adapt truncation length online.
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A BACKGROUND ON ERGODICITY AND MAXIMAL COUPLING

We now state the coupling lemma, which provides a tool for bounding the total variation distance.

For any two probability distributions v; and v over S, we define the total variation (TV) distance
[[-[lrv as .

1 = velly = 5 ;S [v1(s) — va(s)| = max v (4) — r2(4)],

S

where the norm ||-|| corresponds to the L; metric. By definition, the TV distance takes values in the
interval [0, 1].
Lemma 3 (Coupling Lemma). Let 11 and vs be two probability distributions over a finite space S.
Then there exists a coupling (X,Y') of v1 and vs such that

P(X #Y) > [y — V2||Tv-

A coupling that achieves this equality is called a maximal coupling and can be written as

P(X #Y) =1 — vy =1->_ min(vi(s),va(s)). (17)
sES

Maximal coupling minimizes the probability of disagreement P(X # Y') among all possible couplings
of v; and v». Under this condition, we say the MDP is uniformly ergodic with « if there exists a
constant & € (0, 1) and C' > 0 such that

IOV H <Ol - a)t
max [P (s, ) — | < Cc1-0)

forallt € N.

B IMPLEMENTATION DETAILS

In this section, we describe the full implementation details of T4. Following the standard practice in
off-policy RL, we use the PyTorch version of the implementations in OpenAl SpinningUp (Achiam,
2018).

Experimental Setup We compare T4 with four baseline methods, a conventional one-step method,
uncorrected multi-step method, Retrace (Munos et al., 2016) and Peng’s Q(A) (Kozuno et al.,
2021). Given a randomly sampled trajectory (s, ag, ro, $1, @1, 71, S2, - - - ), Where Q- denotes the
target ()-function, and a4 (s;) is a sample from 74(-|s;). The detailed targets for the Q-function
of all algorithms are described in Table 1 in Section B. We note that all algorithms we used are
based on actor-critic method and update the policy network only with the starting target at (sg, ag).
For example, SAC based methods update the parameter of policy networks by gradient ascent

arg max, Qurget (50, @¢(s0)) + alog mg(ae|so).

Training and evaluation. For all algorithms, we use [256, 256]-sized multi-layer perceptrons
(MLPs) for all neural networks. We train with 1M environment steps for openAl Mujoco and evaluate
the agent every 1000 steps by using deterministic policy in 10 episodes.

Implementations of multi-step operators. We provide pseudocode for multi-step off-policy
actor-critic deep RL algorithms

The multi-step target value can be computed recursively for a given trajectory
(so,a0,70,81,01,71, -+ ). Let Qp,,Qp, be two Q-function critic and (); be the target value
estimate at environment step ¢. We can write

QZ— = r; + v min(max Qg, (8;, a), max Qa, (si,a))
+ YA (Qi+1 — min(mlzlexx Qo, (s;,a), max Qo (si, a))) .

For continuous action space, we approximate max, Qg(s;, a) as Qg(s;, 74 (s)). Practically, we use a
finite-length trajectory (so, ag, ro, S1,a1,71," - , Sc) where c is the cap length of the trajectory.
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Table 1: The details of the multi-step targets for baselines and our method for SAC. We note that T4
samples each A1, Ay, - -+, Ai_1 from the corresponding probabilities p1, Pa, -+ , Pr—1-

Algorithm

Update pseudo-code

One-step RL ro + 'y(Qg(sh ap(s1)) — alogms(ag(s1)]s1))
Uncorrected K EZK:Bl yir + YE(Qo(s1,a4(s1)) — alog ms(ag(s1)|s1))

Retrace

Peng’s Q(\)  Xuo (W) (ri +7(1 = M)(Qalsi41, g (s

T4

Zf(:?)l 777(1_[;':1 ci)(ri +7(Qo(Sit1,ag(Si+1)) — alog (A (Sit1)]Si+1) — Cit1Q0(Sit1, Git1))
=0, M )) — alog s (Gg(sit1)]si+1))-
Yo “/'L(H;:l A7) (ri + v(Qo(Si1, ag(si41)) — alogme(dg(sit1)]sit1) — Ait1Qo(Sit1,ait1))

Methods and Hyperparameters. We use two one-step RL algorithms, SAC and TD3 for the
multi-step extension.

1.

Twin-Delayed Deep Deterministic Policy Gradient (TD3). TD3 (Fujimoto et al., 2018)
adopts the same training pipeline and neural network architecture as DDPG, but introduces
several improvements to address overestimation bias in Q-learning. Specifically, TD3 uses
two critic networks, denoted as Qy, (s, a) and Qy, (s, a), with independent parameter sets
01 and 6-. This twin-critic design follows the principle of double Q-learning (van Hasselt,
2010), which mitigates the positive bias introduced by max operators in standard Q-learning
updates.

. Soft Actor-Critic (SAC). SAC (Haarnoja et al., 2018) also adopts the same training

pipeline and architecture as DDPG and TD3, but introduces a fundamentally different
objective based on maximum entropy reinforcement learning. The core idea of SAC
is to augment the reward function with an entropy term that encourages exploration by
discouraging the policy from collapsing to a deterministic distribution. Similar to TD3,
SAC maintains two critic networks to reduce the overestimation bias present in standard
actor-critic methods.

Basically, we adopt all default hyper-parameters from the code base in OpenAl SpinningUp. The cap
length denotes the upper limit of the sub-trajectory length for the baseline algorithms, unocrrected
n-step, Retrace, and PQL. We report the detailed values in the below.

Table 2: TD3 Hyperparameters

Hyperparameter Value
Actor learning rate 1x1073
Critic learning rate 1x1073
Batch size 100
Replay buffer size 1 x 10°
Discount factor «y 0.99
Polyak averaging coefficient (1) 0.995
Target policy noise (stddev) 0.2
Target noise clip 0.5

Policy update delay (frequency) 2 steps
Exploration noise (initial stddev) 0.1

Action range [-1, 1]
Start steps (before training begins) 10000
Max episode length 1000
cap length 5
lambda () 0.7

Experimental Details. We implement T4 and other baselines in PyTorch on top of the standard
evaluation protocol of off-policy RL ealgorithms in Google Dopamine (Castro et al., 2018) We
provide our full implementation and commands to reproduce our main results of T4 at (https:

//anon

ymous.4open.science/r/t4-BD20).
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Table 3: SAC Hyperparameters

Hyperparameter Value
Actor learning rate 1x1073
Critic learning rate 1x1073
Entropy coefficient (initial o) 0.2 (fixed)
Batch size 100
Replay buffer size 1 x 108
Discount factor ~y 0.99
Polyak averaging coefficient (1)  0.995
Target update interval Every 1 step
Automatic entropy tuning Enabled
Start steps (before policy used) 10000
Action range [-1, 1]
Max episode length 1000

cap length 5

lambda (\) 0.7
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C ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: Evaluation of Twin-Delayed Deep Deterministic Policy Gradients (TD3) variants over
openAl mujoco environments.

C.1 EXTENDED RELATED WORK AND FURTHER DISCUSSION

= A parallel line of work studies policy learning under uniform/geometric mixing or access to the
stationary distribution (Meyn & Tweedie, 2012; Hao et al., 2020; Abbasi-Yadkori et al., 2019; Neu &
Olkhovskaya, 2021), and leverages mixing-time-aware analyses in MDPs (Suttle et al., 2023; Wei
et al., 2021). In contrast, our approach is model-free and does not assume direct access to stationary
distributions or exact mixing times. Instead, T4 adapts the truncation horizon via a stochastic
meeting-time proxy derived from policy overlap, aligning the effective multi-step depth with the
evolving off-policy mismatch during training.

We provide more experimental results in Figure 3 and Figure 4. We note that our method has a
remarkable efficiency in sparse reward setting and a fast learning curve as much as a model based RL
method (MBPO). We demonstrate that T4 improves the performance of existing multi-step off-policy
model-free reinforcement learning methods, achieving sample efficiency comparable to model-based
approaches, and performing robustly even in sparse reward settings. As shown in Figure 3, T4
quickly matches the performance of SAC-based MBPO and one-step MBPO using the same number
of environment interactions. Notably, as illustrated in Figure 4, T4 also achieves near-optimal
performance significantly faster than Peng’s method and n-step baselines in sparse-reward tasks from
the DeepMind Control Suite—tasks where prior success has largely been limited to skill-based or
model-based methods.
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D PROOF OF THEOREM 1

We consider the operator R defined by a clipped importance weight sequence {c;}, interpolation
factor A € [0, 1], and total variation distance proxy d, where we clip the weight between the behavior
policy u and target policy .

Let () be an arbitrary action-value function and Q™ the fixed point of the target Bellman operator 7 ™:
7"7\' Qﬂ" — Q‘ﬂ"
We define the difference:
AQ=Q—-Q".

We now derive the deviation of the clipped operator R from Q™ :

RQ(s,a) — Q" (s,a) = Y B l(HQ) (E-AQ(st, )—CtAQ(St,at))]

t>1

= Z’ytEgllf . [(H CZ> (ExAQ(s¢,-) — Eq, [ci(ar, Fi)AQ(se, ay) | ]:t])]

t>1

=Y y'En [(H cz> > (w(blse) — (bst)ct(b,]-'t))AQ(st,b)] :

t>1 b

Let us define weights:

Wy p 1= Z’ytIE‘SLllt’ 1 [(H c,) (blse) — p(blse)es (b, Fr))1{s: = y}] .

t>1

Then the difference becomes:

RQ(s,a) — Q" (s,a) = Y wy s AQ(y,b).

y,b

However, in our setting, sub-convexity does not hold in general due to the possibility of negative
weights (when 7(b|s;) < AB(b|s¢)d).

To ensure convergence toward the fixed point ™, we require the operator R to be a contraction in
the supremum norm (also known as ¢,,-norm). That is, we want the following condition to hold:

HRQ_RQIHOC SK/HQ_Q/HOOa k<1 (18)

This ensures that the operator R brings any two value functions closer under repeated application,
eventually converging to a unique fixed point. Our operator deviation is expressed as a weighted
combination of differences AQ(y,b), and the contraction factor  can be interpreted as the total
weight magnitude:

K= |wyl, (19)
y,b

where w,, ; is the weight assigned to the deviation term AQ(y, b). Hence, for contraction to hold, we
require:

(20)

Z |wy7b <1
y,b

This forms the key criterion for verifying that the operator R induces a contraction in value space
and guarantees convergence under repeated application.
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Deviation Decomposition and Contraction Analysis. Define, for state y and action b,

wyp = m(b|y) — ABL[y)p:.
Then, the total absolute deviation at state y is

> wyal =Y (wb | y) = ABB L y)pe) + > (ABO [ y)pe — 7(b ] y)),

b beP beN

where
P={b:mb|y) 280 |y)p}, N ={b:7(b|y) <ABO|y)p:}-

This simplifies to

D olwypl = w0 [y)=doe Y B0 )+2 Y (AB0 | y)pi—m(b]y) = 1=dpi+2 Y (AB(0 | y)pi—7(b | v)).
b b b

beN beN

The total weighted deviation over time is
thElgt—l Z]w(b | s¢) — AB(b | st)pt‘] .
t>1 b

Using the above decomposition, this equals

thElgtl <1 — Ap; +2 Z (/\ﬂ(b | s¢)pe — (b | st))>] ,

t>1 beN:
where Ny = {b: 7(b | st) < AB(b| s¢t)pt}-

Thus we obtain the upper bound

IRQ = Q[ < (1=Ap) D A" +2A,,

t>1
N————
=~C
with
1
C:=> ()" = e A > AT (ABO | s)pr— (b ] 50)).
t>0 v t>1 beN

Using p; < &. Since (1 — Ap;) decreases in py, the safe bound is
(1= 2p)vC < ~C.

Meanwhile,
tet—1 )\7252
Ay DAY AT =g(C - 1) = :
> 1—~¢
Hence the combined bound is
v 2
RQ— Qoo < ¥C+2ME(C —1) = + .
[ | gl YE( ) et T ¢

Contraction condition. For contraction we require

2)\22
L R W e TS
11— 1-9¢

Equivalently,

2Ny < 1— 4(1+€) \
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Therefore:

1. Feasible v (RHS must be positive):

2. Feasible A for given ~y:

. 1—7(1+4¢)
OS/\SH’IIH{:LW 5 0<’y<1+£

3. In the worst case & = 1, the global constraint is y < % For fixed )\, the maximal 7 is

—14+V1+2A

’Y-‘r()\?l) = 2\

further capped by 1/2.

E PROOF OF THEOREM 2

This proof basically follows the same arguments as in the proof of the policy iteration of Retrace
(Munos et. al. (2016)) (Munos et al., 2016).

Step 1. Defining (sub)-probability transition operator Since the corresponding probability p,
that A, = 1 is Markovian by the definition in Equation (5), we first examine the follwing expectation:

E,, ZZP (s']s,a)B(a’'|s")A,Q(s", a) ZZP (s']s,a)B(d’|s" )ps(s',a")Q(s, a).
Now, we define the corresponding (sub)-probability transition operator:
Z ZP ‘s, a)B(d’|s")p(s',a")Q(s',a’) =: (PPPQ)(s,a). (22)

Step 2. Upper bound on 9, ;1 — Q* We rewrite our T4 operator in Equation (6) as follows.

RpaQ=Q+ > (W' (P)(TQ-Q) =Q+ T —P) (TQ-Q)  (23)

>0
where (I —yAPPF)=1 =372 0(7)\731’6 *. Since Qi1 = RpAQn»

)
Qni1 — Q" = Qn — Q"+ (I = \PP) "M (T"Qn — Q)
=(I- vwﬁ) T Qn — Qu 4+ (I = APP)(Qn — Q)]
= (I = \PP) HT™Qn — Q" — YAPPP(Qn — Q)]
= (I = APP) HT™Qn — TQ" — AP (Qn — Q)]
< (I =APP) T [YAP™(@Qn — Q) — YAPPP(Qn — Q)]
= AL = yAPPP) [P — PPP)(Q, — Q%)
= B(Qn - Q"),
where we denote YA(I — yAPPA)~L[P™ — PPP] as B. We rewrite B as
B =3I = yXPP)THPT = PP = 42 3 (yA) (PP)! (P = PPF).

t>0
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To show that B has non-negative elements, whose sum over each row is at most y\. Let 1 be the
vector with 1-components. We obtain

(P™ — PPP)1(s,a) = ZZP(S' | s,a) [w(a’" | s") — p(s’,a")B(a" | )] >0 (24)

Then, we have

Bl(s,a) = A S (V) (PPP) (PT — PPP)1(s,a)

t>0
=AY (VPP (s, a) = (NP (s, a)
t>0 t>0
=1(s,a) = (1 =9A) >_ (W) (P*")"1(s,a)
>0
< AA1(s,a).

The last inequality is derived by tho(*y)\)t(Ppﬁ )1 > 1). By the result of Theorem 1, we have
Qn—i—l - Q* S ,Y)\HQTL - Q*Hp,oo]- (25)

Step 3. Lower bound on @, 11 — @Q* By Equation (23), we obtain

Qni1 = Qn+ I = PP) (T Qu — Qn)
= Qn+ Y (WP (T"Qn — Qn)

i>0
=T"Qn+ Y (WP (T Qn — Qn)
i>1

= T7Qn +YAPPY (I =y APPP) "1 (T Qn — Qu).

As we define ¢,, in the statement of Theorem 2, we have

TQn >TQn —€n |Qn|| >T"Qn — 5n||Qﬂ||

Then,
Qnit = Q = Qi1 =T QuA T Q=T Qu+T" Qu=T" Q"
> Quit = T Qn +7P™ (Qn — Q) — £4]| Q1.
As a result, we conclude that

Qni1 = Q" = ANPPP(I = A APP) "M TTQn — Qu) + 7P™(Qn — Q%) — £n|@Qnl[1.  (26)

Step 4. Lower bound on 77Q,, — ),, Similar to (Munos et al., 2016), we assume that €,, — 0,
T Qo — Qo > 0, and (my,) is increasingly greedy with regard to ((),,) as follows:

T4 Qnt1 — Qnt1 = T Qny1 — Qnti-

Let H,, = y[P™ — PPP)(I — yAPP?)~1. We have

T Qngr = Qg1 2 T Qng1r — Qna
=T RpaQn — RpaQn
=7+ (P™ — DRy rQn
=7+ (P = D) [Qu+ (I = AP")"H(T7Qu = Q)]
=T Qn = Qu+ (YP™ = D)(I = XP")"H(T"Qn = Q)
=[P = PP = yAP*)"HT™Qn = Qu)
= Ho(T"Qn = Qn), (16)
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Recall that P™ — PP? (as shown in Equation (24)) and (I — yAP??)~! have non-negative elements.
In the above, we proved that #,, has non-negative elements as well. Therefore,

Tﬂ—Qn - Qn Z H7z—1Hn—2 e ,HO(TWUQO - QO) Z 0.

Finally, Equation (26) implies that

Qui1 — Q" = 7P™ (Qn — Q") — £n|Qnl[1.
Combining the above with Equation (25), we have
[Qn+1 — Q[ < ¥Qn — Q|| + £nl|Qnll-
We note that (),, is bounded. When ¢, satisfies €, < (1 —)/2, we have

1-— 1
Quall < 1Q71+71@n = @71l + =5 1Qull < (1 + D+ —5-L1Qull

Furthermore,

. 1+~ x
limsup || @, < T Q|-

(L+7)/2
Since @, is bounded, we conclude that lim sup Q,, = Q*.

F PROOF OF LEMMA 1

We start the proof with the following lemma.
Lemma 4. Under Definition 1, any two stationary distributions (g and i of PP and P™ satisfy
s = pallpy < .

The proof of Lemmas 4 relies on properties of nearby Markov chains. Detailed proof is provided in
Appendix F.1.

Step 1. Inserting 1, by triangular inequality First, we can upper bound the distance from
stationary of P# by triangular inequality:

- < [

o g — porllpy

where 1 denotes the stationary distribution of P™.

Step 2. Bounding the distance from stationary By using the distance between two nearby Markov
chains, we have

[P () = s

™v + HNB - /~L7T||Tv

- Hpﬁ(t)(sv ) = P

vt s — il
0) .
< maxe|[P77(s,) = PO )|+ s = sl
< m&/xx{HPﬁ(t)(& ) _ ’Pﬂ'(t)(s, ,)HTV + HIPTr(t)(S/7 ) _ ’])‘ﬂ'(f/)(s7 )HTV} + ||/14ﬂ —_ /j“ﬂ'HTV

< HPﬁ(t)(s, S =P, )H + H}S&}X{HP”“)(S', ) — P (s, ')HTV} + s — pirllpy

vV

By Lemma 4, we have
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(®) x 71' 71'
[P0, = P05, 4+ max [P s, ) = PO+l = oy

<[y 0o+

(t)

d
< HPB“)(S, 3 =P, .)HTV tloa+ 2

(67

F.1 PROOF OF LEMMA 4
By the triangle inequality,

s = txlley < [[8P? = 1aPP |1y + 1 P? = 2P| 1y
= (1 - O‘) ”Uﬂ - :LLTI'HTV +d.

Each term in the second line is derived from the ergodicity of Markov chain and Definition 1,
respectively. Then, we have

d

HMB - :ufr”Tv < a

G PROOF OF LEMMA 2

The proof is basically the same as Theorem 9 in (Johndrow & Mattingly, 2017a) with minor modifica-
tion. We construct a coupling (Sf , ST) to examine the long-time dynamic of the agreement between
Sf and ST.

Step 1. Construction of the Coupling Given any two probability measures 11 and mo on S, it is
known that
[m1 — mallty = 1 — min(my, ms)(S) = [m1 — mo]™(S) = [ma — ma]*(S).

Now we compare two transitions P and P™ where the transition kernel P is uniformly d-bounded.
For any £ = (£1,&2) € S x S, we define the measures on S

min(P7 (&1, ), PP (&2, )
Pd(f) 7
[PP(&,-) — P™ (&1, )"
1 —pa(§) ,

P&, ) = PP(&, )] T
Rt ) = 1—pa(§) ’

Qd(§7 ) =

ﬁd(&v ) =

where pq(€) denotes
pa(§) = 1= [P (&1,) — PP (&, ) |lrv-

We note that these three measures are all probability measures on S for fixed £ € S X S. Now we
define the transition kernels in S x S for £ = (£1,£2) and s = (s1,52) in S X S:

Qu(:ds) = pal§)Qu(& ds1)bs, (ds2) + (1= pa(§)) (Ra(.ds1) x Ral&ds2)) . @7)

Step 2. Using stochastic dominance among random variables For the following derivations, we
first define a stochastic process Z¢

. B _ gn
4 {0 if S8 = ST (28)

"1 ifSP#£ ST
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where (Sf ,ST) be the Markov chain on S x S defined by the above transition density Qg in
Equation (27). Since Z¢ is not Markovian, we define the probability P(Z¢, | = k | Z2 = j) as
E[1{Z2,, =k} | ZZ = j]. Now we have

P(Zl,,=0]2Z¢=0)>1-d and P(Zl,,=0|Z¢=1)>p

n

with probability 1. Let Y,, be the Markov chain on {0, 1} with the transition matrix

Pd:<1;d 1dp) (29)

and assume that d < 1 — p. We have
P(Z4 1 =0[Z1=0)>P(Y,11=0]Y,=0)=1-4,
P(Zi 1 =028 =1)>P(Vap1 =0V, =1)=0p,
P(Zz+1:0|22:0) >P(Yp1=0[Y,=1)=p.
with probability 1. This result implies that
P(Zy Sk|Z]<Yy) 2 P(Yopa <k | Z <Yy) (30)

for all k > 0 and n > 0. It is equivalent to the definition of stochastic dominance, then we can
construct a monotone coupling of the processes Y;, and Z¢ where

P(Z; <Y, foralln) =1 31

and Z¢ < Y;. Finally, with probability 1, we have

n—1 n—1 n—1

1 1 1

EE 1{S,f;é5,f}:E§ 1{Zg=1}gﬁ§ 1{Y;, = 1}. (32)
k=0 k=0 k=0

We note that it is enough to bound the amount of time Y,, = 1 to control the fraction of the time that
S8 and ST disagree.

Step 3. Bounding chain in expectation The key idea in our proof is to leverage the fact that Z is
stochastically dominated by Y,,. By explicitly analyzing the amount of time that Y,, spends in state
1, we can derive bounds relevant to the problems of interest. Let a Markov transition matrix of the

bounding chain be
1-d d
P, = . 33

We know that the Markov chain P, has a generator L; = Py — I and its unique stationary measure

14 denoted by
P d
=(—)—). 34
Hd (p+d p+d> (34)

Note that, by definition, pqLq = 0 and pqPg = p1q. We define the following vectors

(0 (1 - [ d p s o —d p
¢—<1>, 1—<1>, ¢d—ﬂd¢1—<p+dap+d>a and ¢q=¢ d)d_(p—i—d’p—s-d)'

Let ¢4 be the solution to the following equation

Lavg = —¢a. (35)

Then, we can easily see that

va=»_ Pa*da. (36)
k=0
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Consider wy = <_1€> It satisfies Pywg = (1 — p — d)wy, then wy is a right-eigenvector with

eigenvalue 1 — p — d. Since ¢g = erded’ we have

p — > p
ha = (p+d> (Z(l P d)k> Wq = mwd-

k=0
We note that d < 1 — p by definition so that 1 — p—d € (0, 1). For any initial distribution of (Sf ,ST)
induced by P?P, and P™ Py, we define the initial distribution of Y}, as
v(0) = P(S} = S7) and v(1) = P(S) # ST),
respectively. Combining the above properties, we have

n—1 n—1

l/'Pg’L/)d — Z/wd = Z Z/IP(’;Ldiﬁd = Z 1/73(];(/5 - TlV(Ed.

k=0 k=0

Rearranging the above equation, we finally have

n—1

1 d Py d

S vPhe = o TEI (- (1= =)y
k=0

+d n p+d  n(p+d)
o d 1-(1-p—an 6, on B 4 gr
= it TR (PP(SY # ST) —d(1 —P((Sy # S7)))
_ d 1—(1—P_d)n B W_L
_p+d+ n(p+ d) (P(Sl#sﬂ p—i—d)'

Note that
1 n—1 1 n—1
- Z HYp =1} = - Z¢(Yk)
k=0 k=0
by the definition in Equation (32). We conclude that
n n—1
1 1 d 1-(1—p—d)"
“NTp(SP £ 87y < = K =
nZ(k# k)_nzypcﬂb ptd n(p + d)

k=1 k=0

d
(P(Sf +ST) — P‘"d> . (37)

O

H PROOF OF THEOREM 3

Step 1. Analyze the property of coupling time To begin with, recall that the Markov chain Y,, on
{0, 1} has the following transition matrix

1—-d d
Pa = .
! < po1- P)
We introduce the conditional expectation of a random variable with respect to o-algebra. Define a
filtration 7, = o(Yy, Y1, Y2, -+ ,Y,) and {Y,, } is adapted to {F,, } and a stopping time
74 = min{n > 0]Y, =0}.

Since T » = min{t > 1: 82 = ST | Sy ~ Py} is the first meeting time of two processes (52, ST)
defined in Lemma 2, we can rewrite Tg . as

Tpr =min{t >1:5 =87 | Sy~ Py} =min{t >1: 7% =0}.

Suppose that E[7] < co. We first note that the stochastic ordering T3 » > 74 since we construct a
monotone coupling of Y;, and Z¢ in Equation (30). Then, for any meeting time 7, we have

P(Tpr <7)<P(ry <7).
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Therefore,

P(7q > T) }:Pm>k = :}21— YIP(r=4)=E[1-p)7].  (38)

Let A(p) = E[(1 — p)7]. To obtain an intuitive result, assume that 7 < N almost surely for some
constant N. Under this assumption, A(p) is differentiable everywhere. In the region p € (0, ¢g) for
some small €y > 0, the Lagrange remainder of its Taylor expansion yields:

A(p) =1~ pEfr] + G A"(O)ELr(r — 1)] > 1~ pEfr]

for some £ € (0, p).

Finally, we have
P(rq > 7) > 1 — pE[7]. (39)

Therefore,
P(Ts,r <7) <P(rq <7) < pE[7]. (40)

We conclude that the probability of T3 , is well defined and note that its value is upper-bounded by
the chain Y,,. In the next step, we evaluate the mixing time by using the practical stopping time that
two process first meet.

Step 2. Upper bound of the distance from the stationary of P By Lemma 1, we can upper
bound

d
1P7(s,) = mallrw < [|[PPP(s,) = P70, )|| 41-at S @n
By the property of coupling, we have
() <H5W N m)'H 1—qsr 8
P77 (s,) = pllre < [P7 5,y = P Os, )| 1 -+
d
< P(SP # 87|15 = 5,87 =s)+l-at—
B ™ d
P(Ts,~ > t|Sy = 5,5 :s)+1—a+a.

Applying Markov’s inequality, we have

‘ d
1P#(s,) = gllry < P(Ton > t1SE = 5,57 =5) + 1 -+ =

E[TB,W]

<
- t

d
+(1-at )

To evaluate the mixing time of P, we approximate the above inequality as

t d
1P5(5,) = mslley < P(Tom > 115§ = 5,55 =) +1—a+ -

< ]E[Tﬁyﬂ'] .
~ t
Then, the mixing time of P, 7 is derived as
Tmix < QeE[TIg,W} 42)

We now use the estimate of the mixing time 7x as ]E[Tg,w] approximately. Then, we have the
following result by Equation (4):

K = min( ! W,E[Tg,ﬂ]). 43)

1 —
O
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