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ABSTRACT

Multi-step off-policy reinforcement learning is essential for reliable policy evalua-
tion, particularly in long-horizon settings, yet extending beyond one-step temporal-
difference learning remains difficult due to distribution mismatch between behavior
and target policies. This mismatch is further exacerbated at longer horizons, leading
to compounding bias and variance. Existing approaches fall into two categories:
conservative methods (e.g., Retrace), which guarantee convergence but often suf-
fer from high variance, and non-conservative methods (e.g., Peng’s Q(λ) and
integrated algorithms like Rainbow), which often achieve strong empirical per-
formance but do not guarantee convergence under all exploration schemes. We
identify horizon selection as the central obstacle and relate it to the mixing time
of policy-induced Markov chains. Because mixing time is difficult to estimate
online, we derive a practical upper bound via a coupling-based analysis to guide
adaptive truncation. Building on this insight, we propose T41 (Time To Truncate
Trajectory), a stochastic and adaptive truncation mechanism within the Retrace
framework. We prove that T4 is non-conservative yet converges under arbitrary
behavior policies, and is robust to cap length tuning. T4 improves policy evaluation
and control performance over strong baselines on standard RL benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) fundamentally relies on policy evaluation—the competence to accu-
rately estimate the long-term impact of a policy on future rewards. Accurate policy evaluation is
crucial for consistent learning progress and effective decision-making, particularly in long-horizon
environments. Multi-step temporal-difference (TD) learning (Mahmood et al., 2017; Asis & Sutton,
2018; Harutyunyan, 2018; Sutton et al., 1998; Precup et al., 2001) leverages long-horizon trajectory
information by constructing truncated n-step returns, in which the tail is bootstrapped from Q-values
at the truncation horizon. However, in off-policy RL, the training data are collected by behavior
policies whose distributions differ from the evolving target policy. This distribution mismatch inflates
the estimation error of the target policy’s action-value function, Qπ, as the truncation horizon n
grows, leading to compounding bias and variance. This raises a central question:

Can multi-step off-policy RL achieve reliable and convergent policy evaluation while effectively
mitigating distribution mismatch?

Prior methods have attempted to address this distribution-mismatch challenge by applying per-step
importance weighting to update the Q-function toward its Bellman fixed point (Precup et al., 2001;
Geist et al., 2014; Farajtabar et al., 2018). Kozuno et al. (2021) classify multi-step off-policy
evaluation methods into conservative and non-conservative categories. Conservative methods ensure
convergence under arbitrary behavior policies by modifying the policy evaluation operators, but often
incur high variance and instability due to correction ratios that can be excessively large or vanishingly
small Rowland et al. (2020). Non-conservative methods relax per-step corrections and often lack
general convergence guarantees or rely on restrictive assumptions on the behavior policy.

Estimating reliable weights from policy distributions remains challenging, especially as horizons
grow, which hinders the effective extension of one-step off-policy RL to multi-step settings. We

1Code available at https://anonymous.4open.science/r/t4-BD20
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Figure 1: Effect of truncation horizon on multi-step off-policy RL. (a) Hopper performance
with cap lengths [3, 5, 10, 20] for T4, Peng’s Q(λ), and uncorrected n-step (darker→shorter caps),
showing that longer horizons amplify off-policy errors in baseline methods. (b) Bias–variance patterns
at 0.1M and 1M steps, where only T4 maintains low variance through its adaptive truncation based
on the estimated meeting time.

identify a key underlying cause: the lack of principled trajectory truncation, which yields cumulative
errors through the product of per-step correction ratios and the residual tail. Through controlled
experiments on MuJoco Hopper in Figure 1a, we empirically show that these cumulative errors
scale rapidly with horizon length, leading to unreliable policy evaluation and degraded performance.
In practice, multi-step methods rarely use the full episode length but instead define a maximum cap
length as an upper bound on the truncation horizon, thereby introducing a hyperparameter that is
often difficult to tune.

This challenge can be further understood through the theoretical framework of (Duan et al., 2024),
which connects horizon selection to the mixing time of the underlying Markov Decision Process
(MDP) and to model misspecification in value function approximation. However, estimating an
appropriate horizon online is non-trivial, since the mixing time is difficult to measure on the fly.

To overcome this difficulty, we propose a stochastic and adaptive truncation mechanism within
the Retrace framework (Munos et al., 2016), which we call T4 (Time To Truncate Trajectory). We
estimate an upper bound on the mixing time via a coupling-based analysis of the Markov chains
induced by the behavior and target policies (Johndrow & Mattingly, 2017a). This bound then guides
our adaptive truncation strategy and enables T4 to balance the trade-off between bias and variance.
Theoretically, we prove that T4 is non-conservative yet converges without imposing restrictions on
behavior policy updates. Unlike prior multi-step methods that require careful cap length tuning, T4 is
robust to this hyperparameter and requires minimal tuning. Despite its simplicity, we show that T4
consistently improves policy evaluation.

Contributions. Our main contributions are threefold. First, we demonstrate that naïve extension of
the truncation horizon (cap length) amplifies cumulative errors in off-policy multi-step RL. Second,
we connect horizon selection to mixing time and derive an approximate upper bound via the coupling
argument to guide adaptive truncation, validating this both theoretically and empirically. Third, we
propose T4, a stochastic and adaptive truncation method built upon the Retrace framework, and
establish both its convergence guarantees and strong empirical performance.

2 PRELIMINARIES

We consider a MDP defined by the tuple (S,A,P,P0,R, γ), where S ⊂ Rd is a finite state
space, A is a finite action space, P : S × A → ∆(S) is the transition probability mapping each
state-action pair to a distribution over next states, P0 : S → [0, 1] is the initial state distribution,
R : S × A → [−rmax, rmax] is a uniformly bounded reward function, and γ ∈ [0, 1) is a discount
factor for the infinite-horizon RL setting. Given a policy π, we define the Bellman operator as
T πQ := R+γPπQ, where Pπ denotes the transition operator induced by the environment dynamics
P and the policy π. We use trajectories (st, at, rt)t≥0 ∼ β, where β(· | s) is behavior policy.
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Since we focus on multi-step off-policy RL, we consider K-step off-policy evaluation using trajecto-
ries (st, at, rt)t≥0 generated by the behavior policy β. Specifically, we apply the (k − 1)-fold com-

position of the Bellman operator for the behavior policy β, denoted by T β(k−1)
: RS×A → RS×A,

for k = 1, . . . ,K. We define uncorrected K-step return operator at iteration n as

Qn+1 = rt + γrt+1 + · · ·+ γK−1rt+K−1︸ ︷︷ ︸
from a behavior policy β

+γKPπQn = T β(K−1)T πQn. (1)

General Retrace. One of the main challenges in multi-step off-policy RL is that policy evaluation
can suffer from fixed-point bias (Munos et al., 2016) caused by the discrepancy between the target
and behavior policies (Rowland et al., 2020). To correct this discrepancy, Munos et al. (Munos et al.,
2016) proposed the general Retrace formulation, which addresses the fixed-point bias in off-policy
evaluation by introducing a sequence of correction coefficients, referred to as traces. We formally
define the general Retrace operator R, which corrects the distributional discrepancy arising in
off-policy evaluation:

RQn = Qn + Eβ

[ ∞∑
t=0

(γλ)t

(
t∏

i=1

c(si, ai)

)
(rt + γEπn [Qn(st+1, ·)]−Qn(st, at))

]
, (2)

where the sequence {c(si, ai)} is referred to as the trace, with the convention that
∏0

i=1 c(si, ai) = 1
for t = 0. Here, πn denotes the target policy at the n-th iteration, and the formulation also incorporates
a λ-extension (Bertsekas & Ioffe, 1996), which smoothly interpolates between K-step returns and
the full Monte Carlo return. Multi-step off-policy RL algorithms can be expressed within the general
Retrace by specifying the trace. Depending on the choice of ci, these algorithms can be categorized
into conservative and non-conservative methods. An algorithm is referred to as conservative if it
satisfies 0 ≤ ci ≤ πn(ai|si)

β(ai|si) for all i. Conservative methods prevent overestimation through the trace
constraint, thus their convergence are not affected by the update rule of the behavior policy βn.

Mixing time and Truncation Length. While the standard retrace does not truncate the trajectories,
in practice, the choice of a truncation length plays a critical role in learning performance (Hessel et al.,
2018; Kozuno et al., 2021). In particular, longer truncation lengths can amplify the distributional
discrepancy between the behavior and target policies, thereby degrading the accuracy of off-policy
evaluation. We begin by defining the stationary distribution and mixing time. The key to our analysis
is to connect truncation lengths with the mixing time of the MDP under Pβ .

The stationary distribution µβ of the transition dynamics Pβ is defined as the unique distribution

to which the t-step state visitation distribution converges, i.e., Pβ(t)
(s1, s2) → µβ(s2) as t → ∞

for all s1, s2 ∈ S. To analyze convergence to the stationary distribution, we introduce the notion of
coupling. Given two distributions ν1 and ν2 over S , a probability distribution ω over S × S is called
a coupling of ν1 and ν2 if its marginals satisfy ν1(x) =

∑
y∈S ω(x, y) and ν2(y) =

∑
x∈S ω(x, y).

The mixing time τmix of Pβ is defined as the smallest time t at which the total variation distance
between the t-step transition distribution and the stationary distribution becomes smaller than a
threshold ϵ > 0:

τmix := max
s∈S

min
{
t :
∥∥∥Pβ(t)

(s, ·)− µβ

∥∥∥
TV
≤ ϵ
}
. (3)

Recent work by Duan et al. (Duan et al., 2024) established theoretical conditions for selecting the
truncation length in infinite-horizon γ-discounted MDPs to improve the sample complexity of policy
evaluation. Specifically, they derived a lower bound on the truncation length K that controls the
estimation error of an approximate Q-function. For uniformly bounded rewards, this bound takes the
form

K = min

(
1

1− γ
,Ω(τmix)

)
, (4)

where the notation Ω(·) denotes an asymptotic lower bound, implying that K must scale at least
proportionally to the mixing time τmix. The term 1/(1 − γ) corresponds to the standard discount-
determined effective horizon.
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This bound provides a principled guideline for choosing K, but its practical use is limited: estimating
τmix during learning is notoriously difficult because the full transition kernel of the behavior policy
Pβ is not observable online (Wolfer & Kontorovich, 2019).

Paper Organization. In Section 3, we introduce our main contribution, the stochastic operator T4,
and establish its convergence properties. T4 is designed not only as a stochastic extension of Retrace,
but also as a mechanism to adaptively estimate the truncation horizon during learning. Section 4
then connects trajectory truncation with mixing-time upper bounds, showing how the disagreement
probabilities encoded in T4 provide a principled way to approximate the mixing time of the behavior
policy and thus determine an appropriate truncation length without requiring direct access to the
mixing time itself.

3 TIME TO TRUNCATE TRAJECTORY (T4) OPERATOR

Our goal is to estimate the target value function Qπ(s, a) from trajectories generated by an arbitrary
behavior policy β. Beyond policy evaluation, we further show that T4 converges to the optimal value
function Q∗(s, a) under arbitrary behavior policies. To connect trajectory truncation with the general
Retrace framework, we define a sequence of Bernoulli random variables (Ai) corresponding to the
trace coefficients in Equation (2), with associated probabilities p = (p1, p2, . . .). For each step i, let
Sβ
i ∼ P0(Pβ)i and Sπ

i ∼ P0(Pπ)i denote the i-step state random variables generated respectively
by the behavior policy β and the target policy π, starting from the same initial distribution P0. Each
Ai then acts as an indicator of mismatch:

Ai = 1{Sβ
i ̸= Sπ

i }, pi := Pr(Ai = 1) = Pr(Sβ
i ̸= Sπ

i ) = E[Ai]. (5)

By replacing the deterministic trace coefficients ci in Equation (2) with the Bernoulli indicators Ai,
we obtain the stochastic version of the Retrace operator, which we refer to as the T4 operator:

Rp,λQ = Q+ Eβ,p

[ ∞∑
t=0

γt
( t∏

i=1

λAi

)(
rt + γEπQ(st+1, ·)−Q(st, at)

)]
. (6)

Once Ai = 0 for the first time, all subsequent terms vanish. Whereas previous multi-step RL
approaches terminate the return at a fixed cap length—typically the episode length or a manually
chosen horizon—our method stochastically adapts the truncation point.

We now aim to establish a lower bound on the truncation length K in Equation (4) for off-policy RL.
Since off-policy learning involves both a behavior policy β and a target policy π, we upper bound the
total variation maxs∈S∥Pβ(t)

(s, ·)−µβ∥TV using the discrepancy between the transition kernels Pβ

and Pπ . In this setting, the mixing time is related to the total variation distance, which we analyze in
Section 4. Here, we estimate this quantity via the sampled Bernoulli variables in Equation (5), where
Pr(Sβ

i ̸= Sπ
i ) represents the one-step discrepancy between the behavior and target policies. This

discrepancy is exactly the total variation distance between the induced state-transition distributions2.
Hence, it can be expressed as

pi := Pr(Ai = 1) = 1−
∑
s′∈S

min

{∑
a

β(a | si)P(s′ | si, a),
∑
a

π(a | si)P(s′ | si, a)

}
. (7)

Before we present the theoretical relation between truncation length and mixing time in Section 4,
we first show that the T4 operator is a contraction mapping in the off-policy evaluation setting.
Theorem 1 (Contraction ofRp,λ). Suppose pi ≤ ξ almost surely for some ξ ∈ [0, 1] and all i ≥ 1.
If γ ∈ (0, 1) and λ ∈ [0, 1] further satisfy

γ <
1

1 + ξ
, λ ≤ min

{
1,

1− γ(1 + ξ)

2 γ2 ξ2

}
, (8)

2This follows from the maximal coupling lemma; see Appendix A for a formal proof and further discussion.
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then for any Q-function, the operatorRp,λ in Equation (6) has a unique fixed point Qπ and satisfies

∥Rp,λQ−Qπ∥∞,p ≤ η(γ, λ, ξ) ∥Q−Qπ∥∞,p, (9)

with contraction modulus

η(γ, λ, ξ) =
γ

1− γξ
+

2λγ2ξ2

1− γξ
< 1, (10)

where ∥ · ∥∞,p denotes the supremum norm weighted by p.

The proof is in Appendix E.

Remark. The assumption in Theorem 1 that pi ≤ ξ is mild, since pi is a Bernoulli probability and
thus always lies in [0, 1]. The bound merely introduces a uniform constant ξ ≤ 1, with the trivial
choice ξ = 1 always valid. Smaller values of ξ yield a sharper contraction modulus in Equation (10).

We note that Retrace enforces 0 ≤ ci ≤ π(ai|si)/β(ai|si), ensuring that each update is a sub-convex
combination and thus strictly conservative. In contrast, T4 requires only the weaker condition
pt ≤ ξ while still guaranteeing contraction. This relaxation provides greater flexibility, enabling
non-conservative updates without sacrificing convergence guarantees.

Theorem 1 shows that the T4 operator is a contraction mapping in the policy evaluation setting,
converging to the fixed point Qπ. We next turn to the control setting, where the target policy is
updated online. As in Retrace, no restrictive assumptions on the behavior policies are required; under
arbitrary behavior policies, T4 converges to the optimal value function Q∗.

Theorem 2 (Convergence in online control). Let a sequence of Q-functions (Qn) be updated by the
T4 operator, i.e.,

Qn+1 = Rp,λQn.

For arbitrary sequences of behavior policies (βn) and target policies (πn), we have Qn → Q∗ in the
online control setting.

The proof is in Appendix F. Together, Theorems 1 and 2 establish that T4 achieves reliable conver-
gence both in policy evaluation and online control. We next analyze the relation between truncation
length and mixing time, which underpins the construction of the Bernoulli probabilities pi.

4 TRUNCATION LENGTH VIA MIXING-TIME UPPER BOUNDS

Figure 2: CliffWalking. A
simple tabular environment with
absorbing cliff dynamics.

We now establish how the T4 operator provides a mechanism to
approximate the mixing time of the behavior policy β by relating
trajectory truncation to discrepancies between transition kernels.
To this end, we introduce formal quantities that characterize the
discrepancy between the transition kernels of the behavior policy
Pβ and the target policy Pπ. Background on total variation
distance and the coupling lemma, which underpin our analysis
here, is summarized in Section A. Now, we formalize the notion
of how far the two policy-induced kernels can differ at each state.

Definition 1 (Uniform d-bounded kernel). We say that the transition kernel Pβ of a behavior policy
β is uniformly d-bounded if there exists d ∈ (0, 1) such that for all states s ∈ S and any target
policy π, ∥∥Pβ(s, ·)− Pπ(s, ·)

∥∥
TV ≤ d.

This condition ensures that the transitions do not change drastically across policies, enabling the
analysis of policy discrepancies. The notion of perturbed Markov chains is closely related to this
setting, where transition kernels under different policies can be viewed as small perturbations of a
given kernel. Such assumptions have been widely used in approximate Markov chain Monte Carlo
(MCMC) (Mitrophanov, 2005; Solan & Vieille, 2003; Johndrow & Mattingly, 2017b).

Assumption 1 (Cross-Doeblin Condition). There exists a constant ρ ∈ (0, 1− d) such that, for all
states s, s′ and any policies β, π,

∥∥Pβ(s, ·)− Pπ(s′, ·)
∥∥

TV ≤ 1− ρ.

5
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Figure 3: (a) Diagnostics on CliffWalking: state-wise total variation distance d(s) and pairwise
overlap matrix ρ(s, s′) between the transitions induced by an optimal policy and a uniformly random
policy. Large d and near-zero ρ across most states highlight the structural off-policy gap. (b) RHS
bounds from Lemma 2 for multiple (d, ρ) pairs: the bounds consistently decay across all settings,
implying that a meeting time emerges even under severe off-policy mismatch.

The cross-Doeblin condition plays a central role in assessing the approximation quality of MCMC
algorithms (Mattingly et al., 2015; Johndrow & Mattingly, 2017a). In our context, it serves as a
regularity assumption ensuring that the transition distributions under any pair of states and policies
are sufficiently close. This allows us to model the target transition kernel Pπ as a perturbation of the
behavior kernel Pβ , thereby facilitating the estimation of the mixing time of the behavior policy.

Although Definition 1 and Assumption 1 may appear strong, they represent the weakest meaningful
conditions that allow us to quantify the kernel-level discrepancies required for estimating the mixing
time of the underlying Markov chains. Our diagnostic study on the tabular CliffWalking
environment in Figure 2 highlights this point: even slight deviations between π and β lead to
nearly deterministic branching and absorbing transitions (falling off the cliff), pushing state-wise
TV distances close to 1 and collapsing cross-state overlaps. This indicates that d and ρ are largely
determined by structural properties of the MDP rather than by policy proximity.

To make this explicit, Figure 3a reports the state-wise TV distances d(s) and the pairwise overlap
matrix ρ(s, s′) between the transition kernels of an optimal policy and a uniformly random policy.
Both quantities exhibit extreme mismatch—large d and near-zero ρ across most states—revealing a
substantial structural off-policy gap even in this simple tabular setting. Nevertheless, we show below
that our subsequent analysis remains valid despite these harsh structural properties. We now turn to
present the key lemmas and theorems that characterize how these quantities govern disagreement
probabilities, meeting times, and the resulting effective truncation length.

Lemma 1. For a given behavior policy β and transition kernel Pβ which is uniformly ergodic with
α, let µβ denote the stationary distribution of Pβ . Then, for any policy π and initial state s, we have

∥Pβ(t)
(s, ·)− µβ∥TV ≤

∥∥∥Pβ(t)
(s, ·)− Pπ(t)(s, ·)

∥∥∥
TV

+ 1− α+
d

α
. (11)

The proof is in Appendix G. Lemma 1 offers insight into how the convergence of Pβ is related to the
discrepancy between Pβ(t) and Pπ(t). By the coupling lemma (see Appendix A), the total variation
between two transition kernels is at most the probability that the coupled variables disagree; in our
notation,

∥∥∥Pβ(t)
(s, ·)− Pπ(t)(s, ·)

∥∥∥
TV
≤ P(Sβ

t ̸= Sπ
t ).

Lemma 2. Let Sβ
k ∼ P0(Pβ)k and Sπ

k ∼ P0(Pπ)k with the initial state distribution P0 as the
random variables corresponding to the k-step state distributions. Let Ak be the Bernoulli indicator

6
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defined in Equation (5), i.e., Ak = 1{Sβ
k ̸= Sπ

k } with Pr(Ak = 1) = Pr(Sβ
k ̸= Sπ

k ). Then,

1

t

t∑
k=1

E[Ak] ≤
d

ρ+ d
+

1− (1− ρ− d)t

t(ρ+ d)

(
E[A1]−

d

ρ+ d

)
. (12)

The proof is in Appendix H. Lemma 2 establishes that the time-average probability of disagreement
between the two coupled processes decays over time. In Figure 1b, we plot the RHS bounds from
Lemma 2 for several (d, ρ) pairs. Across all configurations, the bounds decay steadily, indicating that
the coupled processes still admit a finite meeting time even under severe off-policy mismatch.

Equivalently, this suggests that the processes eventually coalesce with high probability, and the
relevant notion of convergence is captured by the first meeting time between them. This motivates
introducing the random variable Tβ,π, which directly quantifies the expected horizon until the two
trajectories align. We now show how this notion provides a principled way to determine the effective
truncation length.

Theorem 3. Let the random variable Tβ,π denote the first meeting time of two processes, defined as

Tβ,π := min
{
t ≥ 1 : Sβ

t = Sπ
t | S0 ∼ P0

}
. (13)

The random variable Tβ,π can then be used to refine the truncation length condition in Equation (4),
leading to the following formulation:

K = min

(
1

1− γ
, E[Tβ,π]

)
. (14)

That is, the effective truncation length is determined by either the discount horizon 1/(1− γ) or the
expected meeting time E[Tβ,π], whichever is smaller.

Remark. By coupling arguments, the expected meeting time E[Tβ,π] provides a lower bound on
the mixing scale, i.e., E[Tβ,π] = Ω(τmix). Thus, the truncation length in Equation (14) is always at
least on the order of the intrinsic mixing time of the underlying Markov chain.

The proof and the formal connection between E[At] and E[Tβ,π] are in Section I. We first note
that the expectation E[Tβ,π]—the first meeting time between the two processes—can be estimated
by sampling the time until the first match from t = 0. Let t′ denote the first time step such that
Sβ
t′ = Sπ

t′ , which implies At′ = 0. Since this is the first agreement point, we have
∏t′

i=1Ai = 0.
This construction leads to a natural truncation mechanism in the T4 operator: for all t ≥ t′, the
temporal-difference (TD) error is set to zero, effectively stopping the credit assignment beyond the
first matching point. Specifically, we have(

t∏
i=1

λAi

)
(rt + γEπQ(st+1, ·)−Q(st, at)) = 0 for t ≥ t′ (15)

This truncation reflects the assumption that once the trajectories align, their future evolution can be
treated as equivalent, thereby eliminating the need for further correction beyond the meeting time.

4.1 PRACTICAL IMPLEMENTATION

Building on the theoretical results from Sections 3 and 4, we now present a practical instantiation of
the T4 operator that computes the truncation length. The goal is to mitigate distributional discrepancy
between the target and behavior policies and thereby reduce off-policy evaluation error.

Approximating disagreement probabilities. In theory, the Bernoulli variables Ai are defined
through pi = Pr(Sβ

i ̸= Sπ
i ) in Equation (5), which requires access to the transition kernel P . Since

this is unavailable in the model-free RL, we approximate pi by measuring the overlap between the
two policies on the sampled action ai:

p̂i = 1−min{β(ai | si), π(ai | si)}. (16)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

This proxy interprets the shared support of β and π at (si, ai) as the agreement probability, with
its complement serving as a model-free estimate of disagreement. A key structural fact is that the
environment transition kernel is policy-independent. Thus, Pβ(· | s) and Pπ(· | s) are obtained by
pushing β(· | s) and π(· | s) through the same kernel, which implies a data-processing inequality:

pi = TV(Pβ(· | si), Pπ(· | si)) ≤ TV(β(· | si), π(· | si)) .

Although p̂i is a noisy approximation, it preserves the correct monotonic dependence on policy
mismatch and provides a practical surrogate for the theoretical pi used in our meeting-time analysis.
A detailed justification and formal derivation are provided in Appendix J.

Sampling the meeting time. Using these estimates, we form stochastic traces Â = (Â1, Â2, . . .)

with Âi ∼ Bernoulli(p̂i). The estimated meeting time T̂β,π is taken as the first index t for which
Ât = 0, and the truncation length is then defined as

K̂ = min
{
⌈(1− γ)−1⌉, T̂β,π,

}
,

We also enforce K̂ ≥ 1 to avoid trivial truncations.

Integration with standard algorithms. The pseudocode in Algorithm 1 shows how T4 modifies a
generic actor-critic update such as SAC (Haarnoja et al., 2018) or TD3 (Fujimoto et al., 2018).

Algorithm 1 Time to Truncate Trajectory (T4).

1: Initialize Q-function Qθ, target policy πϕ, behavior policy βϕ
2: B ←empty replay memory.
3: for each episode do
4: for each step do
5: Observe s and take a ∼ βϕ
6: Get next state s′ ∼ P(s, a) and reward r
7: Store {(s, a, r, s′)} in B
8: Sample history minibatch {hi}Bi=1 ∼ B
9: Truncate hi with K̂ = min{(1− γ)−1, T̂β,π}.

10: Update θ and ϕ
11: end for
12: end for

The only difference lies in lines
8–9, where each sampled his-
tory trajectory hi is explicitly
truncated at length K. The ex-
plicit stochastic truncation mech-
anism in T4 has two key bene-
fits. First, it avoids variance am-
plification from long products of
importance weights, since trajec-
tories are truncated immediately
after the first meeting point. Sec-
ond, it reduces sensitivity to man-
ually chosen cap lengths: the ef-
fective horizon is adaptively de-
termined by either the discount
horizon (1− γ)−1 or the estimated meeting time T̂β,π , whichever is smaller.

5 EXPERIMENTS

We evaluate T4 under both SAC and TD3 backbones, and compare against four baseline methods: the
original one-step algorithm, an uncorrected n-step variant, Retrace (Munos et al., 2016), and Peng’s
Q(λ) (Kozuno et al., 2021). All methods use identical network architectures and hyperparameters as
their one-step baselines to ensure fair comparison. Detailed update rules and full hyperparameter
settings are provided in Appendix C.

Figure 4 compares SAC,TD3-T4 with four multi-step baselines across five MuJoCo tasks. SAC-T4
consistently achieves strong performance and converges faster than the baselines. SAC-Retrace
which is a conservative method performs comparably to T4 only on humanoid-v2 but lags behind
elsewhere. Non-conservative methods (Peng’s Q(λ) and n-step) show mixed results and often
underperform even the one-step SAC baseline. Additional TD3-based results are reported in Figure 7
of Appendix. We also report the adaptive truncation lengths computed by T4, shown in the lower-right
panel of Figure 4. These results indicate that fixed n-step baselines can suffer when the effective
truncation horizon is shorter than the chosen cap length n, while T4 remains stable. An ablation on the
choice of truncation length in Figure 5 (top) further confirms that T4 is robust to this hyperparameter.

Evaluation protocol. For fair comparison, we primarily follow standard practice in off-policy
RL benchmarks. In addition, we also report results under the more robust evaluation protocol of

8
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Figure 4: Performance with stochastic truncation. We report IQM-normalized scores across
five MuJoCo tasks for SAC- and TD3-based methods, showing that T4 consistently outperforms
multi-step baselines and converges faster. The right panels visualize the adaptive truncation lengths
estimated by T4 for SAC (third) and TD3 (fourth), illustrating how the effective horizon contracts as
the target policy aligns with the behavior policy. See Section D.1 for more information.

(Agarwal et al., 2021), which computes interquartile mean (IQM) normalized scores. As discussed in
Figure 4, this protocol further highlights the efficiency of T4, showing that it surpasses expert-level
performance in MuJoCo tasks significantly faster than competing multi-step methods.

6 DISCUSSION
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Figure 5: (Top) A sparse-reward control
tasks from the DeepMind Control Suite.
(Bottom) Normalized next-state discrep-
ancy between transitions on Hopper.

Truncation length should be adaptive. Our results
highlight that the key difficulty in multi-step off-policy
RL lies in choosing an appropriate truncation horizon
as illustrated in Figure 1a. When trajectories are sam-
pled from a sequence of changing behavior policies, the
effective horizon depends not only on the discount fac-
tor but also on the mismatch between the behavior and
target policies. Thus, treating the truncation length K
as a fixed cap length, as in conventional n-step methods,
is inherently problematic. This observation is consis-
tent with prior empirical findings in both model-free
(Rainbow) and model-based (MBPO) papers, where
adaptive horizons improved stability.

When Long Horizons Are Needed (large K). A
large effective horizon arises when the behavior policy
mixes slowly or explores regions of the state space that
the target policy has not yet adapted to. In this case, the
expected meeting time between trajectories is long, and
algorithms that fix n too small (e.g., n = 1) lose useful
long-horizon information. This explains why one-step
SAC lags behind SAC-T4 in most environments: T4
adapts to maintain longer horizons (Figure 4). It can
also be interpreted that, in such long-horizon regimes,
the conservative trace coefficients of Retrace cut the
updates too aggressively, discarding useful information
and thereby degrading performance.

When Short Horizons Suffice (small K). Conversely, as policy improvement aligns the target
policy more closely with the behavior distribution, the trajectories meet earlier and the effective
horizon shrinks. In this regime, non-conservative methods like Peng’s Q(λ) or uncorrected n-step
continue to propagate credit too far, leading to unstable updates. Our ablation in Figure 1a confirms
that T4 remains robust even when the effective truncation length decreases during training.

Efficiency in model-based and sparse-reward settings. Beyond dense-reward benchmarks, T4
also demonstrates strong efficiency in both model-based comparisons and sparse-reward tasks. As
shown in Figure 9, T4 rapidly matches the sample efficiency of SAC-based MBPO while remaining

9
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entirely model-free. In addition, Figure 5-(top) highlights that T4 achieves near-optimal performance
significantly faster than Peng’s method and n-step baselines in sparse-reward control, a regime where
prior success has mostly relied on model-based or skill-specific techniques.

Bias–variance trade-off and empirical support for the TV-based analysis. Our cap-length
ablations in Figure 1 reveal a clear bias–variance trade-off consistent with the coupling-based view.
As the truncation horizon increases, multi-step baselines such as uncorrected n-step and Peng’s Q(λ)
accumulate off-policy discrepancies multiplicatively, producing high-variance and biased updates.
This issue appears most clearly in Hopper, where performance degrades as the cap length increases
from 3 to 20, reflecting the mismatch between fixed caps and the evolving behavior–target divergence.
In contrast, T4 remains stable across all truncation lengths: stochastic truncation at the estimated
meeting time removes long-tail variance while preserving essential multi-step information. The
adaptive horizons chosen by T4 match the regime predicted by our coupling analysis—shorter
when β and π differ early in training, and longer as they align—mirroring the decay of disagreement
probabilities in Lemma 2 and providing empirical support for the mixing-time interpretation. Figure 5-
(bottom) provides an empirical sanity check of kernel similarity in continuous spaces. Using a 3D
PCA embedding of next-state transitions and normalized L2 distances as a proxy for kernel divergence,
we observe that most (Pβ , Pπ) transitions lie well below half of the maximum discrepancy (median
≈ 0.36, 90th percentile ≈ 0.64), even when β is uniformly random. It means that the uniform
d-boundedness and cross-Doeblin overlap are reasonably satisfied in MuJoCo dynamics.

7 RELATED WORK

Return-based off-policy and multi-step methods. Our work builds on return-based off-policy
algorithms (Mahmood & Sutton, 2015; Munos et al., 2016; Harutyunyan et al., 2016; Precup, 2000;
Daley & Amato, 2019) and analyses of stochastic TD learning under Markovian sampling (Bhandari
et al., 2018; Mou et al., 2020). Prior multi-step approaches mitigate off-policy mismatch through (i)
weight correction (e.g., Retrace, Tree-Backup, V-trace) (Munos et al., 2016; Precup, 2000; Rowland
et al., 2020), (ii) conservative updates (Kozuno et al., 2021), (iii) eligibility-trace formulations (Singh
& Sutton, 1996; van Hasselt et al., 2021; Daley et al., 2023; Gupta et al., 2024), and (iv) model-based
imagination (Hafner et al., 2020; Janner et al., 2019). These methods differ in how they trade off bias
and variance when propagating multi-step credit. Large-scale RL systems such as R2D2 (Kapturowski
et al., 2018) and IMPALA (Espeholt et al., 2018) highlight the practical importance of stabilizing
long multi-step returns (e.g., via V-trace) rather than adaptively adjusting horizons.

Why multi-step evaluation is hard. Even with small correction weights, long-tail contributions
from later trajectory segments introduce error under Markovian sampling, often yielding oscillatory
Q-functions (Kozuno et al., 2021) and slow error decay (Berthier et al., 2022). Fixed caps alleviate this
but can be misaligned with the environment’s mixing scale, causing under-utilized long-horizon signal
or excessive variance. Beyond trace reweighting, resampling-based approaches include importance
resampling (Schlegel et al., 2019), stationary-distribution corrections (Yuan et al., 2021; Yang et al.,
2020), and covariate-shift correction (Gelada & Bellemare, 2019; Hallak & Mannor, 2017). T4 is
complementary: instead of estimating precise ratios, it stochastically truncated returns based on
estimated disagreement between behavior and target rollouts, reducing sensitivity to fixed caps while
remaining compatible with standard actor–critic methods.

8 CONCLUSION

We presented T4, a stochastic variant of Retrace that adaptively truncates trajectories at the estimated
meeting time. This mechanism mitigates off-policy discrepancies while preserving useful long-
horizon credit, consistently improving over one-step and multi-step baselines across diverse RL
benchmarks. Our analysis relies on a d-bounded kernel condition, which serves as a simplified
form of uniform ergodicity. Although we do not explicitly verify this assumption in our benchmark
environments, the empirical results suggest that T4 remains effective even without strict mixing
guarantees. Future work includes extending T4 to model-based settings for tighter horizon control
and developing practical diagnostics to adapt truncation length online.
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A BACKGROUND ON ERGODICITY AND MAXIMAL COUPLING

We now state the coupling lemma, which provides a tool for bounding the total variation distance.

For any two probability distributions ν1 and ν2 over S, we define the total variation (TV) distance
∥·∥TV as

∥ν1 − ν2∥TV :=
1

2

∑
s∈S
|ν1(s)− ν2(s)| = max

A⊂S
|ν1(A)− ν2(A)|,

where the norm ∥·∥ corresponds to the L1 metric. By definition, the TV distance takes values in the
interval [0, 1].

Lemma 3 (Coupling Lemma). Let ν1 and ν2 be two probability distributions over a finite space S.
Then there exists a coupling (X,Y ) of ν1 and ν2 such that

P(X ̸= Y ) ≥ ∥ν1 − ν2∥TV .

A coupling that achieves this equality is called a maximal coupling and can be written as

P(X ̸= Y ) = ∥ν1 − ν2∥TV = 1−
∑
s∈S

min(ν1(s), ν2(s)). (17)

Maximal coupling minimizes the probability of disagreement P(X ̸= Y ) among all possible couplings
of ν1 and ν2. Under this condition, we say the MDP is uniformly ergodic with α if there exists a
constant α ∈ (0, 1) and C > 0 such that

max
s∈S

∥∥∥Pβ(t)
(s, ·)− µβ

∥∥∥
TV
≤ C(1− α)t

for all t ∈ N.

B EXTENDED RELATED WORK

A parallel line of work studies policy learning under uniform/geometric mixing or access to the
stationary distribution (Meyn & Tweedie, 2012; Hao et al., 2020; Abbasi-Yadkori et al., 2019; Neu &
Olkhovskaya, 2021), and leverages mixing-time-aware analyses in MDPs (Suttle et al., 2023; Wei
et al., 2021). In contrast, our approach is model-free and does not assume direct access to stationary
distributions or exact mixing times. Instead, T4 adapts the truncation horizon via a stochastic
meeting-time proxy derived from policy overlap, aligning the effective multi-step depth with the
evolving off-policy mismatch during training.

C IMPLEMENTATION DETAILS

In this section, we describe the full implementation details of T4. Following the standard practice in
off-policy RL, we use the PyTorch version of the implementations in OpenAI SpinningUp (Achiam,
2018).

Experimental Setup We compare T4 with four baseline methods, a conventional one-step method,
uncorrected multi-step method, Retrace (Munos et al., 2016) and Peng’s Q(λ) (Kozuno et al.,
2021). Given a randomly sampled trajectory (s0, a0, r0, s1, a1, r1, s2, · · · ), where Qθ− denotes the
target Q-function, and ãϕ(si) is a sample from πϕ(·|si). The detailed targets for the Q-function
of all algorithms are described in Table 1 in Section C. We note that all algorithms we used are
based on actor-critic method and update the policy network only with the starting target at (s0, a0).
For example, SAC based methods update the parameter of policy networks by gradient ascent
argmaxπ Qtarget(s0, ãϕ(s0)) + α log πϕ(ãϕ|s0).

Training and evaluation. For all algorithms, we use [256, 256]-sized multi-layer perceptrons
(MLPs) for all neural networks. We train with 1M environment steps for openAI Mujoco and evaluate
the agent every 1000 steps by using deterministic policy in 10 episodes.
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Implementations of multi-step operators. We provide pseudocode for multi-step off-policy
actor-critic deep RL algorithms

The multi-step target value can be computed recursively for a given trajectory
(s0, a0, r0, s1, a1, r1, · · · ). Let Qθ1 , Qθ2 be two Q-function critic and Q̂i be the target value
estimate at environment step i. We can write

Q̂i = ri + γmin(max
a

Qθ1(si, a),max
a

Qθ2(si, a))

+ γλ
(
Q̂i+1 −min(max

a
Qθ1(si, a),max

a
Qθ2(si, a))

)
.

For continuous action space, we approximate maxaQθ(si, a) as Qθ(si, πϕ(s)). Practically, we use a
finite-length trajectory (s0, a0, r0, s1, a1, r1, · · · , sc) where c is the cap length of the trajectory.

Table 1: The details of the multi-step targets for baselines and our method for SAC. We note that T4
samples each A1, A2, · · · , Ak−1 from the corresponding probabilities p̂1, p̂2, · · · , p̂K−1.

Algorithm Update pseudo-code

One-step RL r0 + γ(Qθ(s1, ãϕ(s1))− α log πϕ(ãϕ(s1)|s1))
Uncorrected K

∑K−1
i=0 γiri + γK(Qθ(s1, ãϕ(s1))− α log πϕ(ãϕ(s1)|s1))

Retrace
∑K−1

i=0 γi(
∏i

j=1 cj)(ri + γ(Qθ(si+1, ãϕ(si+1))− α log πϕ(ãϕ(si+1)|si+1)− ci+1Qθ(si+1, ai+1))

Peng’s Q(λ)
∑K−1

i=0 (γλ)i(ri + γ(1− λ)(Qθ(si+1, ãϕ(si+1))− α log πϕ(ãϕ(si+1)|si+1)).
T4

∑K−1
i=0 γi(

∏i
j=1Aj)(ri + γ(Qθ(si+1, ãϕ(si+1))− α log πϕ(ãϕ(si+1)|si+1)−Ai+1Qθ(si+1, ai+1))

Methods and Hyperparameters. We use two one-step RL algorithms, SAC and TD3 for the
multi-step extension.

1. Twin-Delayed Deep Deterministic Policy Gradient (TD3). TD3 (Fujimoto et al., 2018)
adopts the same training pipeline and neural network architecture as DDPG, but introduces
several improvements to address overestimation bias in Q-learning. Specifically, TD3 uses
two critic networks, denoted as Qθ1(s, a) and Qθ2(s, a), with independent parameter sets
θ1 and θ2. This twin-critic design follows the principle of double Q-learning (van Hasselt,
2010), which mitigates the positive bias introduced by max operators in standard Q-learning
updates.

2. Soft Actor-Critic (SAC). SAC (Haarnoja et al., 2018) also adopts the same training
pipeline and architecture as DDPG and TD3, but introduces a fundamentally different
objective based on maximum entropy reinforcement learning. The core idea of SAC
is to augment the reward function with an entropy term that encourages exploration by
discouraging the policy from collapsing to a deterministic distribution. Similar to TD3,
SAC maintains two critic networks to reduce the overestimation bias present in standard
actor-critic methods.

Basically, we adopt all default hyper-parameters from the code base in OpenAI SpinningUp. The cap
length denotes the upper limit of the sub-trajectory length for the baseline algorithms, unocrrected
n-step, Retrace, and PQL. We report the detailed values in the below.

Experimental Details. We implement T4 and other baselines in PyTorch on top of the standard
evaluation protocol of off-policy RL ealgorithms in Google Dopamine (Castro et al., 2018) We
provide our full implementation and commands to reproduce our main results of T4 at (https:
//anonymous.4open.science/r/t4-BD20).
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Table 2: TD3 Hyperparameters

Hyperparameter Value

Actor learning rate 1× 10−3

Critic learning rate 1× 10−3

Batch size 100
Replay buffer size 1× 106

Discount factor γ 0.99
Polyak averaging coefficient (τ ) 0.995
Target policy noise (stddev) 0.2
Target noise clip 0.5
Policy update delay (frequency) 2 steps
Exploration noise (initial stddev) 0.1
Action range [-1, 1]
Start steps (before training begins) 10000
Max episode length 1000
cap length 5
lambda (λ) 0.7

Table 3: SAC Hyperparameters

Hyperparameter Value

Actor learning rate 1× 10−3

Critic learning rate 1× 10−3

Entropy coefficient (initial α) 0.2 (fixed)
Batch size 100
Replay buffer size 1× 106

Discount factor γ 0.99
Polyak averaging coefficient (τ ) 0.995
Target update interval Every 1 step
Automatic entropy tuning Enabled
Start steps (before policy used) 10000
Action range [-1, 1]
Max episode length 1000
cap length 5
lambda (λ) 0.7

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL RESULTS
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Figure 6: Performance with stochastic truncation. Across five MuJoCo benchmarks, our method
(T4) consistently outperforms multi-step baselines and achieves faster convergence. For baseline
comparisons, we follow the convention of (Kozuno et al., 2021) and fix the cap length to n = 5 for
all multi-step methods.
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Figure 7: Evaluation of Twin-Delayed Deep Deterministic Policy Gradients (TD3) variants over
openAI mujoco environments.
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Figure 8: Comparison of SAC, SAC-T4, and MBPO across four MuJoCo benchmarks. Following
our analysis of horizon sensitivity, we use different multi-step configurations per environment:
halfcheetah and walker use a standard multi-step setting (cap length = 5, λ = 0.7), whereas ant and
hopper follow the longer-horizon model-based configuration inspired by MBPO (cap length = 25,
λ = 0.1). Across all tasks, T4 consistently accelerates learning and improves sample efficiency by
adaptively adjusting its effective truncation length to the behavior–target policy mismatch, often
matching or approaching MBPO despite being entirely model-free.

Table 4: Reference scores for min–max normalization. Random and expert performance values are
taken from D4RL (Fu et al., 2021) and Minari (Farama Foundation, 2022). These values are used for
computing normalized IQM scores in MuJoCo environments.

Environment Random Score Expert Score

Hopper −20.27 3234.3
HalfCheetah −280.18 12135.0
Walker2d 1.63 4592.3
Ant −325.6 3879.7
Humanoid 78.85 9024.95

D.1 EVALUATION RESULTS BY THE PROTOCOL OF IQM

We conducted experiments following the evaluation protocol proposed in (Agarwal et al., 2021)
to further examine the online RL performance of T4. This protocol emphasizes robust evaluation
through interquartile mean (IQM) scores and normalized performance, and applying it highlights the
superiority of our method in five different MuJoCo environments.

For these experiments, we computed min–max normalized scores across 10 runs (seeds). While prior
work (Agarwal et al., 2021) typically reports 8 seeds, we adopted 10 runs to ensure more reliable
estimates. The steps reported in the table correspond to 1,000K environment interactions. Metric
computation was conducted using the official codebase of (Agarwal et al., 2021). For min–max
normalization, expert and random scores were taken from the Minari extension (Farama Foundation,
2022) of D4RL (Fu et al., 2021); the Humanoid benchmark follows Minari scores, while the remaining
tasks use D4RL values.

Across both SAC- and TD3-based experiments, T4 exhibits faster learning curves than existing
multi-step methods and baseline algorithms. Notably, as shown in the table, only T4 surpasses the
expert score within 1,000K steps, whereas prior methods typically require up to 3,000K steps to
achieve comparable performance. This demonstrates the strong sample efficiency and effectiveness
of our stochastic truncation approach.
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D.2 ADDITIONAL EARLY-TRAINING DIAGNOSTICS ON ATARI

To assess the stability of the proposed multi-step operator in the low-data regime, we report IQM
results on Pong and Breakout at 500K agent steps (update horizon = 5, λ = 1). C51-T4 exhibits
both higher normalized scores and reduced variance compared to C51, Rainbow, and DQN, indicating
that stochastic truncation improves the robustness of multi-step distributional learning during early
training.

0.000 0.025 0.050 0.075

DQN

C51

Rainbow

C51-T4

IQM (Human Normalized)

Normalized ScoreFigure 9: IQM comparison on Pong and Breakout after 500K agent steps (update horizon = 5,
λ = 1). Our C51-T4 operator achieves clearly higher normalized scores than C51, Rainbow, and
DQN, while also exhibiting lower variance. These results indicate that the stochastic truncation
mechanism stabilizes multi-step distributional learning even in the early-training regime.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E PROOF OF THEOREM 1

We consider the operator R defined by a clipped importance weight sequence {ct}, interpolation
factor λ ∈ [0, 1], and total variation distance proxy d, where we clip the weight between the behavior
policy µ and target policy π.

Let Q be an arbitrary action-value function and Qπ the fixed point of the target Bellman operator T π:

T πQπ = Qπ.

We define the difference:
∆Q := Q−Qπ.

We now derive the deviation of the clipped operatorR from Qπ:

RQ(s, a)−Qπ(s, a) =
∑
t≥1

γtEa1:t
s1:t

[(
t−1∏
i=1

ci

)
(Eπ∆Q(st, ·)− ct∆Q(st, at))

]

=
∑
t≥1

γtEa1:t−1
s1:t

[(
t−1∏
i=1

ci

)
(Eπ∆Q(st, ·)− Eat

[ct(at,Ft)∆Q(st, at) | Ft])

]

=
∑
t≥1

γtEa1:t−1
s1:t

[(
t−1∏
i=1

ci

)∑
b

(π(b|st)− β(b|st)ct(b,Ft))∆Q(st, b)

]
.

Let us define weights:

wy,b :=
∑
t≥1

γtEa1:t−1
s1:t

[(
t−1∏
i=1

ci

)
(π(b|st)− β(b|st)ct(b,Ft))1{st = y}

]
.

Then the difference becomes:

RQ(s, a)−Qπ(s, a) =
∑
y,b

wy,b∆Q(y, b).

However, in our setting, sub-convexity does not hold in general due to the possibility of negative
weights (when π(b|st) < λβ(b|st)d).

To ensure convergence toward the fixed point Qπ, we require the operatorR to be a contraction in
the supremum norm (also known as ℓ∞-norm). That is, we want the following condition to hold:

∥RQ−RQ′∥∞ ≤ κ∥Q−Q′∥∞, κ < 1. (18)

This ensures that the operatorR brings any two value functions closer under repeated application,
eventually converging to a unique fixed point. Our operator deviation is expressed as a weighted
combination of differences ∆Q(y, b), and the contraction factor κ can be interpreted as the total
weight magnitude:

κ :=
∑
y,b

|wy,b|, (19)

where wy,b is the weight assigned to the deviation term ∆Q(y, b). Hence, for contraction to hold, we
require: ∑

y,b

|wy,b| < 1. (20)

This forms the key criterion for verifying that the operator R induces a contraction in value space
and guarantees convergence under repeated application.
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Deviation Decomposition and Contraction Analysis. Define, for state y and action b,

wy,b = π(b | y) − λβ(b | y) pt.

Then, the total absolute deviation at state y is∑
b

|wy,b| =
∑
b∈P

(
π(b | y)− λβ(b | y)pt

)
+
∑
b∈N

(
λβ(b | y)pt − π(b | y)

)
,

where
P = {b : π(b | y) ≥ λβ(b | y)pt}, N = {b : π(b | y) < λβ(b | y)pt}.

This simplifies to∑
b

|wy,b| =
∑
b

π(b | y)−λpt
∑
b

β(b | y)+2
∑
b∈N

(
λβ(b | y)pt−π(b | y)

)
= 1−λpt+2

∑
b∈N

(
λβ(b | y)pt−π(b | y)

)
.

The total weighted deviation over time is∑
t≥1

γt E

[
ξ t−1

∑
b

∣∣π(b | st)− λβ(b | st)pt∣∣] .
Using the above decomposition, this equals∑

t≥1

γt E

[
ξ t−1

(
1− λpt + 2

∑
b∈Nt

(
λβ(b | st)pt − π(b | st)

))]
,

where Nt = {b : π(b | st) < λβ(b | st)pt}.
Thus we obtain the upper bound

∥RQ−Qπ∥∞ ≤ (1− λpt)
∑
t≥1

γtξ t−1

︸ ︷︷ ︸
= γC

+ 2∆λ,

with

C :=
∑
t≥0

(γξ)t =
1

1− γξ
, ∆λ :=

∑
t≥1

γtξ t−1
∑
b∈Nt

(
λβ(b | st)pt − π(b | st)

)
.

Using pt ≤ ξ. Since (1− λpt) decreases in pt, the safe bound is

(1− λpt) γC ≤ γC.

Meanwhile,

∆λ ≤ λ
∑
t≥2

γtξ t−1 = λγξ(C − 1) =
λγ2ξ2

1− γξ
.

Hence the combined bound is

∥RQ−Qπ∥∞ ≤ γC + 2λγξ(C − 1) =
γ

1− γξ
+

2λγ2ξ2

1− γξ
.

Contraction condition. For contraction we require

γ

1− γξ
+

2λγ2ξ2

1− γξ
< 1 ⇐⇒ γ + 2λγ2ξ2 < 1− γξ.

Equivalently,

2λγ2ξ2 < 1− γ(1 + ξ) .
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Therefore:

1. Feasible γ (RHS must be positive):

0 < γ <
1

1 + ξ

2. Feasible λ for given γ:

0 ≤ λ ≤ min

{
1,

1− γ(1 + ξ)

2γ2ξ2

}
, 0 < γ < 1

1+ξ

3. Worst case ξ = 1: The global constraint is γ < 1
2 . For fixed λ, the maximal γ is

γ+(λ, 1) =
−1 +

√
1 + 2λ

2λ
(further capped by 1/2).

F PROOF OF THEOREM 2

This proof basically follows the same arguments as in the proof of the policy iteration of Retrace
(Munos et. al. (2016)) (Munos et al., 2016).

Step 1. Defining (sub)-probability transition operator Since the corresponding probability ps
that As = 1 is Markovian by the definition in Equation (5), we first examine the follwing expectation:

Eps

[∑
s′

∑
a′

P(s′|s, a)β(a′|s′)AsQ(s′, a′)

]
=
∑
s′

∑
a′

P(s′|s, a)β(a′|s′)ps(s′, a′)Q(s′, a′).

(21)

Now, we define the corresponding (sub)-probability transition operator:

∑
s′

∑
a′

P(s′|s, a)β(a′|s′)p(s′, a′)Q(s′, a′) =: (PpβQ)(s, a). (22)

Step 2. Upper bound on Qn+1 −Q∗ We rewrite our T4 operator in Equation (6) as follows.

Rp,λQ = Q+
∑
t≥0

(γλ)t(Ppβ)t(T πQ−Q) = Q+ (I − γλPpβ)−1(T πQ−Q) (23)

where (I − γλPpβ)−1 =
∑∞

t=0(γλPpβ)t. Since Qn+1 = Rp,λQn,

Qn+1 −Q∗ = Qn −Q∗ + (I − γλPpβ)−1(T πQn −Qn)

= (I − γλPpβ)−1[T πQn −Qn + (I − γλPpβ)(Qn −Q∗)]

= (I − γλPpβ)−1[T πQn −Q∗ − γλPpβ(Qn −Q∗)]

= (I − γλPpβ)−1[T πQn − T Q∗ − γλPpβ(Qn −Q∗)]

≤ (I − γλPpβ)−1
[
γλPπ(Qn −Q∗)− γλPpβ(Qn −Q∗)

]
= γλ(I − γλPpβ)−1[Pπ − Ppβ ](Qn −Q∗)

= B(Qn −Q∗),

where we denote γλ(I − γλPpβ)−1[Pπ − Ppβ ] as B. We rewrite B as

B = γλ(I − γλPpβ)−1[Pπ − Ppβ ] = γλ
∑
t≥0

(γλ)t(Ppβ)t(Pπ − Ppβ).
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To show that B has non-negative elements, whose sum over each row is at most γλ. Let 1 be the
vector with 1-components. We obtain

(Pπ − Ppβ)1(s, a) =
∑
s′

∑
a′

P(s′ | s, a) [π(a′ | s′)− p(s′, a′)β(a′ | s′)] ≥ 0 (24)

Then, we have

B1(s, a) = γλ
∑
t≥0

(γλ)t(Ppβ)t(Pπ − Ppβ)1(s, a)

= γλ
∑
t≥0

(γλ)t(Ppβ)t1(s, a)−
∑
t≥0

(γλ)t+1(Ppβ)t+11(s, a)

= 1(s, a)− (1− γλ)
∑
t≥0

(γλ)t(Ppβ)t1(s, a)

≤ γλ1(s, a).

The last inequality is derived by
∑

t≥0(γλ)
t(Ppβ)t1 ≥ 1). By the result of Theorem 1, we have

Qn+1 −Q∗ ≤ γλ∥Qn −Q∗∥p,∞1. (25)

Step 3. Lower bound on Qn+1 −Q∗ By Equation (23), we obtain

Qn+1 = Qn + (I − γλPpβ)−1(T πQn −Qn)

= Qn +
∑
i≥0

(γλPpβ)i(T πQn −Qn)

= T πQn +
∑
i≥1

(γλPpβ)i(T πQn −Qn)

= T πQn + γλPpβ(I − γλPpβ)−1(T πQn −Qn).

As we define εn in the statement of Theorem 2, we have
T πnQn ≥ T Qn − εn∥Qn∥ ≥ T πQn − εn∥Qn∥.

Then,
Qn+1 −Q∗ = Qn+1 − T πnQn + T πnQn − T π∗

Qn + T π∗
Qn − T π∗

Q∗

≥ Qn+1 − T πnQn + γPπ∗
(Qn −Q∗)− εn∥Qn∥1.

As a result, we conclude that
Qn+1 −Q∗ ≥ γλPpβ(I − γλPpβ)−1(T πQn −Qn) + γPπ(Qn −Q∗)− εn∥Qn∥1. (26)

Step 4. Lower bound on T πQn −Qn Similar to (Munos et al., 2016), we assume that εn → 0,
T π0

Q0 −Q0 ≥ 0, and (πn) is increasingly greedy with regard to (Qn) as follows:
T πn+1Qn+1 −Qn+1 ≥ T πnQn+1 −Qn+1.

LetHn = γ[Pπk − Ppβ ](I − γλPpβ)−1. We have

T πn+1Qn+1 −Qn+1 ≥ T πnQn+1 −Qn+1

= T πnRp,λQn −Rp,λQn

= r + (γPπn − I)Rp,λQn

= r + (γPπn − I)
[
Qn + (I − γλPpβ)−1(T πQn −Qn)

]
= T πnQn −Qn + (γPπn − I)(I − γλPpβ)−1(T πQn −Qn)

= γ[Pπk − Ppβ ](I − γλPpβ)−1(T πQn −Qn)

= Hn(T πQn −Qn), (16)
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Recall that Pπn −Ppβ (as shown in Equation (24)) and (I − γλPpβ)−1 have non-negative elements.
In the above, we proved thatHn has non-negative elements as well. Therefore,

T πQn −Qn ≥ Hn−1Hn−2 · · ·H0(T π0Q0 −Q0) ≥ 0.

Finally, Equation (26) implies that

Qn+1 −Q∗ ≥ γPπ∗
(Qn −Q∗)− εn∥Qn∥1.

Combining the above with Equation (25), we have

∥Qn+1 −Q∗∥ ≤ γ∥Qn −Q∗∥+ εn∥Qn∥.

We note that Qn is bounded. When ϵn satisfies εn < (1− γ)/2, we have

∥Qn+1∥ ≤ ∥Q∗∥+ γ∥Qn −Q∗∥+ 1− γ
2
∥Qn∥ ≤ (1 + γ)∥Q∗∥+ 1 + γ

2
∥Qn∥.

Furthermore,

lim sup ∥Qn∥ ≤
1 + γ

1− (1 + γ)/2
∥Q∗∥.

Since Qn is bounded, we conclude that lim supQn = Q∗.

G PROOF OF LEMMA 1

We start the proof with the following lemma.

Lemma 4. Under Definition 1, any two stationary distributions µβ and µπ of Pβ and Pπ satisfy
∥µβ − µπ∥TV ≤

d
α .

The proof of Lemmas 4 relies on properties of nearby Markov chains. Detailed proof is provided in
Appendix G.1.

Step 1. Inserting µπ by triangular inequality First, we can upper bound the distance from
stationary of Pβ by triangular inequality:∥∥∥Pβ(t)

(s, ·)− µβ

∥∥∥
TV
≤
∥∥∥Pβ(t)

(s, ·)− µπ

∥∥∥
TV

+ ∥µβ − µπ∥TV ,

where µπ denotes the stationary distribution of Pπ .

Step 2. Bounding the distance from stationary By using the distance between two nearby Markov
chains, we have

∥∥∥Pβ(t)
(s, ·)− µπ

∥∥∥
TV

+ ∥µβ − µπ∥TV

=
∥∥∥Pβ(t)

(s, ·)− µπPπ(t)
∥∥∥

TV
+ ∥µβ − µπ∥TV

≤ max
s′

∥∥∥Pβ(t)
(s, ·)− Pπ(t)(s′, ·)

∥∥∥
TV

+ ∥µβ − µπ∥TV

≤ max
s′

{∥∥∥Pβ(t)
(s, ·)− Pπ(t)(s, ·)

∥∥∥
TV

+
∥∥∥Pπ(t)(s′, ·)− Pπ(t)(s, ·)

∥∥∥
TV

}
+ ∥µβ − µπ∥TV

≤
∥∥∥Pβ(t)

(s, ·)− Pπ(t)(s, ·)
∥∥∥

TV
+max

s′

{∥∥∥Pπ(t)(s′, ·)− Pπ(t)(s, ·)
∥∥∥

TV

}
+ ∥µβ − µπ∥TV

By Lemma 4, we have
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∥∥∥Pβ(t)
(s, ·)− Pπ(t)(s, ·)

∥∥∥
TV

+max
s′

∥∥∥Pπ(t)(s, ·)− Pπ(t)(s′, ·)
∥∥∥

TV
+ ∥µβ − µπ∥TV

≤
∥∥∥Pβ(t)

(s, ·)− Pπ(t)

(s, ·)
∥∥∥

TV
+ (1− α)t + d

α

≤
∥∥∥Pβ(t)

(s, ·)− Pπ(t)

(s, ·)
∥∥∥

TV
+ 1− α+

d

α
.

G.1 PROOF OF LEMMA 4

By the triangle inequality,

∥µβ − µπ∥TV ≤
∥∥µβPβ − µπPβ

∥∥
TV +

∥∥µπPβ − µπPπ
∥∥

TV

= (1− α) ∥µβ − µπ∥TV + d.

Each term in the second line is derived from the ergodicity of Markov chain and Definition 1,
respectively. Then, we have

∥µβ − µπ∥TV ≤
d

α
.

H PROOF OF LEMMA 2

The proof is basically the same as Theorem 9 in (Johndrow & Mattingly, 2017a) with minor modifica-
tion. We construct a coupling (Sβ

t , S
π
t ) to examine the long-time dynamic of the agreement between

Sβ
t and Sπ

t .

Step 1. Construction of the Coupling Given any two probability measures m1 and m2 on S , it is
known that

∥m1 −m2∥TV = 1−min(m1,m2)(S) = [m1 −m2]
+(S) = [m2 −m1]

+(S).

Now we compare two transitions Pβ and Pπ where the transition kernel P is uniformly d-bounded.
For any ξ = (ξ1, ξ2) ∈ S × S, we define the measures on S

Qd(ξ, ·) =
min(Pπ(ξ1, ·),Pβ(ξ2, ·))

ρd(ξ)
, Rd(ξ, ·) =

[Pπ(ξ1, ·)− Pβ(ξ2, ·)]+

1− ρd(ξ)
,

R̃d(ξ, ·) =
[Pβ(ξ2, ·)− Pπ(ξ1, ·)]+

1− ρd(ξ)
,

where ρd(ξ) denotes
ρd(ξ) = 1− ∥Pπ(ξ1, ·)− Pβ(ξ2, ·)∥TV.

We note that these three measures are all probability measures on S for fixed ξ ∈ S × S. Now we
define the transition kernels in S × S for ξ = (ξ1, ξ2) and s = (s1, s2) in S × S:

Qd(ξ, ds) = ρd(ξ)Qd(ξ, ds1)δs1(ds2) + (1− ρd(ξ))
(
Rd(ξ, ds1)× R̃d(ξ, ds2)

)
. (27)

Step 2. Using stochastic dominance among random variables For the following derivations, we
first define a stochastic process Zd

n

Zd
n =

{
0 if Sβ

n = Sπ
n

1 if Sβ
n ̸= Sπ

n

(28)
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where (Sβ
t , S

π
t ) be the Markov chain on S × S defined by the above transition density Qd in

Equation (27). Since Zd
n is not Markovian, we define the probability P(Zd

n+1 = k | Zd
n = j) as

E[1{Zd
n+1 = k} | Zd

n = j]. Note that Zd
k corresponds to the Bernoulli indicator Ak. Now we

have
P(Zd

n+1 = 0 | Zd
n = 0) ≥ 1− d and P(Zd

n+1 = 0 | Zd
n = 1) ≥ ρ

with probability 1. Let Yn be the Markov chain on {0, 1} with the transition matrix

Pd =

(
1− d d
ρ 1− ρ

)
(29)

and assume that d < 1− ρ. We have

P(Zd
n+1 = 0 | Zd

n = 0) ≥ P(Yn+1 = 0 | Yn = 0) = 1− d,
P(Zd

n+1 = 0 | Zd
n = 1) ≥ P(Yn+1 = 0 | Yn = 1) = ρ,

P(Zd
n+1 = 0 | Zd

n = 0) ≥ P(Yn+1 = 0 | Yn = 1) = ρ.

with probability 1. This result implies that

P(Zd
n+1 ≤ k | Zd

n ≤ Yn) ≥ P(Yn+1 ≤ k | Zd
n ≤ Yn) (30)

for all k ≥ 0 and n ≥ 0. It is equivalent to the definition of stochastic dominance, then we can
construct a monotone coupling of the processes Yn and Zd

n where

P(Zϵ
n ≤ Yn for all n) = 1 (31)

and Zd
0 ≤ Y0. Finally, with probability 1, we have

1

n

n−1∑
k=0

1{Sβ
k ̸= Sπ

k } =
1

n

n−1∑
k=0

1{Zd
k = 1} ≤ 1

n

n−1∑
k=0

1{Yk = 1}. (32)

We note that it is enough to bound the amount of time Yn = 1 to control the fraction of the time that
Sβ
n and Sπ

n disagree.

Step 3. Bounding chain in expectation The key idea in our proof is to leverage the fact that Zd
n is

stochastically dominated by Yn. By explicitly analyzing the amount of time that Yn spends in state
1, we can derive bounds relevant to the problems of interest. Let a Markov transition matrix of the
bounding chain be

Pd =

(
1− d d
ρ 1− ρ

)
. (33)

We know that the Markov chain Pd has a generator Ld = Pd − I and its unique stationary measure
µd denoted by

µd =

(
ρ

ρ+ d
,

d

ρ+ d

)
. (34)

Note that, by definition, µdLd = 0 and µdPd = µd. We define the following vectors

ϕ =

(
0
1

)
, 1 =

(
1
1

)
, ϕ̄d = µdϕ1 =

(
d

ρ+ d
,

ρ

ρ+ d

)
, and ϕ̃d = ϕ−ϕ̄d =

(
−d
ρ+ d

,
ρ

ρ+ d

)
.

Let ψd be the solution to the following equation

Ldψd = −ϕ̃d. (35)

Then, we can easily see that

ψd =

∞∑
k=0

Pd
(k)ϕ̃d. (36)
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Consider wd =

(
−ϵ
1

)
. It satisfies Pdwd = (1 − ρ − d)wd, then wd is a right-eigenvector with

eigenvalue 1− ρ− d. Since ϕ̃d = ρ
ρ+dwd, we have

ψd =

(
ρ

ρ+ d

)( ∞∑
k=0

(1− ρ− d)k
)
wd =

ρ

(ρ+ d)2
wd.

We note that d < 1−ρ by definition so that 1−ρ−d ∈ (0, 1). For any initial distribution of (Sβ
1 , S

π
1 )

induced by PβP0 and PπP0, we define the initial distribution of Yn as

ν(0) = P(Sβ
1 = Sπ

1 ) and ν(1) = P(Sβ
1 ̸= Sπ

1 ),

respectively. Combining the above properties, we have

νPn
d ψd − νψd =

n−1∑
k=0

νPk
dLdψd =

n−1∑
k=0

νPk
dϕ− nνϕ̄d.

Rearranging the above equation, we finally have

1

n

n−1∑
k=0

νPk
dϕ =

d

ρ+ d
+
νPn

d ψdνψd

n
=

d

ρ+ d
+

ρ

n(ρ+ d)2
(1− (1− ρ− d)n)νwd

=
d

ρ+ d
+

1− (1− ρ− d)n

n(ρ+ d)2
(ρP(Sβ

1 ̸= Sπ
1 )− d(1− P((Sβ

1 ̸= Sπ
1 )))

=
d

ρ+ d
+

1− (1− ρ− d)n

n(ρ+ d)
(P(Sβ

1 ̸= Sπ
1 )−

d

ρ+ d
).

Note that
1

n

n−1∑
k=0

1{Yk = 1} = 1

n

n−1∑
k=0

ϕ(Yk)

by the definition in Equation (32). We conclude that

1

n

n∑
k=1

P(Sβ
k ̸= Sπ

k ) ≤
1

n

n−1∑
k=0

νPk
dϕ =

d

ρ+ d
+

1− (1− ρ− d)n

n(ρ+ d)

(
P(Sβ

1 ̸= Sπ
1 )−

d

ρ+ d

)
. (37)

I PROOF OF THEOREM 3

Step 1. Analyze the property of coupling time To begin with, recall that the Markov chain Yn on
{0, 1} has the following transition matrix

Pd =

(
1− d d
ρ 1− ρ

)
.

We introduce the conditional expectation of a random variable with respect to σ-algebra. Define a
filtration Fn = σ(Y0, Y1, Y2, · · · , Yn) and {Yn} is adapted to {Fn} and a stopping time

τd = min{n ≥ 0 | Yn = 0}.

Since Tβ,π = min{t ≥ 1 : Sβ
n = Sπ

n | S0 ∼ P0} is the first meeting time of two processes (Sβ
n , S

π
n)

defined in Lemma 2, we can rewrite Tβ,π as

Tβ,π = min{t ≥ 1 : Sβ
n = Sπ

n | S0 ∼ P0} = min{t ≥ 1 : Zd
n = 0}.

Suppose that E[τ ] < ∞. We first note that the stochastic ordering Tβ,π ≥ τd since we construct a
monotone coupling of Yn and Zd

n in Equation (30). Then, for any meeting time τ , we have

P(Tβ,π ≤ τ) ≤ P(τd ≤ τ).
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Therefore,

P(τd > τ) =

∞∑
k=1

P(τd > k)P(τ = k) =

∞∑
j=1

(1− ρ)j−1P(τ = j) = E[(1− ρ)τ ]. (38)

Let Λ(ρ) = E[(1 − ρ)τ ]. To obtain an intuitive result, assume that τ ≤ N almost surely for some
constant N . Under this assumption, Λ(ρ) is differentiable everywhere. In the region ρ ∈ (0, ϵ0) for
some small ϵ0 > 0, the Lagrange remainder of its Taylor expansion yields:

Λ(ρ) = 1− ρE[τ ] + 1

2
Λ′′(ξ)E[τ(τ − 1)] ≥ 1− ρE[τ ]

for some ξ ∈ (0, ρ).

Finally, we have
P(τd > τ) ≥ 1− ρE[τ ]. (39)

Therefore,
P(Tβ,π ≤ τ) ≤ P(τd ≤ τ) ≤ ρE[τ ]. (40)

We conclude that the probability of Tβ,π is well defined and note that its value is upper-bounded by
the chain Yn. In the next step, we evaluate the mixing time by using the practical stopping time that
two process first meet.

Step 2. Upper bound of the distance from the stationary of Pβ By Lemma 1, we can upper
bound

∥Pβ(t)
(s, ·)− µβ∥TV ≤

∥∥∥Pβ(t)
(s, ·)− Pπ(t)(s, ·)

∥∥∥
TV

+ 1− α+
d

α
. (41)

By the property of coupling, we have

∥Pβ(t)
(s, ·)− µβ∥TV ≤

∥∥∥Pβ(t)
(s, ·)− Pπ(t)(s, ·)

∥∥∥
TV

+ 1− α+
d

α

≤ P(Sβ
t ̸= Sπ

t |S
β
0 = s, Sπ

0 = s) + 1− α+
d

α

≤ P(Tβ,π > t|Sβ
0 = s, Sπ

0 = s) + 1− α+
d

α
.

Applying Markov’s inequality, we have

∥Pβ(t)
(s, ·)− µβ∥TV ≤ P(Tβ,π > t|Sβ

0 = s, Sπ
0 = s) + 1− α+

d

α

≤ E[Tβ,π]
t

+ (1− α+
d

α
)

To evaluate the mixing time of Pβ , we approximate the above inequality as

∥Pβ(t)
(s, ·)− µβ∥TV ≤ P(Tβ,π > t|Sβ

0 = s, Sπ
0 = s) + 1− α+

d

α

≲
E[Tβ,π]

t
.

Then, the mixing time of Pβ , τmix is derived as

τmix ≤ 2eE[Tβ,π] (42)

We now use the estimate of the mixing time τmix as E[Tβ,π] approximately. Then, we have the
following result by Equation (4):

K = min(
1

1− γ
,E[Tβ,π]). (43)
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J JUSTIFICATION OF THE ACTION-LEVEL APPROXIMATION FOR THE
MIXING-TIME SURROGATE

In this section, we formally justify why our implementation uses an action-level overlap proxy
p̂i = 1 − min{β(ai | si), π(ai | si)} to approximate the theoretical state-transition discrepancy
pi = TV(Pβ(· | si), Pπ(· | si)), and why this is mathematically consistent under the structure of
Markov decision processes.

J.1 THREE LEVELS OF KERNELS

Let Penv(s
′ | s, a) denote the environment transition kernel, which is independent of the policy. Given

policies β and π, the induced state-transition kernels are

Pβ(s
′ | s) =

∑
a

β(a | s)Penv(s
′ | s, a), (44)

Pπ(s
′ | s) =

∑
a

π(a | s)Penv(s
′ | s, a). (45)

When we consider the augmented Markov chain on state–action pairs (St, At), the corresponding
kernels are

Qβ((s, a), (s
′, a′)) = Penv(s

′ | s, a)β(a′ | s′), (46)

Qπ((s, a), (s
′, a′)) = Penv(s

′ | s, a)π(a′ | s′). (47)

Our off-policy data consist of trajectories of the form (st, at, st+1), which are exact samples from
the chain Qβ .

Following Duan et al. (2021), the multi-step TD error trade-off depends on the mixing properties
of the underlying Markov chain. In off-policy evaluation, we are interested in mixing properties
involving both Pβ and a nearby chain Pπ .

J.2 FROM POLICIES TO STATE-TRANSITION KERNELS

A key structural fact is that the environment transition kernel is policy-independent. Therefore, for
each state s,

Pβ(· | s) = β(· | s)Ks, Pπ(· | s) = π(· | s)Ks, (48)
where the stochastic kernel Ks maps actions to next states:

Ks(s
′ | a) := Penv(s

′ | s, a). (49)

Thus, Pβ(· | s) and Pπ(· | s) arise from pushing different action distributions through the same
transition map.

J.3 DATA-PROCESSING INEQUALITY FOR TV DISTANCE

Define the action-level and state-level total variation distances:

TVaction(s) :=
1

2

∑
a

|β(a | s)− π(a | s)| = 1−
∑
a

min{β(a | s), π(a | s)}, (50)

TVstate(s) :=
1

2

∑
s′

|Pβ(s
′ | s)− Pπ(s

′ | s)| = pi. (51)

Since a stochastic kernel cannot increase total variation distance (data-processing inequality),

TVstate(s) ≤ TVaction(s) for all s. (52)

This property will be formalized and elaborated in Section J.6 when we introduce the coupling-based
relation between the two transition kernels. Hence, TVaction(s) is an upper bound on the theoretical
quantity pi that governs meeting-time and mixing-time behavior in our coupling analysis.
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J.4 SAMPLE-BASED APPROXIMATION ALONG β-TRAJECTORIES

The exact action-level TV requires evaluating
∑

a min{β(a | si), π(a | si)}. In practice, along a
trajectory generated by β, we only observe a single action sample ai ∼ β(· | si). We therefore adopt
the stochastic proxy

p̂i = 1−min{β(ai | si), π(ai | si)}. (53)

This is a noisy sample-level approximation of TVaction(si).

While p̂i is not an unbiased estimator of pi or of TVaction(si), it preserves the key monotonic
relationship: larger policy mismatch leads to larger p̂i, which in turn produces shorter expected
truncation lengths in our T4 mechanism. Importantly, p̂i is fully model-free: it can be computed
without access to the environment transition kernel.

J.5 IMPLICATIONS FOR MIXING-TIME SURROGATES

Our theoretical analysis uses the state-transition TV distance pi = TV(Pβ(· | si), Pπ(· | si)) as the
quantity governing the meeting time between the two chains. By data processing, this value is upper
bounded by the action-level TV. Our implementation uses the sample-based surrogate p̂i, which
approximates this action-level quantity.

Thus, the use of p̂i is mathematically consistent: it provides a directional, model-free proxy for the
theoretical pi and retains its qualitative dependence on policy discrepancy, allowing us to translate
mixing-time insights (as in Duan et al. 2021) to the off-policy setting.

Remark. A practical consequence of using the approximate disagreement proxy p̂i = 1 −
min{β(ai | si), π(ai | si)} is that we effectively rely on an estimated total variation distance
that upper bounds the true value. Formally, the stochastic mapping (s, a) 7→ s′ satisfies the data-
processing inequality, which implies

TV(Pβ(· | si), Pπ(· | si)) ≤ TV(β(· | si), π(· | si)) ≤ p̂i.

Hence, in the context of Definition 1, the practical estimator corresponds to using a constant d′ ≥ d.

As illustrated in Figure 3b, increasing d slightly enlarges the upper bound on the time-averaged
disagreement,

1

t

t∑
k=1

E[Ak],

which in turn increases the resulting first meeting time estimate T̂β,π. Consequently, the truncation
length is determined using an estimate that is greater than or equal to the ground-truth meeting time.
This does not invalidate our theoretical guarantees, because the condition in Theorem 2 requires only
that

K ≥ min
(
(1− γ)−1, E[Tβ,π]

)
,

and any overestimation of E[Tβ,π] still preserves this requirement. Therefore, the main claims of the
paper remain valid even when using the practical estimator.

J.6 DATA-PROCESSING INEQUALITY FOR TOTAL VARIATION DISTANCE

Lemma (TV contraction under Markov kernel). Let P and Q be two probability measures over
a measurable space (X ,F), and let f : X → Y be a stochastic map, i.e., a Markov kernel such
that f(· | x) is a probability distribution over Y for each x ∈ X . Then the push-forward measures
PY , QY on Y defined by

PY (B) =

∫
X
f(B | x) dP (x), QY (B) =

∫
X
f(B | x) dQ(x)

satisfy the total variation contraction inequality:

TV(PY , QY ) ≤ TV(P,Q).
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Proof. By definition of total variation distance and linearity of integration, we have:

TV(PY , QY ) = sup
B⊂Y

|PY (B)−QY (B)|

= sup
B⊂Y

∣∣∣∣∫
X
f(B | x) dP (x)−

∫
X
f(B | x) dQ(x)

∣∣∣∣
= sup

B

∣∣∣∣∫
X
f(B | x) (dP (x)− dQ(x))

∣∣∣∣
≤
∫
X
sup
B
|f(B | x)| |dP − dQ|(x)

≤
∫
X
|dP − dQ|(x) = 2 · TV(P,Q).

Using the fact that TV(P,Q) = 1
2

∫
|dP − dQ|, we conclude:

TV(PY , QY ) ≤ TV(P,Q) ■

Interpretation. This result formalizes the intuition that applying a stochastic transformation
(Markov kernel) can only reduce, not increase, the distinguishability of two distributions. In rein-
forcement learning, this inequality explains why the discrepancy between next-state distributions
under two policies is always upper bounded by their action-level difference:

TV

(∑
a

π(a | s)P(· | s, a),
∑
a

β(a | s)P(· | s, a)

)
≤ TV(π(· | s), β(· | s)).

This principle underlies the use of disagreement probabilities pi in stochastic truncation (T4) as a
proxy for policy divergence propagated through the dynamics.
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