

000
 001
 002
 003
 004
 005 **STOCHASTIC TRUNCATION**
 006 **FOR MULTI-STEP OFF-POLICY RL**

007
 008
 009 **Anonymous authors**
 010 Paper under double-blind review

011
 012 **ABSTRACT**
 013

014 Multi-step off-policy reinforcement learning is essential for reliable policy evalua-
 015 tion, particularly in long-horizon settings, yet extending beyond one-step temporal-
 016 difference learning remains difficult due to distribution mismatch between behavior
 017 and target policies. This mismatch is further exacerbated at longer horizons, leading
 018 to compounding bias and variance. Existing approaches fall into two categories:
 019 *conservative* methods (e.g., Retrace), which guarantee convergence but often suf-
 020 ffer from high variance, and *non-conservative* methods (e.g., Peng’s $Q(\lambda)$ and
 021 integrated algorithms like Rainbow), which often achieve strong empirical per-
 022 formance but do not guarantee convergence under all exploration schemes. We
 023 identify horizon selection as the central obstacle and relate it to the mixing time
 024 of policy-induced Markov chains. Because mixing time is difficult to estimate
 025 online, we derive a practical upper bound via a coupling-based analysis to guide
 026 adaptive truncation. Building on this insight, we propose T4¹ (Time To Truncate
 027 Trajectory), a stochastic and adaptive truncation mechanism within the Retrace
 028 framework. We prove that T4 is non-conservative yet converges under arbitrary
 029 behavior policies, and is robust to cap length tuning. T4 improves policy evaluation
 030 and control performance over strong baselines on standard RL benchmarks.

031 **1 INTRODUCTION**
 032

033 Reinforcement learning (RL) fundamentally relies on *policy evaluation*—the competence to accu-
 034 rately estimate the long-term impact of a policy on future rewards. Accurate policy evaluation is
 035 crucial for consistent learning progress and effective decision-making, particularly in long-horizon
 036 environments. Multi-step temporal-difference (TD) learning (Mahmood et al., 2017; Asis & Sutton,
 037 2018; Harutyunyan, 2018; Sutton et al., 1998; Precup et al., 2001) leverages long-horizon trajectory
 038 information by constructing truncated n -step returns, in which the tail is bootstrapped from Q -values
 039 at the truncation horizon. However, in off-policy RL, the training data are collected by behavior
 040 policies whose distributions differ from the evolving target policy. This distribution mismatch inflates
 041 the estimation error of the target policy’s action-value function, Q^π , as the truncation horizon n
 042 grows, leading to compounding bias and variance. This raises a central question:

043 *Can multi-step off-policy RL achieve reliable and convergent policy evaluation while effectively
 044 mitigating distribution mismatch?*

045 Prior methods have attempted to address this distribution-mismatch challenge by applying per-step
 046 importance weighting to update the Q -function toward its Bellman fixed point (Precup et al., 2001;
 047 Geist et al., 2014; Farajtabar et al., 2018). Kozuno et al. (2021) classify multi-step off-policy
 048 evaluation methods into *conservative* and *non-conservative* categories. Conservative methods ensure
 049 convergence under arbitrary behavior policies by modifying the policy evaluation operators, but often
 050 incur high variance and instability due to correction ratios that can be excessively large or vanishingly
 051 small Rowland et al. (2020). Non-conservative methods relax per-step corrections and often lack
 052 general convergence guarantees or rely on restrictive assumptions on the behavior policy.

053 Estimating reliable weights from policy distributions remains challenging, especially as horizons
 054 grow, which hinders the effective extension of one-step off-policy RL to multi-step settings. We

¹Code available at <https://anonymous.4open.science/r/t4-BD20>

Figure 1: **Effect of truncation horizon on multi-step off-policy RL.** (a) Hopper performance with cap lengths [3, 5, 10, 20] for T4, Peng’s $Q(\lambda)$, and uncorrected n -step (darker→shorter caps), showing that longer horizons amplify off-policy errors in baseline methods. (b) Bias–variance patterns at 0.1M and 1M steps, where only T4 maintains low variance through its adaptive truncation based on the estimated meeting time.

identify a key underlying cause: the lack of principled trajectory truncation, which yields cumulative errors through the product of *per-step* correction ratios and the *residual tail*. Through controlled experiments on MuJoCo Hopper in Figure 1a, we empirically show that these cumulative errors scale rapidly with horizon length, leading to unreliable policy evaluation and degraded performance. In practice, multi-step methods rarely use the full episode length but instead define a maximum *cap length* as an upper bound on the truncation horizon, thereby introducing a hyperparameter that is often difficult to tune.

This challenge can be further understood through the theoretical framework of (Duan et al., 2024), which connects horizon selection to the mixing time of the underlying Markov Decision Process (MDP) and to model misspecification in value function approximation. However, estimating an appropriate horizon online is non-trivial, since the mixing time is difficult to measure on the fly.

To overcome this difficulty, we propose a *stochastic and adaptive truncation* mechanism within the Retrace framework (Munos et al., 2016), which we call T4 (*Time To Truncate Trajectory*). We estimate an upper bound on the mixing time via a coupling-based analysis of the Markov chains induced by the behavior and target policies (Johndrow & Mattingly, 2017a). This bound then guides our adaptive truncation strategy and enables T4 to balance the trade-off between bias and variance. Theoretically, we prove that T4 is non-conservative yet converges without imposing restrictions on behavior policy updates. Unlike prior multi-step methods that require careful cap length tuning, T4 is robust to this hyperparameter and requires minimal tuning. Despite its simplicity, we show that T4 consistently improves policy evaluation.

Contributions. Our main contributions are threefold. First, we demonstrate that naïve extension of the truncation horizon (cap length) amplifies cumulative errors in off-policy multi-step RL. Second, we connect horizon selection to mixing time and derive an approximate upper bound via the coupling argument to guide adaptive truncation, validating this both theoretically and empirically. Third, we propose T4, a stochastic and adaptive truncation method built upon the Retrace framework, and establish both its convergence guarantees and strong empirical performance.

2 PRELIMINARIES

We consider a MDP defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma)$, where $\mathcal{S} \subset \mathbb{R}^d$ is a finite state space, \mathcal{A} is a finite action space, $\mathcal{P} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the transition probability mapping each state-action pair to a distribution over next states, $\mathcal{P}_0 : \mathcal{S} \rightarrow [0, 1]$ is the initial state distribution, $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow [-r_{\max}, r_{\max}]$ is a uniformly bounded reward function, and $\gamma \in [0, 1]$ is a discount factor for the infinite-horizon RL setting. Given a policy π , we define the Bellman operator as $\mathcal{T}^\pi Q := \mathcal{R} + \gamma \mathcal{P}^\pi Q$, where \mathcal{P}^π denotes the transition operator induced by the environment dynamics \mathcal{P} and the policy π . We use trajectories $(s_t, a_t, r_t)_{t \geq 0} \sim \beta$, where $\beta(\cdot | s)$ is *behavior policy*.

108 Since we focus on multi-step off-policy RL, we consider K -step off-policy evaluation using trajectories
 109 $(s_t, a_t, r_t)_{t \geq 0}$ generated by the behavior policy β . Specifically, we apply the $(k-1)$ -fold composition
 110 of the Bellman operator for the behavior policy β , denoted by $\mathcal{T}^{\beta^{(k-1)}} : \mathbb{R}^{\mathcal{S} \times \mathcal{A}} \rightarrow \mathbb{R}^{\mathcal{S} \times \mathcal{A}}$,
 111 for $k = 1, \dots, K$. We define *uncorrected K -step return operator* at iteration n as
 112

$$114 \quad Q_{n+1} = \underbrace{r_t + \gamma r_{t+1} + \dots + \gamma^{K-1} r_{t+K-1}}_{\text{from a behavior policy } \beta} + \gamma^K \mathcal{P}^\pi Q_n = \mathcal{T}^{\beta^{(K-1)}} \mathcal{P}^\pi Q_n. \quad (1)$$

117 **General Retrace.** One of the main challenges in multi-step off-policy RL is that policy evaluation
 118 can suffer from fixed-point bias (Munos et al., 2016) caused by the discrepancy between the target
 119 and behavior policies (Rowland et al., 2020). To correct this discrepancy, Munos et al. (Munos et al.,
 120 2016) proposed the *general Retrace* formulation, which addresses the fixed-point bias in off-policy
 121 evaluation by introducing a sequence of correction coefficients, referred to as *traces*. We formally
 122 define the *general Retrace operator* \mathcal{R} , which corrects the distributional discrepancy arising in
 123 off-policy evaluation:

$$124 \quad \mathcal{R}Q_n = Q_n + \mathbb{E}_\beta \left[\sum_{t=0}^{\infty} (\gamma \lambda)^t \left(\prod_{i=1}^t c(s_i, a_i) \right) (r_t + \gamma \mathbb{E}_{\pi_n}[Q_n(s_{t+1}, \cdot)] - Q_n(s_t, a_t)) \right], \quad (2)$$

125 where the sequence $\{c(s_i, a_i)\}$ is referred to as the *trace*, with the convention that $\prod_{i=1}^0 c(s_i, a_i) = 1$
 126 for $t = 0$. Here, π_n denotes the target policy at the n -th iteration, and the formulation also incorporates
 127 a λ -extension (Bertsekas & Ioffe, 1996), which smoothly interpolates between K -step returns and
 128 the full Monte Carlo return. Multi-step off-policy RL algorithms can be expressed within the general
 129 Retrace by specifying the trace. Depending on the choice of c_i , these algorithms can be categorized
 130 into *conservative* and *non-conservative* methods. An algorithm is referred to as *conservative* if it
 131 satisfies $0 \leq c_i \leq \frac{\pi_n(a_i|s_i)}{\beta(a_i|s_i)}$ for all i . Conservative methods prevent overestimation through the trace
 132 constraint, thus their convergence are not affected by the update rule of the behavior policy β_n .
 133

134 **Mixing time and Truncation Length.** While the standard retrace does not truncate the trajectories,
 135 in practice, the choice of a *truncation length* plays a critical role in learning performance (Hessel et al.,
 136 2018; Kozuno et al., 2021). In particular, longer truncation lengths can amplify the distributional
 137 discrepancy between the behavior and target policies, thereby degrading the accuracy of off-policy
 138 evaluation. We begin by defining the *stationary distribution* and *mixing time*. The key to our analysis
 139 is to connect truncation lengths with the mixing time of the MDP under \mathcal{P}^β .

140 The stationary distribution μ_β of the transition dynamics \mathcal{P}^β is defined as the unique distribution
 141 to which the t -step state visitation distribution converges, i.e., $\mathcal{P}^{\beta^{(t)}}(s_1, s_2) \rightarrow \mu_\beta(s_2)$ as $t \rightarrow \infty$
 142 for all $s_1, s_2 \in \mathcal{S}$. To analyze convergence to the stationary distribution, we introduce the notion of
 143 *coupling*. Given two distributions ν_1 and ν_2 over \mathcal{S} , a probability distribution ω over $\mathcal{S} \times \mathcal{S}$ is called
 144 a *coupling* of ν_1 and ν_2 if its marginals satisfy $\nu_1(x) = \sum_{y \in \mathcal{S}} \omega(x, y)$ and $\nu_2(y) = \sum_{x \in \mathcal{S}} \omega(x, y)$.
 145

146 The *mixing time* τ_{mix} of \mathcal{P}^β is defined as the smallest time t at which the total variation distance
 147 between the t -step transition distribution and the stationary distribution becomes smaller than a
 148 threshold $\epsilon > 0$:

$$149 \quad \tau_{\text{mix}} := \max_{s \in \mathcal{S}} \min \left\{ t : \left\| \mathcal{P}^{\beta^{(t)}}(s, \cdot) - \mu_\beta \right\|_{\text{TV}} \leq \epsilon \right\}. \quad (3)$$

150 Recent work by Duan et al. (Duan et al., 2024) established theoretical conditions for selecting the
 151 truncation length in infinite-horizon γ -discounted MDPs to improve the sample complexity of policy
 152 evaluation. Specifically, they derived a lower bound on the truncation length K that controls the
 153 estimation error of an approximate Q -function. For uniformly bounded rewards, this bound takes the
 154 form

$$155 \quad K = \min \left(\frac{1}{1-\gamma}, \Omega(\tau_{\text{mix}}) \right), \quad (4)$$

156 where the notation $\Omega(\cdot)$ denotes an asymptotic lower bound, implying that K must scale at least
 157 proportionally to the mixing time τ_{mix} . The term $1/(1-\gamma)$ corresponds to the standard discount-
 158 determined effective horizon.

162 This bound provides a principled guideline for choosing K , but its practical use is limited: estimating
 163 τ_{mix} during learning is notoriously difficult because the full transition kernel of the behavior policy
 164 \mathcal{P}^β is not observable online (Wolfer & Kontorovich, 2019).
 165

166 **Paper Organization.** In Section 3, we introduce our main contribution, the stochastic operator T4,
 167 and establish its convergence properties. T4 is designed not only as a stochastic extension of Retrace,
 168 but also as a mechanism to adaptively estimate the truncation horizon during learning. Section 4
 169 then connects trajectory truncation with mixing-time upper bounds, showing how the disagreement
 170 probabilities encoded in T4 provide a principled way to approximate the mixing time of the behavior
 171 policy and thus determine an appropriate truncation length without requiring direct access to the
 172 mixing time itself.
 173

174 3 TIME TO TRUNCATE TRAJECTORY (T4) OPERATOR

175 Our goal is to estimate the target value function $Q^\pi(s, a)$ from trajectories generated by an arbitrary
 176 behavior policy β . Beyond policy evaluation, we further show that T4 converges to the optimal value
 177 function $Q^*(s, a)$ under arbitrary behavior policies. To connect trajectory truncation with the general
 178 Retrace framework, we define a sequence of Bernoulli random variables (A_i) corresponding to the
 179 trace coefficients in Equation (2), with associated probabilities $p = (p_1, p_2, \dots)$. For each step i , let
 180 $S_i^\beta \sim \mathcal{P}_0(\mathcal{P}^\beta)^i$ and $S_i^\pi \sim \mathcal{P}_0(\mathcal{P}^\pi)^i$ denote the i -step state random variables generated respectively
 181 by the behavior policy β and the target policy π , starting from the same initial distribution \mathcal{P}_0 . Each
 182 A_i then acts as an indicator of mismatch:
 183

$$184 A_i = \mathbf{1}\{S_i^\beta \neq S_i^\pi\}, \quad p_i := \Pr(A_i = 1) = \Pr(S_i^\beta \neq S_i^\pi) = \mathbb{E}[A_i]. \quad (5)$$

186 By replacing the deterministic trace coefficients c_i in Equation (2) with the Bernoulli indicators A_i ,
 187 we obtain the stochastic version of the Retrace operator, which we refer to as the T4 operator:
 188

$$189 \mathcal{R}_{p, \lambda} Q = Q + \mathbb{E}_{\beta, p} \left[\sum_{t=0}^{\infty} \gamma^t \left(\prod_{i=1}^t \lambda A_i \right) (r_t + \gamma \mathbb{E}_\pi Q(s_{t+1}, \cdot) - Q(s_t, a_t)) \right]. \quad (6)$$

192 Once $A_i = 0$ for the first time, all subsequent terms vanish. Whereas previous multi-step RL
 193 approaches terminate the return at a fixed cap length—typically the episode length or a manually
 194 chosen horizon—our method stochastically adapts the truncation point.

195 We now aim to establish a lower bound on the truncation length K in Equation (4) for off-policy RL.
 196 Since off-policy learning involves both a behavior policy β and a target policy π , we upper bound the
 197 total variation $\max_{s \in \mathcal{S}} \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_\beta\|_{\text{TV}}$ using the discrepancy between the transition kernels \mathcal{P}^β
 198 and \mathcal{P}^π . In this setting, the mixing time is related to the total variation distance, which we analyze in
 199 Section 4. Here, we estimate this quantity via the sampled Bernoulli variables in Equation (5), where
 200 $\Pr(S_i^\beta \neq S_i^\pi)$ represents the one-step discrepancy between the behavior and target policies. This
 201 discrepancy is exactly the total variation distance between the induced state-transition distributions².
 202 Hence, it can be expressed as
 203

$$205 p_i := \Pr(A_i = 1) = 1 - \sum_{s' \in \mathcal{S}} \min \left\{ \sum_a \beta(a | s_i) \mathcal{P}(s' | s_i, a), \sum_a \pi(a | s_i) \mathcal{P}(s' | s_i, a) \right\}. \quad (7)$$

208 Before we present the theoretical relation between truncation length and mixing time in Section 4,
 209 we first show that the T4 operator is a contraction mapping in the off-policy evaluation setting.
 210

211 **Theorem 1** (Contraction of $\mathcal{R}_{p, \lambda}$). *Suppose $p_i \leq \xi$ almost surely for some $\xi \in [0, 1]$ and all $i \geq 1$.
 212 If $\gamma \in (0, 1)$ and $\lambda \in [0, 1]$ further satisfy*

$$213 \gamma < \frac{1}{1 + \xi}, \quad \lambda \leq \min \left\{ 1, \frac{1 - \gamma(1 + \xi)}{2\gamma^2 \xi^2} \right\}, \quad (8)$$

214
 215 ²This follows from the maximal coupling lemma; see Appendix A for a formal proof and further discussion.

216 then for any Q -function, the operator $\mathcal{R}_{p,\lambda}$ in Equation (6) has a unique fixed point Q^π and satisfies
 217

$$218 \quad \|\mathcal{R}_{p,\lambda}Q - Q^\pi\|_{\infty,p} \leq \eta(\gamma, \lambda, \xi) \|Q - Q^\pi\|_{\infty,p}, \quad (9)$$

219 with contraction modulus
 220

$$221 \quad \eta(\gamma, \lambda, \xi) = \frac{\gamma}{1 - \gamma\xi} + \frac{2\lambda\gamma^2\xi^2}{1 - \gamma\xi} < 1, \quad (10)$$

223 where $\|\cdot\|_{\infty,p}$ denotes the supremum norm weighted by p .
 224

225 The proof is in Appendix E.
 226

227 **Remark.** The assumption in Theorem 1 that $p_i \leq \xi$ is mild, since p_i is a Bernoulli probability and
 228 thus always lies in $[0, 1]$. The bound merely introduces a uniform constant $\xi \leq 1$, with the trivial
 229 choice $\xi = 1$ always valid. Smaller values of ξ yield a sharper contraction modulus in Equation (10).
 230

231 We note that Retrace enforces $0 \leq c_i \leq \pi(a_i|s_i)/\beta(a_i|s_i)$, ensuring that each update is a sub-convex
 232 combination and thus strictly conservative. In contrast, T4 requires only the weaker condition
 233 $p_t \leq \xi$ while still guaranteeing contraction. This relaxation provides greater flexibility, enabling
 234 non-conservative updates without sacrificing convergence guarantees.
 235

236 Theorem 1 shows that the T4 operator is a contraction mapping in the policy evaluation setting,
 237 converging to the fixed point Q^π . We next turn to the control setting, where the target policy is
 238 updated online. As in Retrace, no restrictive assumptions on the behavior policies are required; under
 239 arbitrary behavior policies, T4 converges to the optimal value function Q^* .
 240

241 **Theorem 2** (Convergence in online control). *Let a sequence of Q -functions (Q_n) be updated by the
 242 T4 operator, i.e.,*

$$243 \quad Q_{n+1} = \mathcal{R}_{p,\lambda}Q_n.$$

244 For arbitrary sequences of behavior policies (β_n) and target policies (π_n) , we have $Q_n \rightarrow Q^*$ in the
 245 online control setting.
 246

247 The proof is in Appendix F. Together, Theorems 1 and 2 establish that T4 achieves reliable conver-
 248 gence both in policy evaluation and online control. We next analyze the relation between truncation
 249 length and mixing time, which underpins the construction of the Bernoulli probabilities p_i .
 250

251 4 TRUNCATION LENGTH VIA MIXING-TIME UPPER BOUNDS

252 We now establish how the T4 operator provides a mechanism to
 253 approximate the mixing time of the behavior policy β by relating
 254 trajectory truncation to discrepancies between transition kernels.
 255 To this end, we introduce formal quantities that characterize the
 256 discrepancy between the transition kernels of the behavior policy
 257 \mathcal{P}^β and the target policy \mathcal{P}^π . **Background on total variation**
 258 **distance and the coupling lemma**, which underpin our analysis
 259 **here**, is summarized in Section A. Now, we formalize the notion
 260 **of how far the two policy-induced kernels can differ at each state**.
 261

262 **Definition 1** (Uniform d -bounded kernel). We say that the transition kernel \mathcal{P}^β of a behavior policy
 263 β is **uniformly d -bounded** if there exists $d \in (0, 1)$ such that for all states $s \in \mathcal{S}$ and any target
 264 policy π ,

$$265 \quad \|\mathcal{P}^\beta(s, \cdot) - \mathcal{P}^\pi(s, \cdot)\|_{\text{TV}} \leq d.$$

266 This condition ensures that the transitions do not change drastically across policies, enabling the
 267 analysis of policy discrepancies. The notion of *perturbed Markov chains* is closely related to this
 268 setting, where transition kernels under different policies can be viewed as small perturbations of a
 269 given kernel. Such assumptions have been widely used in approximate Markov chain Monte Carlo
 270 (MCMC) (Mitrophanov, 2005; Solan & Vieille, 2003; Johndrow & Mattingly, 2017b).

271 **Assumption 1** (Cross-Doeblin Condition). There exists a constant $\rho \in (0, 1 - d)$ such that, for all
 272 states s, s' and any policies β, π , $\|\mathcal{P}^\beta(s, \cdot) - \mathcal{P}^\pi(s', \cdot)\|_{\text{TV}} \leq 1 - \rho$.
 273

274 Figure 2: **CliffWalking**. A
 275 simple tabular environment with
 276 absorbing cliff dynamics.
 277

Figure 3: (a) **Diagnostics on CliffWalking**: state-wise total variation distance $d(s)$ and pairwise overlap matrix $\rho(s, s')$ between the transitions induced by an optimal policy and a uniformly random policy. Large d and near-zero ρ across most states highlight the structural off-policy gap. (b) **RHS bounds from Lemma 2** for multiple (d, ρ) pairs: the bounds consistently decay across all settings, implying that a meeting time emerges even under severe off-policy mismatch.

The cross-Doeblin condition plays a central role in assessing the approximation quality of MCMC algorithms (Mattingly et al., 2015; Johndrow & Mattingly, 2017a). In our context, it serves as a regularity assumption ensuring that the transition distributions under any pair of states and policies are sufficiently close. This allows us to model the target transition kernel \mathcal{P}^π as a perturbation of the behavior kernel \mathcal{P}^β , thereby facilitating the estimation of the mixing time of the behavior policy.

Although Definition 1 and Assumption 1 may appear strong, they represent the weakest meaningful conditions that allow us to quantify the kernel-level discrepancies required for estimating the mixing time of the underlying Markov chains. Our diagnostic study on the tabular CliffWalking environment in Figure 2 highlights this point: even slight deviations between π and β lead to nearly deterministic branching and absorbing transitions (falling off the cliff), pushing state-wise TV distances close to 1 and collapsing cross-state overlaps. This indicates that d and ρ are largely determined by structural properties of the MDP rather than by policy proximity.

To make this explicit, Figure 3a reports the state-wise TV distances $d(s)$ and the pairwise overlap matrix $\rho(s, s')$ between the transition kernels of an optimal policy and a uniformly random policy. Both quantities exhibit extreme mismatch—large d and near-zero ρ across most states—revealing a substantial structural off-policy gap even in this simple tabular setting. Nevertheless, we show below that our subsequent analysis remains valid despite these harsh structural properties. We now turn to present the key lemmas and theorems that characterize how these quantities govern disagreement probabilities, meeting times, and the resulting effective truncation length.

Lemma 1. *For a given behavior policy β and transition kernel \mathcal{P}^β which is uniformly ergodic with α , let μ_β denote the stationary distribution of \mathcal{P}^β . Then, for any policy π and initial state s , we have*

$$\|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_\beta\|_{\text{TV}} \leq \left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot) \right\|_{\text{TV}} + 1 - \alpha + \frac{d}{\alpha}. \quad (11)$$

The proof is in Appendix G. Lemma 1 offers insight into how the convergence of \mathcal{P}^β is related to the discrepancy between $\mathcal{P}^{\beta(t)}$ and $\mathcal{P}^{\pi(t)}$. By the coupling lemma (see Appendix A), the total variation between two transition kernels is at most the probability that the coupled variables disagree; in our notation, $\left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot) \right\|_{\text{TV}} \leq \mathbb{P}(S_t^\beta \neq S_t^\pi)$.

Lemma 2. *Let $S_k^\beta \sim \mathcal{P}_0(\mathcal{P}^\beta)^k$ and $S_k^\pi \sim \mathcal{P}_0(\mathcal{P}^\pi)^k$ with the initial state distribution \mathcal{P}_0 as the random variables corresponding to the k -step state distributions. Let A_k be the Bernoulli indicator*

324 defined in Equation (5), i.e., $A_k = \mathbf{1}\{S_k^\beta \neq S_k^\pi\}$ with $\Pr(A_k = 1) = \Pr(S_k^\beta \neq S_k^\pi)$. Then,

$$326 \quad 327 \quad 328 \quad \frac{1}{t} \sum_{k=1}^t \mathbb{E}[A_k] \leq \frac{d}{\rho + d} + \frac{1 - (1 - \rho - d)^t}{t(\rho + d)} \left(\mathbb{E}[A_1] - \frac{d}{\rho + d} \right). \quad (12)$$

329 The proof is in Appendix H. Lemma 2 establishes that the time-average probability of disagreement
330 between the two coupled processes decays over time. In Figure 1b, we plot the RHS bounds from
331 Lemma 2 for several (d, ρ) pairs. Across all configurations, the bounds decay steadily, indicating that
332 the coupled processes still admit a finite meeting time even under severe off-policy mismatch.
333

334 Equivalently, this suggests that the processes eventually coalesce with high probability, and the
335 relevant notion of convergence is captured by the *first meeting time* between them. This motivates
336 introducing the random variable $T_{\beta, \pi}$, which directly quantifies the expected horizon until the two
337 trajectories align. We now show how this notion provides a principled way to determine the effective
338 truncation length.

339 **Theorem 3.** *Let the random variable $T_{\beta, \pi}$ denote the first meeting time of two processes, defined as*

$$340 \quad 341 \quad T_{\beta, \pi} := \min \left\{ t \geq 1 : S_t^\beta = S_t^\pi \mid S_0 \sim \mathcal{P}_0 \right\}. \quad (13)$$

342 The random variable $T_{\beta, \pi}$ can then be used to refine the truncation length condition in Equation (4),
343 leading to the following formulation:

$$345 \quad 346 \quad K = \min \left(\frac{1}{1 - \gamma}, \mathbb{E}[T_{\beta, \pi}] \right). \quad (14)$$

347 That is, the effective truncation length is determined by either the discount horizon $1/(1 - \gamma)$ or the
348 expected meeting time $\mathbb{E}[T_{\beta, \pi}]$, whichever is smaller.

349 **Remark.** By coupling arguments, the expected meeting time $\mathbb{E}[T_{\beta, \pi}]$ provides a lower bound on
350 the mixing scale, i.e., $\mathbb{E}[T_{\beta, \pi}] = \Omega(\tau_{\text{mix}})$. Thus, the truncation length in Equation (14) is always at
351 least on the order of the intrinsic mixing time of the underlying Markov chain.

352 The proof and the formal connection between $\mathbb{E}[A_t]$ and $\mathbb{E}[T_{\beta, \pi}]$ are in Section I. We first note
353 that the expectation $\mathbb{E}[T_{\beta, \pi}]$ —the first meeting time between the two processes—can be estimated
354 by sampling the time until the first match from $t = 0$. Let t' denote the first time step such that
355 $S_{t'}^\beta = S_{t'}^\pi$, which implies $A_{t'} = 0$. Since this is the first agreement point, we have $\prod_{i=1}^{t'} A_i = 0$.
356 This construction leads to a natural truncation mechanism in the T4 operator: for all $t \geq t'$, the
357 temporal-difference (TD) error is set to zero, effectively stopping the credit assignment beyond the
358 first matching point. Specifically, we have

$$361 \quad 362 \quad \left(\prod_{i=1}^t \lambda A_i \right) (r_t + \gamma \mathbb{E}_\pi Q(s_{t+1}, \cdot) - Q(s_t, a_t)) = 0 \quad \text{for } t \geq t' \quad (15)$$

363 This truncation reflects the assumption that once the trajectories align, their future evolution can be
364 treated as equivalent, thereby eliminating the need for further correction beyond the meeting time.

367 4.1 PRACTICAL IMPLEMENTATION

368 Building on the theoretical results from Sections 3 and 4, we now present a practical instantiation of
369 the T4 operator that computes the truncation length. The goal is to mitigate distributional discrepancy
370 between the target and behavior policies and thereby reduce off-policy evaluation error.

371 **Approximating disagreement probabilities.** In theory, the Bernoulli variables A_i are defined
372 through $p_i = \Pr(S_i^\beta \neq S_i^\pi)$ in Equation (5), which requires access to the transition kernel \mathcal{P} . Since
373 this is unavailable in the *model-free RL*, we approximate p_i by measuring the overlap between the
374 two policies on the sampled action a_i :

$$375 \quad \hat{p}_i = 1 - \min\{\beta(a_i \mid s_i), \pi(a_i \mid s_i)\}. \quad (16)$$

This proxy interprets the shared support of β and π at (s_i, a_i) as the agreement probability, with its complement serving as a model-free estimate of disagreement. A key structural fact is that the environment transition kernel is policy-independent. Thus, $P_\beta(\cdot | s)$ and $P_\pi(\cdot | s)$ are obtained by pushing $\beta(\cdot | s)$ and $\pi(\cdot | s)$ through the same kernel, which implies a data-processing inequality:

$$p_i = \text{TV}(P_\beta(\cdot | s_i), P_\pi(\cdot | s_i)) \leq \text{TV}(\beta(\cdot | s_i), \pi(\cdot | s_i)).$$

Although \hat{p}_i is a noisy approximation, it preserves the correct monotonic dependence on policy mismatch and provides a practical surrogate for the theoretical p_i used in our meeting-time analysis. A detailed justification and formal derivation are provided in Appendix J.

Sampling the meeting time. Using these estimates, we form stochastic traces $\hat{A} = (\hat{A}_1, \hat{A}_2, \dots)$ with $\hat{A}_i \sim \text{Bernoulli}(\hat{p}_i)$. The estimated meeting time $\hat{T}_{\beta, \pi}$ is taken as the first index t for which $\hat{A}_t = 0$, and the truncation length is then defined as

$$\hat{K} = \min\{\lceil(1 - \gamma)^{-1}\rceil, \hat{T}_{\beta, \pi}, \},$$

We also enforce $\hat{K} \geq 1$ to avoid trivial truncations.

Integration with standard algorithms. The pseudocode in Algorithm 1 shows how T4 modifies a generic actor-critic update such as SAC (Haarnoja et al., 2018) or TD3 (Fujimoto et al., 2018).

The only difference lies in lines 8–9, where each sampled history trajectory h_i is *explicitly truncated* at length K . The explicit stochastic truncation mechanism in T4 has two key benefits. First, it avoids variance amplification from long products of importance weights, since trajectories are truncated immediately after the first meeting point. Second, it reduces sensitivity to manually chosen cap lengths: the effective horizon is adaptively determined by either the discount

horizon $(1 - \gamma)^{-1}$ or the estimated meeting time $\hat{T}_{\beta, \pi}$, whichever is smaller.

Algorithm 1 Time to Truncate Trajectory (T4).

```

1: Initialize Q-function  $Q_\theta$ , target policy  $\pi_\phi$ , behavior policy  $\beta_\phi$ 
2:  $\mathcal{B} \leftarrow$  empty replay memory.
3: for each episode do
4:   for each step do
5:     Observe  $s$  and take  $a \sim \beta_\phi$ 
6:     Get next state  $s' \sim \mathcal{P}(s, a)$  and reward  $r$ 
7:     Store  $\{(s, a, r, s')\}$  in  $\mathcal{B}$ 
8:     Sample history minibatch  $\{h_i\}_{i=1}^B \sim \mathcal{B}$ 
9:     Truncate  $h_i$  with  $\hat{K} = \min\{(1 - \gamma)^{-1}, \hat{T}_{\beta, \pi}\}$ .
10:    Update  $\theta$  and  $\phi$ 
11:   end for
12: end for

```

5 EXPERIMENTS

We evaluate T4 under both SAC and TD3 backbones, and compare against four baseline methods: the original one-step algorithm, an uncorrected n -step variant, Retrace (Munos et al., 2016), and Peng’s $Q(\lambda)$ (Kozuno et al., 2021). All methods use identical network architectures and hyperparameters as their one-step baselines to ensure fair comparison. Detailed update rules and full hyperparameter settings are provided in Appendix C.

Figure 4 compares SAC-TD3-T4 with four multi-step baselines across five MuJoCo tasks. SAC-T4 consistently achieves strong performance and converges faster than the baselines. SAC-Retrace which is a conservative method performs comparably to T4 only on humanoid-v2 but lags behind elsewhere. Non-conservative methods (Peng’s $Q(\lambda)$ and n -step) show mixed results and often underperform even the one-step SAC baseline. Additional TD3-based results are reported in Figure 7 of Appendix. We also report the adaptive truncation lengths computed by T4, shown in the lower-right panel of Figure 4. These results indicate that fixed n -step baselines can suffer when the effective truncation horizon is shorter than the chosen cap length n , while T4 remains stable. An ablation on the choice of truncation length in Figure 5 (top) further confirms that T4 is robust to this hyperparameter.

Evaluation protocol. For fair comparison, we primarily follow standard practice in off-policy RL benchmarks. In addition, we also report results under the more robust evaluation protocol of

Figure 4: **Performance with stochastic truncation.** We report IQM-normalized scores across five MuJoCo tasks for SAC- and TD3-based methods, showing that T4 consistently outperforms multi-step baselines and converges faster. The right panels visualize the adaptive truncation lengths estimated by T4 for SAC (third) and TD3 (fourth), illustrating how the effective horizon contracts as the target policy aligns with the behavior policy. See Section D.1 for more information.

(Agarwal et al., 2021), which computes interquartile mean (IQM) normalized scores. As discussed in Figure 4, this protocol further highlights the efficiency of T4, showing that it surpasses expert-level performance in MuJoCo tasks significantly faster than competing multi-step methods.

6 DISCUSSION

Truncation length should be adaptive. Our results highlight that the key difficulty in multi-step off-policy RL lies in choosing an appropriate truncation horizon as illustrated in Figure 1a. When trajectories are sampled from a sequence of changing behavior policies, the effective horizon depends not only on the discount factor but also on the mismatch between the behavior and target policies. Thus, treating the truncation length K as a fixed *cap length*, as in conventional n -step methods, is inherently problematic. This observation is consistent with prior empirical findings in both model-free (Rainbow) and model-based (MBPO) papers, where adaptive horizons improved stability.

When Long Horizons Are Needed (large K). A large effective horizon arises when the behavior policy mixes slowly or explores regions of the state space that the target policy has not yet adapted to. In this case, the expected meeting time between trajectories is long, and algorithms that fix n too small (e.g., $n = 1$) lose useful long-horizon information. This explains why one-step SAC lags behind SAC-T4 in most environments: T4 adapts to maintain longer horizons (Figure 4). It can also be interpreted that, in such long-horizon regimes, the conservative trace coefficients of Retrace cut the updates too aggressively, discarding useful information and thereby degrading performance.

When Short Horizons Suffice (small K). Conversely, as policy improvement aligns the target policy more closely with the behavior distribution, the trajectories meet earlier and the effective horizon shrinks. In this regime, non-conservative methods like Peng’s $Q(\lambda)$ or uncorrected n -step continue to propagate credit too far, leading to unstable updates. Our ablation in Figure 1a confirms that T4 remains robust even when the effective truncation length decreases during training.

Efficiency in model-based and sparse-reward settings. Beyond dense-reward benchmarks, T4 also demonstrates strong efficiency in both model-based comparisons and sparse-reward tasks. As shown in Figure 9, T4 rapidly matches the sample efficiency of SAC-based MBPO while remaining

Figure 5: (Top) A sparse-reward control task from the DeepMind Control Suite. (Bottom) Normalized next-state discrepancy between transitions on Hopper.

486 entirely model-free. In addition, Figure 5-(top) highlights that T4 achieves near-optimal performance
 487 significantly faster than Peng’s method and n -step baselines in sparse-reward control, a regime where
 488 prior success has mostly relied on model-based or skill-specific techniques.
 489

490
 491 **Bias-variance trade-off and empirical support for the TV-based analysis.** Our cap-length
 492 ablations in Figure 1 reveal a clear bias-variance trade-off consistent with the coupling-based view.
 493 As the truncation horizon increases, multi-step baselines such as uncorrected n -step and Peng’s $Q(\lambda)$
 494 accumulate off-policy discrepancies multiplicatively, producing high-variance and biased updates.
 495 This issue appears most clearly in `Hopper`, where performance degrades as the cap length increases
 496 from 3 to 20, reflecting the mismatch between fixed caps and the evolving behavior-target divergence.
 497 In contrast, T4 remains stable across all truncation lengths: stochastic truncation at the estimated
 498 meeting time removes long-tail variance while preserving essential multi-step information. The
 499 adaptive horizons chosen by T4 match the regime predicted by our coupling analysis—shorter
 500 when β and π differ early in training, and longer as they align—mirroring the decay of disagreement
 501 probabilities in Lemma 2 and providing empirical support for the mixing-time interpretation. Figure 5-
 502 (bottom) provides an empirical sanity check of kernel similarity in continuous spaces. Using a 3D
 503 PCA embedding of next-state transitions and normalized L2 distances as a proxy for kernel divergence,
 504 we observe that most (P_β, P_π) transitions lie well below half of the maximum discrepancy (median
 505 ≈ 0.36 , 90th percentile ≈ 0.64), even when β is uniformly random. It means that the uniform
 506 d -boundedness and cross-Doeblin overlap are reasonably satisfied in MuJoCo dynamics.
 507

508 7 RELATED WORK

509 **Return-based off-policy and multi-step methods.** Our work builds on return-based off-policy
 510 algorithms (Mahmood & Sutton, 2015; Munos et al., 2016; Harutyunyan et al., 2016; Precup, 2000;
 511 Daley & Amato, 2019) and analyses of stochastic TD learning under Markovian sampling (Bhandari
 512 et al., 2018; Mou et al., 2020). Prior multi-step approaches mitigate off-policy mismatch through (i)
 513 weight correction (e.g., Retrace, Tree-Backup, V-trace) (Munos et al., 2016; Precup, 2000; Rowland
 514 et al., 2020), (ii) conservative updates (Kozuno et al., 2021), (iii) eligibility-trace formulations (Singh
 515 & Sutton, 1996; van Hasselt et al., 2021; Daley et al., 2023; Gupta et al., 2024), and (iv) model-based
 516 imagination (Hafner et al., 2020; Janner et al., 2019). These methods differ in how they trade off bias
 517 and variance when propagating multi-step credit. Large-scale RL systems such as R2D2 (Kapturowski
 518 et al., 2018) and IMPALA (Espeholt et al., 2018) highlight the practical importance of stabilizing
 519 long multi-step returns (e.g., via V-trace) rather than adaptively adjusting horizons.
 520

521 **Why multi-step evaluation is hard.** Even with small correction weights, long-tail contributions
 522 from later trajectory segments introduce error under Markovian sampling, often yielding oscillatory
 523 Q -functions (Kozuno et al., 2021) and slow error decay (Berthier et al., 2022). Fixed caps alleviate this
 524 but can be misaligned with the environment’s mixing scale, causing under-utilized long-horizon signal
 525 or excessive variance. Beyond trace reweighting, resampling-based approaches include importance
 526 resampling (Schlegel et al., 2019), stationary-distribution corrections (Yuan et al., 2021; Yang et al.,
 527 2020), and covariate-shift correction (Gelada & Bellemare, 2019; Hallak & Mannor, 2017). T4 is
 528 complementary: instead of estimating precise ratios, it stochastically truncated returns based on
 529 estimated disagreement between behavior and target rollouts, reducing sensitivity to fixed caps while
 530 remaining compatible with standard actor-critic methods.
 531

532 8 CONCLUSION

533 We presented T4 , a stochastic variant of Retrace that adaptively truncates trajectories at the estimated
 534 meeting time. This mechanism mitigates off-policy discrepancies while preserving useful long-
 535 horizon credit, consistently improving over one-step and multi-step baselines across diverse RL
 536 benchmarks. Our analysis relies on a d -bounded kernel condition, which serves as a simplified
 537 form of uniform ergodicity. Although we do not explicitly verify this assumption in our benchmark
 538 environments, the empirical results suggest that T4 remains effective even without strict mixing
 539 guarantees. Future work includes extending T4 to model-based settings for tighter horizon control
 and developing practical diagnostics to adapt truncation length online.
 540

540 REFERENCES
541

- 542 Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
543 Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
544 Conference on Machine Learning, pp. 3692–3702. PMLR, 2019.
- 545 Joshua Achiam. Spinning up in deep reinforcement learning, 2018.
- 546 Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Deep rein-
547 forcement learning at the edge of the statistical precipice. In Advances in Neural Information
548 Processing Systems (NeurIPS), 2021.
- 549 Kristopher De Asis and Richard S. Sutton. Per-decision multi-step temporal difference learning
550 with control variates. In Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial
551 Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pp. 786–794. AUAI Press,
552 2018.
- 553 Eloïse Berthier, Ziad Kobeissi, and Francis Bach. A non-asymptotic analysis of non-parametric
554 temporal-difference learning. Advances in Neural Information Processing Systems, 35:7599–7613,
555 2022.
- 556 Dimitri P Bertsekas and Sergey Ioffe. Temporal differences-based policy iteration and applications
557 in neuro-dynamic programming. Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT,
558 Cambridge, MA, 14:8, 1996.
- 559 Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference learn-
560 ing with linear function approximation. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigol-
561 let (eds.), Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings of
562 Machine Learning Research, pp. 1691–1692. PMLR, 2018.
- 563 Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
564 Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL [http://arxiv.org/abs/1812.06110](https://arxiv.org/abs/1812.06110).
- 565 Brett Daley and Christopher Amato. Reconciling λ -returns with experience replay. Advances in
566 Neural Information Processing Systems, 32, 2019.
- 567 Brett Daley, Martha White, Christopher Amato, and Marlos C Machado. Trajectory-aware eligibility
568 traces for off-policy reinforcement learning. In International Conference on Machine Learning,
569 pp. 6818–6835. PMLR, 2023.
- 570 Yaqi Duan, Mengdi Wang, and Martin J Wainwright. Optimal policy evaluation using kernel-based
571 temporal difference methods. The Annals of Statistics, 52(5):1927–1952, 2024.
- 572 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
573 Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable
574 distributed deep-rl with importance weighted actor-learner architectures. In Jennifer Dy and
575 Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
576 volume 80 of Proceedings of Machine Learning Research, pp. 1407–1416. PMLR, 10–15 Jul
577 2018.
- 578 Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
579 off-policy evaluation. In International Conference on Machine Learning, pp. 1447–1456. PMLR,
580 2018.
- 581 Farama Foundation. Minari: A dataset interface for offline reinforcement learning. <https://github.com/Farama-Foundation/Minari>, 2022.
- 582 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
583 data-driven reinforcement learning. In International Conference on Learning Representations
584 (ICLR), 2021.

- 594 Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
 595 actor-critic methods. In *Proceedings of the 35th International Conference on Machine Learning*,
 596 pp. 1587–1596, 2018.
- 597
- 598 Matthieu Geist, Bruno Scherrer, et al. Off-policy learning with eligibility traces: a survey. *J. Mach.
 599 Learn. Res.*, 15(1):289–333, 2014.
- 600
- 601 Carles Gelada and Marc G Bellemare. Off-policy deep reinforcement learning by bootstrapping the
 602 covariate shift. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp.
 603 3647–3655, 2019.
- 604
- 605 Dhawal Gupta, Scott M Jordan, Shreyas Chaudhari, Bo Liu, Philip S Thomas, and Bruno Castro
 606 da Silva. From past to future: Rethinking eligibility traces. In *Proceedings of the AAAI Conference
 607 on Artificial Intelligence*, volume 38, pp. 12253–12260, 2024.
- 608
- 609 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 610 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
 611 on machine learning*, pp. 1861–1870. PMLR, 2018.
- 612
- 613 Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
 614 behaviors by latent imagination. In *International Conference on Learning Representations*, 2020.
- 615
- 616 Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. In *International Conference
 617 on Machine Learning*, pp. 1372–1383. PMLR, 2017.
- 618
- 619 Botao Hao, Nevena Lazic, Yasin Abbasi-Yadkori, Pooria Joulani, and Csaba Szepesvari. Provably
 620 efficient adaptive approximate policy iteration. *arXiv preprint arXiv:2002.03069*, 2020.
- 621
- 622 Anna Harutyunyan. *Beyond Single-Step Temporal Difference Learning*. PhD thesis, Ph. D. thesis,
 623 Vrije Universiteit Brussel (VUB), 2018.
- 624
- 625 Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q (λ) with off-policy
 626 corrections. *arXiv preprint arXiv:1602.04951*, 2016.
- 627
- 628 Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
 629 Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements
 630 in deep reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 631 volume 32, 2018.
- 632
- 633 Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
 634 policy optimization. *Advances in neural information processing systems*, 32, 2019.
- 635
- 636 James E Johndrow and Jonathan C Mattingly. Coupling and decoupling to bound an approximating
 637 markov chain. *arXiv preprint arXiv:1706.02040*, 2017a.
- 638
- 639 James E Johndrow and Jonathan C Mattingly. Error bounds for approximations of markov chains
 640 used in bayesian sampling. *arXiv preprint arXiv:1711.05382*, 2017b.
- 641
- 642 Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
 643 experience replay in distributed reinforcement learning. In *International conference on learning
 644 representations*, 2018.
- 645
- 646 Tadashi Kozuno, Yunhao Tang, Mark Rowland, Rémi Munos, Steven Kapturowski, Will Dabney,
 647 Michal Valko, and David Abel. Revisiting peng’s q (λ) for modern reinforcement learning. In
 648 *International Conference on Machine Learning*, pp. 5794–5804. PMLR, 2021.
- 649
- 650 Ashique Rupam Mahmood and Richard S Sutton. Off-policy learning based on weighted importance
 651 sampling with linear computational complexity. In *UAI*, pp. 552–561, 2015.
- 652
- 653 Ashique Rupam Mahmood, Huizhen Yu, and Richard S Sutton. Multi-step off-policy learning without
 654 importance sampling ratios. *arXiv preprint arXiv:1702.03006*, 2017.
- 655
- 656 JC Mattingly, J Johndrow, S Mukherjee, and D Dunson. Approximations of markov chains and
 657 high-dimensional bayesian inference. 2015.

- 648 Sean P Meyn and Richard L Tweedie. *Markov chains and stochastic stability*. Springer Science &
 649 Business Media, 2012.
- 650
- 651 A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic markov chains. *Journal of*
 652 *Applied Probability*, 42(4):1003–1014, 2005.
- 653 Wenlong Mou, Ashwin Pananjady, and Martin J Wainwright. Optimal oracle inequalities for solving
 654 projected fixed-point equations. *arXiv preprint arXiv:2012.05299*, 2020.
- 655
- 656 Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient off-
 657 policy reinforcement learning. In *Advances in Neural Information Processing Systems*, volume 29,
 658 2016.
- 659 Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation and
 660 bandit feedback. *Advances in Neural Information Processing Systems*, 34:10407–10417, 2021.
- 661
- 662 Doina Precup. Eligibility traces for off-policy policy evaluation. *Computer Science Department*
 663 *Faculty Publication Series*, pp. 80, 2000.
- 664 Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning with
 665 function approximation. In *ICML*, pp. 417–424, 2001.
- 666
- 667 Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
 668 *International Conference on Artificial Intelligence and Statistics*, pp. 34–44. PMLR, 2020.
- 669
- 670 Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance
 671 resampling for off-policy prediction. *Advances in Neural Information Processing Systems*, 32,
 672 2019.
- 673 Satinder P Singh and Richard S Sutton. Reinforcement learning with replacing eligibility traces.
 674 *Machine learning*, 22(1):123–158, 1996.
- 675 Eilon Solan and Nicolas Vieille. Perturbed markov chains. *Journal of applied probability*, 40(1):
 676 107–122, 2003.
- 677
- 678 Wesley A Suttle, Amrit Bedi, Bhrij Patel, Brian M Sadler, Alec Koppel, and Dinesh Manocha.
 679 Beyond exponentially fast mixing in average-reward reinforcement learning via multi-level monte
 680 carlo actor-critic. In *International Conference on Machine Learning*, pp. 33240–33267. PMLR,
 681 2023.
- 682 Richard S Sutton, Doina Precup, and Satinder Singh. Intra-option learning about temporally abstract
 683 actions. In *ICML*, volume 98, pp. 556–564, 1998.
- 684 Hado van Hasselt. Double q-learning. *Advances in Neural Information Processing Systems*, 23,
 685 2010.
- 686
- 687 Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, and Diana
 688 Borsa. Expected eligibility traces. In *Proceedings of the AAAI conference on artificial intelligence*,
 689 volume 35, pp. 9997–10005, 2021.
- 690
- 691 Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, and Rahul Jain. Learning infinite-horizon
 692 average-reward mdps with linear function approximation. In *International Conference on Artificial*
 693 *Intelligence and Statistics*, pp. 3007–3015. PMLR, 2021.
- 694
- 695 Geoffrey Wolfer and Aryeh Kontorovich. Estimating the mixing time of ergodic markov chains. In
 696 *Conference on Learning Theory*, pp. 3120–3159. PMLR, 2019.
- 697
- 698 Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, and Dale Schuurmans. Off-policy evaluation via
 699 the regularized lagrangian. *Advances in Neural Information Processing Systems*, 33:6551–6561,
 2020.
- 700
- 701 Christina Yuan, Yash Chandak, Stephen Giguere, Philip S Thomas, and Scott Niekum. Sope:
 702 Spectrum of off-policy estimators. *Advances in Neural Information Processing Systems*, 34:
 703 18958–18969, 2021.

702	APPENDIX	
703		
704		
705	A Background on Ergodicity and Maximal Coupling	15
706		
707	B Extended Related Work	15
708		
709	C Implementation details	15
710		
711	D Additional Experimental Results	18
712	D.1 Evaluation results by the protocol of IQM	19
713	D.2 Additional Early-Training Diagnostics on Atari	20
714		
715		
716	E Proof of Theorem 1	21
717		
718	F Proof of Theorem 2	23
719		
720	G Proof of Lemma 1	25
721		
722	G.1 Proof of Lemma 4	26
723		
724		
725	H Proof of Lemma 2	26
726		
727	I Proof of Theorem 3	28
728		
729	J Justification of the Action-Level Approximation for the Mixing-Time Surrogate	30
730		
731	J.1 Three Levels of Kernels	30
732	J.2 From Policies to State-Transition Kernels	30
733	J.3 Data-Processing Inequality for TV Distance	30
734	J.4 Sample-Based Approximation Along β -Trajectories	31
735	J.5 Implications for Mixing-Time Surrogates	31
736	J.6 Data-Processing Inequality for Total Variation Distance	31
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 A BACKGROUND ON ERGODICITY AND MAXIMAL COUPLING
757758 We now state the *coupling lemma*, which provides a tool for bounding the total variation distance.
759760 For any two probability distributions ν_1 and ν_2 over \mathcal{S} , we define the total variation (TV) distance
761 $\|\cdot\|_{\text{TV}}$ as

762
$$\|\nu_1 - \nu_2\|_{\text{TV}} := \frac{1}{2} \sum_{s \in \mathcal{S}} |\nu_1(s) - \nu_2(s)| = \max_{A \subset \mathcal{S}} |\nu_1(A) - \nu_2(A)|,$$

763

764 where the norm $\|\cdot\|$ corresponds to the L_1 metric. By definition, the TV distance takes values in the
765 interval $[0, 1]$.
766767 **Lemma 3** (Coupling Lemma). *Let ν_1 and ν_2 be two probability distributions over a finite space \mathcal{S} .
768 Then there exists a coupling (X, Y) of ν_1 and ν_2 such that*

769
$$\mathbb{P}(X \neq Y) \geq \|\nu_1 - \nu_2\|_{\text{TV}}.$$

770

771 A coupling that achieves this equality is called a maximal coupling and can be written as

772
$$\mathbb{P}(X \neq Y) = \|\nu_1 - \nu_2\|_{\text{TV}} = 1 - \sum_{s \in \mathcal{S}} \min(\nu_1(s), \nu_2(s)). \quad (17)$$

773
774

775 Maximal coupling minimizes the probability of disagreement $\mathbb{P}(X \neq Y)$ among all possible couplings
776 of ν_1 and ν_2 . Under this condition, we say the MDP is *uniformly ergodic* with α if there exists a
777 constant $\alpha \in (0, 1)$ and $C > 0$ such that

778
$$\max_{s \in \mathcal{S}} \left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mu_{\beta} \right\|_{\text{TV}} \leq C(1 - \alpha)^t$$

779
780

781 for all $t \in \mathbb{N}$.
782783 B EXTENDED RELATED WORK
784785 A parallel line of work studies policy learning under uniform/geometric mixing or access to the
786 stationary distribution (Meyn & Tweedie, 2012; Hao et al., 2020; Abbasi-Yadkori et al., 2019; Neu &
787 Olkhovskaya, 2021), and leverages mixing-time-aware analyses in MDPs (Suttle et al., 2023; Wei
788 et al., 2021). In contrast, our approach is model-free and does not assume direct access to stationary
789 distributions or exact mixing times. Instead, T4 adapts the truncation horizon via a stochastic
790 meeting-time proxy derived from policy overlap, aligning the effective multi-step depth with the
791 evolving off-policy mismatch during training.
792793 C IMPLEMENTATION DETAILS
794795 In this section, we describe the full implementation details of T4. Following the standard practice in
796 off-policy RL, we use the PyTorch version of the implementations in OpenAI SpinningUp (Achiam,
797 2018).
798799 **Experimental Setup** We compare T4 with four baseline methods, a conventional one-step method,
800 uncorrected multi-step method, Retrace (Munos et al., 2016) and Peng’s $Q(\lambda)$ (Kozuno et al.,
801 2021). Given a randomly sampled trajectory $(s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots)$, where Q_{θ^-} denotes the
802 target Q -function, and $\tilde{a}_{\phi}(s_i)$ is a sample from $\pi_{\phi}(\cdot | s_i)$. The detailed targets for the Q -function
803 of all algorithms are described in Table 1 in Section C. We note that all algorithms we used are
804 based on actor-critic method and update the policy network only with the starting target at (s_0, a_0) .
805 For example, SAC based methods update the parameter of policy networks by gradient ascent
806 $\arg \max_{\pi} Q_{\text{target}}(s_0, \tilde{a}_{\phi}(s_0)) + \alpha \log \pi_{\phi}(\tilde{a}_{\phi} | s_0)$.
807808 **Training and evaluation.** For all algorithms, we use [256, 256]-sized multi-layer perceptrons
809 (MLPs) for all neural networks. We train with 1M environment steps for openAI Mujoco and evaluate
the agent every 1000 steps by using deterministic policy in 10 episodes.

810
811 **Implementations of multi-step operators.** We provide pseudocode for multi-step off-policy
812 actor-critic deep RL algorithms

813 The multi-step target value can be computed recursively for a given trajectory
814 $(s_0, a_0, r_0, s_1, a_1, r_1, \dots)$. Let $Q_{\theta_1}, Q_{\theta_2}$ be two Q-function critic and \hat{Q}_i be the target value
815 estimate at environment step i . We can write

$$\begin{aligned} \hat{Q}_i &= r_i + \gamma \min(\max_a Q_{\theta_1}(s_i, a), \max_a Q_{\theta_2}(s_i, a)) \\ &\quad + \gamma \lambda \left(\hat{Q}_{i+1} - \min(\max_a Q_{\theta_1}(s_i, a), \max_a Q_{\theta_2}(s_i, a)) \right). \end{aligned}$$

820 For continuous action space, we approximate $\max_a Q_{\theta}(s_i, a)$ as $Q_{\theta}(s_i, \pi_{\phi}(s))$. Practically, we use a
821 finite-length trajectory $(s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_c)$ where c is the cap length of the trajectory.

823 Table 1: The details of the multi-step targets for baselines and our method for SAC. We note that T4
824 samples each A_1, A_2, \dots, A_{k-1} from the corresponding probabilities $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_{K-1}$.

Algorithm	Update pseudo-code
One-step RL	$r_0 + \gamma(Q_{\theta}(s_1, \tilde{a}_{\phi}(s_1)) - \alpha \log \pi_{\phi}(\tilde{a}_{\phi}(s_1) s_1))$
Uncorrected K	$\sum_{i=0}^{K-1} \gamma^i r_i + \gamma^K(Q_{\theta}(s_1, \tilde{a}_{\phi}(s_1)) - \alpha \log \pi_{\phi}(\tilde{a}_{\phi}(s_1) s_1))$
Retrace	$\sum_{i=0}^{K-1} \gamma^i (\prod_{j=1}^i c_j)(r_i + \gamma(Q_{\theta}(s_{i+1}, \tilde{a}_{\phi}(s_{i+1})) - \alpha \log \pi_{\phi}(\tilde{a}_{\phi}(s_{i+1}) s_{i+1}) - c_{i+1}Q_{\theta}(s_{i+1}, a_{i+1}))$
Peng's $Q(\lambda)$	$\sum_{i=0}^{K-1} (\gamma \lambda)^i (r_i + \gamma(1-\lambda)(Q_{\theta}(s_{i+1}, \tilde{a}_{\phi}(s_{i+1})) - \alpha \log \pi_{\phi}(\tilde{a}_{\phi}(s_{i+1}) s_{i+1})))$
T4	$\sum_{i=0}^{K-1} \gamma^i (\prod_{j=1}^i A_j)(r_i + \gamma(Q_{\theta}(s_{i+1}, \tilde{a}_{\phi}(s_{i+1})) - \alpha \log \pi_{\phi}(\tilde{a}_{\phi}(s_{i+1}) s_{i+1}) - A_{i+1}Q_{\theta}(s_{i+1}, a_{i+1}))$

834 **Methods and Hyperparameters.** We use two one-step RL algorithms, SAC and TD3 for the
835 multi-step extension.

1. **Twin-Delayed Deep Deterministic Policy Gradient (TD3).** TD3 (Fujimoto et al., 2018) adopts the same training pipeline and neural network architecture as DDPG, but introduces several improvements to address overestimation bias in Q-learning. Specifically, TD3 uses two critic networks, denoted as $Q_{\theta_1}(s, a)$ and $Q_{\theta_2}(s, a)$, with independent parameter sets θ_1 and θ_2 . This twin-critic design follows the principle of double Q-learning (van Hasselt, 2010), which mitigates the positive bias introduced by max operators in standard Q-learning updates.
2. **Soft Actor-Critic (SAC).** SAC (Haarnoja et al., 2018) also adopts the same training pipeline and architecture as DDPG and TD3, but introduces a fundamentally different objective based on maximum entropy reinforcement learning. The core idea of SAC is to augment the reward function with an entropy term that encourages exploration by discouraging the policy from collapsing to a deterministic distribution. Similar to TD3, SAC maintains two critic networks to reduce the overestimation bias present in standard actor-critic methods.

851 Basically, we adopt all default hyper-parameters from the code base in OpenAI SpinningUp. The cap
852 length denotes the upper limit of the sub-trajectory length for the baseline algorithms, uncorrected
853 n -step, Retrace, and PQL. We report the detailed values in the below.

854 **Experimental Details.** We implement T4 and other baselines in PyTorch on top of the standard
855 evaluation protocol of off-policy RL ealgorithms in Google Dopamine (Castro et al., 2018) We
856 provide our full implementation and commands to reproduce our main results of T4 at (<https://anonymous.4open.science/r/t4-BD20>).

864
865
866
867
868
869

Table 2: TD3 Hyperparameters

Hyperparameter	Value
Actor learning rate	1×10^{-3}
Critic learning rate	1×10^{-3}
Batch size	100
Replay buffer size	1×10^6
Discount factor γ	0.99
Polyak averaging coefficient (τ)	0.995
Target policy noise (stddev)	0.2
Target noise clip	0.5
Policy update delay (frequency)	2 steps
Exploration noise (initial stddev)	0.1
Action range	[-1, 1]
Start steps (before training begins)	10000
Max episode length	1000
cap length	5
lambda (λ)	0.7

886

887
888
889
890
891
892
893
894
895
896

Table 3: SAC Hyperparameters

Hyperparameter	Value
Actor learning rate	1×10^{-3}
Critic learning rate	1×10^{-3}
Entropy coefficient (initial α)	0.2 (fixed)
Batch size	100
Replay buffer size	1×10^6
Discount factor γ	0.99
Polyak averaging coefficient (τ)	0.995
Target update interval	Every 1 step
Automatic entropy tuning	Enabled
Start steps (before policy used)	10000
Action range	[-1, 1]
Max episode length	1000
cap length	5
lambda (λ)	0.7

913
914
915
916
917

918
919
920
D ADDITIONAL EXPERIMENTAL RESULTS
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

943 **Figure 6: Performance with stochastic truncation.** Across five MuJoCo benchmarks, our method
944 (T4) consistently outperforms multi-step baselines and achieves faster convergence. For baseline
945 comparisons, we follow the convention of (Kozuno et al., 2021) and fix the cap length to $n = 5$ for
946 all multi-step methods.

970 **Figure 7: Evaluation of Twin-Delayed Deep Deterministic Policy Gradients (TD3) variants over**
971 **openAI mujoco environments.**

Figure 8: **Comparison of SAC, SAC-T4, and MBPO across four MuJoCo benchmarks.** Following our analysis of horizon sensitivity, we use different multi-step configurations per environment: *halfcheetah* and *walker* use a standard multi-step setting (cap length = 5, $\lambda = 0.7$), whereas *ant* and *hopper* follow the longer-horizon model-based configuration inspired by MBPO (cap length = 25, $\lambda = 0.1$). Across all tasks, T4 consistently accelerates learning and improves sample efficiency by adaptively adjusting its effective truncation length to the behavior–target policy mismatch, often matching or approaching MBPO despite being entirely model-free.

Table 4: **Reference scores for min–max normalization.** Random and expert performance values are taken from D4RL (Fu et al., 2021) and Minari (Farama Foundation, 2022). These values are used for computing normalized IQM scores in MuJoCo environments.

Environment	Random Score	Expert Score
Hopper	-20.27	3234.3
HalfCheetah	-280.18	12135.0
Walker2d	1.63	4592.3
Ant	-325.6	3879.7
Humanoid	78.85	9024.95

D.1 EVALUATION RESULTS BY THE PROTOCOL OF IQM

We conducted experiments following the evaluation protocol proposed in (Agarwal et al., 2021) to further examine the online RL performance of T4. This protocol emphasizes robust evaluation through interquartile mean (IQM) scores and normalized performance, and applying it highlights the superiority of our method in five different MuJoCo environments.

For these experiments, we computed min–max normalized scores across 10 runs (seeds). While prior work (Agarwal et al., 2021) typically reports 8 seeds, we adopted 10 runs to ensure more reliable estimates. The steps reported in the table correspond to 1,000K environment interactions. Metric computation was conducted using the official codebase of (Agarwal et al., 2021). For min–max normalization, expert and random scores were taken from the Minari extension (Farama Foundation, 2022) of D4RL (Fu et al., 2021); the Humanoid benchmark follows Minari scores, while the remaining tasks use D4RL values.

Across both SAC- and TD3-based experiments, T4 exhibits faster learning curves than existing multi-step methods and baseline algorithms. Notably, as shown in the table, only T4 surpasses the expert score within 1,000K steps, whereas prior methods typically require up to 3,000K steps to achieve comparable performance. This demonstrates the strong sample efficiency and effectiveness of our stochastic truncation approach.

1026
1027

D.2 ADDITIONAL EARLY-TRAINING DIAGNOSTICS ON ATARI

1028
1029
1030
1031
1032

To assess the stability of the proposed multi-step operator in the low-data regime, we report IQM results on Pong and Breakout at 500K agent steps (update horizon = 5, $\lambda = 1$). C51-T4 exhibits both higher normalized scores and reduced variance compared to C51, Rainbow, and DQN, indicating that stochastic truncation improves the robustness of multi-step distributional learning during early training.

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
10441045
1046
1047
1048
1049

Figure 9: IQM comparison on Pong and Breakout after 500K agent steps (*update horizon* = 5, $\lambda = 1$). Our C51-T4 operator achieves clearly higher normalized scores than C51, Rainbow, and DQN, while also exhibiting lower variance. These results indicate that the stochastic truncation mechanism stabilizes multi-step distributional learning even in the early-training regime.

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **E PROOF OF THEOREM 1**
 1081

1082 We consider the operator \mathcal{R} defined by a clipped importance weight sequence $\{c_t\}$, interpolation
 1083 factor $\lambda \in [0, 1]$, and total variation distance proxy d , where we clip the weight between the behavior
 1084 policy μ and target policy π .

1085 Let Q be an arbitrary action-value function and Q^π the fixed point of the target Bellman operator \mathcal{T}^π :

$$1086 \quad \mathcal{T}^\pi Q^\pi = Q^\pi.$$

1088 We define the difference:
 1089

$$1090 \quad \Delta Q := Q - Q^\pi.$$

1091 We now derive the deviation of the clipped operator \mathcal{R} from Q^π :

$$\begin{aligned} 1094 \quad \mathcal{R}Q(s, a) - Q^\pi(s, a) &= \sum_{t \geq 1} \gamma^t \mathbb{E}_{s_{1:t}}^{a_{1:t}} \left[\left(\prod_{i=1}^{t-1} c_i \right) (\mathbb{E}_\pi \Delta Q(s_t, \cdot) - c_t \Delta Q(s_t, a_t)) \right] \\ 1095 \\ 1096 \quad &= \sum_{t \geq 1} \gamma^t \mathbb{E}_{s_{1:t}}^{a_{1:t-1}} \left[\left(\prod_{i=1}^{t-1} c_i \right) (\mathbb{E}_\pi \Delta Q(s_t, \cdot) - \mathbb{E}_{a_t} [c_t(a_t, \mathcal{F}_t) \Delta Q(s_t, a_t) \mid \mathcal{F}_t]) \right] \\ 1097 \\ 1098 \quad &= \sum_{t \geq 1} \gamma^t \mathbb{E}_{s_{1:t}}^{a_{1:t-1}} \left[\left(\prod_{i=1}^{t-1} c_i \right) \sum_b (\pi(b|s_t) - \beta(b|s_t) c_t(b, \mathcal{F}_t)) \Delta Q(s_t, b) \right]. \\ 1099 \\ 1100 \\ 1101 \\ 1102 \end{aligned}$$

1103 Let us define weights:
 1104

$$1105 \quad w_{y,b} := \sum_{t \geq 1} \gamma^t \mathbb{E}_{s_{1:t}}^{a_{1:t-1}} \left[\left(\prod_{i=1}^{t-1} c_i \right) (\pi(b|s_t) - \beta(b|s_t) c_t(b, \mathcal{F}_t)) 1\{s_t = y\} \right].$$

1106 Then the difference becomes:
 1107

$$1109 \quad \mathcal{R}Q(s, a) - Q^\pi(s, a) = \sum_{y,b} w_{y,b} \Delta Q(y, b).$$

1112 However, in our setting, sub-convexity does not hold in general due to the possibility of negative
 1113 weights (when $\pi(b|s_t) < \lambda \beta(b|s_t) d$).

1114 To ensure convergence toward the fixed point Q^π , we require the operator \mathcal{R} to be a contraction in
 1115 the supremum norm (also known as ℓ_∞ -norm). That is, we want the following condition to hold:
 1116

$$1117 \quad \|\mathcal{R}Q - \mathcal{R}Q'\|_\infty \leq \kappa \|Q - Q'\|_\infty, \quad \kappa < 1. \quad (18)$$

1119 This ensures that the operator \mathcal{R} brings any two value functions closer under repeated application,
 1120 eventually converging to a unique fixed point. Our operator deviation is expressed as a weighted
 1121 combination of differences $\Delta Q(y, b)$, and the contraction factor κ can be interpreted as the total
 1122 weight magnitude:
 1123

$$1124 \quad \kappa := \sum_{y,b} |w_{y,b}|, \quad (19)$$

1127 where $w_{y,b}$ is the weight assigned to the deviation term $\Delta Q(y, b)$. Hence, for contraction to hold, we
 1128 require:
 1129

$$1130 \quad \sum_{y,b} |w_{y,b}| < 1. \quad (20)$$

1132 This forms the key criterion for verifying that the operator \mathcal{R} induces a contraction in value space
 1133 and guarantees convergence under repeated application.

1134 **Deviation Decomposition and Contraction Analysis.** Define, for state y and action b ,

$$1135 \quad w_{y,b} = \pi(b \mid y) - \lambda \beta(b \mid y) p_t.$$

1136 Then, the total absolute deviation at state y is

$$1137 \quad \sum_b |w_{y,b}| = \sum_{b \in \mathcal{P}} (\pi(b \mid y) - \lambda \beta(b \mid y) p_t) + \sum_{b \in \mathcal{N}} (\lambda \beta(b \mid y) p_t - \pi(b \mid y)),$$

1141 where

$$1142 \quad \mathcal{P} = \{b : \pi(b \mid y) \geq \lambda \beta(b \mid y) p_t\}, \quad \mathcal{N} = \{b : \pi(b \mid y) < \lambda \beta(b \mid y) p_t\}.$$

1144 This simplifies to

$$1145 \quad \sum_b |w_{y,b}| = \sum_b \pi(b \mid y) - \lambda p_t \sum_b \beta(b \mid y) + 2 \sum_{b \in \mathcal{N}} (\lambda \beta(b \mid y) p_t - \pi(b \mid y)) = 1 - \lambda p_t + 2 \sum_{b \in \mathcal{N}} (\lambda \beta(b \mid y) p_t - \pi(b \mid y)).$$

1148 The total weighted deviation over time is

$$1149 \quad \sum_{t \geq 1} \gamma^t \mathbb{E} \left[\xi^{t-1} \sum_b |\pi(b \mid s_t) - \lambda \beta(b \mid s_t) p_t| \right].$$

1154 Using the above decomposition, this equals

$$1155 \quad \sum_{t \geq 1} \gamma^t \mathbb{E} \left[\xi^{t-1} \left(1 - \lambda p_t + 2 \sum_{b \in \mathcal{N}_t} (\lambda \beta(b \mid s_t) p_t - \pi(b \mid s_t)) \right) \right],$$

1158 where $\mathcal{N}_t = \{b : \pi(b \mid s_t) < \lambda \beta(b \mid s_t) p_t\}$.

1160 Thus we obtain the upper bound

$$1161 \quad \|\mathcal{R}Q - Q^\pi\|_\infty \leq (1 - \lambda p_t) \underbrace{\sum_{t \geq 1} \gamma^t \xi^{t-1}}_{= \gamma C} + 2 \Delta_\lambda,$$

1165 with

$$1166 \quad C := \sum_{t \geq 0} (\gamma \xi)^t = \frac{1}{1 - \gamma \xi}, \quad \Delta_\lambda := \sum_{t \geq 1} \gamma^t \xi^{t-1} \sum_{b \in \mathcal{N}_t} (\lambda \beta(b \mid s_t) p_t - \pi(b \mid s_t)).$$

1170 **Using $p_t \leq \xi$.** Since $(1 - \lambda p_t)$ decreases in p_t , the safe bound is

$$1171 \quad (1 - \lambda p_t) \gamma C \leq \gamma C.$$

1173 Meanwhile,

$$1174 \quad \Delta_\lambda \leq \lambda \sum_{t \geq 2} \gamma^t \xi^{t-1} = \lambda \gamma \xi (C - 1) = \frac{\lambda \gamma^2 \xi^2}{1 - \gamma \xi}.$$

1177 Hence the combined bound is

$$1178 \quad \|\mathcal{R}Q - Q^\pi\|_\infty \leq \gamma C + 2 \lambda \gamma \xi (C - 1) = \frac{\gamma}{1 - \gamma \xi} + \frac{2 \lambda \gamma^2 \xi^2}{1 - \gamma \xi}.$$

1181 **Contraction condition.** For contraction we require

$$1183 \quad \frac{\gamma}{1 - \gamma \xi} + \frac{2 \lambda \gamma^2 \xi^2}{1 - \gamma \xi} < 1 \iff \gamma + 2 \lambda \gamma^2 \xi^2 < 1 - \gamma \xi.$$

1186 Equivalently,

$$1187 \quad \boxed{2 \lambda \gamma^2 \xi^2 < 1 - \gamma(1 + \xi)}.$$

1188 **Therefore:**

1189

1190 1. **Feasible γ (RHS must be positive):**

1191

1192
$$0 < \gamma < \frac{1}{1 + \xi}$$

1193

1194 2. **Feasible λ for given γ :**

1195

1196
$$0 \leq \lambda \leq \min \left\{ 1, \frac{1 - \gamma(1 + \xi)}{2\gamma^2\xi^2} \right\}, \quad 0 < \gamma < \frac{1}{1 + \xi}$$

1197

1198 3. **Worst case $\xi = 1$:** The global constraint is $\gamma < \frac{1}{2}$. For fixed λ , the maximal γ is

1199

1200
$$\gamma_+(\lambda, 1) = \frac{-1 + \sqrt{1 + 2\lambda}}{2\lambda} \quad (\text{further capped by } 1/2).$$

1201

1202 F PROOF OF THEOREM 2

1203

1204 This proof basically follows the same arguments as in the proof of the policy iteration of Retrace
1205 (Munos et. al. (2016)) (Munos et al., 2016).

1206

1207 **Step 1. Defining (sub)-probability transition operator** Since the corresponding probability p_s
1208 that $A_s = 1$ is Markovian by the definition in Equation (5), we first examine the following expectation:

1209

1210
$$\mathbb{E}_{p_s} \left[\sum_{s'} \sum_{a'} \mathcal{P}(s'|s, a) \beta(a'|s') A_s Q(s', a') \right] = \sum_{s'} \sum_{a'} \mathcal{P}(s'|s, a) \beta(a'|s') p_s(s', a') Q(s', a'). \quad (21)$$

1211

1212 Now, we define the corresponding (sub)-probability transition operator:

1213

1214
$$\sum_{s'} \sum_{a'} \mathcal{P}(s'|s, a) \beta(a'|s') p(s', a') Q(s', a') =: (\mathcal{P}^{p\beta} Q)(s, a). \quad (22)$$

1215

1216 **Step 2. Upper bound on $Q_{n+1} - Q^*$** We rewrite our T4 operator in Equation (6) as follows.

1217

1218

1219
$$\mathcal{R}_{p, \lambda} Q = Q + \sum_{t \geq 0} (\gamma \lambda)^t (\mathcal{P}^{p\beta})^t (\mathcal{T}^\pi Q - Q) = Q + (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} (\mathcal{T}^\pi Q - Q) \quad (23)$$

1220

1221

1222 where $(I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} = \sum_{t=0}^{\infty} (\gamma \lambda \mathcal{P}^{p\beta})^t$. Since $Q_{n+1} = \mathcal{R}_{p, \lambda} Q_n$,

1223

1224

1225
$$\begin{aligned} Q_{n+1} - Q^* &= Q_n - Q^* + (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} (\mathcal{T}^\pi Q_n - Q_n) \\ &= (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} [\mathcal{T}^\pi Q_n - Q_n + (I - \gamma \lambda \mathcal{P}^{p\beta})(Q_n - Q^*)] \\ &= (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} [\mathcal{T}^\pi Q_n - Q^* - \gamma \lambda \mathcal{P}^{p\beta}(Q_n - Q^*)] \\ &= (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} [\mathcal{T}^\pi Q_n - \mathcal{T} Q^* - \gamma \lambda \mathcal{P}^{p\beta}(Q_n - Q^*)] \\ &\leq (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} [\gamma \lambda \mathcal{P}^\pi(Q_n - Q^*) - \gamma \lambda \mathcal{P}^{p\beta}(Q_n - Q^*)] \\ &= \gamma \lambda (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} [\mathcal{P}^\pi - \mathcal{P}^{p\beta}](Q_n - Q^*) \\ &= \mathcal{B}(Q_n - Q^*), \end{aligned}$$

1226

1227

1228 where we denote $\gamma \lambda (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} [\mathcal{P}^\pi - \mathcal{P}^{p\beta}]$ as \mathcal{B} . We rewrite \mathcal{B} as

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239
$$\mathcal{B} = \gamma \lambda (I - \gamma \lambda \mathcal{P}^{p\beta})^{-1} [\mathcal{P}^\pi - \mathcal{P}^{p\beta}] = \gamma \lambda \sum_{t \geq 0} (\gamma \lambda)^t (\mathcal{P}^{p\beta})^t (\mathcal{P}^\pi - \mathcal{P}^{p\beta}).$$

1242 To show that \mathcal{B} has non-negative elements, whose sum over each row is at most $\gamma\lambda$. Let $\mathbf{1}$ be the
 1243 vector with 1-components. We obtain
 1244

$$1245 (\mathcal{P}^\pi - \mathcal{P}^{p\beta})\mathbf{1}(s, a) = \sum_{s'} \sum_{a'} \mathcal{P}(s' | s, a) [\pi(a' | s') - p(s', a')\beta(a' | s')] \geq 0 \quad (24)$$

1246

1247 Then, we have
 1248

$$\begin{aligned} 1249 \mathcal{B}\mathbf{1}(s, a) &= \gamma\lambda \sum_{t \geq 0} (\gamma\lambda)^t (\mathcal{P}^{p\beta})^t (\mathcal{P}^\pi - \mathcal{P}^{p\beta})\mathbf{1}(s, a) \\ 1250 &= \gamma\lambda \sum_{t \geq 0} (\gamma\lambda)^t (\mathcal{P}^{p\beta})^t \mathbf{1}(s, a) - \sum_{t \geq 0} (\gamma\lambda)^{t+1} (\mathcal{P}^{p\beta})^{t+1} \mathbf{1}(s, a) \\ 1251 &= \mathbf{1}(s, a) - (1 - \gamma\lambda) \sum_{t \geq 0} (\gamma\lambda)^t (\mathcal{P}^{p\beta})^t \mathbf{1}(s, a) \\ 1252 &\leq \gamma\lambda \mathbf{1}(s, a). \end{aligned}$$

1253

1254 The last inequality is derived by $\sum_{t \geq 0} (\gamma\lambda)^t (\mathcal{P}^{p\beta})^t \mathbf{1} \geq \mathbf{1}$. By the result of Theorem 1, we have
 1255

$$1256 Q_{n+1} - Q^* \leq \gamma\lambda \|Q_n - Q^*\|_{p, \infty} \mathbf{1}. \quad (25)$$

1257

1258 **Step 3. Lower bound on $Q_{n+1} - Q^*$** By Equation (23), we obtain
 1259

$$\begin{aligned} 1260 Q_{n+1} &= Q_n + (I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}(\mathcal{T}^\pi Q_n - Q_n) \\ 1261 &= Q_n + \sum_{i \geq 0} (\gamma\lambda\mathcal{P}^{p\beta})^i (\mathcal{T}^\pi Q_n - Q_n) \\ 1262 &= \mathcal{T}^\pi Q_n + \sum_{i \geq 1} (\gamma\lambda\mathcal{P}^{p\beta})^i (\mathcal{T}^\pi Q_n - Q_n) \\ 1263 &= \mathcal{T}^\pi Q_n + \gamma\lambda\mathcal{P}^{p\beta}(I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}(\mathcal{T}^\pi Q_n - Q_n). \end{aligned}$$

1264

1265 As we define ε_n in the statement of Theorem 2, we have
 1266

$$1267 \mathcal{T}^{\pi_n} Q_n \geq \mathcal{T} Q_n - \varepsilon_n \|Q_n\| \geq \mathcal{T}^\pi Q_n - \varepsilon_n \|Q_n\|.$$

1268

1269 Then,
 1270

$$\begin{aligned} 1271 Q_{n+1} - Q^* &= Q_{n+1} - \mathcal{T}^{\pi_n} Q_n + \mathcal{T}^{\pi_n} Q_n - \mathcal{T}^{\pi^*} Q_n + \mathcal{T}^{\pi^*} Q_n - \mathcal{T}^{\pi^*} Q^* \\ 1272 &\geq Q_{n+1} - \mathcal{T}^{\pi_n} Q_n + \gamma\mathcal{P}^{\pi^*}(Q_n - Q^*) - \varepsilon_n \|Q_n\| \mathbf{1}. \end{aligned}$$

1273

1274 As a result, we conclude that
 1275

$$1276 Q_{n+1} - Q^* \geq \gamma\lambda\mathcal{P}^{p\beta}(I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}(\mathcal{T}^\pi Q_n - Q_n) + \gamma P^\pi(Q_n - Q^*) - \varepsilon_n \|Q_n\| \mathbf{1}. \quad (26)$$

1277

1278 **Step 4. Lower bound on $\mathcal{T}^\pi Q_n - Q_n$** Similar to (Munos et al., 2016), we assume that $\varepsilon_n \rightarrow 0$,
 1279 $\mathcal{T}^{\pi^0} Q_0 - Q_0 \geq 0$, and (π_n) is increasingly greedy with regard to (Q_n) as follows:
 1280

$$1281 \mathcal{T}^{\pi_{n+1}} Q_{n+1} - Q_{n+1} \geq \mathcal{T}^{\pi_n} Q_{n+1} - Q_{n+1}.$$

1282

1283 Let $\mathcal{H}_n = \gamma[P^{\pi_k} - \mathcal{P}^{p\beta}](I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}$. We have
 1284

$$\begin{aligned} 1285 \mathcal{T}^{\pi_{n+1}} Q_{n+1} - Q_{n+1} &\geq \mathcal{T}^{\pi_n} Q_{n+1} - Q_{n+1} \\ 1286 &= \mathcal{T}^{\pi_n} \mathcal{R}_{p, \lambda} Q_n - \mathcal{R}_{p, \lambda} Q_n \\ 1287 &= r + (\gamma\mathcal{P}^{\pi_n} - I) \mathcal{R}_{p, \lambda} Q_n \\ 1288 &= r + (\gamma\mathcal{P}^{\pi_n} - I) [Q_n + (I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}(\mathcal{T}^\pi Q_n - Q_n)] \\ 1289 &= \mathcal{T}^{\pi_n} Q_n - Q_n + (\gamma\mathcal{P}^{\pi_n} - I)(I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}(\mathcal{T}^\pi Q_n - Q_n) \\ 1290 &= \gamma[\mathcal{P}^{\pi_k} - \mathcal{P}^{p\beta}](I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}(\mathcal{T}^\pi Q_n - Q_n) \\ 1291 &= \mathcal{H}_n(\mathcal{T}^\pi Q_n - Q_n), \end{aligned} \quad (16)$$

1292

1296 Recall that $\mathcal{P}^{\pi_n} - \mathcal{P}^{p\beta}$ (as shown in Equation (24)) and $(I - \gamma\lambda\mathcal{P}^{p\beta})^{-1}$ have non-negative elements.
 1297 In the above, we proved that \mathcal{H}_n has non-negative elements as well. Therefore,
 1298

$$1299 \mathcal{T}^\pi Q_n - Q_n \geq \mathcal{H}_{n-1} \mathcal{H}_{n-2} \cdots \mathcal{H}_0 (\mathcal{T}^{\pi_0} Q_0 - Q_0) \geq 0.$$

1300
 1301 Finally, Equation (26) implies that
 1302

$$1303 Q_{n+1} - Q^* \geq \gamma \mathcal{P}^{\pi^*} (Q_n - Q^*) - \varepsilon_n \|Q_n\| \mathbf{1}.$$

1304 Combining the above with Equation (25), we have
 1305

$$1306 \|Q_{n+1} - Q^*\| \leq \gamma \|Q_n - Q^*\| + \varepsilon_n \|Q_n\|.$$

1308 We note that Q_n is bounded. When ε_n satisfies $\varepsilon_n < (1 - \gamma)/2$, we have
 1309

$$1310 \|Q_{n+1}\| \leq \|Q^*\| + \gamma \|Q_n - Q^*\| + \frac{1 - \gamma}{2} \|Q_n\| \leq (1 + \gamma) \|Q^*\| + \frac{1 + \gamma}{2} \|Q_n\|.$$

1312 Furthermore,
 1313

$$1314 \limsup \|Q_n\| \leq \frac{1 + \gamma}{1 - (1 + \gamma)/2} \|Q^*\|.$$

1316 Since Q_n is bounded, we conclude that $\limsup Q_n = Q^*$.
 1317 \square
 1318

1319 G PROOF OF LEMMA 1

1321 We start the proof with the following lemma.
 1322

1323 **Lemma 4.** *Under Definition 1, any two stationary distributions μ_β and μ_π of \mathcal{P}^β and \mathcal{P}^π satisfy
 1324 $\|\mu_\beta - \mu_\pi\|_{TV} \leq \frac{d}{\alpha}$.*
 1325

1326 The proof of Lemmas 4 relies on properties of nearby Markov chains. Detailed proof is provided in
 1327 Appendix G.1.
 1328

1329 **Step 1. Inserting μ_π by triangular inequality** First, we can upper bound the distance from
 1330 stationary of \mathcal{P}^β by triangular inequality:

$$1331 \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_\beta\|_{TV} \leq \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_\pi\|_{TV} + \|\mu_\beta - \mu_\pi\|_{TV},$$

1333 where μ_π denotes the stationary distribution of \mathcal{P}^π .
 1334

1335 **Step 2. Bounding the distance from stationary** By using the distance between two nearby Markov
 1336 chains, we have
 1337

$$\begin{aligned} 1339 \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_\pi\|_{TV} + \|\mu_\beta - \mu_\pi\|_{TV} \\ 1340 &= \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_\pi \mathcal{P}^{\pi(t)}\|_{TV} + \|\mu_\beta - \mu_\pi\|_{TV} \\ 1341 &\leq \max_{s'} \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s', \cdot)\|_{TV} + \|\mu_\beta - \mu_\pi\|_{TV} \\ 1342 &\leq \max_{s'} \left\{ \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot)\|_{TV} + \|\mathcal{P}^{\pi(t)}(s', \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot)\|_{TV} \right\} + \|\mu_\beta - \mu_\pi\|_{TV} \\ 1343 &\leq \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot)\|_{TV} + \max_{s'} \left\{ \|\mathcal{P}^{\pi(t)}(s', \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot)\|_{TV} \right\} + \|\mu_\beta - \mu_\pi\|_{TV} \end{aligned}$$

1349 By Lemma 4, we have

$$\begin{aligned}
& \left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot) \right\|_{\text{TV}} + \max_{s'} \left\| \mathcal{P}^{\pi(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s', \cdot) \right\|_{\text{TV}} + \|\mu_{\beta} - \mu_{\pi}\|_{\text{TV}} \\
& \leq \left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot) \right\|_{\text{TV}} + (1 - \alpha)^t + \frac{d}{\alpha} \\
& \leq \left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot) \right\|_{\text{TV}} + 1 - \alpha + \frac{d}{\alpha}.
\end{aligned}$$

□

G.1 PROOF OF LEMMA 4

By the triangle inequality,

$$\begin{aligned}
\|\mu_{\beta} - \mu_{\pi}\|_{\text{TV}} & \leq \|\mu_{\beta} \mathcal{P}^{\beta} - \mu_{\pi} \mathcal{P}^{\beta}\|_{\text{TV}} + \|\mu_{\pi} \mathcal{P}^{\beta} - \mu_{\pi} \mathcal{P}^{\pi}\|_{\text{TV}} \\
& = (1 - \alpha) \|\mu_{\beta} - \mu_{\pi}\|_{\text{TV}} + d.
\end{aligned}$$

Each term in the second line is derived from the ergodicity of Markov chain and Definition 1, respectively. Then, we have

$$\|\mu_{\beta} - \mu_{\pi}\|_{\text{TV}} \leq \frac{d}{\alpha}.$$

□

H PROOF OF LEMMA 2

The proof is basically the same as Theorem 9 in (Johndrow & Mattingly, 2017a) with minor modification. We construct a coupling (S_t^{β}, S_t^{π}) to examine the long-time dynamic of the agreement between S_t^{β} and S_t^{π} .

Step 1. Construction of the Coupling Given any two probability measures m_1 and m_2 on \mathcal{S} , it is known that

$$\|m_1 - m_2\|_{\text{TV}} = 1 - \min(m_1, m_2)(\mathcal{S}) = [m_1 - m_2]^+(\mathcal{S}) = [m_2 - m_1]^+(\mathcal{S}).$$

Now we compare two transitions \mathcal{P}^{β} and \mathcal{P}^{π} where the transition kernel \mathcal{P} is uniformly d -bounded. For any $\xi = (\xi_1, \xi_2) \in \mathcal{S} \times \mathcal{S}$, we define the measures on \mathcal{S}

$$\begin{aligned}
Q_d(\xi, \cdot) & = \frac{\min(\mathcal{P}^{\pi}(\xi_1, \cdot), \mathcal{P}^{\beta}(\xi_2, \cdot))}{\rho_d(\xi)}, \quad R_d(\xi, \cdot) = \frac{[\mathcal{P}^{\pi}(\xi_1, \cdot) - \mathcal{P}^{\beta}(\xi_2, \cdot)]^+}{1 - \rho_d(\xi)}, \\
\widetilde{R}_d(\xi, \cdot) & = \frac{[\mathcal{P}^{\beta}(\xi_2, \cdot) - \mathcal{P}^{\pi}(\xi_1, \cdot)]^+}{1 - \rho_d(\xi)},
\end{aligned}$$

where $\rho_d(\xi)$ denotes

$$\rho_d(\xi) = 1 - \|\mathcal{P}^{\pi}(\xi_1, \cdot) - \mathcal{P}^{\beta}(\xi_2, \cdot)\|_{\text{TV}}.$$

We note that these three measures are all probability measures on \mathcal{S} for fixed $\xi \in \mathcal{S} \times \mathcal{S}$. Now we define the transition kernels in $\mathcal{S} \times \mathcal{S}$ for $\xi = (\xi_1, \xi_2)$ and $s = (s_1, s_2)$ in $\mathcal{S} \times \mathcal{S}$:

$$Q_d(\xi, ds) = \rho_d(\xi) Q_d(\xi, ds_1) \delta_{s_1}(ds_2) + (1 - \rho_d(\xi)) \left(R_d(\xi, ds_1) \times \widetilde{R}_d(\xi, ds_2) \right). \quad (27)$$

Step 2. Using stochastic dominance among random variables For the following derivations, we first define a stochastic process Z_n^d

$$Z_n^d = \begin{cases} 0 & \text{if } S_n^{\beta} = S_n^{\pi} \\ 1 & \text{if } S_n^{\beta} \neq S_n^{\pi} \end{cases} \quad (28)$$

1404 where (S_t^β, S_t^π) be the Markov chain on $\mathcal{S} \times \mathcal{S}$ defined by the above transition density Q_d in
 1405 Equation (27). Since Z_n^d is not Markovian, we define the probability $P(Z_{n+1}^d = k | Z_n^d = j)$ as
 1406 $\mathbb{E}[\mathbf{1}\{Z_{n+1}^d = k\} | Z_n^d = j]$. **Note that Z_k^d corresponds to the Bernoulli indicator A_k .** Now we
 1407 have

$$P(Z_{n+1}^d = 0 | Z_n^d = 0) \geq 1 - d \quad \text{and} \quad P(Z_{n+1}^d = 0 | Z_n^d = 1) \geq \rho$$

1409 with probability 1. Let Y_n be the Markov chain on $\{0, 1\}$ with the transition matrix
 1410

$$P_d = \begin{pmatrix} 1 - d & d \\ \rho & 1 - \rho \end{pmatrix} \quad (29)$$

1414 and assume that $d < 1 - \rho$. We have
 1415

$$\begin{aligned} P(Z_{n+1}^d = 0 | Z_n^d = 0) &\geq P(Y_{n+1} = 0 | Y_n = 0) = 1 - d, \\ P(Z_{n+1}^d = 0 | Z_n^d = 1) &\geq P(Y_{n+1} = 0 | Y_n = 1) = \rho, \\ P(Z_{n+1}^d = 0 | Z_n^d = 0) &\geq P(Y_{n+1} = 0 | Y_n = 1) = \rho. \end{aligned}$$

1420 with probability 1. This result implies that
 1421

$$P(Z_{n+1}^d \leq k | Z_n^d \leq Y_n) \geq P(Y_{n+1} \leq k | Z_n^d \leq Y_n) \quad (30)$$

1424 for all $k \geq 0$ and $n \geq 0$. It is equivalent to the definition of stochastic dominance, then we can
 1425 construct a monotone coupling of the processes Y_n and Z_n^d where

$$P(Z_n^\epsilon \leq Y_n \text{ for all } n) = 1 \quad (31)$$

1428 and $Z_0^d \leq Y_0$. Finally, with probability 1, we have
 1429

$$\frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}\{S_k^\beta \neq S_k^\pi\} = \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}\{Z_k^d = 1\} \leq \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}\{Y_k = 1\}. \quad (32)$$

1433 We note that it is enough to bound the amount of time $Y_n = 1$ to control the fraction of the time that
 1434 S_n^β and S_n^π disagree.
 1435

1436 **Step 3. Bounding chain in expectation** The key idea in our proof is to leverage the fact that Z_n^d is
 1437 stochastically dominated by Y_n . By explicitly analyzing the amount of time that Y_n spends in state
 1438 1, we can derive bounds relevant to the problems of interest. Let a Markov transition matrix of the
 1439 bounding chain be

$$\mathcal{P}_d = \begin{pmatrix} 1 - d & d \\ \rho & 1 - \rho \end{pmatrix}. \quad (33)$$

1442 We know that the Markov chain \mathcal{P}_d has a generator $L_d = \mathcal{P}_d - I$ and its unique stationary measure
 1443 μ_d denoted by
 1444

$$\mu_d = \left(\frac{\rho}{\rho + d}, \frac{d}{\rho + d} \right). \quad (34)$$

1447 Note that, by definition, $\mu_d L_d = 0$ and $\mu_d \mathcal{P}_d = \mu_d$. We define the following vectors
 1448

$$\phi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \mathbf{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \bar{\phi}_d = \mu_d \phi \mathbf{1} = \left(\frac{d}{\rho + d}, \frac{\rho}{\rho + d} \right), \quad \text{and} \quad \tilde{\phi}_d = \phi - \bar{\phi}_d = \left(\frac{-d}{\rho + d}, \frac{\rho}{\rho + d} \right).$$

1452 Let ψ_d be the solution to the following equation
 1453

$$L_d \psi_d = -\tilde{\phi}_d. \quad (35)$$

1455 Then, we can easily see that
 1456

$$\psi_d = \sum_{k=0}^{\infty} \mathcal{P}_d^{(k)} \tilde{\phi}_d. \quad (36)$$

1458 Consider $w_d = \begin{pmatrix} -\epsilon \\ 1 \end{pmatrix}$. It satisfies $\mathcal{P}_d w_d = (1 - \rho - d)w_d$, then w_d is a right-eigenvector with
 1459 eigenvalue $1 - \rho - d$. Since $\tilde{\phi}_d = \frac{\rho}{\rho+d}w_d$, we have
 1460
 1461

$$1462 \quad \psi_d = \left(\frac{\rho}{\rho+d} \right) \left(\sum_{k=0}^{\infty} (1 - \rho - d)^k \right) w_d = \frac{\rho}{(\rho+d)^2} w_d.$$

1463 We note that $d < 1 - \rho$ by definition so that $1 - \rho - d \in (0, 1)$. For any initial distribution of (S_1^β, S_1^π)
 1464 induced by $\mathcal{P}^\beta \mathcal{P}_0$ and $\mathcal{P}^\pi \mathcal{P}_0$, we define the initial distribution of Y_n as
 1465
 1466

$$1467 \quad \nu(0) = \mathbb{P}(S_1^\beta = S_1^\pi) \text{ and } \nu(1) = \mathbb{P}(S_1^\beta \neq S_1^\pi),$$

1468 respectively. Combining the above properties, we have
 1469
 1470

$$1471 \quad \nu \mathcal{P}_d^n \psi_d - \nu \psi_d = \sum_{k=0}^{n-1} \nu \mathcal{P}_d^k L_d \psi_d = \sum_{k=0}^{n-1} \nu \mathcal{P}_d^k \phi - n \nu \bar{\phi}_d.$$

1472 Rearranging the above equation, we finally have
 1473
 1474

$$1475 \quad \frac{1}{n} \sum_{k=0}^{n-1} \nu \mathcal{P}_d^k \phi = \frac{d}{\rho+d} + \frac{\nu \mathcal{P}_d^n \psi_d \nu \psi_d}{n} = \frac{d}{\rho+d} + \frac{\rho}{n(\rho+d)^2} (1 - (1 - \rho - d)^n) \nu w_d$$

$$1476 \quad = \frac{d}{\rho+d} + \frac{1 - (1 - \rho - d)^n}{n(\rho+d)^2} (\rho \mathbb{P}(S_1^\beta \neq S_1^\pi) - d(1 - \mathbb{P}(S_1^\beta \neq S_1^\pi)))$$

$$1477 \quad = \frac{d}{\rho+d} + \frac{1 - (1 - \rho - d)^n}{n(\rho+d)} (\mathbb{P}(S_1^\beta \neq S_1^\pi) - \frac{d}{\rho+d}).$$

1478 Note that
 1479
 1480

$$1481 \quad \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}\{Y_k = 1\} = \frac{1}{n} \sum_{k=0}^{n-1} \phi(Y_k)$$

1482 by the definition in Equation (32). We conclude that
 1483
 1484

$$1485 \quad \frac{1}{n} \sum_{k=1}^n \mathbb{P}(S_k^\beta \neq S_k^\pi) \leq \frac{1}{n} \sum_{k=0}^{n-1} \nu \mathcal{P}_d^k \phi = \frac{d}{\rho+d} + \frac{1 - (1 - \rho - d)^n}{n(\rho+d)} \left(\mathbb{P}(S_1^\beta \neq S_1^\pi) - \frac{d}{\rho+d} \right). \quad (37)$$

1486
 1487 \square

I PROOF OF THEOREM 3

1488 **Step 1. Analyze the property of coupling time** To begin with, recall that the Markov chain Y_n on
 1489 $\{0, 1\}$ has the following transition matrix
 1490
 1491

$$1492 \quad \mathcal{P}_d = \begin{pmatrix} 1 - d & d \\ \rho & 1 - \rho \end{pmatrix}.$$

1493 We introduce the conditional expectation of a random variable with respect to σ -algebra. Define a
 1494 filtration $\mathcal{F}_n = \sigma(Y_0, Y_1, Y_2, \dots, Y_n)$ and $\{Y_n\}$ is adapted to $\{\mathcal{F}_n\}$ and a stopping time
 1495

$$1496 \quad \tau_d = \min\{n \geq 0 \mid Y_n = 0\}.$$

1497 Since $T_{\beta,\pi} = \min\{t \geq 1 : S_n^\beta = S_n^\pi \mid S_0 \sim \mathcal{P}_0\}$ is the first meeting time of two processes (S_n^β, S_n^π)
 1498 defined in Lemma 2, we can rewrite $T_{\beta,\pi}$ as
 1499

$$1500 \quad T_{\beta,\pi} = \min\{t \geq 1 : S_n^\beta = S_n^\pi \mid S_0 \sim \mathcal{P}_0\} = \min\{t \geq 1 : Z_n^d = 0\}.$$

1501 Suppose that $\mathbb{E}[\tau] < \infty$. We first note that the stochastic ordering $T_{\beta,\pi} \geq \tau_d$ since we construct a
 1502 monotone coupling of Y_n and Z_n^d in Equation (30). Then, for any meeting time τ , we have
 1503

$$1504 \quad \mathbb{P}(T_{\beta,\pi} \leq \tau) \leq \mathbb{P}(\tau_d \leq \tau).$$

1512 Therefore,

1513

$$1514 \quad P(\tau_d > \tau) = \sum_{k=1}^{\infty} P(\tau_d > k) P(\tau = k) = \sum_{j=1}^{\infty} (1 - \rho)^{j-1} P(\tau = j) = \mathbb{E}[(1 - \rho)^{\tau}]. \quad (38)$$

1515

1516

1517 Let $\Lambda(\rho) = \mathbb{E}[(1 - \rho)^{\tau}]$. To obtain an intuitive result, assume that $\tau \leq N$ almost surely for some
1518 constant N . Under this assumption, $\Lambda(\rho)$ is differentiable everywhere. In the region $\rho \in (0, \epsilon_0)$ for
1519 some small $\epsilon_0 > 0$, the Lagrange remainder of its Taylor expansion yields:

1520

1521

$$1522 \quad \Lambda(\rho) = 1 - \rho \mathbb{E}[\tau] + \frac{1}{2} \Lambda''(\xi) \mathbb{E}[\tau(\tau - 1)] \geq 1 - \rho \mathbb{E}[\tau]$$

1523

for some $\xi \in (0, \rho)$.

Finally, we have

$$P(\tau_d > \tau) \geq 1 - \rho \mathbb{E}[\tau]. \quad (39)$$

Therefore,

$$P(T_{\beta, \pi} \leq \tau) \leq P(\tau_d \leq \tau) \leq \rho \mathbb{E}[\tau]. \quad (40)$$

We conclude that the probability of $T_{\beta, \pi}$ is well defined and note that its value is upper-bounded by
1529 the chain Y_n . In the next step, we evaluate the mixing time by using the practical stopping time that
1530 two process first meet.

1531

1532 **Step 2. Upper bound of the distance from the stationary of \mathcal{P}^{β}** By Lemma 1, we can upper
1533 bound

1534

$$1535 \quad \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_{\beta}\|_{\text{TV}} \leq \left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot) \right\|_{\text{TV}} + 1 - \alpha + \frac{d}{\alpha}. \quad (41)$$

1536

By the property of coupling, we have

1537

$$1538 \quad \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_{\beta}\|_{\text{TV}} \leq \left\| \mathcal{P}^{\beta(t)}(s, \cdot) - \mathcal{P}^{\pi(t)}(s, \cdot) \right\|_{\text{TV}} + 1 - \alpha + \frac{d}{\alpha}$$

1539

$$\leq P(S_t^{\beta} \neq S_0^{\pi} | S_0^{\beta} = s, S_0^{\pi} = s) + 1 - \alpha + \frac{d}{\alpha}$$

1540

$$\leq P(T_{\beta, \pi} > t | S_0^{\beta} = s, S_0^{\pi} = s) + 1 - \alpha + \frac{d}{\alpha}.$$

1541

1542

1543

1544

1545 Applying Markov's inequality, we have

1546

1547

$$1548 \quad \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_{\beta}\|_{\text{TV}} \leq P(T_{\beta, \pi} > t | S_0^{\beta} = s, S_0^{\pi} = s) + 1 - \alpha + \frac{d}{\alpha}$$

1549

$$\leq \frac{\mathbb{E}[T_{\beta, \pi}]}{t} + (1 - \alpha + \frac{d}{\alpha})$$

1550

1551 To evaluate the mixing time of \mathcal{P}^{β} , we approximate the above inequality as

1552

1553

$$1554 \quad \|\mathcal{P}^{\beta(t)}(s, \cdot) - \mu_{\beta}\|_{\text{TV}} \leq P(T_{\beta, \pi} > t | S_0^{\beta} = s, S_0^{\pi} = s) + 1 - \alpha + \frac{d}{\alpha}$$

1555

$$\lesssim \frac{\mathbb{E}[T_{\beta, \pi}]}{t}.$$

1556

1557

Then, the mixing time of \mathcal{P}^{β} , τ_{mix} is derived as

1559

$$\tau_{\text{mix}} \leq 2e\mathbb{E}[T_{\beta, \pi}] \quad (42)$$

1560

We now use the estimate of the mixing time τ_{mix} as $\mathbb{E}[T_{\beta, \pi}]$ approximately. Then, we have the
1561 following result by Equation (4):

1562

1563

$$1564 \quad K = \min\left(\frac{1}{1 - \gamma}, \mathbb{E}[T_{\beta, \pi}]\right). \quad (43)$$

1565

□

1566 **J JUSTIFICATION OF THE ACTION-LEVEL APPROXIMATION FOR THE**
 1567 **MIXING-TIME SURROGATE**
 1568

1569 In this section, we formally justify why our implementation uses an action-level overlap proxy
 1570 $\hat{p}_i = 1 - \min\{\beta(a_i | s_i), \pi(a_i | s_i)\}$ to approximate the theoretical state-transition discrepancy
 1571 $p_i = \text{TV}(P_\beta(\cdot | s_i), P_\pi(\cdot | s_i))$, and why this is mathematically consistent under the structure of
 1572 Markov decision processes.

1573 **J.1 THREE LEVELS OF KERNELS**
 1574

1576 Let $P_{\text{env}}(s' | s, a)$ denote the environment transition kernel, which is independent of the policy. Given
 1577 policies β and π , the induced state-transition kernels are

1578
$$P_\beta(s' | s) = \sum_a \beta(a | s) P_{\text{env}}(s' | s, a), \quad (44)$$

1581
$$P_\pi(s' | s) = \sum_a \pi(a | s) P_{\text{env}}(s' | s, a). \quad (45)$$

1583 When we consider the augmented Markov chain on state-action pairs (S_t, A_t) , the corresponding
 1584 kernels are
 1585

1586
$$Q_\beta((s, a), (s', a')) = P_{\text{env}}(s' | s, a) \beta(a' | s'), \quad (46)$$

1587
$$Q_\pi((s, a), (s', a')) = P_{\text{env}}(s' | s, a) \pi(a' | s'). \quad (47)$$

1588 Our off-policy data consist of trajectories of the form (s_t, a_t, s_{t+1}) , which are exact samples from
 1589 the chain Q_β .
 1590

1591 Following Duan et al. (2021), the multi-step TD error trade-off depends on the mixing properties
 1592 of the underlying Markov chain. In off-policy evaluation, we are interested in mixing properties
 1593 involving both P_β and a nearby chain P_π .
 1594

1595 **J.2 FROM POLICIES TO STATE-TRANSITION KERNELS**
 1596

1597 A key structural fact is that the environment transition kernel is policy-independent. Therefore, for
 1598 each state s ,

1599
$$P_\beta(\cdot | s) = \beta(\cdot | s) K_s, \quad P_\pi(\cdot | s) = \pi(\cdot | s) K_s, \quad (48)$$

1600 where the stochastic kernel K_s maps actions to next states:

1601
$$K_s(s' | a) := P_{\text{env}}(s' | s, a). \quad (49)$$

1602 Thus, $P_\beta(\cdot | s)$ and $P_\pi(\cdot | s)$ arise from pushing different action distributions through the same
 1603 transition map.
 1604

1605 **J.3 DATA-PROCESSING INEQUALITY FOR TV DISTANCE**
 1606

1607 Define the action-level and state-level total variation distances:

1609
$$\text{TV}_{\text{action}}(s) := \frac{1}{2} \sum_a |\beta(a | s) - \pi(a | s)| = 1 - \sum_a \min\{\beta(a | s), \pi(a | s)\}, \quad (50)$$

1611
$$\text{TV}_{\text{state}}(s) := \frac{1}{2} \sum_{s'} |P_\beta(s' | s) - P_\pi(s' | s)| = p_i. \quad (51)$$

1614 Since a stochastic kernel cannot increase total variation distance (data-processing inequality),
 1615

1616
$$\text{TV}_{\text{state}}(s) \leq \text{TV}_{\text{action}}(s) \quad \text{for all } s. \quad (52)$$

1618 This property will be formalized and elaborated in Section J.6 when we introduce the coupling-based
 1619 relation between the two transition kernels. Hence, $\text{TV}_{\text{action}}(s)$ is an upper bound on the theoretical
 quantity p_i that governs meeting-time and mixing-time behavior in our coupling analysis.

1620
1621J.4 SAMPLE-BASED APPROXIMATION ALONG β -TRAJECTORIES1622
1623
1624

The exact action-level TV requires evaluating $\sum_a \min\{\beta(a \mid s_i), \pi(a \mid s_i)\}$. In practice, along a trajectory generated by β , we only observe a single action sample $a_i \sim \beta(\cdot \mid s_i)$. We therefore adopt the stochastic proxy

1625

$$\hat{p}_i = 1 - \min\{\beta(a_i \mid s_i), \pi(a_i \mid s_i)\}. \quad (53)$$

1626
1627

This is a noisy sample-level approximation of $\text{TV}_{\text{action}}(s_i)$.

1628
1629
1630
1631

While \hat{p}_i is not an unbiased estimator of p_i or of $\text{TV}_{\text{action}}(s_i)$, it preserves the key monotonic relationship: larger policy mismatch leads to larger \hat{p}_i , which in turn produces shorter expected truncation lengths in our T4 mechanism. Importantly, \hat{p}_i is fully model-free: it can be computed without access to the environment transition kernel.

1632
1633

J.5 IMPLICATIONS FOR MIXING-TIME SURROGATES

1634
1635
1636
1637

Our theoretical analysis uses the state-transition TV distance $p_i = \text{TV}(P_\beta(\cdot \mid s_i), P_\pi(\cdot \mid s_i))$ as the quantity governing the meeting time between the two chains. By data processing, this value is upper bounded by the action-level TV. Our implementation uses the sample-based surrogate \hat{p}_i , which approximates this action-level quantity.

1638
1639
1640
1641

Thus, the use of \hat{p}_i is mathematically consistent: it provides a directional, model-free proxy for the theoretical p_i and retains its qualitative dependence on policy discrepancy, allowing us to translate mixing-time insights (as in Duan et al. 2021) to the off-policy setting.

1642
1643
1644
1645
1646

Remark. A practical consequence of using the approximate disagreement proxy $\hat{p}_i = 1 - \min\{\beta(a_i \mid s_i), \pi(a_i \mid s_i)\}$ is that we effectively rely on an estimated total variation distance that upper bounds the true value. Formally, the stochastic mapping $(s, a) \mapsto s'$ satisfies the data-processing inequality, which implies

1647

$$\text{TV}(P_\beta(\cdot \mid s_i), P_\pi(\cdot \mid s_i)) \leq \text{TV}(\beta(\cdot \mid s_i), \pi(\cdot \mid s_i)) \leq \hat{p}_i.$$

1648
1649
1650
1651

Hence, in the context of Definition 1, the practical estimator corresponds to using a constant $d' \geq d$.

As illustrated in Figure 3b, increasing d slightly enlarges the upper bound on the time-averaged disagreement,

1652
1653
1654

$$\frac{1}{t} \sum_{k=1}^t \mathbb{E}[A_k],$$

1655
1656
1657
1658

which in turn increases the resulting first meeting time estimate $\hat{T}_{\beta, \pi}$. Consequently, the truncation length is determined using an estimate that is greater than or equal to the ground-truth meeting time. This does not invalidate our theoretical guarantees, because the condition in Theorem 2 requires only that

1659

$$K \geq \min((1 - \gamma)^{-1}, \mathbb{E}[T_{\beta, \pi}]),$$

1660
1661
1662

and any overestimation of $\mathbb{E}[T_{\beta, \pi}]$ still preserves this requirement. Therefore, the main claims of the paper remain valid even when using the practical estimator.

1663
1664

J.6 DATA-PROCESSING INEQUALITY FOR TOTAL VARIATION DISTANCE

1665
1666
1667
1668

Lemma (TV contraction under Markov kernel). Let P and Q be two probability measures over a measurable space $(\mathcal{X}, \mathcal{F})$, and let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be a stochastic map, i.e., a Markov kernel such that $f(\cdot \mid x)$ is a probability distribution over \mathcal{Y} for each $x \in \mathcal{X}$. Then the push-forward measures P_Y, Q_Y on \mathcal{Y} defined by

1669
1670
1671

$$P_Y(B) = \int_{\mathcal{X}} f(B \mid x) dP(x), \quad Q_Y(B) = \int_{\mathcal{X}} f(B \mid x) dQ(x)$$

1672
1673

satisfy the total variation contraction inequality:

$$\text{TV}(P_Y, Q_Y) \leq \text{TV}(P, Q).$$

1674 **Proof.** By definition of total variation distance and linearity of integration, we have:
 1675

$$\begin{aligned}
 \text{TV}(P_Y, Q_Y) &= \sup_{B \subset \mathcal{Y}} |P_Y(B) - Q_Y(B)| \\
 &= \sup_{B \subset \mathcal{Y}} \left| \int_{\mathcal{X}} f(B \mid x) dP(x) - \int_{\mathcal{X}} f(B \mid x) dQ(x) \right| \\
 &= \sup_B \left| \int_{\mathcal{X}} f(B \mid x) (dP(x) - dQ(x)) \right| \\
 &\leq \int_{\mathcal{X}} \sup_B |f(B \mid x)| |dP - dQ|(x) \\
 &\leq \int_{\mathcal{X}} |dP - dQ|(x) = 2 \cdot \text{TV}(P, Q).
 \end{aligned}$$

1687 Using the fact that $\text{TV}(P, Q) = \frac{1}{2} \int |dP - dQ|$, we conclude:
 1688

$$\boxed{\text{TV}(P_Y, Q_Y) \leq \text{TV}(P, Q)} \quad \blacksquare$$

1691 **Interpretation.** This result formalizes the intuition that applying a stochastic transformation
 1692 (Markov kernel) can only reduce, not increase, the distinguishability of two distributions. In rein-
 1693 forcement learning, this inequality explains why the discrepancy between next-state distributions
 1694 under two policies is always upper bounded by their action-level difference:
 1695

$$\text{TV} \left(\sum_a \pi(a \mid s) \mathcal{P}(\cdot \mid s, a), \sum_a \beta(a \mid s) \mathcal{P}(\cdot \mid s, a) \right) \leq \text{TV}(\pi(\cdot \mid s), \beta(\cdot \mid s)).$$

1698 This principle underlies the use of disagreement probabilities p_i in stochastic truncation (T4) as a
 1699 proxy for policy divergence propagated through the dynamics.
 1700

1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727