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Abstract—From the perspective of social science, understanding group emotion has become increasingly important for teams to
considerably accomplish organizational work. Currently, automatically analyzing the perceived affect of a group of people has been
received increasingly interest in affective computing community. The variability in group size makes difficulty for group-level emotion
recognition to straightforwardly measure the feature distance of two group-level images. Recent works attempted to resolve the
preceding problem by using feature encoding. However, the early works lack of efficiency. To alleviate this problem, this paper aims to
design a new method to effectively analyze the group behavior from a group-level image. Motivated by time-series kernel approaches
explored in dynamic facial expression classification, this paper mainly concentrates on global alignment kernel and design support
vector machine with the combined global alignment kernels (SVM-CGAK) to better recognize group-level emotion. Specifically, we first
propose to use global alignment kernel to explicitly measure the distance of two group-level images. For improving the performance of
global alignment kernel, we use the global weight sort scheme based on their spatial relation information to sort the faces from
group-level image, making an efficient data structure to the global alignment kernel. With this new global alignment kernel, we
construct the backbone of SVM-CGAK, namely, support vector machine with global alignment kernel. Furthermore, considering the
challenging environment, we construct two global alignment kernels based on Reisz-based Volume Local Binary Pattern and deep
convolutional neural network features, respectively. Lastly, to make the robustness of group-level emotion recognition, we propose
SVM-CGAK combining both global alignment kernels with multiple kernel learning approach. It can enhance the discriminative ability of
each global alignment kernel. Intensive experiments are conducted on three challenging group-level emotion databases. The
experimental results demonstrate that the proposed approach achieves promising performance for group-level emotion recognition
compared with the recent state-of-the-art methods.

Index Terms—Group-level emotion recognition, Global alignment kernels, Multiple kernel learning, Facial expression analysis,
Convolution neural network.
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1 INTRODUCTION

With the credible progress in social media, millions of images are
being made available on the Internet through social networks, such
as Facebook and Twitter. The large-scale data enable us to analyze
human behavior during social events (for example Figure 1) in
computer vision community, such as facial expression recogni-
tion [1] and speech emotion recognition [2]. Recently, several
applications in computer vision community have been developed
to support other fields, such as social science and health-care. For
example, computer-assisted face processing assisted students with
autism spectrum disorder to improve their social skills [3]. This
kind of applications primarily focus on analyzing an individual’s
emotion. But when we consider the mood in small groups or work
teams, we are more interested in knowing group emotion. From the
perspective of social science, during the past century, researchers
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made more contributions on understanding the structure and
performance of small groups [4], [5], [6], [7]. One of notable
is to define group emotion. Barsäde and Gibson in [5] made a
common definition about group emotion. That is, group emotion
is the moods, emotions, and dispositional affects of a group of
people. Additionally, group emotion influences team processes
and outcomes [8]. For example, an increase in positive mood
will lead to greater cooperativeness and less group conflict [9].
On the other hand, from the perspective of computer vision,
consider the mood of a family posing for a group photograph
at a wedding party, it is expected that there is an automated
system recognizing the mood of the family. However, it is noted
that the currently designed emotion detection algorithms primarily
discussed the individual’s emotion. Recently, several researchers
studied some tasks of group-level emotion recognition, such as
group-level valence and arousal prediction [10] and group-level
facial expression recognition [11]. For example, in [10], Mou et
al. aimed to predict the valence and arousal of a group of people in
an image. It may give various benefits for computer vision field in
future. For example, based on the correct prediction of an image,
the computer vision system can automatically select the candidate
photos for people to make the photo album [12]. This kind of
system may also assist social scientists/researchers in the field of
education to analyze the interaction of students in collaborative
learning [13], etc. Therefore, in this paper we mainly focus on
analyzing the basic emotions exhibited by a group of people in
an image, namely, group-level emotion. In particular, motivated
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by [10], [11], [14], [15], we are mostly concerned with three
tasks in group-level emotion recognition: group-level happiness
intensity estimation [15], group-level valence and arousal predic-
tion [10], and group-level facial expression recognition [11].

Groups are referred to “emotional entities and a rich source
of varied manifestations of affect” [5]. Kelly and Barsäde stated
that emotion influences plentifully exist in groups/teams [6].
Earlier study discussed by Barsäde and Gibson in [5] emphasized
that researchers in social science community should arise group
emotions with regards to the pair of a “top-down approach” and a
“bottom-up approach”. A “top-down approach” indicates emotion
exhibited by group is represented at the group level and is felt by
individual members, while a “bottom-up approach” emphasizes
the unique compositional effects of individual group member
emotions. Based on the framework of [5], Kelly and Barsäde in [6]
further suggested that group emotion consists of its “bottom-up”
components (i.e., affective compositional effects) and its “top-
down” component (i.e., affective context). In other words, group
emotion arises from both the combinations of individual-level
affective factors and group-level factors, where individual-level
affective factors are posed by group members and group-level
factors “shape the affective experience of the group” (p.2).

Understanding behavior of groups/teams in an image or a
video has recently received much attention in computer vi-
sion community. Researchers in computer vision fields designed
the methods according to group emotion theory proposed by
Barsäde et al. [5] and Kelly et al. [6]. Methods in computer vision
can be broadly divided into two strategies: bottom-up and top-
down categories. The bottom-up category uses the subject’s at-
tributes to infer group emotion. For example, in [16], Hernandez et
al. exploited the smile of each person as the subject’s attribute
for inferring the emotion of the crowd. On the other hand, the
top-down method considers external attributes, such as the affect
of the scene and the position of the people, to describe group
members. For example, Gallagher et al. [17] proposed contextual
features based on the group structure for computing the age and
gender of individuals. However, using the bottom-up or top-down
approach alone for group affective analysis may miss some useful
and discriminative information in an image. For example, the
bottom-up method may ignore the influence of the scene on group-
level emotion, while the top-down approach does not consider the
person’s attributes, such as the intensity of the facial expression.

To alleviate previously mentioned problem in group affective
analysis, several hybrid model methods were recently proposed
by combining bottom-up and top-down components for group
affective analysis. They are categorized into two branches: a
group expression model [12], [15], [18] and multi-modal frame-
work [10], [11], [19], [20], [21], [22], [23]. The group expression
model encodes multiple faces in a group-level image1 into a
graph structure. It concerns with the method of modeling the
global and local social attributes, such as the facial attribute and
scene based on a graph [24]. The earlier group expression model
appeared in [12], [15]. For example, Dhall et al. exploited three
models, namely, average, weighted, and latent dirichlet allocation
based group expression models for group-level happiness intensity
estimation. In particular, they used the effect of the event and
the surroundings of a group as the top-down component and

1. Group-level image is defined as an image containing more than two faces
as a group. For the purpose of simplicity, we use ‘image’ to represent ‘group-
level image’.

used the group members together with group members’ attributes,
such as spontaneous expressions, clothes, age, and gender as the
bottom-up component. Huang et al. [18] proposed another group
expression model for group-level happiness intensity estimation
to improve the performance. They referred to the global attributes,
such as the effect of neighboring group members, as the top-down
component, and the local attributes, such as an individual’s feature,
as the bottom-up component. Nevertheless, the group expression
models are not efficient in computation due to graph construction,
and they cannot perform stably due to noise in the face descriptors.
For example, in [15], group expression model based on latent
dirichlet allocation was seriously affected by the choice of the
number of clusters in k-means. It means that a large number of
clusters in k-means could make the feature very sparse, while a
small number could lose the discriminative information. In [18],
the graph construction suffered from the false prediction of support
vector regression. Additionally, group expression model cannot
directly measure the distance between images by using statistical
models, such as the latent dirichlet allocation.

The multi-modal framework is an alternative method for
group-level emotion recognition to combine bottom-up and top-
down components of images. For example, in [11], the facial
action unit and facial features are regarded as the bottom-up
component, while scene features are considered the top-down
component. In [25], Tan et al.used the Xception architecture and
fused image context and facial feature to recognize group-level
emotion. Similar works have also appeared in [19], [20], and [21].
Another interesting multi-modal work [10] combined face and
body information to predict the valence and arousal of a group of
people. Some of the works on the multi-modal framework, such
as [10], prefer to set up the condition for group-level emotion
recognition and experiment on specific groups based on a fixed
number of faces and bodies. Further, the feature encoding methods
proposed by [11] used clustering methods to construct the vocab-
ularies and to represent each image as a frequency histogram of
vocabularies. This intermediate stage may introduce some errors
at the classification stage. Additionally, these methods are strongly
affected by the parameter design in clustering approaches.

According to our empirical analysis on group expression
models and multi-modal frameworks, they lacked of adaptation
to varied tasks. For example, group expression model with con-
tinuous conditional random fields [18] is not suitable to classify
emotion category, as it was originally designed to estimate group-
level happiness intensity. Moreover, they suffered from heavy
computations due to many adjustable parameters. For example,
multi-modal framework [26] contained three important parame-
ters, i.e., the dimensionality of principle component analysis, the
number of kernels, and the number of face blocks. Therefore, it
is worth considering whether there is an efficient and effective
method for us to straightforwardly compute the distance between
images, so it can be flexibly and adaptively embedded into any
classifier, such as the nearest neighbor classifier or support vector
machine for various tasks in group-level emotion recognition. This
question leads to a relatively unexplored and new topic in group-
level emotion recognition: how to formulate the distance metric
for calculating the distance between images (as illustrated in Fig-
ure 1). Mathematically, we assumed two images are represented
by Σa = {x1, . . . ,xn} and Σb = {y1, . . . ,ym}, respectively,
we aimed to find out the distance metric function F (Σa,Σb) for
better describing the distance between images.

Differing from group expression model and multi-modal
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Fig. 1: An illustration of our proposed new topic in group-
level emotion recognition, i.e., how to formulate the distance
measurement for feature sets in images. Σa,Σb and Σc represent
three sets containing the faces in three image, respectively, and F
is the distance formulation which will be proposed in Section 3.

framework, we are concerned with a new method based on a
distance metric function F between images, thus allowing us
to straightforwardly measure the distance between images and
to apply this distance metric for any classifier. As illustrated
in Figure 1, the numbers of faces are not always consistent
between two images. In other words, two images contain different
number of faces. It is tough to directly use distance measurement,
such as Euclidean distance, to measure the distance between two
images Σa and Σb. Recently, a family of time series kernels
based on dynamic programming was exploited for constructing
kernels in speech, bio-informatics, and text-processing. These
time series kernels can resolve two critical issues: (1) the time
series might be a variable length and (2) standard kernels for
vectors cannot be captured by constructing the local dependencies
between neighboring states of their time series when measuring
a varied length sequence. The time series kernel approach, such
as dynamic time warping [27], [28], has been investigated for
action recognition [29], [30] and music retrieval [31]. However,
such distances cannot be translated easily into positive definite
kernels, which is an important requirement for kernel machines
during the training phase. To address the positive definite problem
of time series kernels, Cuturi et al. proposed a global alignment
kernel (GAK) method with applications to speech recognition [32]
and handwriting recognition [33]. The global alignment kernel
was used for dynamic facial expression recognition to align the
temporal information and demonstrated its effectiveness on facial
expression recognition [34], [35]. It is observed that the global
alignment kernel can better measure the time series with a variable
length than other time-series kernel methods and capture the
local dependencies between neighboring states of the time series.
Therefore, we propose a global alignment kernel based method
to directly measure the distance between two images. We first
regarded the faces in an image as a set. Next, we used the global
alignment kernel to measure the distance between two sets Σa and
Σb. For example, as illustrated in the upper image of Figure 1, we

may consider the image a face sequence containing 9 faces. Then,
measuring the distance between two images can be explicitly
formulated as the alignment between two image sequences.

Prior to making global alignment kernel for group-level emo-
tion recognition, it is noted that global alignment kernel suffers
from the disorder of faces on the images. For example, as
illustrated in Figure 1, persons in three images have different
spatial positions. It is wondered how to set an appropriate and
good face set on images. It aims to reduce the influence of
disorder of faces and to enhance the efficiency of the global
alignment. In [34], [35], they used the global alignment kernel
to measure the similarity between facial expression sequences.
It is observed that the facial expression videos used in their
experiments occur from neutral to apex. In other words, these
videos has the same phenomenon with regards to the intensity
of expressions. This phenomenon makes time-series kernel, such
as dynamic time warping, easily and straightforwardly find the
best alignment path between two facial expression sequences.
Therefore, we design a method for constructing consistent face
set between two images to further enhance the good and discrim-
inative distance metric function of global alignment kernel. The
global alignment kernel will make the optimal search path from
the beginning nodes of two face sets. A good face set may be
useful to better calculate the distance between two images. On
the other hand, we assume the group-level emotion behavior is
confined in a path which people perform in orderly fashion. On
the other hand, a critical problem is commonly existing in facial
expression recognition: face may suffer from problems caused
by challenging environments, e.g., bad illumination and head
pose change. In general, we can considerably explore multiple
robust feature descriptors for describing faces in images, but it is
non-trivial to compute distance between multiple feature sets of
multidimensional features. Here, we develop low-level and high-
level features for enhancing the robustness of facial expression
representation to the challenging environments and feed them into
two separate global alignment kernels. Next, we propose to exploit
multiple kernel learning method to combine two global alignment
kernels for group-level emotion recognition, since multiple kernel
learning has been commonly used and demonstrated to achieve
promising performance in many fields [36], [37].

The key-contributions of this paper are described as follows:
(1) Global weight sorted scheme is presented to construct efficient
face sets amongst images and further evaluated its importance to
global alignment kernel, such that it can enhance global align-
ment kernel more effectively by comparing with randomly sort;
(2) global alignment kernel with global weight sorted scheme is
proposed for measuring the distance between two images and is
embedded into support vector machine for group-level emotion
recognition; (3) multiple kernel learning approach is used to learn
the optimal weights for two global alignment kernels based on two
respective features, and Support vector machine with combined
global alignment kernels is proposed to infer the perceived group-
level emotion; and (4) comprehensive experiments on three ‘in-
the-wild’ databases demonstrate the superiority of the proposed
methods over most of state-of-the-art methods in three different
tasks of group-level emotion recognition: group-level happiness
intensity estimation, group-level valence and arousal prediction,
and group-level facial expression recognition.

The remainder of the paper is organized as follows. Section 2
describes three challenging databases related to group-level emo-
tion recognition. Section 3 presents the method for formulating the
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distance metric function and derives our proposed approach for
group-level emotion recognition. Section 4 presents and discusses
the experiment results with empirically and statistically signifi-
cance analysis. Section 5 concludes the paper.

2 DESCRIPTION OF GROUP-LEVEL EMOTION
DATABASES

In this paper, we will conduct algorithm analysis and eval-
uate our proposed methods for group-level emotion recog-
nition on the followed three databases: Happy People Im-
ages (HAPPEI) database [15], Multi-modal Emotion Valence
and Arousal (MultiEmoVA) dataset [10], and Group Affective
Database 2.0 (GAFF) [38]. The corresponding ground truth used
in the experiments is provided by the authors of these three
databases. Data collection, ground truth, and experimental pro-
tocols in experiments are summarized in Table 1.

HAPPEI: The HAPPEI database (in Figure 2) was collected
by Dhall et al. [15] in 2015. This database contains 2,638 images.
All images were annotated with a group-level mood intensity
by four human labellers. The mood was represented by the
happiness intensity corresponding to six stages of happiness (0-
5). That is, Neutral, Small smile, Large smile, Small laugh,
Large laugh and Thrilled. In this database, the labels are based
on the perception of the labelers. The number of images with
regard to classes is 92, 147, 774, 1256, 331, and 38 for neutral,
small smile, large smile, small laugh, large laugh, and thrilled,
respectively. The aims of this database in [15] are to infer the
perceived group mood as closely as possible to human observers
and to estimate the happiness intensity of images. Following the
experimental protocol of [15], we chose the first 2,000 images in
the experiment. Therefore, the updated number of images in each
class is 73, 122, 600, 929, 241, and 35 for neutral, small smile,
large smile, small laugh, large laugh, and thrilled, respectively.

Fig. 2: Six sample images containing groups in social events,
annotated with six happiness intensities in the HAPPEI
database [15].

MultiEmoVA: The MultiEmoVA database was collected by
Mou et al. [10] from Google Images and Flickr by using

several key words, such as graduate ceremony and party, etc.
There are 250 color images annotated by 15 labelers along
valence-arousal dimensions (negative/neutral/positive for valence
and low/medium/high intensity for arousal). Figure 3 illustrates six
images along valence/arousal dimension. As reported by Mou et
al. [10], the inter-labeler agreement based on Cronbach’s α was
0.85 and 0.96 for arousal-level and valence-arousal, respectively.
In addition, they re-organized the annotation by fusing arousal-
level and valence-level, therefore, it contains 46, 64, 31, 27, 10,
and 72 images for high-positive, medium-positive, high-negative,
medium-negative, low-negative, and neutral categories, respec-
tively. Figure 4 illustrates six examples on the fused valence-
arousal dimensions picked from the MultiEmoVA database.

Fig. 3: Six ground truth images along valence and arousal dimen-
sions in the MultEmoVA database [10].

Fig. 4: Six ground truth images along fused valence-arousal
dimensions in the MultEmoVA database [10].
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TABLE 1: Emotion category, the number of images and our experimental protocol of three databases for group-level emotion
recognition.

Databases Emotion Category Image Size Experimental Protocol
HAPPEI Six-level happiness intensity 2,000 images 4-fold cross validation
MultiEmoVA 3 categories for arousal and 3 categories for valence 250 images 5-fold cross validation
GAFF Positive, neutral and Negative 5695 images 3630 for training and 2068 for testing

GAFF: The GAFF database was firstly proposed in [11],
created from Flickr and Google images according to the keyword
search, such as festival, silent protest, and violence. All the
images were annotated as ‘positive’, ‘neutral’, and ‘negative’.
However, there were around 504 images in the first version.
Recently, for an open emotion challenge competition, the number
of images in the GAFF database greatly increased to 5,698 by
adding more images from Flickr and Google images [38]. All the
images were divided into Train (3,630 images) and Validation
(2,068 images) sets for experiments. Figure 5 shows six images,
two for each emotion category.

Fig. 5: Two ground truth images of each emotion category in the
GAFF database [38].

3 METHODOLOGY

3.1 Problem Formulation

Given an image Y, we aim to predict the group-level emotion
using the faces based information. In this paper, the support vector

machine (SVM) is used as the classifier. Its basic formulation is
described as follows,

g(Y) =
N∑
i=1

ωiliΦ(Xi) · Φ(Y) + b (1)

=
N∑
i=1

ωiliK(Xi,Y) + b,

where N is the number of images in the training set, Φ is a non-
linear mapping function, ‘·’ denotes the inner product operator,
Xi, li and ωi are the i-th training sample, the corresponding
class label, and its Lagrange multiplier, respectively, K is a kernel
function, and b is a bias of SVM.

It is noted that the kernel functionK plays an important role in
Equation 1. The variability in group size 2 makes difficulty to con-
struct the kernel function K for group-level emotion recognition.
For example, in Figure 6, there are 3 and 9 faces existing in two
upper-part and bottom-part images, respectively. Basically, we can
use the fixed group size strategy proposed in [10]. That is, Mou et
al. designed several specific groups based on the fixed number
of faces for group-level emotion recognition. However, the fixed
group size strategy seriously restricts the application of group-
level emotion recognition, as in the real-world situation group size
in images may be not fallen in these specific groups. Therefore, it
make us reconsider how to measure the distance of two images for
the kernel function K. For simplicity, we name this case “group
size variability problem”.

Currently, there are numerous methods to resolve that problem
above. For example, in [11], Dhall et al. used Bag-of-Visual-
Words, where image features are regarded as the words, to
accumulate a histogram from multiple faces for representing the
feature of an image. However, the obtained feature is very sparse.
In [26], Huang et al. proposed an information aggregation method
to encode the histograms of blocks of faces for representing the
feature of an image. Although this approach can make the feature
of images not sparse, it suffers from quite many parameters, such
as block number and reduced dimension of Principal Component
Analysis, need to be manually adjusted. Thus, we primarily
consider how to search a simple but effective way to address
“group size variability problem” and how to construct the kernel
function for group-level emotion recognition.

In summary, the mathematical description is described as
follows:

Assuming two images Xi and Xj contain Mi and Mj faces,
respectively, we extract their corresponding faces features denoted
as {fm}Mi

m=1 and {gn}
Mj

n=1. Thus, the distance measurement
between Xi and Xj is formulated as follows:

s(Xi,Xj) = f({f1, f2, . . . , fMi
}, {g1,g2, . . . ,gMj

}), (2)

2. Group size means the number of peoples in an image.
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Fig. 6: Illustration of the ‘group size variability problem’ for measuring the distance between two images. The number under the face
image represents the order index of an image obtained by face detection. The upper and bottom dotted-line blocks show the pipeline of
feature extraction. The objective of addressing the ‘Group Size Variability Problem’ is to search proper distance function and classifier,
as shown in the middle pipeline.

where s is the distance between images, and f represents
the distance measurement function calculating the distance of
{f1, f2, . . . , fMi

} and {g1,g2, . . . ,gMj
}. In next section, we will

discuss how to derive the distance measurement function f in
Equation 2 and how to construct the kernel function in Equation 1
for group-level emotion recognition.

3.2 SVM with the Combined Global Alignment Kernels
In this section, we first utilized the ‘global weight sort’ method
for obtaining an efficient data structure. We second detailed
the method to derive the distance measurement function f in
Equation 2 and the backbone of support vector machine based on
combined global alignment kernels method, namely, SVM based
on global alignment kernel (SVM-GAK) for group-level emotion
recognition. Additionally, we took two examples of measuring
the distance of two images and analyzed the influence of ‘Global
weight sort’ to SVM-GAK. Lastly, we proposed the SVM with the
combined global alignment kernels (SVM-CGAK) by combining
two global alignment kernels for group-level emotion recognition.

3.2.1 Global weight sort
Given an image Xi containingMi faces, denoted as x1, . . . ,xMi ,
a fully connected graph G = (V,E) is constructed to map the
global structure of faces in a group, where V is a non-empty
set of faces x1, . . . ,xMi , and an edge Ek,l represents the link
between xk and xl. For obtaining G, the minimal spanning tree
algorithm [39] is implemented, providing the location and mini-
mally connected neighbors of a face. Based on G, we presented
relative face size Sk estimating relationship of faces and relative
distance δk representing the influence of neighboring faces for
each face. They are obtained as follows:
• Relative face size: For xk, the face size is taken by dk =‖
pL,k − pR,k ‖, where pL,k and pR,k are the coordinate of

the left and right eyes, respectively. Next, the relative face
size Sk of xk is given by dk∑n

j=1

dj
n

, where n is the number of

neighboring faces of xk.
• Relative distance: Based on the nose tip locations of all

faces in an image, their centroid cg is computed by using∑Mi
k=1 pk
Mi

, where pk is the coordinate of the nose tip of the k-
th face. Furthermore, the relative distance δk of the k-th face
is described as δk =‖ pk−cg ‖, and δk is further normalized
based on the mean relative distance.

Therefore, the global weight wk of xk is obtained by:

wk =‖ 1− λδk ‖ ∗Sk, (3)

where λ controls the effect of these weight factors on the global
weight. In our method, we empirically set λ as 0.1.

Then, face feature set of Xi is sorted according to decreasing
global weights, denoted as X̂i = {f̂1, . . . , f̂Mi

}. For the sake
of simplicity, we remove ̂ out of X̂i = {f̂1, . . . , f̂Mi

} in the
following discussion.

3.2.2 Construction of distance measurement
We aim to calculate the distance between Xi and Xj in various
ways by distorting them. An optimal search path π has a length P
and P < Mi + Mj − 1, since the two face sets have Mi + Mj

points and they are matched at one point of the search path. A
path π is a pair of non-decreasing integral vectors (π1, π2) of
a length p such that 1 = π1(1) ≤ . . . ≤ π1(P ) = Mi and
1 = π2(1) ≤ . . . ≤ π2(P ) = Mj , with unitary increments and
no simultaneous repetitions. Let | π | denote the length of path π,
the distance measurement function for Xi and Xj for Equation 2
can be defined as follows:

s(Xi,Xj) =

|π|∑
p

φ(fπ1(p),gπ2(p)), (4)
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where φ is a local divergence that measures the discrepancy
between any two points fπ1(p) and gπ2(p).

(a)

(b)

Fig. 7: Two examples of the distance measurement based on
global alignment kernel, where the upper image in (a) and (b)
is with ‘positive’ class label, and the left images in (a) and (b)
are with ‘positive’ and ‘neutral’ categories, respectively. Face set
is sorted by global weight sort method. The red star shapes mean
the beginning and end nodes of the search path, respectively. The
black arrow is the optimal search path direction. According to the
optimal search path by Equation 6, the distances between images
are 0.42143 and 0.48024 for (a) and (b), respectively. Source: the
GAFF database [38].

For resolving Equation 4, the global alignment is proposed to
calculate the distance between the images, as it considers that the
minimum value of alignments may be sensitive to peculiarities
of the time series and uses all alignments weighted exponen-
tially. It can be further defined as the sum of exponentiated
and sign-changed costs of the individual alignments such as
k(X,Y) =

∑
π∈A(m,n) e

(−sX,Y(π)). According to divergence

φ and Equation 4, the global alignment kernel is therefore formu-
lated as follows,

k(Xi,Xj) =
∑

π∈A(m,n)

|π|∏
p

e−φ(fπ1(p),gπ2(p)), (5)

where A(m,n) is the set of all paths between two feature sets Xi

and Xj .
It has been argued by [32] that e−φ in Equation 5 goes through

the whole spectrum of the costs along with all paths. Additionally,
it gives rise to a smoother measure than the minimum of the costs
of some classical time-series align kernel such as DTW. Following
the suggestion by [32], we use a local kernel described as follows:

kGA(Xi,Xj) =
∑

π∈A(m,n)

|π|∏
p

e−φσ , (6)

where φσ = 1
2σ2 d(fπ1(p),gπ2(p)) + log(2 − e−

d(fπ1(p),gπ2(p))

2σ2 ),
d is the distance function, and σ is the standard deviation.

Figure 7 describes the work flow of the global alignment kernel
on measuring the distance between images. The global alignment
kernel will find the optimal search path π between two face
sets, and then calculate the distance with respect to the optimal
path. With the global alignment kernel, the distances between
the images in the Figure 7(a) and the Figure 7(b) are 0.42143
and 0.48024, respectively. On the other hand, with the averaging
distance approach, the distances between the images in the Fig-
ure 7(a) and the Figure 7(b) are 1.2856 and 1.2287, respectively.
It is seen that the global alignment kernel can make the images
of the same class be close to each other while the images from
different classes be far from each other. It implies that the global
alignment kernel can reserve the discriminative information. The
global alignment kernel can provide the discriminative information
to SVM. It is also seen that the global alignment kernel is flexible
when it calculates the distance between two images with various
group size.

Based on Equation 6, the basic form of SVM in Equation 1 is
rewritten as follows:

g(Y) =
N∑
i=1

ωiliKGA(Xi,Y) + b, (7)

where N is the number of images in the training set.

3.2.3 Analysis of the ‘global weight sort’
A general method, namely, ‘holistic method’, uses all neighboring
faces to each face for obtaining the graph. However, this method
may not provide the relative position of each face in a group. Also,
it may introduce noise to the graph, caused by the isolated faces.
Here, we discuss the influence of ‘global weight sort’ to the global
alignment kernel by comparing with two other sorting methods.
We conducted an experiment to compare the ‘global weight sort’
method based on the minimal spanning tree algorithm with the
‘global weight sort’ method based on the holistic method. Ad-
ditionally, we compared with SVM-GAK without global weight
sort on the HAPPEI database [15]. Specifically, ‘without global
weight sort’ means that we used face detector [42] to automatically
localize multiple faces and output its subsequent face results
according to its search order. Following the experiment protocol
of Huang et al. [18], we used a 4-fold-cross-validation protocol
to analyze the influence of ‘global weight sort’ to SVM-GAK,
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TABLE 2: Performance comparison of SVM-GAK without using global weight sort, SVM-GAK using ‘holistic method’ and SVM-
GAK based on ‘minimal spanning tree algorithm’, where mean absolute error is used as a performance metric. The last column is the
average mean absolute error of all features corresponding with global weight sort method.

Global weight sort method Features Average

Local binary pattern [40] Local phase quantization [41] CNN
Without global weight sort 0.5992 0.5810 0.5006 0.5603
Holistic method 0.5717 0.5681 0.5032 0.5477
Minimal spanning tree algorithm 0.5690 0.5674 0.4999 0.5454

TABLE 3: Two-sample left tailed t-test results of three pairs (HM
vs. NO, MST vs. NO, and MST vs. HM) of Table 2. For the sake
of analysis, we abbreviate ‘without global weight sort’, ‘holistic
method’ and ‘minimal spanning tree algorithm’ as NO, HM, and
MST, respectively.

HM vs. NO MST vs. NO MST vs. HM
p-value 0.0664 0.0454 0.5263

(> .05) (< .05) (> .05)

where 1,500 images were chosen for training and 500 for testing,
repeating four times. Mean absolute error is used as the metric
for estimating happiness intensity of images. We also used Local
Binary Pattern [40], Local Phase Quantization [41] and deep
convolutional neural network (CNN) (i.e., L2-normalization on
output of FC6-layer of VGG-face) as features. To make a fair
comparison, σ for SVM-GAK is set as 10 and Euclidean distance
is used for d(fπ1(p),gπ2(p)).

We performed statistical analysis for a pair of algorithms be-
tween the SVM-GAK without global weight sort, the SVM-GAK
with holistic method and the SVM-GAK with minimal spanning
tree algorithm. Here, for the sake of analysis, we abbreviated
‘without global weight sort’, ‘holistic method’, and ‘minimal
spanning tree algorithm’ as NO, HM, and MST, respectively.
Firstly, we assumed the null hypothesis that the data from these
three sorting methods come from normal distribution with the
same variance. Specifically, we used two-sample F-test for equal
variances. The results of F-test indicated that all data coming from
these three methods have equal variances. Further, we conducted
two-sample left tailed t-test for the pair between these three
methods. The null hypotheses are described as following:

• For HM vs. NO, the null hypothesis is the mean absolute
error of HM is more than NO.

• For MST vs. NO, the null hypothesis is the mean absolute
error of MST is more than NO.

• For MST vs. HM, the null hypothesis is the mean absolute
error of MST is more than HM.

We aimed to see to see (1) whether MST or HM is significantly
better than NO and (2) whether MST is significantly better than
HM. The comparative results in terms of mean absolute error are
presented in Table 2. Additionally, the p-values results are reported
in Table 3.

As seen from Table 3 in HM vs. NO, the null hypothesis
the mean absolute error of HM is more than NO’ is accepted,
but for MST vs. NO, the null hypothesis the mean absolute
error of MST is more than NO’ is rejected. It indicated that the
improvements boosted by ‘minimal spanning tree algorithm’ for
SVM-GAK are more considerable than without using ‘minimal

spanning tree algorithm’. Furthermore, we took the CNN feature
for SVM-GAK for example as analysis. SVM-GAK with ‘minimal
spanning tree algorithm’ obtained the lowest mean absolute error
of 0.4999 than SVM-GAK ‘without global weight sort’. This may
be explained by: (1) we used the ‘global weight sort’ scheme
to extract the consistent structure of faces in an image and (2)
SVM-GAK obtained the better optimal path between faces in
two images based on that structure. On the other hand, compared
with SVM-GAK ‘without global weight sort’, SVM-GAK ‘with
the global weight sort’ obtained considerable improvement over
all features. Global weight sort scheme sorts the faces according
to their importance in the image. It can efficiently provide the
consistent graph structure when SVM-GAK computes the optimal
path between faces in two images. The comparative results showed
that the significant sorted related position of faces can affect the
performance of SVM-GAK.

According to p-value in MST vs. HM, we accepted the null
hypothesis for MST vs. HM. It indicated that the improvements
obtained by the ‘minimal spanning tree algorithm’ are not signif-
icant. However, compared with the performance over all features,
the improvement obtained by the minimal spanning tree algorithm
was still competitive. For ‘holistic method’, the poor performance
may be caused by the isolated faces.

3.2.4 SVM based on Combined Global Alignment Kernel
In Section 3.2.2, we presented the SVM-GAK method for group-
level emotion recognition. It is important to extract the features
from the faces for the global alignment kernel, as the appropriate
feature can better measure the distances of faces. The existing ap-
proaches on multiple feature fusion [43], [44] show using multiple
features can use the benefit of different features and obtain the bet-
ter performance than using sole feature. Additionally, the existing
group-level emotion recognition databases were collected from the
Internet and suffer from the noise caused by poor illumination,
head pose and bad image quality. Therefore, we proposed an
effective way to combine multiple features in the global alignment
kernel for group-level emotion recognition. To deal with the
problems caused by the challenging environments, such as blurred
faces and poor illumination, we used deep convolutional neural
network (CNN) feature [45], [46] as the high-level feature, and
Riesz-based Volume Local Binary Pattern (RVLBP) [18] as the
low-level feature for global alignment kernel. The description of
features and their corresponding parameter setups can be referred
to Supplementary Materials - A and B.

Considering deep CNN and RVLBP features for SVM-GAK,
a simple method is to concatenate them into one feature vector
X and then to input them into Equation 7. However, the fea-
ture concatenation method fails to consider the complementary
information between both features. Instead, we combined them in
an alternative way. Among kernel combination methods, multiple
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kernel learning has been demonstrated as a simple yet effective
method to combine different features [47], [48]. Due to the
efficiency of multiple kernel learning, we used multiple kernel
learning to learn the optimal weights for two global alignment
kernels. And then, we combined two global alignment kernels
with the optimal weights. Finally, we proposed an support vector
machine with combined global alignment kernels, namely, SVM-
CGAK, for group-level emotion recognition. It is illustrated in
Figure 8.

Fig. 8: Illustration of constructing SVM-CGAK. It consists of
three stages: (1) RVLBP and deep CNN features are separately
extracted from faces; (2) two global alignment kernel is generated,
which are denoted as KRVLBP

GA and KCNN
GA for RVLBP and deep

CNN features, respectively; (3) subsequently, the combination
strategy is used to fuse both kernels.

In our method, we chose the Chi-Square distance [49] and
the square Euclidean distance to define the local divergence in
Equation 4 for RVLBP and deep CNN features, respectively.
Based on these pre-designed kernels, we further combined both
kernels by using multiple kernel learning, which was described as
follows,

Kη = βRVLBPK
RVLBP
GA (Xi,Y) + βCNNK

CNN
GA (Xi,Y), (8)

where βRVLBP and βCNN are the weights for RVLBP and deep
CNN features, respectively.

With the combination strategy, the SVM can be given by

g(Y) =
N∑
i=1

ωiliKη(Xi,Y) + b. (9)

Lemma 1. Let Ai be a positive definite matrix. If λi > 0 is a real
number, then λiAi is positive definite. The sum

∑
i λiAi and

multiplication ΠiλiAi are positive definite.

According to Lemma 1 observed by [32] and [50], Equation 9
is positive definite. Therefore, the SVM-CGAK is a convex opti-
mization problem which can be efficiently solved by a quadratic
programming algorithm. For obtaining βRVLBP and βCNN, we
proposed to use the localized multiple kernel regression [51]. The
detailed solution can be referred to [51].

4 EXPERIMENTS

We firstly intensively evaluated the effect of a parameter to SVM-
GAK on the HAPPEI database [15] in Section 4.2. Next, we
compared SVM-GAK with sequential methods on the HAPPEI
database [15] in Section 4.3. Furthermore, we evaluated the benefit
of multiple kernel learning for SVM-CGAK. Finally, we compared
SVM-GAK and SVM-CGAK with the state-of-the-art methods on
the HAPPEI [15], MultiEmoVA [10], and GAFF [11] databases.

4.1 Experiment protocols
The experiment protocols used in this paper are described as
follows:
• HAPPEI database: Following the protocol in [18], we imple-

mented a 4-fold-cross-validation in our experiments, where
1,500 images were used for training and 500 for testing,
repeating four times. The mean absolute error was used as
the metric for estimating the happiness intensity of images.

• MultiEmoVA database: Following the experiment setup
in [10], we divided experiments into two parts (Experi-
ments #1 and #2) with respect to the three categories
of arousal (low, medium and high) and valence (negative,
neutral and positive). Experiment #1 was to conduct the
experiments on each dimension separately and report the per-
formances, respectively, while Experiment #2 was to formu-
late arousal-valence categories as 5-class classification task
(i.e., medium+negative, high+negative, medium+positive,
high+positive and neutral). We used 5-fold-cross-validation
protocol and reported the average recognition accuracy for
Experiments #1 and #2.

• GAFF database: According to [38], we chose Train set (3630
samples) for training and Validation (2068 samples) set for
testing. Recognition accuracy was used.

4.2 Parameter evaluation of SVM-GAK on the HAPPEI
database
We evaluated the effect of the standard deviation σ in
{0.1, 1, 2, 10, 100, 1000} to SVM-GAK based on RVLBP/CNN.
The parameter evaluation of the standard deviation σ on the
HAPPEI database is illustrated in Figure 9.

Fig. 9: Performance influence of the standard deviation σ to SVM-
GAK, where SVM-GAK was separately based on RVLBP/CNN.
For the purpose of simplicity, we named them as SVM-GAK
(RVLBP) and SVM-GAK (CNN), respectively.

As we can see, the performance of SVM-GAK was sensitive
to the change of standard deviation. In particular, the performance
was obviously improved by an increasing standard deviation. A
small standard deviation will make the global alignment kernel
function in Equation 6 have a large variance. The performance
implies that the support vector obtained in small standard deviation
will influence on regression. The increasing standard deviation
will lead to high bias and low variance models. It implies that
the support vector does not have wide-spread influence. The
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TABLE 4: Performance comparison in terms of mean absolute error amongst SVM-GAK, hidden markov model (HMM) [52],
continuous conditional random field (CCRF) [53], and long short-term memory (LSTM) [54]. The fourth column means the average
mean absolute error along local binary pattern, local phase quantization, and CNN for each compared algorithm. The best result is in
bold. The asterisk represents the p-value is less than 0.05.

Methods Features Average p-value
Local binary pattern [40] Local phase quantization [41] CNN HMM CCRF LSTM

HMM 0.6308 0.6198 0.5562 0.6023 NaN 0.9936 0.9993
CCRF 0.5886 0.5953 0.4916 0.5585 0.0064∗ NaN 0.8934
LSTM 0.5864 0.5732 0.4951 0.5516 0.00007∗ 0.1066 NaN
SVM-GAK 0.569 0.5674 0.4999 0.5454 0.00004∗ 0.0949 0.1969

promising standard deviation dropped into the range from 2 to
100.

As well, we can see the effect of two different feature descrip-
tors to SVM-GAK. When the standard deviation reached 10 and
100, respectively, CNN and RVLBP performed considerably better
than other standard deviation values. It may be explained that
SVM-GAK reached a good balance between bias and variance.
In the followed experiments, σ was set as 100 and 10 for RVLBP
and CNN, respectively.

4.3 Performance comparison of SVM-GAK with with
sequential methods on the HAPPEI database
Here, we compared SVM-GAK with hidden markov model [52],
continuous conditional random field [53], and long short term
memory [54]. The comparative results in terms of mean absolute
error on the HAPPEI database are presented in Table 4.

As seen from Table 4, hidden markov model obtained the
result of 0.6023 in terms of mean absolute error. The result
indicated hidden markov model cannot better describe the relation-
ship amongst multiple people. Next, the continuous conditional
random field outperformed hidden markov model and long short
term memory, as the continuous conditional random field was
suitable to model the relationship between faces and intensity [53].
Lastly, according to average mean absolute error over all the
three features, the SVM-GAK had a considerable performance.
It implies the intensity of happiness estimated by SVM-GAK can
be closed to the human annotation.

We performed a statistical analysis for a pair of two different
algorithms including HMM vs. CCRF, HMM vs. LSTM, CCRF
vs. HMM, CCRF vs. LSTM, LSTM vs. HMM, LSTM vs. CCRF,
SVM-GAK vs. HMM, SVM-GAK vs. CCRF, and SVM-GAK
vs. LSTM. We assumed the null hypothesis that the data from
hidden markov, continuous conditional random field, long short
term memory, and SVM-GAK come from normal distribution with
the same variance. The two-sample F-test was used to judge equal
variances. The corresponding results indicated that the all data
have equal variances. Subsequently, two-sample left tailed t-test
was implemented to analyze the algorithm pair. The null hypoth-
esis for the pair of methods can be described as: ‘for Algorithm
#1 vs. Algorithm #2, the mean absolute error of Algorithm #1 is
more than Algorithm #2’. The analysis concerned whether SVM-
GAK is significantly better than hidden markov model, continuous
conditional random field, and long short term memory. These
statistical results of Table 4 indicate that SVM-GAK achieved
significant improvement compared with hidden markov model,
but not significant improvement compared with continuous condi-
tional random field and long short term memory. It firstly indicates
that global alignment kernel can better model the distance than

hidden markov model. It also implies that random field or the
deep net could be considered as a potentially explored method for
group-level happiness intensity estimation in future. According
to the performance comparison in terms of mean absolute error,
our method had competitiveness to continuous conditional random
field and long short term memory. Overall, compared with hidden
markov model, continuous conditional random field, and long
short term memory, SVM-GAK had considerably competitive
performance.

4.4 Comparison of SVM-CGAK with decision-level
and feature concatenation fusion methods on HAPPEI
database
We evaluated the performance of SVM-CGAK based the previ-
ously well-designed σ. In order to show the ability of the optimal
weights learning method, we fixed the weights for the two kernels
as 1 in Equation 9. SVM-CGAK obtained the results of 0.5082 and
0.4920 in terms of mean absolute error by using same weights and
the optimal weights learning method, respectively. This increase
was due to the learned weights for the two kernels better extracted
the importance of the two kernels than by directly assigning
equal weights. It is concluded that the MKL strategy estimated
the optimal weights of the basis kernels through optimizing a
parametric function of the kernel weights.

TABLE 5: Performance comparison of ‘SVM-GAK-FC’, ‘SVM-
GAK-DC’ and SVM-CGAK on the HAPPEI database, where the
mean absolute error was used as a performance metric.

Methods Decision-level MAE
SVM-GAK-FC - 0.5082
SVM-GAK-DC Summation 0.5066
SVM-GAK-DC Weighted summation 0.5069
SVM-CGAK - 0.4920

To justify that the proposed SVM-CGAK works consistently
well, we compared SVM-CGAK with SVM-GAK based on
the feature concatenation method, namely, ‘SVM-GAK-FC’ and
SVM-GAK based on decision-level, namely, ‘SVM-GAK-DC’.
Both methods can be referred to Supplementary Material - C. For
‘SVM-GAK-FC’, we set σ as 10 and used Squared Euclidean
for GAK, while for ‘SVM-GAK-DC’, σ was set as 100 and 10
for RVLBP and deep CNN, respectively. The comparative results
are presented in Table 5. It is seen that SVM-GAK-FC obtained
the result of 0.5082 in terms of mean absolute error, while SVM-
GAK-DC based on summation and weighted summation decision-
level rules obtained the results of 0.5066 and 0.5069 in terms of
mean absolute error, respectively.
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It is observed that SVM-CGAK outperformed SVM-GAK-FC.
It may be explained as follows: (1) feature concatenation may
result in a feature vector with very large dimensionality leading to
the ‘curse of dimensionality’ problem, and (2) the concatenated
features may be incompatible to a distance metric. Combined
global alignment kernels can provide more efficient dimension-
ality reduction for SVM-GAK than the feature concatenation
method. Additionally, they can consider more complementary
information of two features than the feature concatenation method.
On the other hand, SVM-CGAK achieved better performance
than SVM-GAK-DC. For SVM-GAK-DC, the poor performance
may have been caused by the assumption of feature distribution
independent for classifier fusion. Through these comparisons,
SVM-CGAK overcame the SVM-GAK-FC and SVM-GAK-DC.

4.5 Evaluation of SVM-CGAK on the HAPPEI, Multi-
EmoVA and GAFF databases

Based on the well-designed parameters in the previous sec-
tions, we evaluated the performance of SVM-CGAK on the
HAPPEI [15], MultiEmoVA [10], and GAFF [11] databases for
group-level happiness intensity estimation, group-level arousal
and valence prediction, and group-level facial expression recog-
nition, respectively.

4.5.1 Group-level happiness intensity estimation

We compared SVM-CGAK with weighted group expression
model (GEMweighted) [18], latent dirichlet allocation based group
expression model (GEMLDA) [18], continuous conditional random
field based group expression model (GEMCCRF) [18], and Infor-
mation aggregation on the face [26] for group-level happiness
intensity estimation as described as follows:

• GEMweighted: The group expression model was defined as the
weighted average of estimated happiness intensities of all
faces.

• GEMLDA: Topic modeling and manually defined attributes
were proposed to combine the global and local attributes for
estimating happiness intensity.

• GEMCCRF: Continuous conditional random field was ex-
ploited to model the content information of the faces and
the relation information between faces.

• Information aggregation: In [26], Huang et al. proposed an
information aggregation to encode the facial regions from
an image into a compact feature for an image. Specifically,
they divided facial images into several blocks and extracted
their corresponding features. Furthermore, they employed
Gaussian mixture models to obtain K visual background
probability model, where K is the number of Gaussians. For
each image, the feature was obtained by stacking the first-
and second-order differences between the regional features
and each visual background probability model.

The comparative results in terms of mean absolute error are
reported in Table 6. Compared with GEMCCRF, SVM-CGAK
promisingly increased the performance by 0.0372 in terms of mean
absolute error. Different from group expression models, SVM-
CGAK obtained the benefit of combining multiple features and
the advantage of using adaptive weights. On the other hand, SVM-
CGAK borrowed the advantage of global alignment kernel. That
is, the global alignment kernel can better describe the distance of
two images than the existing group expression models methods.

TABLE 6: Comparative results of the state-of-the-art algorithms
and our proposed methods on the HAPPEI database, where results
of compared algorithms are directly from [18], [26]. The bold
number is the best performance.

Methods Mean absolute error
GEMweighted [18] 0.5469
GEMLDA [18] 0.5407
GEMCCRF [18] 0.5292
Information aggregation [26] 0.5187
SVM-GAK (RVLBP) 0.5316
SVM-GAK (CNN) 0.4999
SVM-CGAK 0.4920

It is seen that Information aggregation method obtained the
best result amongst the state-of-the-art methods, which was
0.5187, while our method SVM-CGAK achieved the result of
0.4920 in terms of mean absolute error. For group-level happi-
ness intensity estimation, SVM-CGAK considerably obtained the
increasing performance by 0.0267 in terms of mean absolute error.
It is glad to see that SVM-CGAK obtained better performance than
Information aggregation. The promising performance improved
by SVM-CGAK is explained as follows: SVM-CGAK can better
reserve the label information for classification. However, infor-
mation aggregation method ignored the label information in the
encoding method and lacked of the discriminative information.
Therefore, the comparative results presented in Table 6 indicate
that SVM-CGAK performed promisingly better than the state-of-
the-art methods. Moreover, we went ahead by comparing SVM-
GAK with SVM based on sole global alignment kernel, which was
represented by SVM-GAK (RVLBP) and SVM-GAK (CNN). It is
seen that SVM-GAK (RVLBP) and SVM-GAK (CNN) obtained
the results of 0.5316 and 0.4999 in terms of mean absolute error.
It is seen that SVM-CGAK outperformed SVM based on sole
global alignment kernel. The comparative results indicate that
combining two global alignment kernels can considerably improve
the performance compared with the sole kernel. According to
intensive comparisons on the HAPPEI database, SVM-CGAK
achieved considerable performance for group-level happiness in-
tensity estimation.

4.5.2 Group-level arousal and valence prediction
In the MultiEmoVA database, we compared our methods with
the baseline result presented by Mou et al. [10]. In [10], Mou et
al. divided images into 3 groups based on the number of faces
in each image as follows: 2 faces, 3 faces, and 4+ faces. Then,
they extracted features from face, body, and context. For face,
geometric feature, local quantized zernike moments and global
quantized zernike moments are used. For body information, one-
level pyramid histogram of oriented gradients is computed on
the four equally divided sub-regions of the whole upper-body
region. For context, its feature was formulated by using the relative
relationship between multiple people. Finally, they concatenated
multiple features from face, body, and context into one feature
vector.

The comparative results on the MultiEmoVA database are
presented in Table 7, where we straightforwardly reported the
baseline results of Mou et al. [10]’s paper. In Experiment #1,
according to classification accuracy, it is seen that SVM-CGAK
achieved the significantly results on valence-level and arousal-
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TABLE 7: Experimental results in terms of classification accuracy (%) for Experiments #1 and #2 on the MultiEmoVA database, where
the results of Face, Face + Context, Face + Body and Face + Body + Context are directly extracted from [10]. The bold number means
the best result in each experiment setup.

Methods Experiment #1 Experiment #2
Valence Arousal 5-class

Face 48 52 33.15
Face + Context 50 53 38.70
Face + Body 53 50 39.96
Face + Body + Context 54 51 35.96
SVM-GAK (RVLBP) 58.06 57.61 49.20
SVM-GAK (CNN) 62.02 56.59 48
SVM-CGAK 63.78 63.38 54.40

TABLE 8: Algorithm comparison of our proposed methods with the baseline algorithm and several state-of-the-art methods on the
GAFF database. The comparison results are derived from [11], [22], [23], [25], [55]. Methods in Lines 1-10 represent sole feature is
used, while those in Lines 11-14 mean the multi-modal for group-level facial expression recognition. The bold number means the best
result in the state-of-the-art methods and our proposed methods.

Method Recognition rate
baseline [11] 52.97
VGG-face [55] 65.41
VGG-16 [55] 64.11
Resnet-50 [55] 62.65
Xception [55] 60.18
Facial emotion CNN [25] 69.97
VGG-19 scene [25] 67.2
Face-pretrained CNN [23] 60
InceptionV3-FC [23] 63.19
VGG16-FC [23] 66.30
Fusion of Scene and VGG-face [22] 65.0
Ensemble of classifiers [55] 66.51
Face-pretrained CNN + InceptionV3-FC [23] 70.09
Face-pretrained CNN + VGG16-FC [23] 72.38
SVM-GAK (RVLBP) 67.32
SVM-GAK (CNN) 70.67
SVM-CGAK 72.17

level predictions compared with the baseline algorithms (Face,
Face+Context, Face+Body, Face+Body+Context). On the other
hand, in Experiment #2, our proposed methods had consid-
erable performance on 5-class classification task. Furthermore,
in valence, arousal dimensions of Experiments #1 and 5-class
classification of #2, SVM-CGAK increased the performance in
terms of classification accuracy from the best result amongst
baseline algorithms (54%, 53%, and 39.96%) to 63.78%, 63.38%,
and 54.40%, respectively. We can see that SVM-CGAK obtained
considerably results in both experiment protocols.

In Experiment #1 and Experiment #2, it is seen that our
proposed method based on the face information had significant
improvement on the performance compared with the work (Face)
of [10]. In their work, Mou et al. [10] got the results of 48%,
52%, and 33.15% in terms of classification for valence predic-
tion, arousal prediction, and 5-class prediction, respectively, but
our proposed method SVM-CGAK obtained the classification
accuracy of 63.78%, 63.38%, and 54.40% for valence predic-
tion, arousal prediction, and 5-class prediction, respectively. The
increased classification accuracy reached 15.78%, 11.38%, and
21.25% for valence prediction, arousal prediction, and 5-class
prediction, respectively.

Additionally, our proposed methods based on face information

obtained the best results compared with multi-modal (i.e., Face +
Body + Context) of [10]. It indicates that SVM-CGAK can only
use face information to achieve promising performance without
adding more information from body and context. It also implies
that SVM-CGAK may be further improved by considering more
multi-modal information in future. Furthermore, the method of
Mou et al. [10] needed to build three separate systems to predict
group-level valence and arousal, because they re-organized all
images into three cases (i.e., 2 faces, 3 faces, and 4+faces). This
kind of system lacked of flexibility and robustness in the real-
world application. Conversely, our proposed method can flexibly
predict group-level valence and arousal without setting up three
separate cases.

4.5.3 Group-level facial expression recognition

In the GAFF database, we compared our method with several
comparative algorithms [11], [22], [23], [25], [55] in Table 8. The
comparative algorithms were briefly described as follows:

• Dhall et al. [11] used Census transform histogram descriptor
to extract features from 4 × 4 non-overlapped blocks of the
images, and then used SVM with a non-linear Chi-square
kernel to train the classification model.
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• Balaji and Oruganti [22] combined features from face and
scene information for group-level emotion recognition. Here,
we named it as “Fusion of Scene and VGG-face”.

• Abbas and Chalup [23] combined image context and
facial information for group-level emotion recognition.
They induced three solo models (“Face-pretrained CNN”,
“InceptionV3-FC”, “VGG16-FC”) and two multi-modals
(“Face-pretrained CNN + InceptionV3-FC” and “Face-
pretrained CNN + VGG16-FC”).

• Tan et al. [25] proposed two types of CNNs, namely, individ-
ual facial emotion CNN (“Facial emotion CNN”), and global
image based CNN (“VGG-19 scene”).

• Rassadin et al. [55] extracted feature vectors of detected faces
using the convolutional neural network (CNN) trained for
face identification task. In the final pipeline an ensemble of
random forest classifiers on four features from VGG-face,
VGG-16, ResNet-50, and Xception on the detected faces,
was learned to predict emotion score using available training
set. Here, we named their proposed methods as “VGG-
face”, “VGG-16”, “Resnet-50”, “Xception”, and “Ensemble
of classifiers”, respectively.

It is noted that the results are directly comparable due to
the same experiment setups. As seen from Table 8, SVM-GAK
achieved the recognition rate of 67.32% and 70.67%, respec-
tively, when we used RVLBP and CNN as feature descriptor,
respectively. Compared the sole-model approaches listed in the
lines 1-10, when RVLBP was fed into SVM-GAK, SVM-GAK
outperformed most of the sole-model methods except Facial
emotion CNN [25]. However, the gap of performance between
SVM-GAK and Facial emotion CNN was not too much. This
gap may be caused by the RVLBP, since RVLBP requested the
strict face alignment. When we used CNN as feature descriptor
for SVM-GAK, the performance is boosted to 70.67% in terms of
recognition rate. It is also seen that SVM-GAK works better than
Facial emotion CNN [25]. The performance difference between
RVLBP and CNN confirms that the SVM-GAK was affected by
different feature descriptor. It also implies that the feature obtained
by using deep learning networks may be more suitable to SVM-
GAK than hand-crafted features.

Comparing with multi-modal approaches listed in the lines
11-14, SVM-GAK can as well obtain the promising results.
SVM-CGAK achieved higher recognition rate (72.17%) than
Fusion of Scene and VGG-face (65.0%) [22], Face-pretrained
CNN + InceptionV3-FC (70.09%) [55] and Ensemble of classifier
(66.51%) [55], while SVM-CGAK obtained a little worse perfor-
mance comparing with hybrid network (72.38%) [55]. Different
from the hybrid network [55], they combined face and scene
information. However, SVM-CGAK exploited the information
from face. From the perspective of sole-model, without scene
information, Face-pretrained CNN of [55] only obtained the recog-
nition rate of 60% in face information, while SVM-GAK based on
CNN and SVM-CGAK obtained 70.67% and 72.17% in terms of
recognition rate. The comparative results demonstrate that SVM-
GAK and SVM-CGAK still lead comparative performance to
group-level facial expression recognition. On the other hand, our
previous work in [26] demonstrated that adding scene information
can significantly improve the performance in group-level facial
expression recognition. We believed that adding more information
from multi-modal would make more benefit and improvement to
SVM-CGAK.

5 CONCLUSION

To advance the research in affective computing, it is important to
understand the affect exhibited by a group of people in images.
In this paper, we proposed a new simple but effective method
for analyzing group-level emotion. First, we proposed to use
a global alignment kernel based on the efficient data structure
as a novel metric, which can explicitly measure the distance
between two images. Furthermore, based on the global alignment
kernel, we proposed support vector machine learning with the
combined global alignment kernels, namely, SVM-CGAK, for
group-level emotion recognition. The combined global alignment
kernels exploited the low-level and high-level facial expression
representations. Additionally, it borrowed the benefit of multiple
kernel learning, which can obtain the optimal weights for com-
bining two global alignment kernels. The optimal learned weights
and multiple feature descriptors can make SVM-CGAK become
more robust to the challenging environment in group-level emotion
recognition.

It is observed that SVM-CGAK avoided from the heavy
computation compared with group expression model and multi-
modal frames, as it only contained one parameter. We throughly
investigated the influence of the parameter σ to the global align-
ment kernel on the HAPPEI database. Two examples given in
Figure 7 further confirmed that the global alignment kernel can
better describe the distance between group-level images than
averaging method. Based on the optimal designed σ, experiment
results sufficiently demonstrated that SVM-CGAK was an efficient
and effective way to estimate the happiness intensity of a group
of people. In order to see the generalization ability of SVM-
CGAK, we conducted three experiments on group-level happiness
intensity estimation, group-level valence and arousal prediction,
and group-level facial expression recognition. Compared with the
state-of-the-art methods, SVM-CGAK surpassed most of the state-
of-the-art methods on group-level emotion recognition.

Although group-level emotion recognition has received in-
creasing attention in the computer vision community, as well,
our proposed approaches achieved the considerable results in
group-level emotion recognition, it still exists some improvements
need to be discussed in future. Recently, Keyton and Heylen
in [56] stated that the interaction of computer science and social
science “will benefit when interdisciplinary collaborations make
important contributions to both”. It is recommended that we can
collaborate social scientists on group-level emotion recognition in
three following issues:

• Data collection: So far, the publicly available group-level
emotion databases collected the images from the website
and multimedia, lacking of the dynamic information of
group-based emotion. Smith and Mackie in [57] emphasized
over-time variability of group emotions is meaningful, as
“people may react differently toward an outgroup member
depending on their current emotion state” (p.2). As well,
Pantic and Patras’s research in [58] found that dynamic
video contains more discriminative information to judge the
change of emotion. Thus, through dynamics process, it can
be a better way to observe the relationship and emotion
change between member and team [57], [58]. Additionally,
the current databases seriously lacks of the context or envi-
ronment in which the team interacts, such as collecting from
a sufficiently large number of naturalistic groups, and so on.
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• Human annotation: Currently, the researchers of these group-
level databases obtained annotation by asking independent
observers to rate the images. It lacks of subjective evalua-
tions, such as self-report measurement, is ignored. This may
be caused by the data collection and difficulty obtaining
the self-report measurement. However, without the solid
annotation, it will make the false direction to the automatic
group-level emotion recognition. Based on the solid annota-
tion, computer scientists can develop high-level methods for
analyzing data used by social scientists.

• More general emotion categories: The publicly available
databases mostly focus on the basic emotion categories [11],
[15], but ignore theorem supported by psychologist. In fact,
group emotion is commonly defined as the moods, emotions,
and dispositional affects of a group of people [5]. It is
important to extend the basic emotion categories into more
general emotion classes.

In our future work, collaborating with social scientist, we will con-
sider more natural group emotion databases, including dynamic
information and solid label annotation. Additionally, the workflow
in social science and computer science exists some difference in
analyzing group interactions [59]. We will consider the differ-
ence on workflow between social science and computer science
for deeply analyzing group-level emotion, not only focusing on
technical level. Moreover, we will consider an end-to-end neural
network and multi-modal information for SVM-CGAK to obtain
more effective performance in group-level emotion recognition.
Specifically, as collaborating with social scientists, we hope that
automatic group-level emotion recognition will assist researchers
more efficient in analyzing the development of team/group in
natural environment, get the win-win benefit to both communities,
and bridge the gap between both fields.

REFERENCES

[1] S. Li, W. Deng, and J. Du, “Reliable crowdsourcing and deep locality-
preserving learning for expression recognition in the wild,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
2852–2861.

[2] M. Ayadi, M. Kamel, and F. Karray, “Survey on speech emotion recogni-
tion: Features, classification schemes, and databases,” Image and Vision
Computing, vol. 44, no. 3, pp. 572–587, 2011.

[3] L. Rice, C. Wall, A. Fogel, and F. Shic, “Computer-assisted face
processing instruction improves emotion recognition, mentalizing, and
social skills in students with ASD,” Journal of Autism and Developmental
Disorders, vol. 45, no. 7, pp. 2176–2186, 2015.

[4] J. Levine and R. Moreland, “Progress in small group research,” Annual
Review of Psychology, vol. 41, pp. 585–634, 1990.
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