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Abstract: Deep reinforcement learning (RL) has achieved significant success
in artificial domains and in some real-world applications. However, substantial
challenges remain such as learning efficiently under safety constraints. Satisfying
safety constraints is a hard requirement in many high-impact application domains.
At a suitable level of abstraction, these constraints have rich temporal and logi-
cal structures, and can be expressed using formal languages like temporal logics.
However, in previous papers, these constraints are assumed to be known, which
may not be true in many practical scenarios. In this paper, we study safe RL under
unknown temporal logical constraint and propose a joint learning framework for
safety constraint and policies with human feedbacks. The proposed framework in-
terleaves between two loops of learning safety constraint and logically-constrained
RL. Specifically, in the outer loop, a new algorithm based on temporal logic neural
network (TLNN) is proposed to learn the automaton of constraint formula with
traces labeled by human feedbacks. In order to satisfy the safety constraint zero-
shot, in the inner loop, we propose to use a pre-trained generalizable shield and
a logically combined Q function for action selection. We evaluate the proposed
framework over various environments and provide in-depth empirical analysis
on performances of both automaton learning and safety guarantee, empirically
verifying the advantages of our methods over previous ones.

1 Introduction

Deep reinforcement learning (RL) has demonstrated excellent success in a variety of domains,
including games [36, 50], robotic control [32], and recommendation systems [42], etc. In typical RL
settings like these, the fundamental principle of RL - in which the agent aims to maximize long-term
reward by trial and error - drives the agent to explore the entire state space and experiment with all
possible actions in unknown environments. The application of RL in real-world domains, however,
is hindered by challenges. Despite the significant efforts on making RL agents safe, one of the key
challenges remains how to impose “safety constraints that should never [...] be violated” [16].

Safe RL is the process of learning optimal policies for reward maximization while ensuring a
reasonable performance of safety at the same time [6]. In most of safe RL papers [15, 17, 11, 18],
safety is understood as visiting ”good states” and avoiding ”bad states”. However, in many real-world
applications, complex missions typically involve constraints on not only the current state but also
the system’s trajectory. For example, suppose that a robot must first visit region A and then region
B. Regions A and B may not be categorized as safe or unsafe, but not visiting A and B in the right
order may imply a mission failure. Temporal logics (TL) [5] provide a powerful way of describing
such complex spatial and temporal specifications. Some studies in the literature address RL problems
under TL constraints. For example, Linear Temporal Logic (LTL) constraints are considered in a
model-free learning framework and maximum possible LTL constraint satisfaction is achieved in
[21]. A reactive system called shield is proposed in [2] where the chosen action is corrected if it
causes the violation of an LTL specification.

However, in all of previous papers on safe RL with temporal logic constraints [2, 21, 1, 14, 28], these
constraints are assumed to be known to the RL agent as specifications from human user, which may
not be true in many real-world applications. Manually defining safety constraints for all possible
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scenarios is challenging, especially for robots operating in open-world environments [25]. Besides,
implicit constraint is an important category of safety constraints [35], whose expression or definition
is unknown to the agent due to complexity of system, such as network latency in data-center [12].
Although there are some previous papers studying unknown safety constraints in control theory
[12, 52, 51], none of them considered temporal logic cases.

In this paper, we propose a novel framework for learning and satisfying temporal logic constraints,
where the constraints are inferred from traces with human feedbacks. A human is introduced for
labeling the safety of agent’s trace in every episode. The proposed framework interleaves between
two loops, i.e., learning the automaton representation of safety constraint (outer loop) and satisfying
the learned constraint in RL (inner loop), as shown in Figure 1. Since the target of our work is to
make the agent to follow any unseen constraint formula, it is necessary to use multi-task environments
[3, 47].

In the outer loop, we propose a new approach for learning the deterministic finite automaton (DFA)
of the temporal logic constraint φ from traces labeled by a human observer. Due to the randomness
in agent’s exploration, the collected traces of agent’s behavior may contain a lot of redundant
propositions which do not make any progress toward the satisfaction of φ. Hence, in previous methods
[38, 54], the prefix-tree acceptor directly built from positive traces can have many redundant states to
be merged, where the greedy selection of states may produce sub-optimal solutions. Therefore, we
propose to directly learn the minimum tree acceptor (MTA) as the automaton representation of the
target DFA. Since we assume the target DFA Aφ is acyclic (ignoring self-loops) [27], the DFA Aφ is
equivalent as an MTA composed by the set of skeleton paths over Aφ [13]. Hence, given positive
and negative traces, we propose to build a model based on temporal logic neural network (TLNN) to
directly learn the MTA of Aφ, which can avoid expensive computations (state-merging) in previous
methods [38, 31, 9].

In the inner loop, we also propose a novel RL approach for following an unseen safety constraint
φ in a zero-shot manner. The agent needs to not only learn the unknown constraint φ via human
interactions for several episodes, but also train the policy (q-function) to satisfy φ without reducing
accumulated rewards, during which the agent may violate safety constraints for many times. So, quick
generalization to any unseen constraint formula is key to minimize the number of safety violations.
Therefore, we propose to first pre-train a shield (Q function) in an offline environment which can
predict the reachability of any temporal logic formulas, so that the agent can know how to follow an
unseen constraint φ in a zero-shot manner. Then, in the online environment, inspired by [37, 44], we
propose to use disconjunction operator to combine Q functions of accumulated rewards and constraint
reachability together, and select actions over this combined Q function by ε-strategy, so that no further
learning is needed for safety satisfaction even when the constraint formula φ changes. These two
techniques can make the shield and agent to achieve zero-shot generalization to unseen constraint
formulas.

In empirical experiments on image-based environments, we show that the proposed framework has
many advantages over representative previous methods.

2 Related Work

Our work is strongly related with the body of work on temporal logic safety constraints in RL. In
[2, 26] the shield is constructed by the automaton of the given and known safety constraint and
removes unsafe actions for the agent in action selection during RL. [55] encode legality of actions
explicitly into rules to avoid unsafe action selections. [46] specifically target learning normative
behaviors in a particular normative framework, whereas we focus on high-level, intentional safety
constraints. The setting of safe RL under constraints that may impact performance negatively was
empirically identified in [29]. Recently, [1] investigates the probabilistic guarantee of satisfaction of
temporal logic constraint in stochastic MDP, and [28] formulates the constrained POMDP and leverage
off-the-shelf unconstrained POMDP solvers to satisfy the temporal logic constraints. However, in
these works, the temporal logic safety constraints are assumed to be known to the agent, and none of
them considered the efficient transferring from one constraint to another.

Another line of related works aims to utilize temporal logic instructions or symbolic knowledge to
improve the learning of RL agent. In [20], the reward shaping based on STRIPS-based symbolic
operators is used to improve the learning efficiency of RL agent. [7, 8] uses temporal logics to
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formulate the reward function, where the agent can learn to execute tasks with rich logic structure.
[24] informs an RL agent with high-level symbolic instructions using the options framework in which
low-level learned policies can be reused. The instructions are of a directive nature which is arguably
less generic than the constraints used here. A recent work [22] propose to use an intrinsic reward to
encourage exploration and task segmentation, whose definition is based on state propositions.

Recently [14] proposes to use reward shaping to encourage the agent to satisfy safety constraints
without reducing accumulated environmental rewards. However, this work is based on the availability
of the abstract or symbolic transition model, which may not be true in real-world applications. Even
though an abstract transition model can be pre-trained in a simulated environment, in order to satisfy
the safety constraints, symbolic planning is needed to compute the intrinsic reward used in the reward
shaping, which needs extra computation and cannot achieve zero-shot transferring.

3 Preliminaries

3.1 Temporal Logic and Deterministic Finite Automaton

We define a sequence of elements from some alphabet as a word and a linear temporal property as a
set of finite or infinite words over the alphabet Σ : 2P , where P is the set of propositional symbols.
Safety constraint of a system can be expressed in a formal language that extends propositional
logic with temporal operators, and linear temporal logic (LTL) is such a temporal logic language
widely used in practice [5]. LTL formulas are evaluated over sequences of observations (i.e., truth
assignments to the propositional symbols in P).

An LTL specification φ can be converted into an automaton as its representation [48]. A deterministic
finite automaton (DFA) Aφ = 〈Q, q0,Σ, δ,F〉 corresponding to φ consists of a set of states Q,
an initial state q0, an alphabet Σ, a transition function δ : Q × Σ → Q and a set of accepting
states F . A run is a finite or infinite sequence of states q = q0, q1, . . . ∈ Q∞ induced by a trace
σ = σ0, σ1, . . . ∈ Σ∞, where ∀i ∈ N , qi+1 = δ(qi, σi). A trace of some system satisfies the
automaton Aφ iff the corresponding run q only visits the accepting states after some finite time step,
i.e., ∃t <∞, s.t., ∀t′ > t, qt′ ∈ F , which is termed as accepting trace.

3.2 Logic Neural Network

In this paper, we leverage the logic neural network [53, 39] to learn the automaton representation of
safety specification. In logic neural networks, the conjunction and disjunction functions are defined
as Fc(x, ω) := 1− ω(1− x) and Fd(x, ω) := x · ω, respectively. Specifically, given the vector of
atom values x, choosing the logic activation function as P(v) = −1

−1+log(v) [53], the i-the conjunction
and disjunction operation can be expressed as

Conji(x,Wi) := P(
n∏
j=1

(Fc(xj ,Wi,j) + ε)),

Disji(x,Wi) := 1− P(

n∏
j=1

(1− Fd(xj ,Wi,j) + ε)) (1)

where Wi is the trainable weight vector for the i-th node in the logic layer, and ε is a small constant,
e.g., 10−10, for numerical stability.

3.3 Reinforcement Learning

RL provides a framework for learning to select actions in an environment in order to maximize the
collected rewards over time [43]. RL deals with problems formalized as Markov decision problems
(MDP). We here define a MDP as a tuple M = 〈S,A, T,R, γ, S0〉, where S is a finite set of
environment states, A is a finite set of agent actions, T : S × A × S → [0, 1] is a probabilistic
transition function, R : S ×A → [Rmin, Rmax] is a reward function with Rmin, Rmax ∈ R, γ ∈ [0, 1)
is a discount factor, S0 : s0 ∼ S0 is a distribution of initial states. In each time step t, the agent
observes the environment state st and selects some action at to apply, according to some policy
function π ∈ Π : S ×A → [0, 1], and then collects reward rt = R(st, at).

3
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Figure 1: The diagram of the proposed framework. The inner loop is the safe RL with a shield for satisfying the
safety constraint. The outer loop is for collecting human feedbacks and learning automaton representation of
safety automaton.

For some policy π, the values V and Q for any state s and state-action pair (s, a) at time t can be
defined as below,

Vπ(s) = Eπ
[ ∞∑
τ=t

γτ−trτ |st = s

]
, Qπ(s, a) = Eπ

[ ∞∑
τ=t

γτ−trτ |st = s, at = a

]
(2)

where Eπ is the expectation of accumulated rewards following some policy π. A policy is the optimal
policy π∗ if it produces the highest accumulated rewards: ∀s ∈ S,∀π ∈ Π,∀a ∈ A : Qπ∗(s, a) >
Qπ(s, a). Searching π∗ can be addressed by parameterizing the policy and finding optimal parameters
θ∗ that maximize the accumulated rewards by a learning algorithm. Specifically, parameters θ can be
weights of neural networks optimized by gradient descent.

A widely-used parameterized approach of searching π∗ in the space of neural networks is known
as deep Q-Networks (DQN) [36]. DQN uses deep neural networks with weights θ to approximate
Qπ(s, a|θ), and at each step t, the agent selects actions uniform randomly with some probability ε ∈
[0, 1) or greedily overQπ(s, a) with probability 1−ε. The generated experience tuple (st, at, rt, st+1)
is stored to a buffer B. The weights θ are updated by using advanced optimizer, such as Adam,
iteratively. At each iteration, we update the weights θ of neural networks by minimizing the loss
function as below

L(θ; θ−) = E(s,a,r,s′)∼B

(
r + γmax

a′
Q(s′, a′|θ−)−Q(s, a|θ)

)2

(3)

where θ− are target weights of neural networks which are updated periodically for improving
numerical stability of the learning process.

4 Methodology

In this section, we introduce the proposed framework for learning and satisfying temporal logic
(symbolic) constraints in RL with human feedbacks. As far as we know, we are the first to tackle
safe RL with unknown temporal logic constraints. Our proposed framework jointly learns the safety
constraint and the policy (q-function) of RL agent which follows the safety constraint. It consists of
outer and inner loops, as shown in Figure 1. In the outer loop, a human is introduced to give labels,
positive (safety satisfied) or negative, over the traces agent’s behavior, and the safety constraint is
learned from human feedbacks. The inner loop of our framework contains the RL setup and considers
a shield encoding the learned constraint, which is to make the agent safe while keeping accumulated
rewards maximized.

We have innovations in both outer and inner loops. That is because the straightforward combination
of automaton learning algorithm [38] and safe RL with symbolic shield [2, 21, 1] does not work well,
which have the following problems to be solved:

• Due to the random exploration of RL agent, many visited propositions in traces are redundant
and do not make any progress toward constraint satisfaction. The popular previous methods
[38, 10] directly build prefix tree from positive traces and generate a lot of redundant states
to be merged, where the greedy state selection can degrade the learning performance;
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Figure 2: Example of learning safety constraint φ in Mine-Craft game. (a): Target DFA is the real automaton of
safety constraint (propositions on self-loops are omitted) Aφ. (b): the dashed line shows a trajectory of agent in
Letter Game, along which the sequence of letters is a trace. (c): MTA of target automaton. Aφ.

• Since the agent does not know the safety constraint a priori, the number of safety violations
may be large during the RL process. It is important for the agent to quickly generalize to the
learned safety constraint in a zero-shot manner;

• The objective of satisfying safety constraint may not be associated with that of maximizing
the environmental reward. How to achieve both objectives in a zero-shot manner remains
unsolved.

In this work, we propose specific techniques to tackle problems above, which will be introduced one
by one in the following sections.

4.1 Outer Loop: Learning Safety Automaton with Human Feedbacks

The outer loop is a feedback loop, where a human observer gives feedbacks on the safety of agent’s
traces, and the automaton representation of safety constraint φ is learned from labeled traces. In the
following paragraphs, we define a trace as the sequence of propositions visited by the agent in one
episode, as an example shown in Figure 2(b).

Learning deterministic finite automaton (DFA) from labeled traces is a classical problem in formal
method. Many previous papers first learn LTL formula from traces [49, 34, 33] and convert it into
DFA, which could lead to state-explosion problem [5]. Another line of works uses SAT-based
methods to learn the DFA [9, 54], which do not have polynomial time complexity and cannot be
deployed into RL applications. Here we focus on polynomial-time algorithms for learning the DFA
Aφ of the constraint formula φ. Popular polynomial-time algorithms for learning automaton, such as
Regular Positive Negative Inference (RPNI) algorithm [38], always have two phases: first construct a
prefix tree acceptor (PTA) from positive traces, and second try to merge states of PTA by comparing
positive and negative traces until no more states can be merged. The target is to learn a minimum
DFA which can perfectly classify positive and negative traces.

However, since the exploration is random, in observed traces, a lot of propositions are redundant
and only cycle in self-loops at the target DFA which do not make any progress toward satisfaction
of φ. For example, in Mine-Craft environment, assume that the target DFA of safety constraint φ is
shown in Figure 2(a). And the trajectory of agent as shown Figure 2(b) contains a trace agfbde. We
can see that in this trace, only propositions a, d, e trigger transitions to different automaton states,
whereas other propositions only cycle in self-loops, which are redundant and do not move toward the
satisfaction of φ. However, previous automaton learning methods always first build a PTA directly
from positive traces [13, 38]. Hence, there will be a large number of redundant states in the PTA to be
merged, which has high time complexity and storage overhead, especially when the traces are long.

Therefore, we propose to learn minimal tree acceptor (MTA) of the target DFA, which is defined as
the minimal tree-like automaton which can accurately classify positive and negative traces according
to the target DFA. First, we define the skeleton path as an accepting trace on the target DFA which
does not go through any self-loops. For example, there are four skeleton paths on Aφ in Figure 2(a),
i.e., {adc, ade, bdc, bde}. We assume that the target FDA is acyclic (ignoring self-loops), which is a
natural assumption for RL and robotics since only temporal logic formulas with finite satisfaction
are considered here [27]. Then, we can have the MTA by aggregating all of skeleton paths of target

5



DFA together as a tree [13]. E.g., the MTA of Aφ is shown in Figure 2(c). We can see that the
MTA is concise and keeps the same temporal logic relationships as the target DFA. In the following,
we propose temporal logic neural network (TLNN) to learn MTA, extending logic neural network
introduced in Section 3.2 to the temporal domain.

4.1.1 Temporal Logic Neural Network

TLNN T is essentially a tree-like logic network, where the logic operations are realized by differen-
tiable operators in (1). This T has L layers equal to the depth of target DFA. Every node in T has
|Σ| children each of which corresponds to one proposition in Σ, so that the l-th layer of T has |Σ|l
nodes, l = 0, 1, . . . , L− 1, and every node is uniquely indexed by its prefix s which concatenates
propositions running from the root to this node, so that |s| = l. Hence, TLNN T contains every
possible skeleton path of target DFA, and T contains MTA as its sub-tree. We train this T as a
classifier of input positive and negative traces and then extract the MTA.

Denote the max length of input trace as T . Inspired by [9], we define the value function of every
node of T as V (e, t, s) ∈ [0, 1], where e is the input trace, 0 ≤ t < T is the time index, and s is the
node prefix. We first represent the input trace by its binary encoding, i.e., e[σ, t] = {0, 1} denotes the
existence of σ at time step t in e. In the first (l = 1) layer, where the prefix s has only one proposition,
for ∀σ ∈ Σ, we have V (e, 0, σ) = e[σ, 0], and V (e, t, σ) = V (e, t − 1, σ) ∨ e[σ, t] for 1 ≤ t < T .
In the l-th (l > 1) layer, for every prefix s, we have

V (e, t, s) =

{
e[s[−1], 0], if t = 0

V (e, t− 1, s) ∨ (V (e, t− 1, s[: −1]) ∧ e[s[−1], t]), otherwise
(4)

where s[−1] denotes the tail proposition of s and s[: −1] is the prefix with its tail removed. After
computing as (4) from the first to bottom (l = L − 1) layer, ∀s, the value V (e, T − 1, s) in every
layer denotes the likelihood of the input trace e containing prefix s as its sub-sequence. Then, the
predicted label of e is defined as the output of a fully-connected layer which integrates V (e, T − 1, s)
of all the prefix s at l > 1 layers. With human labels as ground-truth, the loss function to train T
can be formulated as the cross-entropy between predicted labels and ground-truth. If we realize
the conjunction and disjunction operations (4) in every layer by differentiable operators in (1), T
becomes differentiable and can be trained by gradient-descent based optimizers, such as ADAM.
After training for sufficient iterations until the prediction accuracy becomes satisfied, we can extract
the learned MTA by thresholding the weights in T , i.e., ω = 1(ω > 0.5).

4.2 Inner Loop: Satisfying Safety Constraint with a Pre-trained Shield

In the inner loop, given the learned MTA of safety constraint φ, the RL agent trains its policy to
maximize the accumulated environmental reward while satisfying safety constraint at the same time.
Here a shield is built to encourage the agent to follow φ. Since φ is unknown to the agent a priori,
the agent may violate φ for many times when learning to satisfy the constraint φ. So, the key of
reducing violations is to quickly adapt and transfer to unseen constraint φ in a zero-shot manner.
In order to achieve this goal, we propose two techniques: 1) we first pre-train a shield in an offline
environment, which can achieve zero-shot generalization to any unseen temporal logic formulas; 2)
with this pre-trained shield as a Q function of reachability of constraint satisfaction, in the online
environment, we propose to use disjunction operation to combine Q functions of accumulated reward
and the shield, where the action is selected by this combined Q function.

4.2.1 Pre-training the Shield in Offline Environment

Inspired by the domain randomization technique which can significantly improve the generalization
of RL agent [45, 47], we pre-train the shield in an offline environment where both the layout and
task are randomly generated upon reset. In this environment, the task is to satisfy a given temporal
logic formula ϕ, and the reward is the satisfaction of ϕ, where only formula whose corresponding
DFA is acyclic (ignoring self-loops) is considered. Specifically, upon reset, the positions of objects
and ϕ are randomly generated. The shield we pre-train is essentially a Q function predicting the
reachability of the satisfaction of ϕ from the input state and action pair. The state input to the shield
is the concatenation of representations of environment observation and MTA of the task ϕ. The closer
the current state is to the satisfaction of ϕ, the closer the predicted Q value is to 1.
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Since the strong expressivity of GNN can make the agent leverage the compositional syntax and
semantics of the temporal logic tasks [47, 30], we use graphical neural network (GNN) [19, 40, 41]
to learn the task representation in this shield. Specifically, given input automaton, we first decompose
the MTA of ϕ into a finite set of skeleton paths, i.e., K = {τ0a , τ1a , . . .}, and represent every τ ia by
GNN. Obviously, the reachability of ϕ is equal to the maximum of the reachability of every τ ia in K,
since if any τ ia in K is satisfied, the whole task ϕ becomes satisfied. Therefore, the Q network of the
shield is essentially trained to predict the reachability of any sequence of propositions represented by
a GNN.

Different from previous works [47, 30] which use on-policy RL algorithms, in order to improve the
learning efficiency, we use off-policy deep Q-learning algorithm [36] to pre-train the generalizable
shield. In addition, we also incorporate hindsight experience replay (HER) [4] to accelerate this
training process. Specifically, HER is extended to temporal logic domain, modifying any unsuccessful
trajectory whose associated temporal logic task was not finished. Since a non-zero reward is only
given at the end of the trajectory, unsuccessful trajectory does not have any reward information
and is not useful for training. Hence, in any unsuccessful trajectory with task ϕ, the sequence of
propositions visited by the agent is used to modify the original task ϕ, replacing a randomly selected
skeleton path τ ia of ϕ, so that this modified task ϕ′ becomes finished and the trajectory associated
with ϕ′ becomes successful. This GNN-based shield can be trained to generalize to a large number
of temporal logic tasks. More training and architecture details are in Appendix.

4.2.2 Following the Constraint in Online Environment

We apply the pre-trained shield to make the agent satisfy the safety constraint φ in online environment.
In online environment, the reward is another function which may not be aligned with the satisfaction
of φ. As long as the outer loop updates the formula of φ, the MTA of φ can be obtained and encoded
into the shield via GNN. The pre-trained shield is essentially a Q function which can predict the
reachability of satisfiability of formula φ. Therefore, according to the discussion in [37], we can use
the disconjunction of Q functions of accumulated reward and satisfaction of φ to select actions, so
that the objectives of maximizing the reward and satisfying φ can be both achieved zero-shot without
further learning. Specifically, in state st, we can select action as

a∗t = arg max
a∈A

max{QR(st, a), Qs(st, a;φ)} (5)

where QR(s, a) and Qs(s, a;φ) are the Q functions of reward and shield with formula φ encoded,
respectively.

5 Experiment

In this section, we will provide comprehensive empirical evaluation of the proposed framework
in environments with unknown safety constraint. Specifically, we evaluate the performance of the
proposed framework on three aspects, including automaton learning, generalization of pre-trained
shield, and overall performance of reward maximization and safety satisfaction, which are designed
to answer the following questions:

• Does the proposed automaton learning method outperform previous methods?

• Can the pre-trained shield be generalized to other temporal logic constraints in a zero-shot
manner?

• Can the agent in the proposed framework quickly learn to satisfy the safety constraint while
maximizing accumulated rewards at the same time?

which correspond to three problems described in the beginning of Section 4. We use two environments
in this work:

Letter Game: The first environment is similar as Mine-craft in [3, 47]. Out of the 49 squares, 16 are
associated with 8 unique propositions/letters, and some letter may appear twice in the grid, so that
there are multiple ways to reach some letter. Besides letters, the shadowed area is the reward region,
where the agent can obtain a positive reward when reaching it first time. An example layout is shown
in Figure 2(b).
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Maze Game: This environment is a grid-world game whose observation is divided into four rooms
by walls. There are 6 objects,denoted with different letters, randomly located in these rooms. An
example of layout is shown in Figure 3. The agent is randomly placed in one of these rooms. Each
room is connected with every neighboring room by a corridor, and two corridors of four rooms are
blocked by locked doors. The agent can open locked doors by acquiring a key to that particular door
and using it on the lock. These keys are placed in a position that is reachable for the agent. The
reward here is to acquire some letter which is unknown to the agent a priori and not associated with
the safety constraint.

Figure 3: Maze Game

In these environments, at each step the agent can move along the
cardinal directions (up, down, left and right). The agent observes the
full grid (and letters) from an egocentric point of view together with
the MTA of the temporal logic task/constraint. The observation of the
grid is processed as an image where the positions of objects (letters,
keys and doors) are not revealed to the agent. In the following sections,
we will first present the performance of proposed automaton learning
method. Then the pre-trained shield is empirically evaluated on two
grid-world games. Finally, the overall learning performance of the
proposed framework is presented, combining inner and outer loops
together.

5.1 Automaton Learning

We first evaluate the proposed automaton learning method in a standalone mode, independent of
other components in the proposed framework. The positive and negative traces of propositions are
randomly generated. With the same data, in order to further test its ability to handle noise, 2% of
labels are swapped. We use SAT-based method [9] and NPRI [38] as baselines with implementations
at 1. The SAT-based method iteratively increases the maximum allowable formula size and reruns
the SAT solver until a formula is found. In the proposed method, we also gradually increase the
maximum depth of MTA until a satisfying acceptor is found. This process guarantees the output
formula is optimally compact.

Data Generation Assume that the proposition set P = {a, b, c, d, e, f}. First, we generate a finite
setK of skeleton paths τa and use them to build the MTA as the representation of target DFA. Assume
2 ≤ |K| ≤ 16. Every element of τa is uniformly selected from P . The length of τa is randomly
selected between 2 and 5. Second, when the MTA is constructed, we generate 1024 training traces,
where elements in every trace are uniformly sampled from P and each trace is labeled according to
the satisfaction of the MTA. The max length of traces is 10.

(a) Accuracy (b) Recovery

Figure 4: Comparison of the proposed method, NPRI and SAT-based methods on testing traces with and without
noise. 0.5 accuracy denotes the time-out of SAT solver.

Results The first performance metric for comparison is the accuracy, defined as the percentage
of correctly classified traces. Here both SAT and NPRI methods are set to learn automaton with
finite satisfaction over which we can easily obtain the MTA by extracting skeleton paths, since we
only consider automaton having finite accepting traces. The second performance metric is recovery,
referring to whether the MTA of target DFA is perfectly learned. Figure 4 shows the performance of

1https://github.com/adiojha629/JIRP_LRM
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our method and baselines on the test traces after training on the original and noisy datasets, where the
x-axis is the total length of skeleton paths in target DFA, reflecting the complexity of target DFA.

In both original and noisy settings, our method consistently performs better than baselines over
all evaluations on both accuracy and recovery. Since state selection of state-merging in NPRI is
greedy, it has poor performance in some cases with complex target DFA. We observe that the standard
SAT method [9] goes time out in many cases with large target DFA. Additionally, the SAT method
performs badly in the noisy setting, but our method is robust to noisy labels due to the large number
of trainable weights.

5.2 Pre-training of the Shield

In the proposed framework, we first pre-train a shield as a DQN agent in an offline environment.
By leveraging the power of GNN, it is pre-trained to be generalized to any unseen temporal logic
formula, so that it can be directly used in online environment without any further learning (zero-shot).
In offline environment, the reward is to satisfy the task described by a temporal logic formula, and the
shield is trained by off-policy DQN algorithm [36] augmented by the HER technique [4] extended to
logic formula.

(a) Letter (b) Maze

Figure 5: Performance of pre-training shield, compared with baselines for ablation study.

Setup Curriculum learning is used to pre-train the shield. The shield is first trained to satisfy task
formulas with single proposition, which is the level 1. If the average testing accuracy is above 0.8,
the training proceeds to the next level, increasing the task formula by one proposition. The highest
level is 5, which is the maximum depth of the target DFA considered in this paper. We adopt three
baselines here, which is actually ablation study to the proposed model of the shield. The first baseline
uses a different structure of GNN, the second one does not use HER, and the third one simply uses an
LSTM [23] to process the input formula without using GNN.

Results The experiment results are shown in Figure 5. We can observe that with the proposed training
method and model, the shield can achieve 100% success rate of task solving in letter game, and can
go above 90% success rate in maze game. Due to environment complexity, the convergence rate in
maze game is significantly slower than that in letter game. Based on Baseline-2, we can see that the
HER technique can significantly accelerate the training of shield in both letter and maze games. The
learning performance of Baseline-3 shows that GNN is a better choice to learn the representation of
task formula than LSTM.

5.3 Performance of the Proposed Framework

In the online environment, with the shield pre-trained offline, we evaluate the proposed framework,
integrating inner and outer loops as a whole as shown in Figure 1. The human feedback is binary and
does not have any other information about state or reward in the target DFA, which is different from
previous work on inferring task automaton [54].

Baseline Baseline-1 is the reward shaping method [14]. In this baseline, the environment reward is
augmented by a positive reward ρ based on the progression toward satisfaction of the safety constraint
formula. Since we only focus on model-free RL in this work, the abstract transition model is not
available and the product symbolic model [2, 14] cannot be built here. So, the auxiliary reward ρ is
computed as the number of steps to any accepting state only in target DFA Aφ. The agent model of
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(a) Reward in Letter (b) Safety in Letter (c) Reward in Maze (d) Safety in Maze

Figure 6: Performance of the proposed full framework, compared with baselines.

this baseline does not have GNN part to process constraint formulas φ, so it cannot be generalized to
other unseen formulas. Baseline-2 is the naive shielding, meaning that the shield simply filter out
actions from which the reachability of φ (Q value) is below a threshold (0.1), which is similar as the
original shield in previous papers [2, 1].

Result In the online environment, we assume that there is a real constraint formula φ fixed in human
mind. The learning performance in both letter and maze games is shown in Figure 6. For reward
learning, since the agent is constrained to follow φ, the performances of the proposed method and
Baseline-1 are worse than Baseline-2 which has less constraint on the agent’s behavior. For safety
guarantee, the proposed framework performs best. Due to reward shaping, the agent in Baseline-1
needs many iterations to learn and incorporate the added rewards into its Q function, so that it has
more safety violations, compared with our method with zero-shot safety satisfaction. Even though
Baseline-2 also uses same pre-trained shield as the proposed method, the naive shielding there does
not work, since its interference on agent’s action is too weak to follow the constraint formula φ.
Its comparison with our method verifies that the disjunction operator (5) is a simple and effective
method on constraint satisfaction. In previous paper [2, 1], the environment is small and does not
have domain randomization, so that the naive shielding is enough for safety guarantee.
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young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[51] Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained markov decision
processes. In International Conference on Machine Learning, pages 9797–9806. PMLR, 2020.

[52] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization
of constrained mdps using gaussian processes. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[53] Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable rule-based representation
learning for interpretable classification. Advances in Neural Information Processing Systems,
34, 2021.

[54] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. In Proceedings
of the International Conference on Automated Planning and Scheduling, volume 30, pages
590–598, 2020.

[55] Haodi Zhang, Zihang Gao, Yi Zhou, Hao Zhang, Kaishun Wu, and Fangzhen Lin. Faster and
safer training by embedding high-level knowledge into deep reinforcement learning. arXiv
preprint arXiv:1910.09986, 2019.

13


	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Temporal Logic and Deterministic Finite Automaton
	3.2 Logic Neural Network
	3.3 Reinforcement Learning

	4 Methodology
	4.1 Outer Loop: Learning Safety Automaton with Human Feedbacks
	4.1.1 Temporal Logic Neural Network

	4.2 Inner Loop: Satisfying Safety Constraint with a Pre-trained Shield
	4.2.1 Pre-training the Shield in Offline Environment
	4.2.2 Following the Constraint in Online Environment


	5 Experiment
	5.1 Automaton Learning
	5.2 Pre-training of the Shield
	5.3 Performance of the Proposed Framework


