
Counterfactual Generative Models
for Time-Varying Treatments

Shenghao Wu1 Wenbin Zhou1 Minshuo Chen2 Shixiang Zhu1

1Carnegie Mellon University; 2Princeton University
{shenghaw, wenbinz2, shixianz }@andrew.cmu.edu

minshuochen@princeton.edu

Abstract

Estimating the counterfactual outcome of treatment is essential for decision-making
in public health and clinical science, among others. Often, treatments are adminis-
tered in a sequential, time-varying manner, leading to an exponentially increased
number of possible counterfactual outcomes. Furthermore, in modern applications,
the outcomes are high-dimensional and conventional average treatment effect esti-
mation fails to capture disparities in individuals. To tackle these challenges, we
propose a novel conditional generative framework capable of producing counter-
factual samples under time-varying treatment, without the need for explicit density
estimation. Our method carefully addresses the distribution mismatch between
the observed and counterfactual distributions via a loss function based on inverse
probability weighting. We present a thorough evaluation of our method using
both synthetic and real-world data. Our results demonstrate that our method is
capable of generating high-quality counterfactual samples and outperforms the
state-of-the-art baselines.

1 Introduction
Estimating time-varying treatment effect from observational data has garnered significant attention
due to the growing prevalence of time-series records. One particular relevant field is public health
[36, 80, 9], where researchers and policymakers grapple with a series of decisions on preemptive
measures to control epidemic outbreaks, ranging from mask mandates to shutdowns. It is vital to
provide accurate and comprehensive outcome estimates under such diverse time-varying treatments,
so that policymakers and researchers can accumulate sufficient knowledge and make well-informed
decisions with discretion.

In the literature, average treatment effect estimation has received extensive attention and various
methods have been proposed [62, 26, 29, 39, 7, 5, 69, 44, 18, 75]. By estimating the average outcome
over a population under a treatment, these methods evaluate the effectiveness of the treatment via
hypothesis testing. However, the average treatment effect might not capture the full picture, as it
may overlook pronounced disparities in the individual outcomes of the population, especially when
the counterfactual distribution is heterogeneous. Recent efforts [33, 32, 45] have been made to
directly estimate the counterfactual density function of the outcome. This idea has demonstrated
appealing performance for univariate outcomes. Nonetheless, for multi-dimensional outcomes, the
estimation accuracy quickly degrades [68]. In modern high-dimensional applications, for example,
predicting COVID-19 cases at the county level of a state, these methods are hardly scalable and incur
a computational overhead.

Adding another layer of complexity, considering time-varying treatments causes the capacity of the
potential treatment sequences to expand exponentially. For example, even if the treatment is binary at
a single time step, the total number of different combinations on a time-varying treatment increases
as 2d with d being the length of history. More importantly, time-varying treatments lead to significant
distributional discrepancy between the observed and counterfactual outcomes, as shown in Figure 1.

1st Workshop on Deep Generative Models for Health at NeurIPS 2023.

Mean

𝑑 = 1 𝑑 = 5 𝑑 = 10

ObservedCounterfactual

* Heterogeneous effect * Distributional discrepancy between observed and counterfactual outcomes

Wasserstein dist: 0.28 Wasserstein dist: 1.10 Wasserstein dist: 1.51
𝑌(+𝑎)

𝑓!"

(a) (b)

Figure 1: (a) Mean is incapable of describing the het-
erogeneous effect in counterfactual distributions. (b)
The observed distribution may be more deviated from
that of the counterfactual as the length of the history
dependence, d, increases.

In this paper, we provide a whole package of
accurately estimating high-dimensional coun-
terfactual distributions for time-varying treat-
ments. Instead of a direct density estimation, we
implicitly learn the counterfactual distribution
by training a generative model, capable of gen-
erating credible samples of the counterfactual
outcomes given a time-varying treatment. This
allows policymakers to assess a policy’s efficacy
by exploring a range of probable outcomes and
deepening their understanding of its counterfac-
tual result. As a result, our model is capable of
handling high-dimensional outcomes, and outperforms existing state-of-the-art baselines in terms of
estimation accuracy and generating high-quality counterfactual samples. Our model also enables fast
downstream inference, such as average treatment effect estimation and uncertainty quantification.

To be specific, we develop a conditional generator [46, 71]. This generator, which we choose in a
flexible manner, takes into account the treatment history as input and generates realistic counterfactual
outcomes. The key idea is to utilize a “proxy” conditional distribution as an approximation of the
true counterfactual distribution. To achieve this, we establish a statistical relationship between the
observed and counterfactual distributions using g-formula [49, 64, 58, 16]. We learn the conditional
generator by optimizing a novel weighted loss function based on a pseudo population through Inverse
Probability of Treatment Weighting (IPTW) [58]. We evaluate our framework through numerical
experiments extensively on both synthetic and real-world data sets. We include a comprehensive
overview of the related work in Appendix A and B.

2 Methodology
2.1 Problem setup
In this study, we consider the treatment for each discrete time period as a random variable At ∈
A = {0, 1}, where t = 1, . . . , T and T is the total number of time points. Let Xt ∈ X ⊂ Rh

be the time-varying covariates, and Yt ∈ Y ⊂ Rm the subject’s outcome at time t. We use
At = {At−d+1, . . . , At} to denote the previous treatment history from time t − d + 1 to t, where
d is the length of history dependence. Similarly, we use Xt = {Xt−d+1, . . . , Xt} to denote the
covariate history. We use yt, at, and xt to represent a realization of Yt, At, and Xt, respectively,
and use at = (at−d+1, . . . , at) and xt = (xt−d+1, . . . , xt) to denote the history of treatment and
covariate realizations. In the sections below, we will refer to Yt, At, and Xt as simply Y , A, and
X , where t will be clear from context. Let Y (a) denote the counterfactual outcome for a subject
under a time-varying treatment a, and define fa as its counterfactual distribution. The goal of our
study is to obtain realistic samples of fa, without estimating its density. We assume that the standard
assumptions [60, 39] hold (consistency, positivity, and sequential ignorability. See Appendix C) and
that Y , A, and X follow the classical structural causal relationship [55, 60] as shown in Figure 6
(Appendix D).

2.2 Counterfactual generative framework for time-varying treatments
This paper proposes a counterfactual generator, denoted as gθ, to simulate Y (a) according to the
proxy conditional distribution fθ(y|a) instead of directly modeling its expectation or specifying a
parametric counterfactual distribution. Here we use θ ∈ Θ to represent the model’s parameters, and
formally define the generator as a function:

gθ(z, a) : Rr ×Ad → Y. (1)

The generator takes as input a random noise vector (z ∈ Rr ∼ N (0, I)) and the time-varying
treatment a. (Note that it is standard to assume isotropic Gaussian noise[35], but one may opt for
a different type of noise depending on the application.) The output of the generator is a sample of
possible counterfactual outcomes that follows the proxy conditional distribution represented by θ,
i.e.,

y ∼ fθ(·|a),
which can be viewed as an approximation of the underlying counterfactual distribution fa. Figure 2a
shows an overview of the proposed generative model architecture. The learning objective is to then

2

𝒈𝜽

"𝑎

𝑦 ∼ 𝑓"(⋅ |"𝑎)

𝑧Random noise

Time series treatment
Counterfactual

outcome

𝝎𝝓

Observed population

𝑦 ("𝑎, �̅�)

𝑓
Pseudo population

𝑦 ("𝑎, �̅�)

𝑓"(⋅ |"𝑎)𝑓$% 𝑓$%

(a)

𝑓

𝑓!"
𝜔#

𝑓$

𝑓$∗

Θ

D
!" (𝜃, 𝜙)

Pseudo population

Observed distribution

True counterfactual distribution

Proxy conditional distribution

Φ

(b)
Figure 2: (a) The architecture of the proposed framework. (b) An illustration of our learning objective.

find the optimal generator that minimizes the distance between the proxy conditional distribution
fθ(·|a) and the true counterfactual distribution fa, as illustrated in Figure 2b. If the distance is the
Kullback-Leibler (KL) divergence, this objective can be expressed equivalently by maximizing the
log-likelihood [48]:

max
θ∈Θ

ℓ(θ) := E
y∼fa

log fθ(y|a). (2)

To obtain samples from fa, we follow the idea of marginal structural models (MSMs)[49, 64, 58, 16]
to account for time-varying treatments. Specifically, we introduce Lemma 1 to establish a connection
between the counterfactual distribution and the data distribution. The proof follows the g-formula
[58] and can be found in Appendix D.

Lemma 1. Let f denote the observed data distribution. Under unconfoundedness and positivity (see
Appendix C), we have:

fa (y) =

∫
1{A = a}∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)f (
y,A,X

)
dAdX, (3)

Note that we omitted the temporal index t for simplicity. Now we present a proposition using
Lemma 1, allowing us to substitute the expectation in (2), computed over a counterfactual distribution,
with the sample average over a pseudo-population based on IPTW. Figure 2b gives an illustration of
the learning objective. See the proof in Appendix E.

Proposition 1. Let D denote the set of observed data tuples of the outcomes, treatments, and
covariates. The generative learning objective can be approximated by:

E
y∼fa

log fθ(y|a) ≈
∑

(y,a,x)∈D

wϕ(a, x) log fθ(y|a), (4)

where wϕ(a, x) denotes the subject-specific IPTW, parameterized by ϕ ∈ Φ, which takes the form:

wϕ(a, x) =
1∏t

τ=t−d fϕ(aτ |aτ−1, xτ)
. (5)

Figure 3: The estimated and true counterfactual distri-
butions for (d = 3) on the 1D fully synthetic datasets.
We include the plot for d = 1 and d = 5 in Appendix H.

Here we use another model, denoted by ϕ ∈
Φ, to represent the conditional probability
f(Aτ |Aτ , Xτ), which defines the IPTW wϕ. In
this paper, we use fully-connected neural net-
works for both gθ and ϕ, and include the details
in Appendix G.3. To compute the weighted
log-likelihood as expressed in (4) and learn the
generative model, we can leverage various gener-
ative learning models, e.g., conditional normal-
izing flow [6] and guided diffusion models [14].
In this paper, we adopt the conditional varia-
tional autoencoder (CVAE) [71], as a commonly-
used conditional generative framework. We in-
clude the details of the learning procedure in
Appendix F.

3

(a) (b)

Figure 4: (a) Results on the semi-sythetic TV-MNIST datasets (m = 784). We show representative samples
generated from different methods under treatment a = (1, 1, 1). (b) Results on the semi-synthetic Pennsylvania
COVID-19 mask datasets (m = 67) under treatment a = (1, 1, 1). For each model, we generate 500 counter-
factual samples. Each sample is a 67-dimensional vector representing the inferred new cases per 100K for the
counties in Pennsylvania. We define the ‘hotspot’ of each sample as the coordinate of the county with the highest
number of new cases per 100K, and visualize the density of the 500 hotspots using kernel density estimation.

Table 1: Quantitative performance on fully-synthetic and semi-synthetic data
Fully synthetic (m = 1) COVID-19 TV-MNIST

d = 1 d = 3 d = 5 m = 67 m = 784
Methods Mean ↓ Wasserstein ↓ Mean ↓ Wasserstein ↓ Mean ↓ Wasserstein ↓ FID* ↓ FID* ↓
MSM+NN 0.001 (0.002) 0.601 (0.603) 0.070 (0.159) 0.689 (0.718) 0.198 (0.563) 0.600 (0.737) 1.085 (1.665) 1.236 (3.956)
KDE 0.246 (0.267) 0.244 (0.268) 0.520 (1.080) 0.538 (1.080) 0.538 (1.419) 0.539 (1.419) 0.981 (2.665) 1.509 (2.557)

Plugin+KDE 0.010 (0.014) 0.034 (0.036) 0.045 (0.168) 0.132 (0.168) 0.147 (0.598) 0.182 (0.598) 0.652 (0.759) 1.370 (1.799)
G-Net 0.211 (0.258) 0.572 (0.582) 1.167 (2.173) 1.284 (2.173) 2.314 (5.263) 2.354 (5.263) 0.965 (1.856) 1.751 (6.096)
CVAE 0.250 (0.287) 0.253 (0.288) 0.517 (1.061) 0.553 (1.061) 0.539 (1.430) 0.613 (1.430) 0.641 (2.654) 2.149 (5.484)

MSCVAE (ours) 0.006 (0.006) 0.055 (0.056) 0.046 (0.150) 0.105 (0.216) 0.150 (0.633) 0.173 (0.633) 0.336 (0.712) 0.270 (1.004)

* Numbers represent the average metric across all treatment combinations and those in the parentheses represent the worst across treatment combinations.
↓ indicates the smaller the metric the better. m denotes the dimensionality of the outcome.

3 Experiments
We evaluate our method using numerical examples and demonstrate the superior performance
compared to five state-of-the-art methods. These are (1) Kernel Density Estimation (KDE) [63], (2)
Marginal structural model with a fully-connected neural network (MSM+NN) [59, 39], (3) Conditional
Variational Autoencoder (CVAE) [71], (4)Semi-parametric Plug-in method based on pseudo-population
(Plugin+KDE) [33], and (5) G-Net (G-Net) [38]. In the following, we refer to our proposed generator
as marginal structural conditional variational autoencoder (MSCVAE). See Appendix G for details of
the baseline methods and evaluation metrics. We also stabilize IPTW using quantile truncation and
standardization [78, 39] (see Appendix G.3).

Fully synthetic Data Following the classical setting in [59], we simulate three synthetic datasets
with d = 1, 3, 5 using linear models. Each dataset comprises 10, 000 trajectories, representing
recorded observations of individual subjects. These trajectories consist of 100 data tuples, encom-
passing treatment, covariate, and outcome values at specific time points. See Appendix G.4 for a
detailed description of the synthetic data generation.

Semi-synthetic Time-varying MNIST We create TV-MNIST, a semi-synthetic dataset using
MNIST images [13, 31] as the outcome (m = 784). In this dataset, images are randomly selected,
driven by the result of a latent process defined by a linear autoregressive model, which takes a
1-dimensional covariate and treatment variable as inputs and outputs a digit (between 0 and 9). Here
we set the length of history dependence, d, to 3. The full description of the dataset can be found in
Appendix G.5.

Semi-synthetic COVID-19 mask mandate data We create a semi-synthetic dataset on the effect
of COVID-19 mask mandate on the new cases in Pennsylvania, based on weekly data collected
from multiple sources [82, 17, 83, 21, 10, 23]. The treatment is the state-level mask mandate policy.
The covariates are the number of deaths, the retail and recreation mobility, the surveyed COVID-19
symptoms, and the number of administered vaccine doses, all at the state level. The outcome is
the county-level number of new COVID-19 cases (per 100K, m = 67). The outcome model is
structured to exhibit a peak, defined as the "hotspot", in one of the state’s two major cities: Pittsburgh
or Philadelphia. The likelihood of these hotspots is contingent on the covariates. We fix d = 3. The
full description of the dataset can be found in Appendix G.6.

Evaluation metrics For the fully synthetic datasets, we adopt two metrics: mean distance and
1-Wasserstein distance [19, 52], as commonly-used metrics to measure the discrepancies between
the approximated and counterfactual distributions. For the semi-synthetic datasets, straightforward

4

comparisons using means or the Wasserstein distance of the high-dimensional distributions tend
to be less insightful. As a result, we use FID* (Fréchet inception distance *), an adaptation of the
commonly-used FID [25] to evaluate the quality of the counterfactual samples. The details can be
found in Appendix G.2.

The MSCVAE not only generates more visually realistic counterfactual samples, but is also highly
competitive across several metrics compared to other baselines (Figures 3, 4a, 4b, Table 1). This
shows the superior capacity of our framework in generating samples that accurately reflect the
underlying counterfactual distributions, compared to the direct density-based method (Plugin+KDE),
G-computation-based method (G-Net), and deterministic method (MSM+NN).

0 101 102 103 104

D
en

si
ty

Observed

0 101 102 103 104

Counterfactual

Number of cases per 100K

a = (0, 0, 0)

a = (1, 1, 1)

Figure 5: Observed distribution and estimated coun-
terfactual distribution of the number of real COVID-19
cases per 100K under two mask policies. The vertical
dashed lines represent the mean of the corresponding
distributions.

Case study on real COVID-19 Mask data
We also perform a case study using real data
by looking at the aggregated COVID-19 data
sources from 2020 to 2021 spanning 49 weeks.
Due to the limitation on the sample size for state-
level observations, we only look at the county-
level data, covering 3, 219 U.S. counties. This
leads to m = 1. Due to the long-tailed dis-
tribution of the outcome variable, we apply a
base-10 logarithmic transformation during the
modeling process. Further details can be found
in Appendix G.6.

Figure 5 illustrates a comparative analysis of
the distribution of the observed and generated
outcome samples under two different scenarios:
one without a mask mandate (a = (0, 0, 0)) and the other with a full mask mandate (a = (1, 1, 1)).
In the left panel, we observe that the distributions under both policies appear remarkably similar,
suggesting that the mask mandate has a limited impact on controlling the spread of the virus. In
the right panel, we present counterfactual distributions estimated using our method, revealing a
noticeable disparity between the mask mandate and no mask mandate scenarios. The mean of the
distribution for the mask mandate is significantly lower than that of the no-mask mandate. These
findings indicate that implementing a mask mandate consistently for three consecutive weeks can
effectively reduce the number of future new cases. It aligns with the understanding supported by
health experts’ suggestions and various studies [73, 1, 24, 50, 77] regarding the effectiveness of
wearing masks. Finally, it is important to note that the implementation of full mask mandates exhibits
a significantly higher variance compared to the absence of a mask mandate. This implies that the
impact of a mask mandate varies across different data points, specifically counties in our study.

4 Conclusions
We have introduced a powerful conditional generative framework tailored to generate samples
that mirror counterfactual distributions in scenarios where treatments vary over time. Our model
approximates the true counterfactual distribution by minimizing the KL-divergence between the
true distribution and a proxy conditional distribution, approximated by generated samples. We
have showcased our framework’s superior performance against state-of-the-art methods in both
fully-synthetic and real experiments.

Our proposed framework has great potential in generating intricate high-dimensional counterfactual
outcomes. For example, our model can be enhanced by adopting cutting-edge generative models
and their learning algorithms, such as diffusion models, and by incorporating efficient featurization
of time-varying covariates [30, 44]. Additionally, our generative approach can be easily adapted to
scenarios with continuous treatments, where the conditional generator enables extrapolation between
unseen treatments under continuity assumptions.

References
[1] Dhaval Adjodah, Karthik Dinakar, Matteo Chinazzi, Samuel P Fraiberger, Alex Pentland,

Samantha Bates, Kyle Staller, Alessandro Vespignani, and Deepak L Bhatt. Association between
covid-19 outcomes and mask mandates, adherence, and attitudes. PLoS One, 16(6):e0252315,
2021.

5

[2] Ahmed M Alaa and Mihaela Van Der Schaar. Bayesian inference of individualized treatment
effects using multi-task gaussian processes. Advances in neural information processing systems,
30, 2017.

[3] Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan
Li, and Lawrence Carin. Counterfactual representation learning with balancing weights. In
International Conference on Artificial Intelligence and Statistics, pages 1972–1980. PMLR,
2021.

[4] Vahid Balazadeh Meresht, Vasilis Syrgkanis, and Rahul G Krishnan. Partial identification of
treatment effects with implicit generative models. Advances in Neural Information Processing
Systems, 35:22816–22829, 2022.

[5] Jeroen Berrevoets, Alicia Curth, Ioana Bica, Eoin McKinney, and Mihaela van der Schaar.
Disentangled counterfactual recurrent networks for treatment effect inference over time. arXiv
preprint arXiv:2112.03811, 2021.

[6] Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz, Bernt Schiele, and Christoph-
Nikolas Straehle. Conditional flow variational autoencoders for structured sequence prediction.
arXiv preprint arXiv:1908.09008, 2019.

[7] Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. Estimating counter-
factual treatment outcomes over time through adversarially balanced representations. arXiv
preprint arXiv:2002.04083, 2020.

[8] Peter J Bickel and Jaimyoung Kwon. Inference for semiparametric models: some questions and
an answer. Statistica Sinica, pages 863–886, 2001.

[9] Matteo Bonvini, Edward Kennedy, Valerie Ventura, and Larry Wasserman. Causal inference in
the time of covid-19. arXiv preprint arXiv:2103.04472, 2021.

[10] U.S. Census Bureau. State population totals: 2020-2022. https://www.census.gov/data/
tables/time-series/demo/popest/2020s-state-total.html, 2022. Accessed: 2022-
09-15.

[11] Yehu Chen, Annamaria Prati, Jacob Montgomery, and Roman Garnett. A multi-task gaussian
process model for inferring time-varying treatment effects in panel data. In International
Conference on Artificial Intelligence and Statistics, pages 4068–4088. PMLR, 2023.

[12] Victor Chernozhukov, Iván Fernández-Val, and Blaise Melly. Inference on counterfactual
distributions. Econometrica, 81(6):2205–2268, 2013.

[13] Li Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[14] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[15] John DiNardo, Nicole M. Fortin, and Thomas Lemieux. Labor market institutions and the
distribution of wages, 1973-1992: A semiparametric approach. Econometrica, 64(5):1001–1044,
1996.

[16] Garrett Fitzmaurice, Marie Davidian, Geert Verbeke, and Geert Molenberghs. Longitudinal
data analysis. CRC press, 2008.

[17] Centers for Disease Control. Us state and territorial public mask mandates from april 10, 2020
through august 15, 2021 by county by day. Policy Surveillance. September, 10, 2021.

[18] Dennis Frauen, Tobias Hatt, Valentyn Melnychuk, and Stefan Feuerriegel. Estimating average
causal effects from patient trajectories. In Proceedings of the AAAI Conference on Artificial
Intelligence, number 6, pages 7586–7594, 2023.

[19] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A Poggio.
Learning with a wasserstein loss. Advances in neural information processing systems, 28, 2015.

6

https://www.census.gov/data/tables/time-series/demo/popest/2020s-state-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2020s-state-total.html

[20] Keisuke Fujii, Koh Takeuchi, Atsushi Kuribayashi, Naoya Takeishi, Yoshinobu Kawahara, and
Kazuya Takeda. Estimating counterfactual treatment outcomes over time in complex multi-agent
scenarios. arXiv preprint arXiv:2206.01900, 2022.

[21] Google. Community mobility reports. https://www.google.com/covid19/mobility/,
2022. Accessed: 2022-09-15.

[22] Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, Isabelle Guyon, David Lopez-Paz, and
Michèle Sebag. Causal generative neural networks. arXiv preprint arXiv:1711.08936, 2017.

[23] CMU DELPHI Group. Covid-19 symptom surveys through facebook. https://delphi.
cmu.edu/blog/2020/08/26/covid-19-symptom-surveys-through-facebook/, 2022.
Accessed: 2022-09-15.

[24] Gery P Guy Jr, Florence C Lee, Gregory Sunshine, Russell McCord, Mara Howard-Williams,
Lyudmyla Kompaniyets, Christopher Dunphy, Maxim Gakh, Regen Weber, Erin Sauber-Schatz,
et al. Association of state-issued mask mandates and allowing on-premises restaurant dining
with county-level covid-19 case and death growth rates—united states, march 1–december 31,
2020. Morbidity and Mortality Weekly Report, 70(10):350, 2021.

[25] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[26] Keisuke Hirano, Guido W Imbens, and Geert Ridder. Efficient estimation of average treatment
effects using the estimated propensity score. Econometrica, 71(4):1161–1189, 2003.

[27] Daniel Jiwoong Im, Kyunghyun Cho, and Narges Razavian. Causal effect variational autoen-
coder with uniform treatment. arXiv preprint arXiv:2111.08656, 2021.

[28] Kosuke Imai and David A Van Dyk. Causal inference with general treatment regimes: General-
izing the propensity score. Journal of the American Statistical Association, 99(467):854–866,
2004.

[29] Guido W Imbens. Nonparametric estimation of average treatment effects under exogeneity: A
review. Review of Economics and statistics, 86(1):4–29, 2004.

[30] Yamac Alican Isik, Connor Davis, Paidamoyo Chapfuwa, and Ricardo Henao. Flexible trigger-
ing kernels for hawkes process modeling. arXiv preprint arXiv:2202.01869, 2022.

[31] Andrew Jesson, Sören Mindermann, Yarin Gal, and Uri Shalit. Quantifying ignorance in
individual-level causal-effect estimates under hidden confounding. In International Conference
on Machine Learning, pages 4829–4838. PMLR, 2021.

[32] E H Kennedy, S Balakrishnan, and L A Wasserman. Semiparametric counterfactual density
estimation. Biometrika, page asad017, 03 2023.

[33] Kwangho Kim, Jisu Kim, and Edward H Kennedy. Causal effects based on distributional
distances. arXiv preprint arXiv:1806.02935, 2018.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[35] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[36] Samantha Kleinberg and George Hripcsak. A review of causal inference for biomedical
informatics. Journal of biomedical informatics, 44(6):1102–1112, 2011.

[37] Milan Kuzmanovic, Tobias Hatt, and Stefan Feuerriegel. Deconfounding temporal autoencoder:
estimating treatment effects over time using noisy proxies. In Machine Learning for Health,
pages 143–155. PMLR, 2021.

7

https://www.google.com/covid19/mobility/
https://delphi.cmu.edu/blog/2020/08/26/covid-19-symptom-surveys-through-facebook/
https://delphi.cmu.edu/blog/2020/08/26/covid-19-symptom-surveys-through-facebook/

[38] Rui Li, Stephanie Hu, Mingyu Lu, Yuria Utsumi, Prithwish Chakraborty, Daby M Sow, Piyush
Madan, Jun Li, Mohamed Ghalwash, Zach Shahn, et al. G-net: a recurrent network approach to
g-computation for counterfactual prediction under a dynamic treatment regime. In Machine
Learning for Health, pages 282–299. PMLR, 2021.

[39] Bryan Lim, Ahmed Alaa, and Mihaela van der Schaar. Forecasting treatment responses over time
using recurrent marginal structural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[40] Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative
model based on conditional variational autoencoder for de novo molecular design. Journal of
cheminformatics, 10(1):1–9, 2018.

[41] Qiao Liu, Zhongren Chen, and Wing Hung Wong. Causalegm: a general causal inference
framework by encoding generative modeling. arXiv preprint arXiv:2212.05925, 2022.

[42] Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling.
Causal effect inference with deep latent-variable models. Advances in neural information
processing systems, 30, 2017.

[43] Helena C Maltezou, Androula Pavli, and Athanasios Tsakris. Post-covid syndrome: an insight
on its pathogenesis. Vaccines, 9(5):497, 2021.

[44] Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
counterfactual outcomes. In International Conference on Machine Learning, pages 15293–
15329. PMLR, 2022.

[45] Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Normalizing flows for interven-
tional density estimation. In International Conference on Machine Learning, pages 24361–
24397. PMLR, 2023.

[46] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014. cite
arxiv:1411.1784.

[47] Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. A generative model
for zero shot learning using conditional variational autoencoders. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 2188–2196, 2018.

[48] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[49] Jersey Neyman. Sur les applications de la théorie des probabilités aux experiences agricoles:
Essai des principes. Roczniki Nauk Rolniczych, 10(1):1–51, 1923.

[50] My Nguyen. Mask mandates and covid-19 related symptoms in the us. ClinicoEconomics and
Outcomes Research, pages 757–766, 2021.

[51] Artidoro Pagnoni, Kevin Liu, and Shangyan Li. Conditional variational autoencoder for neural
machine translation. arXiv preprint arXiv:1812.04405, 2018.

[52] Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review
of statistics and its application, 6:405–431, 2019.

[53] Judea Pearl. Causal inference in statistics: An overview. 2009.

[54] Hadrien Reynaud, Athanasios Vlontzos, Mischa Dombrowski, Ciarán Gilligan Lee, Arian
Beqiri, Paul Leeson, and Bernhard Kainz. D’artagnan: Counterfactual video generation. In
Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th Interna-
tional Conference, Singapore, September 18–22, 2022, Proceedings, Part VIII, pages 599–609.
Springer, 2022.

[55] James Robins. A new approach to causal inference in mortality studies with a sustained exposure
period—application to control of the healthy worker survivor effect. Mathematical modelling,
7(9-12):1393–1512, 1986.

8

[56] James Robins and Miguel Hernan. Estimation of the causal effects of time-varying exposures.
Chapman & Hall/CRC Handbooks of Modern Statistical Methods, pages 553–599, 2008.

[57] James M Robins. Correcting for non-compliance in randomized trials using structural nested
mean models. Communications in Statistics-Theory and methods, 23(8):2379–2412, 1994.

[58] James M Robins. Association, causation, and marginal structural models. Synthese,
121(1/2):151–179, 1999.

[59] James M Robins, Sander Greenland, and Fu-Chang Hu. Estimation of the causal effect of a
time-varying exposure on the marginal mean of a repeated binary outcome. Journal of the
American Statistical Association, 94(447):687–700, 1999.

[60] James M Robins, Miguel Angel Hernan, and Babette Brumback. Marginal structural models
and causal inference in epidemiology. Epidemiology, pages 550–560, 2000.

[61] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients
when some regressors are not always observed. Journal of the American statistical Association,
89(427):846–866, 1994.

[62] Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

[63] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The
annals of mathematical statistics, pages 832–837, 1956.

[64] Donald B Rubin. Bayesian inference for causal effects: The role of randomization. The Annals
of statistics, pages 34–58, 1978.

[65] Shiv Kumar Saini, Sunny Dhamnani, Akil Arif Ibrahim, and Prithviraj Chavan. Multiple
treatment effect estimation using deep generative model with task embedding. In The World
Wide Web Conference, pages 1601–1611, 2019.

[66] Axel Sauer and Andreas Geiger. Counterfactual generative networks. arXiv preprint
arXiv:2101.06046, 2021.

[67] Peter Schulam and Suchi Saria. Reliable decision support using counterfactual models. Advances
in neural information processing systems, 30, 2017.

[68] David W Scott and James R Thompson. Probability density estimation in higher dimensions.
In Computer Science and Statistics: Proceedings of the fifteenth symposium on the interface,
volume 528, pages 173–179. North-Holland, Amsterdam, 1983.

[69] Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, and Mihaela van der Schaar.
Continuous-time modeling of counterfactual outcomes using neural controlled differential
equations. arXiv preprint arXiv:2206.08311, 2022.

[70] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei,
editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015.
PMLR.

[71] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. Advances in neural information processing systems, 28,
2015.

[72] The New York Times. Coronavirus (covid-19) data in the united states. https://github.
com/nytimes/covid-19-data, 2021. Accessed: 2022-09-15.

[73] Miriam E Van Dyke, Tia M Rogers, Eric Pevzner, Catherine L Satterwhite, Hina B Shah,
Wyatt J Beckman, Farah Ahmed, D Charles Hunt, and John Rule. Trends in county-level
covid-19 incidence in counties with and without a mask mandate—kansas, june 1–august 23,
2020. Morbidity and Mortality Weekly Report, 69(47):1777, 2020.

9

https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data

[74] Arnaud Van Looveren, Janis Klaise, Giovanni Vacanti, and Oliver Cobb. Conditional generative
models for counterfactual explanations. arXiv preprint arXiv:2101.10123, 2021.

[75] Toon Vanderschueren, Alicia Curth, Wouter Verbeke, and Mihaela van der Schaar. Accounting
for informative sampling when learning to forecast treatment outcomes over time. arXiv preprint
arXiv:2306.04255, 2023.

[76] Lan Wang, Yu Zhou, Rui Song, and Ben Sherwood. Quantile-optimal treatment regimes.
Journal of the American Statistical Association, 113(523):1243–1254, 2018.

[77] Yuxin Wang, Zicheng Deng, and Donglu Shi. How effective is a mask in preventing covid-19
infection? Medical devices & sensors, 4(1):e10163, 2021.

[78] Yongling Xiao, Michal Abrahamowicz, and Erica EM Moodie. Accuracy of conventional and
marginal structural cox model estimators: a simulation study. The international journal of
biostatistics, 6(2), 2010.

[79] Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
treatment effects using generative adversarial nets. In International conference on learning
representations, 2018.

[80] Weijia Zhang, Thuc Duy Le, Lin Liu, Zhi-Hua Zhou, and Jiuyong Li. Mining heterogeneous
causal effects for personalized cancer treatment. Bioinformatics, 33(15):2372–2378, 2017.

[81] YiFan Zhang, Hanlin Zhang, Zachary Chase Lipton, Li Erran Li, and Eric Xing. Exploring
transformer backbones for heterogeneous treatment effect estimation. In NeurIPS ML Safety
Workshop, 2022.

[82] Shixiang Zhu, Alexander Bukharin, Liyan Xie, Mauricio Santillana, Shihao Yang, and Yao
Xie. High-resolution spatio-temporal model for county-level covid-19 activity in the U.S. ACM
Trans. Manage. Inf. Syst., 12(4), sep 2021.

[83] Shixiang Zhu, Alexander Bukharin, Liyan Xie, Khurram Yamin, Shihao Yang, Pinar Keskinocak,
and Yao Xie. Early detection of COVID-19 hotspots using spatio-temporal data. IEEE Journal
of Selected Topics in Signal Processing, 16(2):250–260, 2022.

10

A Related work

Our work has connections to causal inference in time series, counterfactual density estimation, and
generative models. To our best knowledge, our work is the first to intersect the three aforementioned
areas. Below we review each of these areas independently.

Causal inference with time-varying treatments. Causal inference has historically been related to
longitudinal data. Classic approaches to analyzing time-varying treatment effects include the g-
computation formula, structural nested models, and marginal structural models [64, 55, 57, 61, 60, 16,
38]. These seminal works are typically based on parametric models with limited flexibility. Recent
advancements in machine learning have significantly accelerated progress in this area using flexible
statistical models [67, 11] and deep neural networks [39, 7, 5, 38, 69, 44, 18, 75] to capture the
complex temporal dependency of the outcome on treatment and covariate history. These approaches,
however, focus on predicting the mean counterfactual outcome instead of the distribution. The
performance of these methods also heavily relies on the specific structures (e.g., LSTMs) without
more flexible architectures.

Counterfactual distribution estimation. Recently, several approaches have emerged to estimate the en-
tire counterfactual distribution rather than the means, including estimating quantiles of the cumulative
distributional functions (CDFs) [12, 76], re-weighted kernel estimations [15], and semiparametric
methods [32]. In particular, [32] highlights the extra information afforded by estimating the entire
counterfactual distribution and using the distance between counterfactual densities as a measure of
causal effects. [45] uses normalizing flow to estimate the interventional density. However, these
methods are designed to work under static settings with no time-varying treatments [2], and are
explicit density estimation methods that may be difficult to scale to high-dimensional outcomes.
[38] proposes a deep framework based on G-computation which can be used to simulate outcome
trajectories on which one can estimate the counterfactual distribution. However, this framework
approximates the distribution via empirical estimation of the sample variance, which may be unable
to capture the complex variability of the (potentially high-dimensional) distributions. Our work,
on the other hand, approximates the counterfactual distribution with a generative model without
explicitly estimating its density. This will enable a wider range of application scenarios including
continuous treatments and can accommodate more intricate data structures in the high-dimensional
outcome settings.

Counterfactual generative model. Generative models, including a variety of deep network architec-
tures such as generative adversarial networks (GAN) and autoencoders, have been recently developed
to perform counterfactual prediction [22, 42, 79, 65, 66, 74, 27, 37, 4, 20, 41, 54, 81]. However, many
of these approaches primarily focus on using representation learning to improve treatment effect
estimation rather than obtaining counterfactual samples or approximating counterfactual distributions.
For example, [79, 65] adopt deep generative models to improve the estimation of individual treatment
effects (ITEs) under static settings. Some of these approaches focus on exploring causal relationships
between components of an image [66, 74, 54]. Furthermore, there has been limited exploration of
applying generative models to time series settings in the existing literature. A few attempts, including
[42, 37], train autoencoders to estimate treatment effect using longitudinal data. Nevertheless, these
methods are not intended for drawing counterfactual samples. In sum, to the best of our knowledge,
our work is the first to use generative models to approximate counterfactual distribution from data
with time-varying treatments, a novel setting not addressed by prior works.

B Connection to counterfactual density estimation

Plug-in density estimation Plug-in approaches have been commonly used to estimate the coun-
terfactual density in the static setting[8, 33, 32] and can be extended to our time-varying setting via
direct application of Lemma 1. However, this practice could be problematic when the sample size
is large as it requires averaging the entire observed dataset for each evaluation of y. Instead, we
circumvent this computational challenge by approximating the counterfactual density using a proxy
conditional distribution fθ(·|a) which is represented by a generative model, gθ(z, a).

Doubly-robust (semi) parametric density estimators Doubly-robust density estimators have
proven successful in directly estimating the counterfactual density in the static setting [32, 45]. Our
framework differs from these methods in three aspects:

11

1. To our best knowledge, there is a scarcity of unified theory for doubly-robust density approxi-
mation of potential outcomes in longitudinal settings. One may wish to extend our framework
to a doubly robust setting, and a common approach is to incorporate an estimator including
G-computation [56, 38] into the loss function. When Y is potentially high-dimensional, however,
correct estimation of the outcome model and the covariate density model in G-computation be-
come challenging. Therefore, we opt for the IPTW-based approach in proposition 1 as estimating
the propensity model is less challenging thanks to the 1-dimensional, binary values of At.

2. The direct density estimation approaches in [32, 45] use a separate density model to directly
approximate fθ(·|a) for each a, whereas our approach uses a generator, gθ(z, a) to approximate
the proxy conditional distribution fθ(·|a) under all a. This approach requires training only a
single model and has the potential to generalize to continuous treatments.

3. The framework in [45], when extended to the time-varying scenario using IPTW, requires
integrating the log-likelihood of the density model over both the observed samples and the
outcome space Y (see (6)). In practice, this will require performing a Monte Carlo sampling of Y
for each gradient step to optimize (6), which can be prohibitive when Y is high-dimensional. Our
proposed loss function in Proposition 1, on the other hand, only requires computing the weighted
log-likelihood over observed samples which is easy to implement. Therefore, our Proposition 1
can be viewed as a novel reformulation of (6) that enhances the scalability of model training for
high-dimensional outcomes.

E
y∼fa

[− log fθ(y)] ≈
∫
y∈Y

log fθ(y)
∑

(y,a,x)∈D

wϕ(a, x)f(y, a, x)dY. (6)

C Assumptions

𝐴!𝐴!"#

𝑋!

𝑌!

𝑋!"#𝑋!"$%#

𝐴!"$%# …

…

Figure 6: The causal directed acyclic graph (DAG)
of the time-varying treatment.

The standard assumptions needed for identifying
the treatment effects are [16, 39, 67]:

1. Consistency: If At = at for a given sub-
ject, then the counterfactual outcome for
treatment, at, is the same as the observed
(factual) outcome: Y (at) = Y .

2. Positivity: If P{At−1 = at−1, Xt = xt} ≠
0, then P{At = at|At−1 = at−1, Xt =
xt} > 0 for all at [28].

3. Sequential strong ignorability: Y (at) ⊥⊥
At|At−1 = at−1, Xt = xt, for all at and t.

Assumption 2 means that, for each timestep,
each treatment has a non-zero probability of being assigned. Assumption 3 (also called conditional
exchangeability) means that there are no unmeasured confounders, that is, all of the covariates
affecting both the treatment assignment and the outcomes are present in the the observational dataset.
Note that while assumption 3 is standard across all methods for estimating treatment effects, it is not
testable in practice [53, 60].

D Proof of Lemma 1

Given a probability distribution for (Y,A,X) and a causal directed acyclic graph (DAG) shown in
Figure 6, we can factor f(Y,A,X) as

f(Y,A,X) = f
(
Y |A,X

) t∏
τ=t−d

f
(
Xτ |Aτ−1, Xτ−1

) t∏
τ=t−d

f
(
Aτ |Aτ−1, Xτ

)
. (7)

12

Using the definition of g-formula [58], we have

fa (y) =

∫
f
(
y|a,X

)
·

t∏
τ=t−d

f
(
Xτ |aτ−1, Xτ−1

)
dX

=

∫
f
(
y|a,X

)
·
∏t

τ=t−d f
(
aτ |aτ−1, Xτ

)∏t
τ=t−d f

(
aτ |aτ−1, Xτ

) · t∏
τ=t−d

f
(
Xτ |aτ−1, Xτ−1

)
dX

(i)
=

∫
1∏t

τ=t−d f
(
aτ |aτ−1, Xτ

)f (
y, a,X

)
dX

=

∫
1{A = a}∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)f (
y,A,X

)
dAdX,

where the equation (i) holds due to (7).

E Proof of Proposition 1

Note that the unstabilized weight is defined as w(A,X) = 1/
∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)
. Using

Lemma 1, we have

E
y∼fa

log fθ(y|a) =
∫

log fθ(y|a)fa (y) dy

=

∫
log fθ(y|a)

∫
1{A = a}∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)f (
y,A,X

)
dAdXdy

=

∫
log fθ(y|a)

∫
w(A,X)1{A = a}f

(
y,A,X

)
dAdXdy

=

∫
log fθ(y|a)

∫
w(a,X)f

(
y, a,X

)
dXdy

=

∫ ∫
log fθ(y|a)w(a,X)f

(
y, a,X

)
dXdy

=

∫ ∫
log fθ(y|a)w(a,X)f

(
y, a|X

)
f
(
X
)
dydX

(i)
=

∫
w(a,X)f

(
X
)

E
(y,a)

[log fθ(y|a)
∣∣X]dX

= E
X

[
E

(y,a)

[
w(a,X) log fθ(y|a)

∣∣X]]
(ii)
= E

(y,a,x)∼f
w(a, x) log fθ(y|a)

≈
∑

(y,a,x)∈D

w(a, x) log fθ(y|a),

where (i) follows from Fubini’s theorem and (ii) follows from the tower property of expectation.

F Derivation and implementation details of variational learning

Variational approximation and learning To compute the weighted log-likelihood as expressed
in (4) and learn the proposed generative model, we can leverage various state-of-the-art generative
learning algorithms, such as conditional normalizing flow [6] and guided diffusion models [14]. In
this paper, we adopt the conditional variational autoencoder (CVAE) [71], a commonly-used learning
algorithm for generative models, approximate the logarithm of the proxy conditional probability
using its evidence lower bound (ELBO):

log fθ(y|a) ≥ −DKL (q(z|y, a)||pθ(z|a)) + Eq(z|y,a) [log pθ(y|z, a)] , (8)

13

where q is a variational approximation of the posterior distribution over the random noise given
observed outcome y and its treatment a. The first term on the right-hand side is the Kullback–Leibler
(KL) divergence of the approximate posterior q(·|y, a) from the exact posterior pθ(·|a). The second
term is the log-likelihood of the latent data-generating process.

Derivation of the proxy conditional distribution Now we present the derivation of the log
conditional probability density function (PDF) in (8). To begin with, it can be written as:

log fθ(y|a) = log

∫
pθ(y, z|a)dz,

where z is a latent random variable. This integral has no closed form and can be usually estimated by
Monte Carlo integration with importance sampling, i.e.,∫

pθ(y, z|a)dz = E
z∼q(·|y,a)

[
pθ(y, z|a)
q(z|y, a)

]
.

Here q(z|y, a) is the proposed variational distribution, where we can draw sample z from this
distribution given y and a. Therefore, by Jensen’s inequality, we can find the evidence lower bound
(ELBO) of the conditional PDF:

log fθ(y|a) = log E
z∼q(·|y,a)

[
pθ(y, z|a)
q(z|y, a)

]
≥ E

z∼q(·|y,a)

[
log

pθ(y, z|a)
q(z|y, a)

]
.

Using Bayes rule, the ELBO can be equivalently expressed as:

E
z∼q(·|y,a)

[
log

pθ(y, z|a)
q(z|y, a)

]
= E

z∼q(·|y,a)

[
log

pθ(y|z, a)pθ(z|a)
q(z|y, a)

]
= E

z∼q(·|y,a)

[
log

pθ(z|a)
q(z|y, a)

]
+ E

z∼q(·|y,a)
[log pθ(y|z, a)]

= −DKL(q(z|y, a)||pθ(z|a)) + E
z∼q(·|y,a)

[log pθ(y|z, a)] .

Implementation details For the KL-divergence term in the ELBO (8), both q(z|y, a) and pθ(z|a)
are often modeled as Gaussian distributions, which allows us to compute the KL divergence of Gaus-
sians with a closed-form expression. In practice, we introduce two additional generators, including
the encoder net gencode(ϵ, y, a) and the prior net gprior(ϵ, a), respectively, to represent q(z|y, a) and
pθ(z|a) as transformations of another random variable ϵ ∼ N (0, I) using reparameterization trick
[70]. A common choice is a simple factorized Gaussian encoder. For example, the approximate
posterior q(z|y, a) can be represented as:

q(z|y, a) = N (z;µ, diag(Σ)),

or

q(z|y, a) =
r∏

j=1

q(zj |y, a) =
r∏

j=1

N (zj ;µj , σ
2
j).

The Gaussian parameters µ = (µj)j=1,...,r and diag(Σ) = (σ2
j)j=1,...,r can be obtained using

reparameterization trick via an encoder network ϕ:

(µ, log diag(Σ)) = ϕ(y, a),

z = µ+ σ ⊙ ϵ,

where ϵ ∼ N (0, I) is another random variable and ⊙ is the element-wise product. Because both
q(z|yi, ai−1) and pθ(z|ai−1) are modeled as Gaussian distributions, the KL divergence can be
computed using a closed-form expression.

The log-likelihood of the second term can be implemented as the reconstruction loss and calculated
using generated samples. Maximizing the negative log-likelihood pθ(y|z, a) is equivalent to mini-
mizing the cross entropy between the distribution of an observed outcome y and the reconstructed
outcome ỹ generated by the generative model g given z and the history a.

We emphasize that our model is not tied to any specific type of generative models and learning
algorithms, and we use the variational learning framework for illustrative purposes.

14

Algorithm 1 Learning algorithm for the conditional generator θ

Input: Training set D data tuples: D = {(y(i)t , a
(i)
t , x

(i)
t)}t=d,...,T, i=1,...,N where T is the time

horizon and I is the total number of individuals; the number of the learning epoches E.
Initialization: model parameters θ and fitted ϕ̂ using D.
while e < E do

for each sampled batch Dk with size n do
1. Draw samples ϵ ∼ N (0, I) from noise distribution;
2. Compute the ELBO of log fθ(y|a) for (y, a, x) ∈ Dk given ϵ and θ according to (8);
3. Re-weight the ELBO for (y, a, x) ∈ Dk using wϕ̂(a, x) according to (5);
4. Update θ using stochastic gradient descent by maximizing (4).

end for
end while
return θ

G Additional experiment details

G.1 Baselines

Here we present an additional review of each baseline method in the paper as well as implementation
details.

Marginal structural model with a fully-connected neural network (MSM+NN) We include the
classic MSM+NN proposed in [61, 55]. This classical framework assumes that the counterfactual mean
of the outcome variable can be represented as a linear function of the treatments. We use this model
while replacing the linear model with a 3-layer fully-connected neural network, gmsm. This serves as
a deterministic baseline for our generative framework. We learn the MSM+NN using stochastic gradient
descent with a weighted loss function:∑

(y,a,x)∈D

wϕ(a, x)(y − gmsm(a))
2.

To establish a fair comparison, we train the MSM+NN using an identical training size to that of the
MSCVAE model. We train the MSM+NN for 1, 000 epochs with a learning rate of 0.01. However, it’s
important to note that in this particular setup, our capacity is limited to estimating the mean instead
of the entire distribution. For computing the Wasserstein distance in the full-synthetic experiments,
we treat the MSCVAE samples as coming from a degenerate distribution at its predicted value.

Conditional variational autoencoder (CVAE) To examine the impact of Inverse Probability of
Treatment Weighting (IPTW) on training generative models, we include a vanilla conditional varia-
tional autoencoder (CVAE) with an architecture identical to that of the MSCVAE, but excluding IPTW
weighting. The CVAE is a widely-used type of conditional generative model that has found applications
in various tasks, including image generation [47, 71], neural machine translation [51], and molecular
design [40]. To train the CVAE, we follow the same procedure as MSCVAE, with the exception that we
replace the loss function with the unweighted version of (4).∑

(y,a,x)∈D

log fθ(y|a),

where fθ(·) is the conditional distribution represented by the CVAE.

Kernel density estimator (KDE) We use a Gaussian kernel density estimator [63] to estimate the
empirical conditional distribution from the observed data. This is achieved by running KDE on the
observed outcomes with the same treatments, i.e.,

fa ≈ gkde(y|A = a),

where gkde(·) is the KDE estimator. We learn the KDE with bandwidth set to 0.5, 1, 1.5, and 2,
respectively, and report the metrics with bandwidth = 0.5 as the optimal results.

15

Semi-parametric Plug-in method based on pseudo-population (Plugin+KDE) We include a
baseline using Lemma 1 as a plugin estimator by following the semi-parametric KDE approach in
[45]. Specifically, we rewrite Lemma 1 as:

fa (y) ≈
∑

(y,a,x)∈D

1{A = a}wϕ(a, x)f
(
y,A, x

)
.

To estimate the right-hand side of the equation, we performed KDE on y|A = a where each sample
tuple (y, a, x) is weighted by its IPTW, wϕ(a, x), for each A = a separately. The bandwidth is set to
be the same as in KDE.

G-Net (G-Net) We implement G-net proposed in [38] based on G-computation. For our exper-
iment setting, at each time step t ∈ [T], we designed the conditional covariates block, the history
representation block, and the final conditional outcome block as a 3-layer fully connected neural
network respectively. The types of blocks are interconnected to form sequential net structures across
different time steps, followed by a conditional outcome block at the end, which has a 2-layer structure.
This makes the G-net model include a total of (2× d) + 1 blocks. The loss function is the sum of
the mean squared error: ∑

(x,y)∈D

(x̂− x)2 + (ŷ − y)2,

where x̂ and x are the predicted and groundtruth covariate history, while ŷ and y are the predicted
and groundtruth outcome. Following the original literature, we impose a Gaussian parametric
assumption over the underlying counterfactual distribution, and introduce prediction variability by
adding Gaussian noise whose variance is empirically estimated from the residuals between the
predicted and groundtruth outcomes.

G.2 Experiment metrics

To quantify the quality of the approximated counterfactual distributions, we used the following
metrics:

Mean This is the difference between the empirical mean of the evaluated samples.

1-Wasserstein Distance We used the earth mover’s distance, which is defined as:

l1(u, v) = inf
π∈Γ(u,v)

∫
Ω×Ω

|x− y|dπ(x, y),

where Γ(u, v) is the joint probability distributions for the groundtruth and learned counterfactual
distributions, and Ω is the space of each distribution.

FID* Both semi-synthetic datasets have high-dimensional outcomes, making comparisons using
the mean or Wasserstein distance of the distributions less interpretable. A common approach in
the generative model community is FID (Fréchet inception distance). In summary, FID uses a
pre-trained neural network (frequently the inception v3 model) to obtain a feature vector for each
sample, generated for groundtruth. The feature vector is the activation of the last pooling layer
prior to the output layer of the pre-trained network. The feature vectors are then summarized as
multivariate Gaussians by computing their mean and covariances. The distance between the generated
or groundtruth image distribution is then computed by calculating the 2-Wasserstein distance between
two sets of Gaussians. A lower FID score represents a more realistic distribution for the generated
images.

Since FID is not specifically designed for our TV-MNIST and semi-synthetic COVID-19 datasets, we
propose to use FID* by following a similar idea of FID. For the semi-synthetic COVID-19 dataset, we
first compute a PCA projection matrix of size 67×2 using samples from the counterfactual distribution
under each treatment. The projection serves as the purpose of the pre-trained network in the original
FID because it captures key information, including spatial correlation, of the 67-dimensional outcome
variables. For each treatment combination, we then project the 67-dimensional samples into the

16

2-dimensional representational space using the PCA projection matrix and compute the 1-Wasserstein
distance of the projection between the generated and counterfactual samples. A lower FID* score
represents the generated samples have a similar distribution compared to the counterfactual ones.

For the TV-MNIST dataset, we use a 3-layer fully-connected neural network pre-trained to classify
MNIST images. This network serves as the purpose of the pre-trained network in the original FID
because it represents the semantic information (the digit label) of the 784-dimensional outcome
variables. For each treatment combination, we then project the 784-dimensional samples into a
1-dimensional label space using the pre-trained MNIST classifier and compute the 1-Wasserstein
distance of the projection between the generated and counterfactual samples. A lower FID* score
represents the generated samples have a similar semantic distribution (in terms of the digit labels)
compared to the counterfactual ones.

G.3 Experiment set-up

Experiment set-up To learn the model parameter θ, we use stochastic gradient descent to maximize
the weighted log-likelihood (4). We adopt an Adam optimizer [34] with a learning rate of 10−3 and
a batch size of 256. To ensure learning stability, we follow a commonly-used practice [78, 39] that
involves truncating the subject-specific IPTW weights at the 0.01-th and 99.99-th percentiles and
normalizing them by their mean. Further stabilization can be achieved using balancing weights [3].
All experiments are performed on Jupyter Notebook with 16GB RAM and a 2.6 GHz 6-Core Intel
Core i7 CPU.

The counterfactual generator gθ, the IPTW wϕ, and the encoder network gencode share the same two-
layer fully-connected network architecture with ReLU activation. The layer width is set to 1, 000, and
the length of the latent variable z is set to r which is determined by the specific synthetic experiment
setting: r = 5 for d = 1 and d = 3, r = 10 for d = 5 and all the semi-synthetic and real data.
For gencode, the fully-connected networks map the d+ 1 dimensional input vector (consisting of a d-
dimensional treatment and 1-dimensional response) to the r-dimensional latent representation. For gθ,
the fully-connected networks map the r + d dimensional input vector (consisting of a d-dimensional
treatment and r-random noise) to the 1-dimensional generated counterfactual outcome. For wϕ,
the fully-connected networks map the 2d-dimensional input vector (consisting of a d-dimensional
treatment and d-dimensional covariate) to the 1-dimensional conditional probability. We use a
Sigmoid output layer for wϕ to ensure the output falls within [0, 1]. We set the batch size to 256
and the number of training epochs to 200 for training all the models in both synthetic and real data
settings. The learning rate was set to 10−3 with a linear step-wise learning rate scheduler (Pytorch
learning rate scheduler function StepLR) to ensure stable convergence of the learning process.

G.4 Fully Synthetic data

In this section, we provide an overview of the procedures for generating synthetic data. Our goal is to
evaluate the performance of the proposed MSCVAE method and compare it to baseline approaches in
the context of time-varying treatments. We follow the classic setting in [59] and simulate time series
data with time-varying treatments and covariates. The presence of the time-varying confounders
serves as an appropriate testbed for comparing MSM-based models to the baselines. To be specific,
we generate three synthetic datasets with varying levels of historical dependence denoted as d. Each
dataset consists of 10,000 trajectories, which represent recorded observations of individual subjects.
These trajectories comprise 100 data tuples, encompassing treatment, covariate, and outcome values
at specific time points. The causal relationships between these variables are visually depicted in
Figure 6. For each time trajectory of length T , the datasets are generated based on the following

17

Table 2: Coefficients of the linear model in synthetic data generation
α β γ

d = 1 (−3, 2,−1) (−0.5, 0.5, 0.5,−0.5) (0, 1,−1)
d = 3 (−1, 12, 6, 3, 2, 1, 0.5) (−0.5, 0.5,−0.5, 0.5, 0.5,−0.5, 0.5,−0.5) (−1, 1.5, 1, 0.5,−1.5,−1,−0.5)
d = 5 (−1, 12, 6, 3, 1, 0.5, 2, 1, 0.5, 0.1, 0.05) (−0.5, 0.5,−0.5, 0.5,−0.5, 0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5) (−1, 1.5, 1, 0.5, 0.1, 0.05,−1.5,−1,−0.5,−0.1,−0.05)

Algorithm 2 Algorithm for obtaining a counterfactual sample
Input: Generated trajectory of a single subject: {(Yt, Xt, At)}t=1,··· ,T .
Initialization: Given the treatment history AT = a.
for τ = T − d+ 1 : T do

1. Generate the covariate xτ based on Aτ−1 and Xτ−1 according to (10).
2. Update the covariate Xτ ← xτ .

end for
Generate Y (a) based on AT and XT according to (12).
return Y (a)

equations:

X0 ∼ uniform(0, 1), (9)

Xt = γ0 +

t−1∑
τ=t−d

γt−τAτ +

t−1∑
τ=t−d

γd+t−τXτ , (10)

P{At = 1} = σ(β0 +

t−1∑
τ=t−d

βt−τAτ +

t∑
τ=t−d

βd+t−τXτ), (11)

Yt = α0 +

t−1∑
τ=t−d

αt−τAt +

t−1∑
τ=t−d

αd+t−τXτ + ϵ, (12)

where ϵ ∼ N (0, 0.05) is the observation noise and σ(·) is a Sigmoid function. The specific coef-
ficients are set according to the values in Table 2 to ensure the generation of valid synthetic data
distributions with diversity:

Adjusting β0 will change the balance of the treatment combinations: when keeping the remaining β
coefficients, treatment variables a, and covariates x unchanged, a smaller value of β0 reduces the
probability of treatment exposure, i.e., P(At = 1). Consequently, this lower probability of treatment
exposure results in a decrease in the occurrence of treatment combinations with exposures, leading to
an imbalanced ratio among different treatment combinations. In Figure. 3, we set β0 = −0.5 which
results in an approximated balanced number of samples per treatment combination. In Appendix H,
we include a figure by setting β0 = −2, as a visualization of imbalanced treatment combinations.

To ensure the validity of our synthetic data generation process, we verify that the three assumptions
outlined in Appendix C are satisfied. Assumptions 1 and 3 are naturally met because the ground truth
model guarantees that the counterfactual outcome equals the observed outcome and that there are no
unmeasured confounders. As for assumption 2, since the conditional probability of treatment is the
Sigmoid function applied to a finite linear combination of historical treatments and covariates, it will
always be positive.

Once the synthetic data is generated, we obtain counterfactual distributions to assess the performance
of our proposed method. Specifically, we use the synthetic data to obtain samples from the coun-
terfactual outcome distribution, Y (a), for any given treatment combination a. This is achieved by
iteratively fixing the treatment sequence in the time series and generating the covariates and response
variables according to equations (10) and (12) for each of the 10, 000 trajectories. The detailed
procedure for obtaining a single counterfactual outcome sample is summarized in Algorithm 2.

G.5 Semi-synthetic time-varying MNIST data

We provide a benchmark based on the MNIST dataset. Specifically, the outcomes are MNIST images
(m = 784). First, we compute a one-dimensional summary, the ϕ score [31], using each MNIST

18

Table 3: Real data description
Name Description Min Max Mean Median Std
Y county-wise incremental new cases count (log10) 0 1.15× 10−1 2× 10−3 1× 10−3 2.7× 10−3

A county-wise mask mandate 0 1× 100 5.35× 10−1 1× 100 4.99× 10−1

X(0) county-wise incremental death cases count (log10) 0 3.12× 10−3 3× 10−4 0 9× 10−5

X(1) county-wise average retail and recreation −5.45× 101 2.23× 101 −4.27× 100 −3.33× 100 6.16× 100

X(2) county-wise symptom value 0 3.23× 101 9.3× 10−1 8.1× 10−1 5.1× 10−1

image. The ϕ value of an image depends on its average light intensity and its digit label. We refer the
readers to [31] for the details on computing ϕ. Here we set the length of history dependence, d, to 3.
We then define a linear model of 1-dimensional latent process to G.4 and simulate 1, 000 trajectories
of the (X,A, Y) tuples of 100 time points according to the following equations:

X0 ∼ uniform(0, 1), (13)

Xt = γ0 +

t−1∑
τ=t−2

γt−τAτ +

t−1∑
τ=t−2

γt−τ+3Xτ , (14)

P{At = 1} = σ(β0 +

t−1∑
τ=t−2

βt−τAτ +

t∑
τ=t−2

βt−τ+3Xτ), (15)

ϕt = 0.5

⌈
10σ(α0 +

t−1∑
τ=t−3

αt−τAt +

t−1∑
τ=t−3

αt−τ+3Xτ)− 0.6

⌉
, (16)

Yt ∼ {MNIST(i) : i = argmin |ϕi − ϕt|}, (17)

where σ(·) is a Sigmoid function, ⌈·⌉ is the ceiling function, and MNIST(i) represents the MNIST
image indexed by i. The coefficients are set according to Table 2 to ensure the generation of diverse
data distributions. We generate the counterfactual samples according to Algorithm 2 by replacing
the corresponding propensity and outcome models with the formulations above. The generated
observations and counterfactual samples under the same treatment combinations may correspond
to MNIST images of different labels. This way we can qualitatively assess the performance of an
algorithm by comparing the labels of the MNIST images it generates against the counterfactual
samples, as in as in Figure. 4a.

G.6 COVID-19 data

Since both the semi-synthetic Pennsylvania COVID-19 mask data and the real nationwide COVID-19
mask datasets are based on the same set of aggregated sources. We first introduce the data sources
and then include the details of each dataset respectively.

The real data used in this study comprises COVID-19-related demographic statistics collected from
3, 219 counties across 56 states/affiliated regions of the United States. The data covers a time period
from 2020 to 2022. We obtained the data from reputable sources including the U.S. Census Bureau
[10], the Center for Disease Control and Prevention [17], Google [21], the CMU DELPHI group’s
Facebook survey [23], and the New York Times [72]. To capture a relevant time window for analysis,
we set the history dependence length d to 3, as most COVID-19 symptoms tend to subside within this
timeframe [43].

In our analysis, the treatment variable A is the state-wise mask mandate indicator variable. A value of
0 indicates no mask mandate, while a value of 1 indicates the enforcement of a mask mandate. Notably,
we observe a pattern in the data where mask mandates are typically implemented simultaneously
across all counties within a state. This synchronization justifies the use of the state-wise mask mandate
count as the treatment variable. As for the covariates X , we choose the county-wise incremental death
count, state-wise the average retail and recreation metric (representing changes in mobility levels
compared to a baseline, which can be negative), the state-wise symptom value, and the state-wise
vaccine dosage.

19

Pennsylvania COVID-19 mask mandate data For the semi-synthetic dataset, we specifically look
at the data within the state of Pennsylvania because of its long records spanning 106 weeks from 2020
to 2021. We set the four state-level covariates (per 100K people): the number of deaths, the average
retail and recreation mobility, the surveyed COVID-19 symptoms, and the number of administered
COVID-19 vaccine doses. We set the county-level incremental death count to the state level by
computing a state average. We set the state-level mask mandate policy as the treatment variable,
and the county-level number of new COVID-19 cases (per 100K) as the outcome variable, resulting
in m = 67 since there are 67 counties in the state of Pennsylvania. We simulate 2, 000 trajectories
of the (X,A, Y) tuples of 300 time points (each point corresponding to a week) according to the
following formula:

X0 ∼ Real-World(·), (18)

Xt = P̂(Xt|At, Xt), (19)

P{At = 1} = σ(β0 +

t∑
τ=t−2

βt−τAτ +

t∑
τ=t−2

βt−τ+3Xτ), (20)

Y base
t = −0.2At−2 − 0.15At−1 − 0.1At + 0.45 + ϵ, (21)

P(Lt = 1) = Bernoulli(
4∏

j=1

Xτ (j)), (22)

Yt(s) = Y base
t +

{
log(N (s, µ = [40.009,−75.133]T ,Σ = I)); if Lt = 1,

log(N (s, µ = [40.470,−79.980]T ,Σ = I)); otherwise.
, (23)

where P̂(·) is learned with a 2-layer fully-connected neural network using the real data, ϵ ∼
N (0, 0.001) is the observation noise, s is the 2-dimensional coordinate of a entry (county) in Yt, σ(·)
is a Sigmoid function. All other coefficients are set according to Table 2 to ensure the generation
of diverse data distributions. We generate the counterfactual samples according to Algorithm 2
by replacing the corresponding outcome models with the formulations above. In summary, the
hotspot (mode of the Yt vector) is either Philadelphia (Lt = 1) or Pittsburgh (Lt = 0), where the
probability depends on the covariates Xt. The values in the entries of Yt follow the log-likelihood
of a 2-dimensional isotropic Gaussian centered at the hotspot. As a result, the counterfactual and
observed distributions will be bimodally distributed with different hotspot probabilities. We can then
visually assess the performance of the models by comparing the distribution of the hotspot from the
generated outcome samples to those of the counterfactual samples, as in Figure. 4b.

Nationwide COVID-19 Mask data We perform a case study using real data by looking at the
aggregated COVID-19 data sources from 2020 to 2021 spanning 49 weeks. Due to the limitation on
the sample size for state-level observations, we only look at the county-level data, covering 3, 219
U.S. counties. This leads to m = 1. We exclude 89 counties with zero incremental new cases count.
These counties either do not have a significant amount of infectious cases or have small populations,
leading to 3, 130 counties across 56 states/affiliated regions of the United States. For variables that
only have state-level records, we map them to the county level for simplicity.

We analyze the same set of variables as the semi-synthetic COVID-19 dataset but exclude the vaccine
dosage covariate because of missing data in some states. To align the outcome variable with the
covariates and treatment, we set it to measure one week after these variables. Due to the long-tailed
distribution of the outcome variable, we apply a base-10 logarithmic transformation during the
modeling process. Further details regarding the variables can be found in Table 3. We use the
same model architecture described in Appendix G.3 to train the IPTW network and the MSCVAE. We
generate counterfactual outcomes for treatment combinations a = (0, 0, 0) and a = (1, 1, 1). Since
other treatment combinations occur rarely (less than 5% of observations), we exclude them from the
final results.

20

a =(0)

a =(1)
fa

Y (a)

True

MSM

G-Net

Plugin+KDE

CVAE

MSCVAE

Figure 7: The estimated and true counterfactual distributions for d = 1 on synthetic datasets.

Figure 8: The estimated and true counterfactual distributions for d = 5 on synthetic datasets.

H Additional synthetic results

In the main paper, we presented a visual comparison of the learned counterfactual distributions and
the true counterfactual distribution for various scenarios (d = 1, 3), as shown in Figure 3. Here,
in Figure 8 we show the case for d = 5. We also provide a similar comparison while setting
β0 = −2 (as opposed to β0 = −0.5,) where the treatment combinations are imbalancedly distributed
(Figure 9). Consistent with the findings in Figure 3, our results in Figures 8 and 9 demonstrate
the superior performance of the MSCVAE model (represented by the orange shading) in accurately
capturing the shape of the true counterfactual distributions (represented by the black line) across all
scenarios. This observation further validates the quantitative comparisons presented in Table 1, where
MSCVAE achieves the smallest mean and Wasserstein distance among all baseline methods. These
results highlight that our algorithm attains competitive performance even when certain treatment
combinations occur less frequently compared to others. This situation is common in real-life scenarios
where certain treatment combinations are favored due to factors such as policy inertia.

21

a =(0)

a =(1)
fa

Y (a)

MSM

Plugin+IPTW

True

CVAE

MSCVAE

(a) d = 1

a =(0,0,0) a =(0,0,1) a =(0,1,0) a =(0,1,1)

a =(1,0,0) a =(1,0,1) a =(1,1,0) a =(1,1,1)
fa

Y (a)

(b) d = 3

a =(0,0,0,0,0) a =(0,0,0,0,1) a =(0,0,0,1,0) a =(0,0,0,1,1) a =(0,0,1,0,0) a =(0,0,1,0,1) a =(0,0,1,1,0) a =(0,0,1,1,1)

a =(0,1,0,0,0) a =(0,1,0,0,1) a =(0,1,0,1,0) a =(0,1,0,1,1) a =(0,1,1,0,0) a =(0,1,1,0,1) a =(0,1,1,1,0) a =(0,1,1,1,1)

a =(1,0,0,0,0) a =(1,0,0,0,1) a =(1,0,0,1,0) a =(1,0,0,1,1) a =(1,0,1,0,0) a =(1,0,1,0,1) a =(1,0,1,1,0) a =(1,0,1,1,1)

a =(1,1,0,0,0) a =(1,1,0,0,1) a =(1,1,0,1,0) a =(1,1,0,1,1) a =(1,1,1,0,0) a =(1,1,1,0,1) a =(1,1,1,1,0) a =(1,1,1,1,1)

fa

Y (a)

(c) d = 5

Figure 9: The estimated and true counterfactual distributions across various lengths of history
dependence (d = 1, 3, 5) on synthetic datasets with imbalanced proportions of different treatment
(β0 = −2). Each sub-panel provides a comparison for a specific treatment combination a. We
exclude KDE and G-Net for illustrative purposes.

22

	Introduction
	Methodology
	Problem setup
	Counterfactual generative framework for time-varying treatments

	Experiments
	Conclusions
	Related work
	Connection to counterfactual density estimation
	Assumptions
	Proof of Lemma 1
	Proof of Proposition 1
	Derivation and implementation details of variational learning
	Additional experiment details
	Baselines
	Experiment metrics
	Experiment set-up
	Fully Synthetic data
	Semi-synthetic time-varying MNIST data
	COVID-19 data

	Additional synthetic results

