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Abstract

Data valuation techniques quantify each training example’s contribution to model
performance, providing a principled basis for data cleaning, acquisition, and se-
lection. Existing valuation methods remain inadequate: model-based techniques
depend on a single fitted model and inherit its biases, while algorithm-based ap-
proaches like Data Shapley scale poorly due to their need to train multiple models.
Recent work has proposed model-agnostic alternatives based on Wasserstein dis-
tance between the training set and a clean reference set, but exact computation is
expensive and approximations often misrank examples. We introduce KAIROS, a
model-agnostic framework that values examples by their contribution to the Maxi-
mum Mean Discrepancy (MMD) between the training set and a clean reference
distribution. Unlike Wasserstein methods, MMD admits a closed-form solution that
requires no approximations and is scalable to large datasets. Additionally, KAIROS
enables efficient online valuation: adding a new batch of m examples requires
only O(mN) computation to update all scores, compared to O(N2) in prior work
where N is the training set size. Empirical evaluations on noise, mislabeling, and
poisoning benchmarks show that KAIROS consistently outperforms state-of-the-art
baselines in both accuracy and runtime. On ImageNet, KAIROS achieves up to
15 × speedup over the fastest baseline while maintaining superior data valuation
quality. Our results demonstrate that model-agnostic methods can match or exceed
model-based approaches in performance while scaling to large datasets.

1 Introduction
The performance and behavior of AI systems significantly depend on the training data. The quality of
data affects accuracy [63], robustness [41] and safety [9]. Data valuation methods, which quantify
each training sample’s contribution to model performance, are therefore essential for developing
high-performance and reliable models. Existing valuation methods broadly fall into two categories.
Model-based techniques, such as influence functions [33] and TracIn [47], evaluate the effect of
individual data points on a single trained model, so their scores depend on the specific training
run and hyperparameter settings [31]. Algorithm-based methods, e.g., Data Shapley [22], estimate
each point’s marginal contribution by averaging over many retrains, which becomes computationally
infeasible for modern large-scale datasets [22, 27]. Neither category provides valuations that are both
consistent and tractable on billion-example datasets.

Commercial and legal pressures amplify the need for model-agnostic data valuation methods. For
large models, training datasets come from two primary sources: web-crawled data and purchased
high-quality datasets. Web-crawled data is noisy, containing duplicates [38] and potential poison-
ing [25], making it essential to identify and filter harmful examples before training. High-quality
licensed datasets, such as those from The Times [53] and Shutterstock [57], are expensive, requiring
careful assessment of their value. Since training frontier models takes months and costs millions
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Figure 1: Comparison of Wasserstein- and MMD-based influence methods. (a) Leave-one-out (LOO)
ranks versus dual potentials for unregularised optimal transport. (b) LOO ranks versus Sinkhorn dual
potentials (LAVA). (c) LOO ranks versus MMD directional derivatives (KAIROS), which lie almost
perfectly on the diagonal. Among the top-100 points, LAVA overlaps with true LOO rankings by 60%
while KAIROS achieves 99% overlap. (d) Online runtime: KAIROS scales linearly with number of
batches, whereas LAVA grows quadratically.

of dollars [11], companies typically train only once. This means data valuation must occur before
training begins, ruling out model-based approaches. From the legal perspective, the EU AI Act Article
10 [1, 18] requires training data to be "relevant, sufficiently representative, and to the best extent
possible, free of errors," with mandated assessment of data availability, quantity, and suitability. Criti-
cally, these requirements apply to the data itself, not to any specific model, making model-agnostic
valuation essential for regulatory compliance. This need has motivated model-agnostic techniques
such as LAVA [30] that value data before model training.

In this work, we introduce KAIROS, a scalable framework for model-agnostic data valuation. Each
training example receives a distributional influence score: the change it induces in statistical diver-
gence between the empirical distribution P and a trusted reference Q when that example is removed.
To avoid prohibitive leave-one-out retraining costs, we define this score as the directional derivative of
the divergence with respect to infinitesimal up-weighting. For popular divergences like Wasserstein-1,
computing this derivative exactly is infeasible. Existing methods approximate it using Kantorovich
dual potentials or its entropically-regularised Sinkhorn variant, as in LAVA [30]. We show these
approximations produce rankings that drift from the true LOO ordering, over-valuing some points
and under-valuing others (Figures 1a and 1b).

KAIROS instead uses Maximum Mean Discrepancy (MMD) as the divergence metric. We derive a
closed-form directional derivative for MMD that matches LOO rankings (Figure 1c) and naturally
incorporates label information. Our main contributions include:

1. We provide a closed-form influence function for MMD with O(1/N2) error from true leave-one-out
valuations.

2. Computing influence scores requires no model training or iterative optimization, taking only
O(mN) time and O(N) memory for batch size m. This enables efficient valuation for web-scale
data, especially in the online setting (Figure 1d).

3. We establish that KAIROS satisfies symmetry and density-separation axioms, ensuring fair rankings
for points that contribute equally and clear separation of low- and high-quality data.

4. The framework extends to conditional MMD kernels, allowing KAIROS to incorporate label
information for supervised tasks.

5. Extensive experiments on label-noise, feature-noise, and back-door benchmarks demonstrate that
KAIROS (i) more accurately detects corruptions, (ii) preserves accuracy when pruning low-value
points and sharply degrades it when removing high-value points, and (iii) runs up to 50× faster
than prior methods LAVA and KNNSHAPLEY. Code is available at Github.

2 Related Work
Data valuation methods broadly fall into three categories: model-based, algorithm-based, and model-
agnostic approaches. Model-based methods include influence functions [33, 24, 8], trajectory-based
approaches [47, 4, 68], and post-hoc kernel approximations like TRAK [46] and DAVINZ [71]. These
methods produce model-specific valuations that may vary across different models trained on the same
data. Algorithm-based methods, particularly Data Shapley [22], define value in terms of marginal
contributions to specific learning algorithms, with various approximations developed to avoid the
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prohibitive cost of training 2N models [28, 27, 54, 21, 68, 35, 67]. For bagging models, Data-OOB
and 2D-OOB [36, 61] provide efficient alternatives using out-of-bag estimation. Algorithm-agnostic
approaches like LAVA [30] quantify contributions based on dataset distance but suffer from poor
performance on label error detection [29], computational complexity of O(n2), indeterministic
approximations, and memory issues, which SAVA [32] partially addresses through batching strategies
for Wasserstein computation. A detailed literature review is provided in Appendix A.

3 Data Valuation via Distributional Influence
We cast data valuation in the framework of distributional sensitivity analysis. As in standard settings,
we are given a training set Dtrain = {(xi, yi)}ntrain

i=1 drawn i.i.d. from a noisy distribution Q, and
a validation set Dval = {(xi, yi)}nval

i=1 from a clean target distribution P . For a candidate point
(x, y), we ask: how much does it contribute to the distance between P and Q? Concretely, we
quantify the value as the change in distributional distance when the empirical training distribution is
infinitesimally perturbed toward the Dirac mass at (x, y). Since this influence depends only on P , Q,
and a distributional distance d(P,Q), it defines an algorithm-agnostic valuation score.

The remainder of this section formalizes this idea (§3.1), derives a closed-form score using MMD
(§3.2), extends it to labels using a conditional extension of MMD (§3.3), and presents an efficient
algorithm for its computation (§3.4).

3.1 Distributional Distances
In the absence of a learning algorithm, the distributional distance between P and Q serves as
a surrogate for the train–validation risk gap. Several distance measures such as Total Variation,
Wasserstein distance [65, 66], and MMD [23] have been shown to upper bound the absolute difference
between training and validation losses [5, 42, 51, 12]. We therefore value a training point by (the
negative of) its contribution to the distance measure [30]. Specifically, we define this contribution by
the influence function [37] of the distributional distance.
Definition 1 (Distributional influence). Let d : M×M→R be Gateaux-differentiable on the space
M of probability measures. The influence of a point x is

IFd(x;P,Q) = −
d
(
P, (1− ε)Q+ εδx

)
− d(P,Q)

ε

∣∣∣
ε→0+

, (1)

where δx denotes the Dirac measure at x.

For finite samples, the influence function approximates the leave-one-out valuation with an error of
O(1/n2

train) [64, Chapter 20, p. 291].

Choosing a distance. A distance d suitable for data valuation must (i) admit a tractable influence
formula and (ii) upper bound the train–validation loss gap. f -divergences form an important family of
distance measures, which include popular metrics such as Kullback–Leibler (KL) divergence [14, 2].
However, they require density-ratio estimation (unstable in high dimensions [60]) and are not
well-defined whenever the support of P extends beyond that of Q. Integral Probability Metrics
(IPMs) [44, 58] avoid these pitfalls by not requiring density ratios in their definition or computation.
Given two distributions P and Q, the IPM is defined as d(P,Q) = supf∈F

∣∣EP [f ]− EQ[f ]
∣∣, for a

suitable function class F , where f is called the critic function that aims to distinguish between P and
Q. IPMs encompass various distance measures including Wasserstein-1 [65], MMD [23], and Total
Variation Distance [44].

IPM Influence decomposition. Substituting the IPM into the influence definition (Eq. (1)) gives

IFIPM(x;P,Q) = −
supf∈F

[
EP [f ]− E(1−ε)Q+εδx [f ]

]
− supf∈F

[
EP [f ]− EQ[f ]

]
ε

∣∣∣
ε→0+

(2)

=
EQ[f

⋆
ε − f⋆]− EP [f

⋆
ε − f⋆]

ε

∣∣∣
ε→0+︸ ︷︷ ︸

(i) critic-shift term

+
(
f⋆(x)− EQ[f

⋆]
)︸ ︷︷ ︸

(ii) point-gap term

. (3)

Let f⋆ and f⋆
ε denote the optimal critics before and after up-weighting a point x by an infinitesimal

mass ε. The critic-shift term in the IPM influence function depends on x and is generally intractable.
If the difference (f⋆

ε − f⋆) decays as O(εα) for some α > 1, the critic-shift term vanishes and
Equation (3) collapses to the simpler point-gap term. However, this decay need not hold for all
IPMs; in particular, it does not hold for Wasserstein-1 [39, p. 39-40]. In the Wasserstein-1 case, f∗
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corresponds to a Kantorovich potential, which is non-unique [66, 59, 16]. Discarding the critic-shift
term therefore yields influence values that are non-deterministic.

Current model-agnostic data-valuation methods like LAVA [30] rely on this simplification, retaining
only the point-gap term for the Wasserstein-1 metric. This introduces two significant issues. (i)
Since the dual critic is non-unique, the resulting influence values can vary arbitrarily, violating
determinism. (ii) To enhance scalability, LAVA replaces the exact Wasserstein-1 objective with
its Sinkhorn-regularized counterpart; however, this introduces a bias of order O

(
d ν log(1/ν)

)
,

where d is the data dimensionality and ν is the regularization strength [20]. Correcting this bias is
computationally expensive, and even as ν → 0, the neglected critic-shift term remains unresolved,
causing the resulting influence scores to deviate substantially from the true leave-one-out rankings,
the stated objective of the method (Figure 1b).

3.2 Closed-form Influence via MMD

We address these challenges by using MMD [23], an IPM with a closed-form expression for the
distance. We derive a closed-form influence function that can be computed directly without first
computing the distance itself. This section focuses on the marginal distribution of features. We
incorporate label information in subsection 3.3. Given two distributions P and Q, the MMD distance
between them is defined as:

MMD(P,Q) = sup
∥f∥H≤1

(
Ex∼P [f(x)]− Ex∼Q[f(x)]

)
= ∥µP − µQ∥H, (4)

where µP = Ex∼P [ϕ(x)] and µQ = Ex∼Q[ϕ(x)] are the kernel mean embeddings in the RKHS
H, and the kernel k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H [23]. While computing ∥µP − µQ∥H directly can be
challenging, the squared distance admits a closed-form expression via the kernel trick:

MMD2(P,Q) = Ex,x′∼P [k(x, x
′)] + Ex,x′∼Q[k(x, x

′)]− 2Ex∼P, x′∼Q[k(x, x
′)]. (5)

This enables a closed-form computation of the influence with respect to MMD via the chain rule.
Proposition 1. The influence function for MMD as the distance metric is, up to additive and positive
multiplicative constants, given by

IFMMD(x;P,Q) = Ex′∼P [k(x
′, x)]− Ex′∼Q[k(x

′, x)]. (6)

The full derivation is provided in Appendix B.1. Note that for downstream tasks such as feature
error detection, backdoor attack identification, or ranking the most and least valuable points, only
the relative rankings are important [35, 67]; hence, the additive and multiplicative constants in the
influence function do not affect the outcome. Henceforth, we use IF(·) to denote the rescaled version
of IFMMD(·;P,Q), omitting P and Q for brevity. For a training point xi ∈ Dtrain, the unbiased
finite-sample estimate of its MMD-based influence is given by:

ÎF(xi) =
1

nval

nval∑
j=1

k(xval
j , xi)−

1

ntrain − 1

ntrain∑
j=1,j ̸=i

k(xtrain
j , xi), (7)

where the first term approximates Ex′∼P [k(x
′, xi)] using validation data and the second term approx-

imates Ex′∼Q[k(x
′, xi)] using the training data excluding xi.

Properties. Beyond closely approximating leave-one-out scores [64], our MMD-based influence
enjoys two nice properties: (i) Symmetry ensures that points making the same marginal contribution
to the M̂MD (the MMD estimate) receive identical influence, yielding fair rankings; (ii) Density-
separation guarantees the existence of a global threshold that cleanly partitions regions where the
validation distribution dominates (P > Q) from those where the training distribution dominates
(Q > P ), enabling high-accuracy in detecting noisy samples and backdoor attacks.

Proposition 2 (Symmetry). Let Dtrain and Dval be finite samples from distributions Q and P ,
respectively. If for all subsets S ⊆ Dtrain \ {xi, xj},

M̂MD(Dval, S ∪ {xi})− M̂MD(Dval, S) = M̂MD(Dval, S ∪ {xj})− M̂MD(Dval, S)

then ÎF(xi) = ÎF(xj).

See Appendix B.2 for proof.
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Proposition 3 (Density Separation). Let P and Q be two probability distributions on X ⊆ Rn.
For any ϵ > 0 and r > 0, there exists a Gaussian isotropic kernel k such that for IF(x) =
Ex′∼P

[
k(x, x′)

]
− Ex′∼Q

[
k(x, x′)

]
, the following holds{

IF(x) > 0, if P (x′)−Q(x′) ≥ ϵ ∀x′ ∈ B(x, r),

IF(x) < 0, if P (x′)−Q(x′) ≤ −ϵ ∀x′ ∈ B(x, r),

where B(x, r) = {x′ : ∥x′ − x∥ < r}.

In Appendix B.3 we give a full proof of Proposition 3, and we also present a real-world example
illustrating its practical effect, where the MMD-based influence scores for clean versus corrupted
points are perfectly split by a near-zero threshold, whereas the Wasserstein-based scores exhibit
substantial overlap and admit no such clean cutoff.

3.3 Capturing Feature–Label Correlations with MCMD

Marginal MMD over P (X) and Q(X) effectively detects covariate shift but overlooks label-specific
corruptions—such as flipped labels, back-door triggers, or concept drift—that alter P (Y |X) without
changing P (X). Directly operating on the joint distribution (X,Y ) using a product kernel often
reduces sensitivity to label noise: in high-dimensional feature spaces, the geometry of X dominates
the kernel distances, causing small perturbations in labels Y to barely shift the joint embedding,
and diminishing the test’s power as dimensionality grows [49, 50]. We therefore retain marginal
MMD for detecting feature-level anomalies, and augment it with the expected value of Maximum
Conditional Mean Discrepancy (MCMD) [52, 45], a conditional extension of MMD denoted as
E-MCMD. This hybrid criterion enables KAIROS to identify both covariate and label anomalies
within a unified, kernel-based theoretical framework.
Definition 2 (Maximum Conditional Mean Discrepancy (MCMD) [52, 45]). The MCMD between
conditional distributions P (Y |X) and Q(Y |X) at point x is:

MCMDP,Q(x) := ∥µP
Y |X(x)− µQ

Y |X(x)∥HY ,

where µP
Y |X(x) =

∫
ϕ(y) dP (y|x) and µQ

Y |X(x) =
∫
ϕ(y) dQ(y|x) are known as the conditional

kernel mean embeddings.

To aggregate this measure across covariate space, we take the expectation of MCMD(·) over the
training distribution i.e. E-MCMD(P,Q) = Ex∼Q[MCMDP,Q(x)]. We derive the influence for
E-MCMD via Definition 1.
Proposition 4. The influence function for E-MCMD as the distance metric is, up to additive and
positive multiplicative constants, given by

IFE-MCMD(x, y;P,Q) = −∥µP
Y |X(x)− ϕ(y)∥HY (8)

The full derivation is provided in Appendix B.4. Henceforth, we use IFcond(x, y) to denote the
rescaled version of IFE-MCMD((x, y);P,Q), omitting P and Q for brevity. We can simplify this
expression when Y is categorical (Y ∈ {0, 1, . . . , C − 1}). For categorical labels, consider the
feature map ϕ(y) = ey ∈ RC and the kernel k(y, y′) = 1{y = y′} where ey is the y-th standard
basis vector. For this kernel and mapping function, we have µP

Y |X(x) = [P (0|x), . . . , P (C − 1|x)]T
which is simply the probability vector for each class conditioned on x. Therefore:

IFcond(x, y) = −∥µP
Y |X(x)− ey∥2 = −

√∑
y′ ̸=y

P (y′|x)2 + (P (y|x)− 1)2. (9)

For the finite sample case, P (Y |X) can be estimated by a classifier trained on Dval that returns
P̂ (y|x). The finite sample estimator for the conditional influence is:

ÎFcond(x, y) = −
√∑

y′ ̸=y

P̂ (y′|x)2 + (P̂ (y|x)− 1)2. (10)

Combined Net Distance and Influence. Finally, we integrate both marginal and conditional
discrepancies into a single “net” distance:

dnet(P,Q) = (1− λ) MMD(PX , QX) + λ E-MCMD(P,Q), (11)
where λ > 0 balances the two terms. The overall influence of (x, y) on dnet is simply

IFnet(x, y) = (1− λ) IF
(
x
)
+ λ IFcond(x, y). (12)
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Generalization Error Bound. We establish a theoretical link between the net discrepancy dnet and
downstream model performance. Under mild regularity assumptions, the expected train–validation
loss gap is bounded above by the sum of the marginal MMD and conditional E-MCMD. Conse-
quently, removing a point which decreases this distance provably tightens the out-of-distribution
error bound for any learning algorithm. The influence is a first-order approximation of the effect
of removing a point, suggesting that removing points with large influence scores could decrease
the out-of-distribution error. A concise statement follows, with the complete theorem and proof in
Appendix B.5.
Theorem 1 (Bounding transfer loss (simplified)). Let (X , dX ) and (Y, dY) be compact metric spaces
and Z = X × Y . Let L : Z → R be a continuous loss function. Then, for some constant c,

E(x,y)∼Q[L(x, y)] ≤ E(x,y)∼P [L(x, y)] + c
(
MMD(PX , QX) + Ex∼QX

[
MCMDP,Q(x)

])
.

3.4 Batch Computation and Streaming Updates

Modern ML pipelines often require continuous data valuation as new data arrives. Examples
include language models trained on fresh web crawls or recommender systems processing new
user interactions. Recomputing influence scores from scratch after each update is prohibitively
expensive, scaling as O(N2) with dataset size. We address this with a two-phase approach. The
offline initialization scans the initial training and validation sets once, computing and caching three
quantities per training point: the average training kernel similarity Ai, the average validation kernel
similarity Bi, and the label residual Ri. The online update then processes each incoming batch
efficiently. For new points, we compute their statistics from scratch. For existing points, we update
only Ai using kernel evaluations between old and new points. This approach maintains accurate
valuations in streaming settings without quadratic recomputation.

Offline Algorithm. In the standard offline setting, we assume access to the entire dataset and a
classifier trained on Dval that provides predicted probability vectors ŷtrain

i = P̂ (y|xi) for training
points. For each training point (xi, yi) ∈ Dtrain, we precompute three key quantities:

Ai =
1

ntrain − 1

ntrain∑
j=1
j ̸=i

k(xtrain
j , xi), Bi =

1

nval

nval∑
j=1

k(xval
j , xi), Ri = ∥ytrain

i − ŷtrain
i ∥2 (13)

Using these precomputed values, the feature influence is ÎF(xi) = Bi − Ai (from Equation (7))
and the conditional influence is ÎFcond(xi, yi) = Ri (from Equation (10)). Therefore, the final net
influence score is:

ÎFnet(xi, yi) = (1− λ)(Bi −Ai) + λRi (14)

The time complexity for this algorithm is O(n2
train + ntrain · nval), which simplifies to O(n2

train) since
typically ntrain > nval.

Online Algorithm. In the online setting, we process data in batches. At time t, we receive a
new batch of size m, bringing the total dataset size to nt+1 = nt + m. We update the influence
scores for both existing points and the new batch. While a naive approach of recomputing everything
from scratch would require O(n2

t+1) time, our elegant influence expression allows computation in
O(nt ·m+m2).

For existing points (xi, yi) where i ≤ nt, the terms Bi and Ri remain unchanged. The training kernel
average Ai can be efficiently updated as:

A(t+1)
i =

1

nt+1 − 1

(
(nt − 1) · A(t)

i +

m∑
j=1

k(xtrain
nt+j , xi)

)

Note that this update requires computing only m new kernel evaluations per existing point, not nt+1.
For new points (xnt+i, ynt+i) where i = 1, . . . ,m, we compute all three quantities from scratch using
Equation (13). The final influence scores are then computed as ÎFnet(xi, yi) = λ(Bi−Ai)+(1−λ)Ri

for all points. This update procedure runs in O(nt ·m) for the old data and O(m2) for the new batch
resulting in total complexity of O(nt ·m+m2). Detailed algorithm provided in Appendix C.
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Figure 2: Feature noise detection results.
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Figure 3: Label noise detection results.

4 Experiments
We implement KAIROS as a custom data valuation method in the OpenDataVal benchmark [29], a
benchmark for evaluating data valuation methods. We evaluate all methods on three key applications:
(1) detecting noisy data, mislabels, and mixture of them, (2) detecting malicious data injected by
data poisoning attacks, and (3) data pruning by removing data with the lowest values. We also test
removing data with the highest values to thoroughly examine the effectiveness of all data values,
including low and high. In addition, we test the runtime of methods with varying data sizes, in offline
and online settings. Experiments are repeated five times with different random seeds, and we report
the mean (colored regions denote the standard deviations). We include additional experiments on the
hyperparameter and kernel choice, noisy validation set, and million-scale data in Section D.

Datasets. We evaluate on four widely used datasets, including CIFAR-10 [34], STL-10 [10],
IMDB [43], and AG News [77], to cover both image and text modalities. In most experiments,
we simulate limited clean-data availability by using 10000 noisy training examples and 300 clean
validation examples, with a held-out test set of 10000 clean samples. For the smaller STL-10 dataset,
we scale down to 3700 training, 300 validation, and 1000 test examples.

Baselines and Hyper-parameters. We compare KAIROS with four state-of-the-art data valuation
methods with different mechanisms: LAVA [30], DATAOOB [36], DVRL [76], and KNNSHAP-
LEY [27]. For KAIROS, we set the Gaussian kernel bandwidth to the median of all pairwise distances
and fix the balancing factor in Equation (12) to 0.03. See details in Appendix D.

Noise and Mislabel Detection. In this experiment, we introduce noise into 20% of the data.
Following [29, 30, 73, 72], we inject feature noises by adding white noise to the images and randomly
replacing words with other words for texts, and introduce label noises by randomly changing the
labels of corrupted samples to other classes. Figures 2 and 3 present the performance of different
data valuation methods in identifying corrupted samples stemming from two distinct sources of
noise: feature perturbations and mislabels. Each curve plots the cumulative fraction of corrupted data
recovered as a function of the percentage of training data inspected.

KAIROS consistently achieves strong performance across both noise types and all datasets. In the
feature noise setting (Figure 2), it ranks noisy samples more effectively than all baselines on all
datasets, especially in the early inspection phase. In particular, on AG News, all methods except
KAIROS are close to the diagonal, meaning that they perform similarly to assigning random values
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Figure 4: Malicious data detection results.
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Figure 5: Effect of removing the least valuable (a,c) and the most valuable (b,d) data points on test
accuracy.

to all data points. In the presence of label noises (Figure 3), our method remains competitive and
outperforms most baselines, particularly on AG News and STL-10.

Overall, while some methods show competitive performance on specific datasets or noise types, such
as LAVA on feature noises and DATAOOB on label noises, they fail to generalize well across both
feature and label noise scenarios. In contrast, KAIROS archives top-1 detection accuracy in 6 (out of
8) scenarios, and stays top-2 for the remaining 2 cases, indicating its versatile performance in noise
detection.

Malicious Data Detection. We evaluate robustness under adversarially crafted poisoning attacks
following [30]. We test Badnet [25] and poison frogs [55] attacks on CIFAR-10, and clean label style
attack [48] and LISA [26] on AG News. For CIFAR-10 attacks, we inject 3% malicious data; for AG
News attacks, we inject 10% poisonous data. Model-based techniques are not applicable for LISA
fine-tuning of LLMs due to the computational expense of training hundreds of models.

Across the four scenarios in Figure 4, LAVA underperforms on scenarios (a) and (c), while DATAOOB
struggles with (b,c) and cannot handle (d). KNNSHAPLEY, DATAOOB, and DVRL show less
competitive performance than KAIROS across all cases. LAVA achieves comparable performance
with KAIROS only in detecting poisoned fine-tuning data but is significantly less effective for Badnet
and style attacks.

Point Removal. Figure 5 (a–d) shows how test accuracy changes when removing the least or most
valuable training data identified by each method. We use 20% mislabeled data. Good valuations
should cause large accuracy drops when removing high-value data and small drops (or increases)
when removing low-value data.

In both scenarios, our method yields the most desirable behavior. When pruning the least-valuable
data (Figure 5 (a, c)), on STL-10, KAIROS, DATAOOB, and KNNSHAPLEY increase the test accuracy
by a similar amount, while the values obtained from DVRL and LAVA do not help. On IMDB data,
all methods except DVRL keep the test accuracy when removing 30% of the data. For both datasets,
when discarding the most valuable data (Figure 5 (b, d)), KAIROS results in more significant accuracy
drops than all baselines. This indicates that KAIROS gives both meaningful low and high values to
the data, while most baselines only effectively identify low-valued data.
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Figure 6: Label noise detection accuracy
under varying validation set sizes.

Effect of Validation Sample Size. In practice, valida-
tion sets are often small due to expensive labeling. To
understand how many validation samples are needed to ob-
tain reliable data values, we conduct noise detection with
varying validation set sizes. In particular, to better com-
pare the convergence of our method (based on MMD) and
LAVA (based on Wasserstein), we test with 20% feature
noises on IMDB data, the scenario where LAVA performs
relatively well. To measure effectiveness, we adopt the
detection accuracy, defined by the percentage of correctly
identified corrupted data among the 20% least-valued data points. As shown in Figure 6, the variance
of KAIROS, indicated by color regions, shrinks more quickly with growing validation set size than
that of LAVA. Although LAVA benefits from an increased validation set, it requires 9K validation
samples to reach an accuracy of 0.77. In contrast, KAIROS only requires 30 samples to achieve this.
This implies that MMD is more robust and reliable compared to Wasserstein under finite samples.
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Figure 7: Offline runtime comparison.

Offline Runtime. To understand the scalability of dif-
ferent methods, we measure the runtime of methods on
CIFAR-10 data with label noise. We vary the training
set size and keep the static validation set size of 300. As
shown in Figure 7, KAIROS, LAVA, and KNNSHAPLEY
are similarly efficient, and are significantly faster than
DVRL (10x) and DATAOOB (100x). Although DVRL’s
runtime grows slowly with # training samples, as shown in
previous results, it performs poorly in most applications,
making it not practically applicable. DATAOOB’s high runtime results from training models on
various bootstraps.
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Figure 8: Online runtime comparison.

Online Runtime. To show the adaptability of KAIROS
in the online setting, we split 10000 of CIFAR-10 data into
100 batches, each containing 100 samples, and feed them
in a streaming way. We measure the accumulated time
taken to conduct data valuation after each batch update.
KAIROS adopts Algorithm 1 for value computation and
updates, while LAVA and KNNSHAPLEY have no direct
adaptation to this setting, thus have to re-calculate the
values when a new batch comes in. DATAOOB and DVRL
are omitted for this experiment as they take more than 8 hours to complete the experiment, meaning
that they are not practical to use in this setting. As shown in Figure 8, KAIROS is significantly faster
than LAVA and KNNSHAPLEY in the online setting. The speedup becomes more significant when
more batches are included. The speedup reaches 28x compared to KNNSHAPLEY, and 50x compared
to LAVA when all batches are fed.

Large Scale Experiment on ImageNet. To evaluate KAIROS at scale, we compare it to the scalable
variant of LAVA, SAVA, on ImageNet [17], which contains 1.28M training images and 1000 classes.
We extract features with a ResNet-50 encoder and run all methods on a single NVIDIA A100 (40GB
VRAM). We report the runtime and the AUC of the “% inspected data vs. % corrupted data covered”
curve (also shown in Figures 2 and 3) under both feature-noise and label-noise settings.

Method Runtime AUC
KAIROS 7m56s 0.869
SAVA 1h58m 0.817

Table 1: Feature noise detection on ImageNet.

Method Runtime AUC
KAIROS 7m52s 0.861
SAVA 1h58m 0.484

Table 2: Label noise detection on ImageNet.

Our results show that KAIROS significantly outperforms SAVA in both efficiency and effectiveness.
The efficiency gain of KAIROS comes from its closed-form solution, which enables batch-based
GPU acceleration and avoids expensive Sinkhorn computations. By contrast, SAVA (and LAVA)
require computing pairwise conditional Wasserstein distances between P (x | y) across all class pairs,
leading to 1000×999

2 computations. This accounts for over 80% of their runtime, making KAIROS
more suitable for large-scale applications.

9



Summary. Across all tasks and datasets, KAIROS consistently achieves performance gains over
state-of-the-art baselines. It effectively ranks data under both natural and adversarial data corruptions
and noises. The runtime experiments demonstrate the advantageous efficiency of KAIROS compared
to baselines, especially in the practical online and large-scale settings.

5 Conclusions, Limitations and Broader Impacts
We introduce KAIROS, a scalable data valuation framework that uses Maximum Mean Discrepancy to
compute closed-form influence functions for detecting feature noise, label corruption, and backdoors.
KAIROS achieves up to 50× speedup over existing methods with O(mN) complexity in online
settings, making it practical for web-scale deployment while maintaining faithful leave-one-out
rankings. Our approach provides theoretical guarantees through symmetry and density separation
properties and offers model-agnostic influence scores that enable transparent data quality assessment,
fairness auditing, and regulatory compliance without requiring model retraining. Current limitations
include the use of fixed kernels and a fixed balancing coefficient for all tasks. Future work should
focus on learned kernels, efficient approximate methods, and regression extensions.
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A Related Work

Model-based Data Valuation A common approach for data valuation is the leave-one-out (LOO)
score, i.e., the change in performance when a point is removed from training, but this is computa-
tionally expensive. Influence functions [33] approximate these scores using second-order derivatives,
though they remain intractable for modern deep models. Recent advances have made influence
functions scalable to large models [24, 8], and others trace test loss over the training trajectory to
attribute influence [47, 4, 68]. TRAK [46] takes a post-hoc approach, approximating the model as a
kernel machine to trace predictions back to training examples, while DAVINZ [71] uses neural tangent
kernel approximations to predict influence at initialization. Other approaches include reinforcement
learning to learn data values [76], prediction from noisy labels [13], and dynamic self-weighting
mechanisms within loss functions [70].

Algorithm-based Data Valuation Unlike model-based methods that track influence during or after
training, algorithm-based approaches define data value in terms of a specific learning algorithm and
utility function. A major line relies on Shapley values [56], which uniquely satisfy fairness axioms
such as symmetry and null-value. Data Shapley [22] defines a point’s value as its average marginal
contribution to model utility across all subsets, but exact computation requires training 2N models.
Efficient approximations [28], closed-form solutions for k-NN [27], class-wise extensions [54], and
distributional variants [21] have been proposed. Retraining multiple models can be avoided through
gradient- and hessian-based approximations [68]. However, the reliability of shapley methods is
sensitive to the utility function [69]. Other work relaxes the efficiency axiom to improve robust-
ness [35, 67]. For bagging models, Kwon et al. [36] show that out-of-bag estimates yield effective
approximations.

Algorithm-agnostic Data Valuation Algorithm-agnostic valuation methods operate without knowl-
edge of the learning algorithm. Just et al. [30] propose LAVA, which quantifies the contribution of a
point based on its contribution to the dataset distance. However, their method has several limitations:
(i) it performs poorly in identifying label errors [29]; (ii) their approximations are not always aligned
with the leave one out valuation and can be indeterministic [66] (see Figure 1b); and (iii) the method
is computationally expensive (even in approximate form, has O(n2) complexity) [15]. The distance
must be computed over the entire dataset even when valuing a single point (iv)the memory complexity
is O(n2). To address memory bottlenecks in LAVA for large datasets, Kessler et al. [32] propose
SAVA, a batching strategy for Wasserstein computation, though other challenges remain unresolved.

Dataset Valuation Another line of work focuses on valuing entire datasets rather than individual
points, typically in settings with multiple data providers where fair compensation is desired [7, 3].
These methods use distance-based metrics such as mutual information [7], MMD2 [62], MMD [74],
and volume [75] to assess utility. However, they do not extend naturally to individual valuation due
to their reliance on large datasets, inability to capture point-level interactions, and lack of influence
estimation. Unlike these methods that compute distances between entire datasets, our approach
quantifies individual datapoints’ contributions to distributional distance through influence functions.
This value is not equal to the distance between the individual point and the reference dataset.

B Proofs

B.1 Proof of Proposition 1

Proposition 1. The influence function for MMD as the distance metric is, up to additive and positive
multiplicative constants, given by

IFMMD(x;P,Q) = Ex′∼P [k(x
′, x)]− Ex′∼Q[k(x

′, x)].

Proof. We first derive the influence function for MMD2, then apply the chain rule to obtain the result
for MMD.
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IFMMD2(x;P,Q) = − d

dε
MMD2(P, (1− ε)Q+ εδx)

∣∣∣∣
ε=0

= − d

dε
∥µP − ((1− ε)µQ + εϕ(x))∥2H

∣∣∣∣
ε=0

= − d

dε

[
∥µP − µQ∥2H + 2ε⟨µP − µQ, µQ − ϕ(x)⟩+ ε2∥µQ − ϕ(x)∥2

]∣∣∣∣
ε=0

= −2⟨µP − µQ, µQ − ϕ(x)⟩
= 2 (−⟨µP , µQ⟩+ ⟨µP , ϕ(x)⟩+ ⟨µQ, µQ⟩ − ⟨µQ, ϕ(x)⟩)
= 2 (Ex′∼P [k(x

′, x)]− Ex′∼Q[k(x
′, x)])

− 2 (Ex′,x′′∼P,Q[k(x
′, x′′)] + Ex′,x′′∼Q[k(x

′, x′′)]) .

Now, applying the chain rule:

IFMMD(x;P,Q) =
IFMMD2(x;P,Q)

2MMD(P,Q)

Ignoring terms independent of x, we obtain the simplified expression:

IFMMD(x;P,Q) = Ex′∼P [k(x
′, x)]− Ex′∼Q[k(x

′, x)] (15)

B.2 Proof of Proposition 2

Proposition 2. Let Dtrain and Dval be finite samples from distributions Q and P , respectively. If for
all subsets S ⊆ Dtrain \ {xtrain

i , xtrain
j },

M̂MD(Dval, S ∪ {xtrain
i })− M̂MD(Dval, S) = M̂MD(Dval, S ∪ {xtrain

j })− M̂MD(Dval, S)

then ÎF(xtrain
i ) = ÎF(xtrain

j ).

Proof. Consider S = Dtrain \ {xtrain
i , xtrain

j }. We have,

M̂MD
(
Dval, S ∪ {xtrain

i }
)
− M̂MD

(
Dval, S

)
= M̂MD

(
Dval, S ∪ {xtrain

j }
)
− M̂MD

(
Dval, S

)
.

Adding M̂MD(Dval, S) to both sides gives

M̂MD
(
Dval, S ∪ {xtrain

i }
)
= M̂MD

(
Dval, S ∪ {xtrain

j }
)
.

Squaring both sides,

M̂MD
2(
Dval, S ∪ {xtrain

i }
)
= M̂MD

2(
Dval, S ∪ {xtrain

j }
)
.

Using the finite-sample estimator for M̂MD,

M̂MD
2
(Dval, T ) =

1

n2
val

∑
k,l

k(xval
k , xval

l ) +
1

|T |2
∑
k,l∈T

k(xtrain
k , xtrain

l )

− 2

nval |T |

nval∑
k=1

∑
l∈T

k(xval
k , xtrain

l )

where T = S ∪ {xtrain
i } or T = S ∪ {xtrain

j }. Therefore, substituting the finite-sample estimator
into,

M̂MD
2(
Dval, S ∪ {xtrain

i }
)
= M̂MD

2(
Dval, S ∪ {xtrain

j }
)
.
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After canceling common terms and using |T | = ntrain − 1,

2

nval

nval∑
m=1

k(xval
k , xtrain

i )− 2

ntrain − 1

ntrain∑
l=1,l ̸=i

k(xtrain
l , xtrain

i )

=
2

nval

nval∑
m=1

k(xval
k , xtrain

j )− 2

ntrain − 1

ntrain∑
l=1,l ̸=j

k(xtrain
l , xtrain

j )

Therefore,
ÎF(xtrain

i ) = ÎF(xtrain
j )

B.3 Proof and Example of Proposition 3

Intuition: The core idea is that a threshold can be used to distinguish points where P locally
dominates Q versus those where Q dominates P , based on their relative densities in a neighborhood
around each point. For accurate local density estimation, the kernel bandwidth σ (e.g., in a Gaussian
kernel) should be chosen sufficiently small. This result holds in the infinite sample regime where
expectations are exact. In the finite sample case, this separation may not hold strictly, as small values
of σ can induce high-variance estimates.
Proposition 3. Let P and Q be two probability distributions on X ⊆ Rn. For any ϵ > 0 and
r > 0, there exists a Gaussian isotropic kernel k such that for IF(x) = Ex′∼P

[
k(x, x′)

]
−

Ex′∼Q

[
k(x, x′)

]
, the following holds{

IF(x) > 0, if P (x′)−Q(x′) ≥ ϵ ∀x′ ∈ B(x, r),

IF(x) < 0, if P (x′)−Q(x′) ≤ −ϵ ∀x′ ∈ B(x, r),

where B(x, r) = {x′ : ∥x′ − x∥ < r}.

Proof. Let

k(x, x′) =
1

(2πσ2)n/2
exp

(
−∥x− x′∥2

2σ2

)
,

then

IF(x) =

∫
x′∈Rn

(P (x′)−Q(x′)) k(x, x′) dx′ =

∫
x′∈B(x,r)

(P−Q) k(x, x′)+

∫
x′∈B(x,r)c

(P−Q) k(x, x′).

Since P (x′)−Q(x′) ≥ ϵ for all x′ ∈ B(x, r) and |P −Q| ≤ 1 outside,

f(x) ≥ ϵ

∫
x′∈B(x,r)

k(x, x′) −
∫
x′∈B(x,r)c

k(x, x′) = ϵA− (1−A) = (ϵ+ 1)A− 1,

where
A =

∫
x′∈B(x,r)

k(x, x′) dx′

Note that,∫
B(x,r)

k(x, x′) dx′ = Pr
X∼N (0,σ2I)

(∥X∥ < r) = Pr(∥X∥2 < r2) = 1− Pr(∥X∥2 ≥ r2).

Let W = ∥X∥2 =
∑n

i=1 X
2
i , so E[W ] = nσ2 and Var(W ) = 2nσ4. By Chebyshev’s inequality, for

r2 > nσ2,

Pr(W ≥ r2) ≤ Var(W )

(r2 − E[W ])2
=

2nσ4

(r2 − nσ2)2
,

hence

A ≥ 1− 2nσ4

(r2 − nσ2)2
.
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Figure 9: Influence distribution obtained from influence based on MMD (KAIROS) and Wasserstein
(LAVA).

Choose r√
n
> σ∗ > 0 so that

1− 2nσ∗4

(r2 − nσ∗2)2
>

1

ϵ+ 1
.

Then (ϵ+ 1)A− 1 > 0, implying IF(x) > 0.

The same σ∗ gives

IF(x) ≤ −
(
(ϵ+ 1)A− 1

)
< 0

for the other case where P (x′)−Q(x′) ≤ −ϵ.

Thus, there exists a Gaussian kernel with bandwidth σ∗ that satisfies the desired separation.

Example 1 (Density Separation). We compare the influence distributions obtained from MMD and
Wasserstein, computed on the CIFAR-10 sample data, to show the density separation property. As
shown in Figure 9, MMD-based influence exhibits a near-zero optimal threshold that separates the
noisy and clean points almost perfectly. On the other hand, the Wasserstein-based influence for noisy
and clean data is entangled, and there is no threshold which cleanly separates the two.

B.4 Proof of Proposition 4

Proposition 4. The influence function for E-MCMD, up to additive and positive multiplicative
constants, given by

IFE-MCMD((x, y);P,Q) = ∥µP
Y |X(x)− ϕ(y)∥HY (16)

Proof. Consider the perturbed distribution Qε = (1− ε)Q+ εδ(x,y), with corresponding marginal
(1 − ε)QX + εδx. Since Qε(Y = y | x) = 1, the perturbed conditional embedding at point x is
given by

µQε

Y |X(x) = ϕ(y),

Therefore,

MCMDP,Qε
(x′) =

{
MCMDP,Q(x

′) if x′ ̸= x

∥µP
Y |X(x)− ϕ(y)∥HY if x′ = x

(17)

E-MCMD(P,Qε) can be written as:

EX∼(1−ε)QX+εδx [MCMDP,(1−ε)Q+εδ(x,y)
(X)]

= (1− ε) (EX∼QX
[MCMDP,Qε

(X)]) + ε (MCMDP,Qε
(x))

= (1− ε) (EX∼QX
[MCMDP,Q(X)]) + ε∥µP

Y |X(x)− ϕ(y)∥HY
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Therefore we have,

IFE-MCMD((x, y);P,Q)

=− lim
ε→0+

EX∼(1−ε)QX+εδx [MCMDP,(1−ε)Q+εδx(X)]− EX∼QX
[MCMDP,Q(X)]

ε

=− lim
ε→0+

(1− ε) (EX∼QX
[MCMDP,Q(X)]) + ε∥µP

Y |X(x)− ϕ(y)∥HY − EX∼QX
[MCMDP,Q(X)]

ε

=− lim
ε→0+

ε∥µP
Y |X(x)− ϕ(y)∥HY − εEX∼QX

[MCMDP,Q(X)]

ε

=− ∥µP
Y |X(x)− ϕ(y)∥HY + EX∼QX

[MCMDP,Q(X)]

Ignoring terms independent of x and y,

IFE-MCMD((x, y);P,Q) = −∥µP
Y |X(x)− ϕ(y)∥HY

B.5 Proof of Theorem 1

We present the full statement of Theorem 1 below, followed by a detailed proof.
Theorem 1 (Bounding transfer loss). Let (X , dX ) and (Y, dY) be compact metric spaces, and let
kX , kY be universal kernels on X ,Y with RKHS HX ,HY . Equip Z = X ×Y with the tensor-product
kernel whose RKHS is

H = HX ⊗̂HY .

Let P,Q ∈ P(Z) have marginals PX , QX ∈ P(X ) and conditionals P (· | x), Q(· | x) ∈ P(Y). Let
L : Z → R be a continuous loss function. Since H is endowed with a universal kernel, H is dense in
C(Z). Let

∥L∥∗ = inf
L′∈H

{∥∥Ey∼P (·|x)L
′(x, y)

∥∥
HX

+ sup
x∈X

∥∥ sup
y∈Y

L′(x, y)
∥∥
HY

+ ∥L− L′∥∞
}
.

Then

E(x,y)∼Q[L(x, y)] ≤ E(x,y)∼P [L(x, y)] + ∥L∥∗
(
MMDX (PX , QX) + Ex∼QX

[
MCMDP,Q(x)

])
.

Proof. Fix ε > 0. Since H is dense in C(Z), choose L′ ∈ H with ∥L− L′∥∞ ≤ ε. Then

EQ[L] = EQ[L
′] + EQ[L− L′], EP [L] = EP [L

′] + EP [L− L′],

so
EQ[L]− EP [L] =

(
EQ[L

′]− EP [L
′]
)
+
(
EQ[L− L′]− EP [L− L′]

)
.

Since P and Q are probability measures,∣∣EQ[L− L′]− EP [L− L′]
∣∣ ≤ ∥L− L′∥∞ ≤ ε.

By the law of total expectation,

EQ[L
′] = Ex∼QX

[
Ey∼Q(·|x)L

′(x, y)
]
, EP [L

′] = Ex∼PX

[
Ey∼P (·|x)L

′(x, y)
]
.

Add and subtract Ex∼QX
Ey∼P (·|x)L

′ to obtain

EQ[L
′]− EP [L

′] = A+B,

where
A = Ex∼QX

[
Ey∼Q(·|x)L

′(x, y)− Ey∼P (·|x)L
′(x, y)

]
,

B = Ex∼QX

[
Ey∼P (·|x)L

′(x, y)
]
− Ex∼PX

[
Ey∼P (·|x)L

′(x, y)
]
.

Define fL′(x) = Ey∼P (·|x)L
′(x, y) ∈ HX . Then

B = Ex∼QX
fL′(x)− Ex∼PX

fL′(x),
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so
|B| ≤ ∥fL′∥HX MMDX (PX , QX) = ∥L′∥(X )

H MMDX (PX , QX).

For each x, let L′
y(x, ·) ∈ HY . Then∣∣Ey∼Q(·|x)L

′(x, y)− Ey∼P (·|x)L
′(x, y)

∣∣ ≤ ∥L′
y(x, ·)∥HY MCMDP,Q(x),

hence
|A| ≤ Ex∼QX

[
∥L′∥(Y)

H MCMDP,Q(x)
]
= ∥L′∥(Y)

H Ex∼QX
[MCMDP,Q(x)].

Combining the bounds for A, B, and the approximation term,

EQ[L] ≤ EP [L] + ∥L′∥(X )
H MMDX (PX , QX) + ∥L′∥(Y)

H Ex∼QX
[MCMDP,Q(x)] + ε.

Taking the infimum over L′ ∈ H yields the desired result.

C Influence Computation and Update for Streaming data

Algorithm 1 provides the detailed algorithm for computing the influence in the online setting.

Algorithm 1 Online update for influence

Input: Current size nt, variables A(t),B(t),R(t) ∈ Rnt , validation size nval, batch size m, incoming batch
data (Xnew ∈ Rm×d, Y new ∈ Rm×c), balancing factor λ.

Output: Updated A(t+1),B(t+1),R(t+1),V(t+1) ∈ Rnt+1 .
1: nt+1 ← nt +m
2: compute Kold,new ∈ Rnt×m, Knew,old ∈ Rm×nt , Knew,new ∈ Rm×m // kernel sub-matrices
3: for i = 1, . . . , nt do // update kernel means for old points
4: A(t+1)

i ← 1
nt+1−1

(
(nt − 1)A(t)

i +
∑m

j=1 K
old,new
i,j

)
5: B(t+1)

i ← B(t)
i

6: R(t+1)
i ← R(t)

i

7: end for
8: Rnew

i =
∥∥ytrain

nt+i − ŷtrain
nt+i

∥∥ (i = 1, . . . ,m) // residuals for new points
9: for i = 1, . . . ,m do // update kernel means for new points

10: A(t+1)
nt+i ← 1

nt+1−1

(∑nt
j=1 K

new,old
i,j +

∑m
j′=1 K

new,new
i,j′ − 1

)
11: B(t+1)

nt+i ← 1
nval

∑nval
j=1 k

(
xval
j , xtrain

nt+i

)
12: R(t+1)

nt+i ←R
new
i

13: end for
14: for i = 1, . . . , nt+1 do
15: V(t+1)

i ← λ
(
B(t+1)

i −A(t+1)
i

)
+ (1− λ)R(t+1)

i // net influence
16: end for

D Additional Experiments and Detailed Settings

Detailed description of baselines and choice of hyper-parameters. We compare with the follow-
ing baselines: LAVA [30] is a model-agnostic method that uses the Wasserstein-1 dual potential as
an influence proxy; DATAOOB [36] trains a bootstrap ensemble and assigns each point its average
out-of-bag loss to capture its contribution; DVRL [76] learns per-sample importance weights via
reinforcement learning and uses those weights directly as data scores; and KNNSHAPLEY [27]
computes exact Shapley values on a nearest-neighbor proxy model, exploiting its closed-form solu-
tion for efficiency. To avoid the prohibitive runtime of DATAOOB without sacrificing accuracy, we
decrease its number of bootstraps from 1000 to 100. All baselines run with their default settings in
OpenDataVal [29].

Following [19, 6, 23], we adopt the "median heuristic" to set the kernel bandwidth to the median of
pair-wise distances. Given the large number of samples, we estimate the median on 10000 sampled
pairs. In practice, as shown in experiments, sampled bandwidths work well across various datasets
and scenarios. The balancing factor is determined by aligning the scale of the two components of net
influence (Equation (12)), when both feature and label noise exist.
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Comparison with Sample Reweighting Methods We compare KAIROS with MAPLE [78], a
model-based sample reweighting method. Unlike KAIROS, MAPLE does not compute data values
but learns reweighting functions for specific training objectives. While applicable to corrupted label
detection, KAIROS offers broader applicability across tasks such as detecting harmful fine-tuning data
and data poisoning attacks. MAPLE is not model-agnostic and inherits the limitations of model-based
approaches discussed in Section A.

We evaluate both methods on CIFAR-10 feature noise and label noise detection. For MAPLE, we use
target labels as group labels since no explicit group labels are available. We report the AUC of the
fraction of covered corrupted data versus the fraction of inspected data.

Table 3: AUC for CIFAR-10 feature noise and label noise detection tasks.
Method AUC Feature Noise AUC Label Noise

Data OOB 0.727 0.784
KNN Shapley 0.723 0.751
LAVA 0.837 0.529
KAIROS (Gaussian) 0.857 0.791
MAPLE 0.347 0.828

Maximum possible 0.900 0.900

MAPLE performs well on label noise detection but poorly on feature noise detection. While
reweighting methods can be effective for specific corruption types like label noise, KAIROS provides
consistent performance across diverse tasks including feature noise, label noise, adversarial attacks,
and harmful fine-tuning detection.

Selection Bias Detection We evaluate KAIROS on selection bias where subgroups are under-
represented in training data. We use the ACS Income dataset from WhyShift [? ], which predicts
income from demographic attributes. This dataset exhibits geographic bias where some states like
Puerto Rico (PR) are under-represented while others like California (CA) are over-represented. Liu
et al. [40] show that models trained predominantly on CA data fail to generalize to PR.

We simulate selection bias by creating a training set with 80% CA and 20% PR samples (1000 total)
and a balanced validation set with 50% CA and 50% PR samples (300 total). We evaluate how well
KAIROS and baselines identify points from the under-represented group (PR). Data valuation methods
should assign high influence to under-represented samples. We report the AUC of the fraction of
under-represented samples detected versus the top k fraction of data chosen.

Table 4: Selection bias detection performance on ACS Income dataset.
Method AUC

Data OOB 0.326
KNN Shapley 0.494
LAVA 0.546
KAIROS 0.855
Maximum possible (theoretical) 0.900

The results show that KAIROS considerably outperforms both model-agnostic and model-based
baselines in identifying under-represented samples. For data redundancy, KAIROS rankings remain
stable when datasets contain duplicates. We verified this by duplicating the training dataset up to 10
times and confirming that relative rankings are preserved.

Comparison with additional Model-based Methods We compare KAIROS with TRAK [46]
and LOGRA [8], recent model-based attribution methods for large models. TRAK trains multiple
models while LOGRA optimizes influence functions for efficiency. Both require model training,
while KAIROS is model-agnostic and training-free.
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We evaluate on CIFAR-10 feature noise and label noise detection using the experimental setup
from Section 4. We report the AUC of the fraction of covered corrupted data versus the fraction of
inspected data.

Table 5: AUC comparison on CIFAR-10 corruption detection tasks.
Method Feature Noise Label Noise

Data OOB 0.727 0.784
KNN Shapley 0.723 0.751
LAVA 0.837 0.529
KAIROS 0.857 0.791
TRAK 0.638 0.743
LOGRA 0.565 0.663
Maximum possible (theoretical) 0.900 0.900

KAIROS achieves the highest AUC on both tasks, outperforming TRAK and LOGRA particula

Effect of kernel choice In order to study the effect of kernel choice, we conduct additional
experiments using a polynomial kernel of degree 2 on the feature-noise CIFAR-10 task. We report
the AUC of the fraction of covered corrupted data vs the fraction of inspected data.

Table 6: AUC for detecting feature noise in CIFAR-10
Method AUC

Data OOB 0.727
KNN Shapley 0.723
LAVA 0.837
KAIROS (Gaussian) 0.857
KAIROS (Polynomial) 0.856
Maximum possible (theoretical) 0.900

The results show that KAIROS with polynomial kernels achieves nearly identical performance to
Gaussian kernels (0.856 vs 0.857) and outperforms all baselines.

Estimating P (y|x) from Validation Data The validation set is typically small (300 samples in our
experiments), yielding noisy P (y|x) estimates. However, this provides sufficient signal to identify
corrupted training points. After removing these points, we train on the cleaned, larger training set to
obtain better P (y|x) estimates and higher accuracy.

We demonstrate this on CIFAR-10 with feature noise. A model trained only on validation data (300
samples) achieves 72% test accuracy. Training on the full training set after removing the bottom
20% identified by KAIROS achieves 88.5% test accuracy. Even selecting just the top 300 training
samples (matching validation size) gives 87.3% accuracy, demonstrating that KAIROS improves
sample quality beyond what the small validation set provides. This shows that while the validation
classifier has limited accuracy, it successfully identifies low-quality training data, enabling substantial
improvements when training on the cleaned set.

Robustness to noise in the validation set KAIROS, similar to LAVA, assumes access to a small
sample from the (clean) reference distribution. Further, model-based methods value data based
on performance on the validation set which is generally assumed to be representative of the test
distribution.

However, in practice, these small samples of the reference set may have some noise. We test
the robustness of KAIROS and other baselines to a noisy reference set. We conduct additional
experiments by adding noise to the validation set for the feature noise CIFAR-10 task. We consider
two settings where we randomly corrupt 3% and 7% of the validation samples respectively.

Dataset Licensing Information. The license terms for each dataset used in this work are as follows:
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Table 7: Robustness to Noisy Reference Set - AUC Performance
Method No Validation Noise 3% Validation Noise 7% Validation Noise

Data OOB 0.727 0.711 0.711
KNN Shapley 0.723 0.705 0.705
LAVA 0.837 0.635 0.601
KAIROS 0.857 0.857 0.856

• CIFAR-10 [34]: released under the MIT License. https://www.cs.toronto.edu/~kriz/
cifar.html

• STL-10 [10]: no explicit license is provided. http://ai.stanford.edu/~acoates/stl10/
• IMDB [43]: subject to IMDb’s non-commercial terms of use. https://datasets.imdbws.com/
• AG News [77]: provided for research and non-commercial use. http://www.di.unipi.it/
~gulli/AG_corpus_of_news_articles.html
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Answer: [Yes]

Justification: Descriptions in the main body of the paper (Section 3.4) are sufficient for
reproducing our approach and experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We share the anonymized Github repository containing the data and code in
the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the experiment settings in detail in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeat experiments with different random seeds and show the mean and
standard deviation in the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the sufficient information on the computer resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and make sure the paper conforms
with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential broader impacts of this work in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper has no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit all existing assets used in the paper, and include the license informa-
tion (Sections 4 and D).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentations for the released anonymized code (Section 4).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this work does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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