
Non-uniform Timestep Sampling: Towards Faster Diffusion
Model Training

Tianyi Zheng∗
Shanghai Jiao Tong University

Shanghai, China
tyzheng@sjtu.edu.cn

Cong Geng
vivo Mobile Communication Co., Ltd

Shanghai, China
gengcong@vivo.com

Peng-Tao Jiang
vivo Mobile Communication Co., Ltd

Shanghai, China
pt.jiang@vivo.com

Ben Wan
Shanghai Jiao Tong University

Shanghai, China
burn-w@sjtu.edu.cn

Hao Zhang
vivo Mobile Communication Co., Ltd

Shanghai, China
haozhang@vivo.com

Jinwei Chen
vivo Mobile Communication Co., Ltd

Shanghai, China
jinwei.chen@vivo.com

Jia Wang†
Shanghai Jiao Tong University

Shanghai, China
jiawang@sjtu.edu.cn

Bo Li†
vivo Mobile Communication Co., Ltd

Shanghai, China
libra@vivo.com

Abstract
Diffusion models have garnered significant success in generative
tasks, emerging as the predominant model in this domain. Despite
their success, the substantial computational resources required for
training diffusion models restrict their practical applications. In
this paper, we resort to the optimal transport theory to accelerate
the training of diffusion models, providing an in-depth analysis
of the forward diffusion process. It shows that the upper bound
on the Wasserstein distance of the distribution between any two
timesteps in the diffusion process is an exponential decrease of the
initial distance by a factor of times. This finding suggests that the
state distribution of the diffusion model has a non-uniform rate of
change at different points in time, thus highlighting the different im-
portance of the diffusion timestep. To this end, we propose a novel
non-uniform timestep sampling method based on the Bernoulli
distribution, which favors more frequent sampling in significant
timestep intervals. The key idea is to make the model focus on
timesteps with larger differences, thus accelerating the training of
the diffusion model. Experiments on benchmark datasets reveal
that the proposed method significantly reduces the computational
overhead while improving the quality of the generated images.

CCS Concepts
• Computing methodologies → Maximum likelihood model-
ing; Reconstruction.
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1 Introduction
In recent times, generative models, particularly diffusion-based gen-
erative models [6, 25, 46, 57], have garnered significant attention for
their notable achievements in computer vision [4, 35, 37, 51], natural
language processing [3, 47, 54], temporal data modeling [1, 5, 12, 44]
and AI Security [13, 14, 36]. The diffusion model comprises two
primary stages: forward diffusion and reverse diffusion. In the for-
ward diffusion stage, the objective is to facilitate the transformation
of the original distribution into a Standard Gaussian distribution.
On the other hand, the reverse diffusion stage aims to transition
from a Standard Gaussian distribution back to the data distribution,
thereby accomplishing the generation of new samples.

Despite the significant achievements of diffusion models as ev-
idenced by several studies [25, 41, 48], the considerable computa-
tional demands required for their training restrict their utility in a
broad spectrum of applications. ADM [10] presents an enhanced
adaptive group normalization framework that more effectively inte-
grates temporal datawithin residual blocks, thereby accelerating the
training process of diffusion models. EDM [28] designs advanced
noise schedules to improve training efficiency. Meanwhile, many
studies propose the various re-weighted loss functions, effectively
enhancing the training efficiency of diffusion models. For instance,
the P2-weight method [7] focuses on images with medium signal-
to-noise (SNR) ratios, believed to contain rich semantic information.
To leverage this, P2-weight introduces a re-weighted loss function
specifically targeting these medium SNR ratios. This approach aims
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to enhance the model’s ability to learn visual concepts, thereby
boosting training efficiency. Moreover, Min-SNR [23] and ANT [20]
discover that the optimal weight gradients for different noise dis-
tributions conflict, leading to a notable slowdown in the training
of diffusion models. Therefore, Min-SNR proposes a clamped SNR-
weighted loss function to reduce this conflict and accelerate the
training process. ANT [20] proposes an Uncertainty Weighting
strategy [30] to faster training the diffusion model. Similarly, the
Debias [56] methods also design a re-weighted loss function based
on SNR to reduce the bias of different noise distributions and speed
up the training. While these methods somewhat expedite the train-
ing process of the diffusionmodel, they all employ uniform timestep
sampling methods in the training stage. Our subsequent theoretical
analysis suggests that uniform timestep sampling methods may be
sub-optimal for the training of diffusion models, primarily because the
variability across different noise distributions in the forward diffusion
is not uniform.

In this paper, we introduce an approach that leverages optimal
transport (OT) theory to examine the forward diffusion process
of the diffusion model. OT theory provides enlightenment to the
changes in distance between different distributions in the Wasser-
stein space. More importantly, the forward process of the diffusion
model can be modeled as a gradient flow in the Wasserstein space,
which provides a good understanding of the change in distribu-
tion of the diffusion process. As depicted in Figure 1a, there is a
notable exponential diminution in the Wasserstein distances con-
comitant with the advancement of the forward diffusion process.
This analysis confirms that the upper bound of the Wasserstein
distance between any two specified moments exhibits an exponen-
tial reduction relative to their initial disparity. Figure 1b presents
empirical validation of this conclusion. Based on this foundation,
we propose a novel non-uniform timestep sampling method named
Bernoulli Distribution-Based Sampling for training diffusion mod-
els. We call our method Denoising Diffusion Probabilistic Models
with Bernoulli Sampling (DDPM-BS). This design concentrates on
diffusion stages with distinct distribution differences, enhancing
training efficiency and improving the generative performance of
diffusion models. Furthermore, our approach is compatible with
existing enhancement methods (e.g., P2-weight, EDM, etc.), allow-
ing for seamless integration that can leverage the advantages of
various designs to further elevate training efficiency and generative
quality. Our contributions can be summarized as follows:

• We employ optimal transport theory to analyze the distribu-
tions at various timesteps of the forward diffusion process
from different initial distributions. This analysis concludes
that the upper bound of the Wasserstein distance between
different distributions decreases exponentially with time,
guiding improvements in diffusion model training.

• We design a novel non-uniform training timestep sampling
method based on Bernoulli distribution, significantly speed-
ing up diffusion model training and enhancing generation
quality. Furthermore, our design is also beneficial to other
improved designs of the diffusion model.

• Extensive experiments across various benchmark datasets
demonstrate that our DDPM-BS method can significantly

expedite the diffusion model training and improve the gen-
eration quality.

2 Related Work
2.1 Diffusion-Based Generative Models.
Diffusion models are proposed by [48] and improved by [17, 25, 41].
Recently, the ADM [10] can generate higher-quality images than
Generative Adversarial Networks (GANs) [21, 22, 52]. EDM [28]
enhances training efficiency and sample quality through advanced
noise schedules and network architectures. However, training a
diffusion model like ADM and EDM needs substantial computa-
tional cost, thereby constraining the application of these models. To
reduce the computational cost, the P2-Weight [7] method designs
the re-weighted loss functions to speed up the training. Meanwhile,
Min-SNR [23] and ANT [20] analyze the training process of diffu-
sion models through a multi-task learning perspective. Therefore,
they propose different re-weighted loss functions to speed up the
training. Furthermore, E-TSDM [55] find that Lipschitz singularities
pose a threat to the stability of the training. Therefore, E-TSDM
shares the timestep with large Lipschitz constants to reduce the
instabilities in the training. However, the uniform timestep sam-
pling approach adopted by these methods during the training stage
may not be optimal, potentially impacting training efficiency and
the quality of the generated samples. Furthermore, these enhanced
designs are orthogonal to our timestep sampling method, indicating
that they can be integrated with our approach without conflict.

2.2 Optimal Transport.
The Wasserstein distance in optimal transport theory is a distance
function defined between probability distributions on a givenmetric
space. The 2-Wasserstein distance between two probability mea-
sures 𝜇, 𝜈 is:

𝑊2 (𝜇, 𝜈) := inf
{∫

R𝑑×R𝑑
∥𝑥 − 𝑦∥2𝑑𝛾 : 𝛾 ∈ Π(𝜇, 𝜈)

} 1
2
.

Here, Π(𝜇, 𝜈) represents the set of all joint distributions (couplings)
on R𝑑 × R𝑑 that have 𝜇 and 𝜈 as their respective marginals.

The optimal transport theory and stochastic differential equa-
tions (SDE) are closely related [15]. Therefore, the Wasserstein
distance has been utilized to explain the diffusion-based generative
model [18, 19, 31, 33] in several works. Moreover, DPM-OT [34]
accelerates inference speed during generation by solving a semidis-
crete OT problem. Even though these studies provide valuable
theoretical insights, they have yet to effectively translate these find-
ings into tangible improvements in the training of diffusion models.
In this paper, we not only provide an in-depth theoretical analysis
of the diffusion model, but also propose an improved strategy for
training, which greatly improves the training speed and generation
quality of the diffusion model.

3 Method
In this section, we provide an introduction to the background of
the diffusion model and the optimal transport theory in Section 3.1.
Subsequently, in Section 3.2, we explore the analysis of the diffu-
sion process using the Wasserstein gradient flow and experimental
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Wasserstein Space

(a) The forward diffusion process in the Wasserstein
space.
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(b) The Wasserstein distance varies with the diffusion
process.

Figure 1: Illustration of a Wasserstein gradient flow and experimental results.

verification of the conclusion. Finally, in Section 3.3, we present
our timestep sampling method based on theoretical insights.

3.1 Background
The aim of the forward diffusion process is to transform the complex
image distribution 𝑞(𝑥0) into simple normal Gaussian distribution
N(0, 𝑰 ). In the forward diffusion process, we define the noise sched-
ule 𝛽𝑡 , Meanwhile, with 𝛼𝑡 := 1 − 𝛽𝑡 and 𝛼𝑡 :=

∏𝑡
𝑠=0 𝛼𝑠 we assume

in each time 𝑡 , the probability density function of 𝑞(𝑥𝑡 |𝑥0) is

𝑞 (𝑥𝑡 | 𝑥0) = N
(
𝑥𝑡 ;

√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 ) 𝑰

)
𝑥𝑡 =

√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖. (1)

In the training stage, we train a model 𝜖𝜃 (𝑥𝑡 , 𝑡) to predict the added
noise 𝜖 in each timestep.

In the inference stage, we start from a known distribution, such
as the standard Gaussian distribution, and reverse each step of
the noise-corrupted latent 𝑥𝑡−1 from 𝑥𝑡 . However, the distribu-
tion 𝑞(𝑥𝑡−1 |𝑥𝑡 ) is based on the entire data distribution. Therefore,
in DDPM, a neural network parameterized by 𝜃 is employed to
estimate 𝑞(𝑥𝑡−1 |𝑥𝑡 ) using the following equation:

𝑝𝜃 (𝒙𝑡−1 | 𝒙𝑡 ) := N (𝒙𝑡−1; 𝜇𝜃 (𝒙𝑡 , 𝑡) , Σ𝜃 (𝒙𝑡 , 𝑡)) .
Leveraging Bayes’ rule, we can use the trained diffusion model to
predict the previous denoising distribution step by step, employing
the following equation:

𝑥𝑡−1 =
1√︁

1 − 𝛽𝑡

(
𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)
+ 𝜎𝑡𝑧.

When we make time tend to be continuous [50], the generalized
forward diffusion process can be expressed as stochastic differential
equations (SDEs) form:

d𝑥 = 𝑓 (𝑥, 𝑡)d𝑡 + 𝑔(𝑡)d𝑤. (2)

The SDE 2 in Euclidean space describes the change of probability
distribution over time in the forward diffusion process, while each
distribution in Euclidean space corresponds to an element in the
Wasserstein space. In order to gain a better understanding of the

different distributions in the forward diffusion process, we can shift
our attention to the Wasserstein space. Indeed, the Wasserstein
gradient flow elucidates the dynamics of probability density as
it follows the steepest descent direction of the functional F (e.g.
KL divergence), relative to the Riemannian metric induced by the
2-Wasserstein distance [2, 11]. The Wasserstein gradient can be
expressed in the following form [2], where F ′ (𝜇) represents the
variance of F with respect to the measure 𝜇.

∇𝑊2F = ∇F ′ (𝜇).
The Wasserstein gradient of the functional KL(.∥𝜋) at 𝜇 is

∇𝑊2 KL(.∥𝜋) = ∇ log
( 𝜇
𝜋

)
.

Then using the functional KL(.∥𝜋) and the continuity equation, we
obtain the equation of the Wasserstein gradient flow as:

𝜕𝜇𝑡

𝜕𝑡
= ∇ ·

[
𝜇𝑡∇ log

( 𝜇𝑡
𝜋

)]
.

3.2 Theoretical Insight into Forward Diffusion
via Wasserstein Gradient Flow

Wasserstein gradient flow is a differential equation of probability
measures. When we scale a time-varying 𝛽𝑡 at time 𝑡 , we can get
the regular gradient flow [19]. The regular gradient flow satisfies
the following continuity equation:

𝜕𝜇𝑡

𝜕𝑡
= ∇ ·

[
𝜇𝑡 𝛽𝑡∇𝑊2F

]
. (3)

In the regular gradient flow, the velocity vector is defined as 𝜈𝑡 =
−𝛽𝑡∇𝑊2F .

Then we can prove that the corresponding Fokker-Planck equa-
tion [45] of the SDE 2 is equivalent to the regular Wasserstein
gradient flow [19] when the functional on the Wasserstein space
is defined by F (𝜇) = KL(.∥𝜋). The corresponding Fokker-Planck
equation [45] is:

𝜕𝜇𝑡

𝜕𝑡
= −∇ · (𝜇𝑡 𝑓 ) +

1
2
∇ ·

(
∇
(
𝑔2
𝑡 𝜇𝑡

))
. (4)

Based on this relationship, we have the following lemma.
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Lemma 1. Consider a regularWasserstein gradient flow, as defined
in Equation 3, initiating from a data distribution 𝜇0 and converging
to a normal Gaussian distribution 𝜇𝑇 = N(0, 𝑰 ). With the selection
of 𝑓 = 𝛽𝑡𝑥 and 𝑔𝑡 =

√︁
2𝛽𝑡 , the family of measures {𝜇𝑡 }𝑇𝑡=0 derived

from the Fokker-Planck equation 4 is equivalent to the family of
measures corresponding to this gradient flow.

The detailed proof of Lemma 1 is in the Appendix Section 2.1.
𝜇𝑡 is the noisy data distribution in the forward diffusion at time 𝑡 .
This leads us to the following remark.

Proposition 1. When set the 𝑓 = 𝛽𝑡𝑥 and 𝑔𝑡 =
√︁

2𝛽𝑡 , the SDE 2
can be written as:

𝑑𝑥 = −𝛽𝑡𝑥d𝑡 +
√︁

2𝛽𝑡d𝑤. (5)

This SDE describes the forward diffusion process of the diffusion
model [25, 50].

Proposition 1 implies that the forward diffusion process of dif-
fusion model [25, 50] can be equivalently thought as a regular
Wasserstein gradient flow [19]. Meanwhile, at any time 𝑡 , the con-
stant 𝛽𝑡 corresponding to different starting distributions is the same.
Therefore, based on the solid mathematical framework of Wasser-
stein gradient flow [2, 26, 53], We can analyze the forward diffusion
process based on the properties of Wasserstein gradient flow in the
Wasserstein space. Therefore, we have the following theorem.

Theorem 1. Consider two distinct initial distributions 𝜇0 and 𝜇0 on
the data manifold𝑀 , which is equipped with a reference measure
𝜈 = 𝑒−𝑉 vol, satisfying 𝐻𝑒𝑠𝑠𝜇 ≥ 𝐾 . Let 𝜇𝑡 and 𝜇𝑡 represent the
distributions at time 𝑡 in the forward diffusion process described in
Proposition 1, originating from 𝜇0 and 𝜇0 respectively. For all 𝑡 > 0,
the following inequality holds

𝑊2 (𝜇𝑡 , 𝜇𝑡 ) ≤ 𝑒−𝐾𝑡𝑊2 (𝜇0, 𝜇0) . (6)

This theorem can be proved in terms of Riemannian geometric
(in pure Otto’s formalism), and the detailed proof procedure is in
the Appendix Section 2.2. The determination of a precise value for
𝐾 , denoting the lower bound of the curvature on the data manifold
𝑀 [15], presents a significant challenge. Despite this, Theorem
1 elucidates critical theoretical insights on the forward diffusion
mechanism inherent in the diffusion model. During the forward
diffusion stage, the upper bound of Wasserstein distances between
different initial distributions declines rapidly over time. This means
that the different initial distributions become very similar at an
exponential rate. Then we have the following proposition.

Proposition 2. Based on Theorem 1, we observe that during the
forward diffusion process, the upper bound of the 2-Wasserstein
distance between different distributions exhibits an exponential
decrease over time. For a sufficiently small 𝛿 , when 𝑡 > ln𝛿

|𝐾 | , the
following inequality holds:

𝑊2 (𝜇𝑡 , 𝜇𝑡 ) ≤ 𝛿 ·𝑊2 (𝜇0, 𝜇0) . (7)

This proposition tells us that when diffusion has proceeded to
a certain point, the 2-Wasserstein distance between the different
distributions is already almost 0. The distributions at this point are

virtually the same. Time intervals before this point can be consid-
ered significant intervals in the diffusion stage and this provides
a theoretical basis for designing improved training methods for
diffusion models.

Then, we use the entropic regularization algorithm [9, 16] to
empirically evaluate the Wasserstein distance between different
distributions in the forward diffusion process. We select different
images in the ImageNet dataset as a distribution. Then we use Equa-
tion 8 to empirically evaluate the 2-Wasserstein distance between
different distributions by setting C(𝑥,𝑦) = ∥𝑥 − 𝑦∥2. This algo-
rithm can compute the 2-Wasserstein distance between different
distributions efficiently.

𝑊2 (𝜇𝑡 , 𝜇𝑡 ) ≈ min
𝜋1=𝜇𝑡 ,𝜋2=𝜇𝑡

∫
X2

Cd𝜋 + 𝜀KL(𝜋 | 𝜇𝑡 ⊗ 𝜇𝑡 ) . (8)

As illustrated in Figure 1b, we observe an exponential decrease
in the 2-Wasserstein distance among various distributions. Initially
distinct due to their unique characteristics, these distributions be-
come more similar as the forward diffusion process progresses. This
finding challenges the efficacy of uniform timestep sampling in
training diffusion models, suggesting that a more targeted timestep
sampling approach increasing sampling density at timesteps with
notable distributional shifts could better.

3.3 Bernoulli Distribution-Based Time
Sampling Method

In this section, we propose the Denoising Diffusion Probabilis-
tic Models with Bernoulli Sampling (DDPM-BS) inspired by our
analysis of optimal transport theory. Based on the Theorem 1 and
Proposition 2, we can divide the timesteps of the diffusion process
into significant timestep intervals. Within the significant timestep
intervals, notable disparities are observed among the various dis-
tributions. Conversely, in the remaining timestep intervals, these
disparities diminish, leading to smaller differences. Therefore, we in-
troduce a non-uniform time sampling method that focuses more on
significant distributional time intervals. This approach is designed
to ensure the model is effectively trained to manage diffusion pro-
cesses with notable distributional differences.

Specifically, we use 𝑡𝛿 to represent the threshold value of sig-
nificant timestep intervals. Consequently, we partition the set of
intervals 𝑡1, 𝑡2, ..., 𝑡𝛿 , ..., 𝑡𝑇 into two subsets: 𝑡1, ...𝑡𝛿 and 𝑡𝛿 , ..., 𝑡𝑇 . Our
strategy samples with probability 𝑝 in significant intervals and 1−𝑝
otherwise. This approach yields the following proposition.

Proposition 3. During the training stage, let 𝑋𝑛 be a random
variable representing a sample at time 𝑡𝑛 in the timestep series
{𝑡1, 𝑡2, . . . , 𝑡𝛿 , . . . , 𝑡𝑇 }. Specifically, 𝑃𝑟 [𝑋𝑛 = 1] denotes the proba-
bility of sampling within the significant intervals at time n. The
probability of having exactly 𝑘 samples in the significant inter-
vals, denoted by 𝑃𝑟 [𝑆𝑛 = 𝑘], is given by the binomial formula(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 , consistent with a Bernoulli distribution.

This proposition elucidates the probability density function (PDF)
for sampling within significant intervals. Our non-uniform timestep
sampling method, following the Bernoulli distribution, is thus
named Bernoulli Distribution-Based Sampling. Moreover, we main-
tain uniform sampling in each sub-interval, both significant and
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non-significant. Therefore, the sampling weight of our method in
each timestep is non-uniform and can be written as a Bernoulli
distribution:

𝑓 (𝑡) =
{
𝑝 for 𝑡 ∈ [0, 𝑡𝛿 ]
1 − 𝑝 for 𝑡 ∈ [𝑡𝛿 , 𝑡𝑇 ]

.

The proposed Bernoulli Distribution-Based Sampling training
algorithm for the diffusion model is presented in Algorithm 1. Here,
U denotes a uniform distribution. It is important to note that accu-
rately estimating 𝑡𝛿 is often challenging. Further discussion about
the choice of 𝑡𝛿 is available in Section 4.4. In all our experiments, we
use 𝑡𝛿/𝑇 = 0.8 to classify significant time sub-intervals. Then we
present a comparison plot of various sampling methods in Figure
2. It becomes evident that we can regulate the sampling frequency
during the training stage within different intervals by adjusting
the parameter 𝑝 for the Bernoulli distribution. Specifically, setting
𝑝 > 0.5 allows us to focus timestep sampling more intensively on
the significant time sub-intervals. Therefore, the corresponding
training loss of DDPM-BS can be written as

L (𝜖𝜃 ) := E𝑡∼BU (0,𝑇 ),x0∼𝑞 (x0 )
[
∥𝜖𝜃 (𝛼𝑡x0 + 𝜎𝑡𝜖, 𝑓T (𝑡)) − 𝜖 ∥2

2
]
(9)

We represent our timestep sampling strategy with BU (0,𝑇 ), and
denote 𝜖 as a random variable following the standard Gaussian dis-
tributionN(0, I). Furthermore, DDPM-BS only adjusts the timestep
sampling strategy, indicating it is orthogonal to other improve-
ment strategies. Therefore, it can easily be integrated with these
strategies for enhanced performance of the diffusion model.

Beyond our Bernoulli distribution-based non-uniform timestep
sampling method, we quantitatively evaluate other distribution-
based methods in Section 3.4 in the Appendix. Experimental results
indicate that similarly focusing on significant time intervals in
other non-uniform sampling methods also boosts training speed
and enhances generate quality.

Algorithm 1 Bernoulli Distribution-Based Sampling
Require: Upper bound 𝛿 , Bernoulli parameter 𝑝 .
1: Estimating the significant interval 𝑡𝛿 using Eq. 8
2: repeat
3: 𝑥0 ∼ 𝑞(𝑥0)
4: Generating random numbers 𝑢 ∼ U[0, 1]
5: if 𝑢 < 𝑝 then
6: 𝑡 ∼ U({1, . . . , 𝑡𝛿 }), 𝝐 ∼ N(0, 𝑰 )
7: else
8: 𝑡 ∼ U({𝑡𝛿 , . . . , 𝑡𝑇 }), 𝝐 ∼ N(0, 𝑰 )
9: end if
10: compute 𝑥𝑡 using Eq. 1
11: take a gradient descent step on ∇𝜽 ∥𝝐 − 𝝐𝜽 (𝒙𝑡 , 𝑡)∥2

12: until converged

4 Experiment
4.1 Experiment Setup
Models and Hyperparameters. DDPM-BS employs the same
model architecture as ADM [10]. Since the U-Net of ADM is more
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Figure 2: Comparison of Various Sampling Methods.

advanced than DDPM. Throughout the training stage, we main-
tain 𝑇 = 1, 000 for all experiments. We conduct comparative ex-
periments using the CIFAR-10 (32×32), ImageNet (32×32), CelebA
(64×64) [38], Stanford Cars (128×128) [32] FFHQ (128×128) [29],
CelebAHQ (256×256) [27] and AFHQ-D (256×256) [8] datasets for
unconditional image generation. More details about our experiment
setup are shown in Section 4 in the Appendix.
Evaluation. We adopt the widely-used Frechet Inception Dis-
tance score (FID) [24] and sFID [40] to evaluate the sample quality.
When comparing against previous methods, we follow the previous
work [25, 41] and generate 50𝐾 samples for each trained model on
CIFAR-10, ImageNet, CelebA and FFHQ. Meanwhile, we generate
10𝐾 samples for Stanford Cars, CelebAHQ and AFHQ-D since the
size of training data is limited. We utilize the full training set to
compute the reference distribution statistics for all datasets.

4.2 Quantitative Comparison
Comparison with DDPMs. Figures 3 offers a quantitative com-
parison between ADM-BS and ADM on the different datasets. The
results demonstrate that ADM-BS outperforms ADM across all
these datasets. Additionally, it is noteworthy that ADM-BS achieves
equivalent performance to ADM even before reaching convergence.
For example, on CIFAR-10, ADM-BS achieves a 2.22 × faster rate
in matching ADM’s FID score. Meanwhile, for CelebA and FFHQ
datasets, ADM-BS achieves accelerations of 1.47× and 4.67× respec-
tively to obtain the same FID as ADM. Meanwhile, for the higher
resolution CelebA-HQ and AFHQ-D datasets, ADM-BS reaches a
rate that is 3.57 × and 1.90× respectively faster in matching ADM’s
FID score. Furthermore, our ADM-BS also achieves accelerations
of 2.29 × on the large-scale dataset ImageNet.
Comparison with previous state-of-the-art methods. We con-
duct a comparative analysis of diffusion models trained using our
method against various previous state-of-the-art models [7, 23, 41,
56] on the CIFAR-10 (32× 32), FFHQ (128× 128) and AFHQ-D (256×
256) datasets, exploring different sampling step settings𝑇 . For a fair
comparison, we employed the same model architecture and focused
on the best-performing iterations of the different methods. More-
over, we provide the FID scores concerning the number of training
iterations of each method in the Appendix Section 3.1. Addition-
ally, we assess the impact of varying sampling steps, utilizing the
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Table 1: Quantitative comparison. Comparison of FID across various state-of-the-art models on different benchmark datasets.

Dataset Inference Steps 𝑇 ′ iDDPM ADM P2-Weight Min-SNR Debias ADM-BS

CIFAR-10
100 3.96 3.47 3.42 3.43 3.36 3.30
300 3.64 2.97 3.11 3.18 3.06 2.81
1000 3.31 3.01 3.19 3.23 3.17 2.90

FFHQ
50 21.08 18.14 13.56 14.19 13.05 12.19
100 16.27 14.07 11.96 12.46 11.86 10.73

AFHQ-D
50 23.13 19.72 18.09 19.02 18.82 17.06
100 20.44 17.21 16.18 17.03 15.91 14.08

×2.22

(a) CIFAR-10 (32 × 32)

×2.29

(b) ImageNet (32 × 32)

1.47×

(c) CelebA (64 × 64)

4.67×

(d) FFHQ (128 × 128)

3.57×

(e) CelebAHQ (256 × 256)

1.90×

(f) AFHQ-D (256 × 256)

Figure 3: FID scores concerning the number of training iterations on various datasets.

respacing technique [10] for step reduction. The results presented
in Table 1, indicate that our method consistently outperforms others
across multiple datasets and sampling step configurations. Notably,
certain weighting strategies (e.g., Min-SNR [23], Debias [56]) do
not perform as well as the baseline model under some sampling
step scenarios in the low-resolution CIFAR-10 dataset, suggesting a
lack of robustness. In contrast, our method demonstrated superior
performance under all tested conditions and datasets.
Integratingwith other improvementmethod.Our non-uniform
timestep sampling strategy is designed to not conflict with other
training improvement methods for diffusion models. Because of this
compatibility, we attempt to combine our method with previous
methods, such as the Min-SNR [23] and P2-Weight [7]. We apply
this combination in the training on the AFHQ-D dataset. Table 2

shows significant improvements in FID and sFID metrics. This sug-
gests that combining our method with other training improvement
algorithms can further boost model performance, highlighting our
method’s generalizability. Moreover, our ADM-BS also can be inte-
grated with the Input Perturbation (IP) method [43] to mitigate the
bias issue in the diffusion model. For detailed experimental details
and results, please refer to 3.3 in the Appendix.
Fine-Grained Data.While commonly used datasets such as Ima-
geNet, FFHQ, and AFHQ-D are prevalent in generative modeling
studies, they often lack the expressive power required to capture
extremely fine-grained differences. These standard datasets primar-
ily serve the purpose of broader category identification, rather than
emphasizing fine-grained distinctions within categories. Given that
the intricate details hold significance for generation applications,
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Table 2: Experimental results combining our method with
other improved methods on AFHQ-D datasets.

Method P2-Weight + BS Min-SNR + BS

FID 16.18 13.34 17.03 13.89
sFID 47.88 46.81 47.94 46.79

we evaluate the capabilities of ADM-BS in handling fine-grained
details on Stanford Cars datasets. The results illustrated in Figure 4
reveal that ADM-BS achieved about 1.51× acceleration in attaining
an equivalent FID score compared to the ADM. Furthermore, it is
observed that ADM-BS consistently outperforms ADM in terms of
generation quality.

1.51×

Figure 4: FID scores concerning the number of training itera-
tions on Fine-Grained Stanford Cars datasets.

4.3 Fast Sampling
The extensive inference process of diffusion models restricts their
practical applications, prompting the development of various ac-
celerated inference algorithms, such as DDIM [49], Epsilon Scal-
ing [42], and DPM-Solver [39]. These methods have significantly en-
hanced the inference efficiency of diffusion models. Consequently,
it is essential to evaluate the compatibility and performance of
our model in conjunction with these accelerated approaches. As
depicted in Table 3, ADM-BS surpasses the baseline in terms of
performance under rapid inference conditions. Additionally, our
approach demonstrates minimal variation across different sampling
steps, indicating enhanced stability and robustness of ADM-BS.

Table 3: Comparison between ADM and ADM-BS in different
fast samplers on AFHQ-D datasets. We use the FID-10K as
the evaluation metric which is the same as the previous ex-
periments. NFE means the number of function evaluations.

Fast Samplers DDIM Epsilon Scaling DPM-Solver

NFE 25 50 25 50 20 50

ADM 23.63 18.50 24.22 19.52 18.49 17.49
ADM-BS 20.35 16.59 20.29 15.35 16.48 16.17

200 250 300 350 400 450 500 550
Training iterations (K)
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ADM-BS (p = 0.75)
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ADM-BS (p = 0.40)

Figure 5: FID scores with respect to the Bernoulli distribution
parameter 𝑝 on CIFAR-10 dataset.

4.4 Ablation Study
Bernoulli distribution parameter 𝑝 . As the parameter 𝑝 gov-
erns the probability of sampling at significant intervals, it directly
influences the sampling frequency at these intervals during train-
ing. Therefore, we conduct ablation experiments to investigate its
impact. The results are shown in Figure 5. We observe that as the
parameter 𝑝 increases, the model converges at an accelerated rate.
When 𝑝 reaches 0.8, the model achieves an FID score of less than 3
within 250K training iterations, outperforming the final converged
results of the ADMmethod. This phenomenon is attributed to ADM-
BS, which places greater emphasis on intervals characterized by
significant differences. This effectively expedites convergence and
enables the model to pay more attention to distribution disparities,
resulting in improved generative quality. Additionally, we note that
setting 𝑝 below 0.5 leads to slower convergence compared to the
ADMmethod. By the time the number of training iterations reaches
500K, the ADM has essentially converged, whereas ADM-BS has
not reached full convergence at that training iteration. For more
discussion about 𝑝 , please refer to 3.2 in the Appendix.
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diffusion step  (t /T)
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Figure 6: FID scores with respect to different choice of 𝑡𝛿/𝑇 .

The upper bound 𝛿 . The parameter 𝛿 plays a pivotal role in defin-
ing the range of significant intervals within a distribution. This
determination is based on the premise that when the Wasserstein
distance between two distributions is less than 𝛿 times their initial
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values, the distributions are considered markedly similar. However,
the computation of the Wasserstein distance is very difficult and
complex, although we empirically validate the decreasing trend of
the Wasserstein distance in Figure. 1b, there is a bias in this estima-
tion and only serves primarily as a motivational figure. Intuitively,
we think 𝛿 should be a relatively small value because this implies a
more similar distribution. In our experiments, we substitute 𝛿 with
various 𝑡𝛿/𝑇 ratios and evaluate the model’s performance across
these different ratios, as illustrated in Figure 6. We observe that
optimal performance consistently occurs at a 𝑡𝛿/𝑇 ratio of approxi-
mately 0.8 for various values of 𝑝 . Based on this finding, we select
𝑡𝛿/𝑇 = 0.8 as the significant interval threshold for all subsequent
experiments. Notably, the model’s performance with any chosen
𝑡𝛿/𝑇 ratio consistently surpasses the baseline, underscoring the
efficacy of our approach.

Table 4: Ablation studies on the different noise schedules.

Training Iters 300K 350K 500K

FID sFID FID sFID FID sFID

ADM (Linear) 3.73 4.87 3.53 4.78 3.43 4.34
ADM-BS 3.33 4.34 3.25 4.32 2.99 4.20

ADM (Cosine) 3.15 4.46 3.10 4.40 2.97 4.32
ADM-BS 2.96 4.16 2.94 4.16 2.90 4.14

Robustness to Noise Schedule. Since the convergence phenome-
non remains unaffected by various noise schedules, we undertook
a comparison involving different noise schedules (e.g., cosine and
linear schedules) on the CIFAR-10 dataset, as outlined in Table 4.
The results highlight ADM-BS’s robustness against these diverse
noise schedules. Notably, ADM-BS not only surpasses the baseline
in terms of generation quality but also enhances training speed by
a factor of 1.67× across both noise schedules. For more compar-
isons of different noise distribution (e.g., EDM [28]), please refer to
Section 3.4 in the Appendix. The experimental results demonstrate
that our method exhibits robustness across various noise schedules.

4.5 Qualitative Comparison
Fast training. In Figure 7, we present a comparison of samples gen-
erated by ADM and ADM-BS, trained across varying iterations (i.e.,
50K, 100K, 200K, and 500K). ADM-BS can generate high-quality sam-
ples after only 100K iterations, achieving this at a much quicker rate
than ADM. Moreover, the samples generated by ADM-BS exhibit a
noticeably higher quality than those from ADM. This suggests that
our method effectively improves the training efficiency.
Unconditional generation. In Figure 8, we compare the uncondi-
tional generation results of ADM and ADM-BS on the FFHQ and
AFHQ-D datasets. It is observed that the samples generated by
ADM exhibit color shift, whereas those generated by ADM-BS do
not demonstrate color-shift issues. This result implies that ADM-BS
generates higher-quality samples.
Fine-grained dataset. We conducted visual comparisons using
the fine-grained dataset Stanford Cars. The results in Figure 9,
reveal that the images produced via the ADM method manifest
considerable deficiencies in detail, characterized by pronounced

Longer Training
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M
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D
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S

Figure 7: The generation results of ADM and ADM-BS on the
FFHQ dataset. Images in each column are sampled from 50K,
100K, 200K, and 500K training iterations.

FFHQ AFHQ-D

A
D

M
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Figure 8: Unconditional generation results.

distortions and deformations, especially in the structural aspects
of the generated cars. In contrast, the images generated using the
ADM-BS demonstrate a remarkable enhancement in detail, with
significantly reduced incidences of distortion or deformities.
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D
M
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S

Figure 9: Samples generated by ADM and ADM-BS method
on Stanford Cars.

5 Conclusion
In this paper, we investigate the forward diffusion process in diffu-
sion models using optimal transport theory, proving an exponential
decay of the upper bound of theWasserstein distance between differ-
ent distributions with time. Based on this theoretical insight, we de-
sign the DDPM-BS, a non-uniform timestep sampling method based
on Bernoulli distribution. DDPM-BS aims to increase sampling at
crucial intervals of timestep in the forward diffusion stage, signif-
icantly improving the training efficiency of the diffusion model.
Our extensive experiments across popular generative benchmark
datasets confirm the efficacy of DDPM-BS in speeding up diffusion
model training and elevating the quality of the images generated.
Furthermore, our approach enhances the performance of existing
improved diffusion model training methods, which illustrates the
generalization of our method.
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