
Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

ACCELERATING TRANSFORMERS IN ONLINE RL

Daniil Zelezetsky1 Alexey K. Kovalev1,2 Aleksandr I. Panov1,2
1MIPT, Dolgoprudny, Russia 2AIRI, Moscow, Russia
zelezetskii.dv@phystech.edu, {kovalev,panov}@airi.net

ABSTRACT

The appearance of transformer-based models in Reinforcement Learning (RL)
has expanded the horizons of possibilities in robotics tasks, but it has simulta-
neously brought a wide range of challenges during its implementation, especially
in model-free online RL. Some of the existing learning algorithms cannot be easily
implemented with transformer-based models due to the instability of the latter. In
this paper, we propose a method that uses the Accelerator agent as a transformer’s
trainer. The Accelerator, a simpler and more stable model, interacts with the en-
vironment independently while simultaneously training the transformer through
behavior cloning during the first stage of the proposed algorithm. In the second
stage, the pretrained transformer starts to interact with the environment in a fully
online setting. As a result, this algorithm accelerates the transformer in terms of
its performance and helps it to train online more stably.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have demonstrated remarkable success in various domains due
to their ability to model long-range dependencies and complex patterns. Another benefit of trans-
formers is their suitable architecture for processing multi-modal data, such as text and images (Kim
et al., 2024; Radford et al., 2021). All these properties contribute to the creation of multi-task
agents (Jiang et al., 2022; Reed et al., 2022; Team et al., 2024). There are three main approaches
to training transformers in reinforcement learning: 1) fully offline training (Chen et al., 2021), 2)
offline pretraining with further online fine-tuning (Sun et al., 2023), and 3) fully online training
without offline data (Parisotto et al., 2020; Pramanik et al., 2023).

Offline Reinforcement Learning (RL) (Chen et al., 2021; Janner et al., 2021) is a widely used ap-
proach for training transformer models. It is beneficial to use offline data to lower training costs,
which is particularly important in fields such as robotics or autonomous transportation. Despite its
advantages, offline RL has several limitations that hinder agent performance and create barriers to its
widespread adoption. One of the main weaknesses is the effort required to collect expert demonstra-
tions. Sophisticated environments often require large models, which, in turn, demand a significant
amount of training data to perform well. Moreover, to maintain high performance during evaluation
or real-world deployment, attention must be paid to distributional shifts between offline trajectories
and the real state distribution. Another drawback of offline RL is its inability to regulate the explo-
ration process, which can potentially limit agent performance and underscores the need for a large
and high-quality dataset.

However, transformer’s application in online RL remains challenging too, primarily due to instabil-
ity issues during training (Parisotto et al., 2020). Transformers are known to be sensitive to hyperpa-
rameters and optimization settings, which makes their training process inherently unstable (Parisotto
et al., 2020). In online RL, where the agent interacts with the environment in real-time, this insta-
bility is exacerbated by the non-stationary nature of the data distribution. Transformers typically
require large amounts of data to achieve good performance. In online RL, where data is collected
incrementally through interactions with the environment, this poses a challenge. The agent must
learn efficiently from limited and potentially noisy data, which contrasts with the data-hungry na-
ture of transformers.

Our proposed approach addresses problems such as training instability, sample inefficiency, and ex-
ploration limitations, and avoids the need for offline data. Despite the fact that the first stage of our

1

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

method utilizes BC from the Accelerator’s demonstrations, it still maintains the ability to explore the
environment. Our method avoids environment distribution shifts by letting the transformer explore
the environment by itself in the second stage of the training procedure. The design of the accelerator
depends on the nature of the task: whether the environment can be described by a Markov Deci-
sion Process (MDP) or a Partially Observable Markov Decision Process (POMDP), or whether we
process a vector-based environment or an image-based environment.

In this paper, we propose an algorithm that accelerates (pretrains) the transformer in an online man-
ner, conduct experiments on MDP vector-based robotic locomotion (Todorov et al., 2012) and ma-
nipulation (Tao et al., 2024) tasks, and compare the accelerated transformer with Multilayer Percep-
tron (MLP) and LSTM (Hochreiter & Schmidhuber, 1997) baselines.

Our contribution is as follows:

1. We propose a flexible and easy-to-tune transformer training approach that effectively pre-
trains a transformer in an online manner, eliminating the need for an offline dataset.

2. By providing experiments, we empirically demonstrate the effectiveness of the proposed
algorithm on robotic locomotion and manipulation tasks.

2 RELATED WORK

There is a growing body of work that utilizes transformers in RL, adapting their architecture and
training algorithms to ensure stable performance. Chen et al. (2021) proposed the Decision Trans-
former (DT), which reduces the RL task to supervised sequence modeling. Janner et al. (2021)
enhance simple sequence modeling by utilizing beam-search, a technique originally from Natural
Language Processing (NLP), in order to improve the generation of action trajectories. However,
offline data can consist of sub-optimal trajectories, so sequence modeling approaches could affect
policy performance. To address this problem, Q-learning Decision Transformer (Yamagata et al.,
2023) leverages dynamical programming (especially Q-learning) and relabel return-to-go in order
to train DT on new data. Another problem with offline RL is the limited amount of training data. To
overcome this problem, Wang et al. (2022) proposed the Bootstrapped Transformer which relies on
bootstrapping ideas and generates a synthetic dataset for the trained model.

Offline pretraining with further online fine-tuning eliminates some of the problems of the previous
approach, especially since it can regulate exploration during online interaction with the environment.
SMART algorithm (Sun et al., 2023) separates the training process into two steps: 1) Offline self-
supervised sequence modeling and 2) Online fine-tuning. Nair et al. (2020) proposed AWAC, an
algorithm that enables rapid fine-tuning with a combination of prior demonstration data and online
experience. Chan et al. (2024) proposed a novel training algorithm that can learn from a small
amount of demonstrations, while classical Behavior Cloning (BC) requires more data to achieve the
same result. The authors of the Online Decision Transformer (Zheng et al., 2022) use an offline
dataset and minimize the log-likelihood of expert demonstrations in order to stabilize the agent
during online training. This technique uses pre-collected data simultaneously with online training.

Fully online training turned out to be a more complex and problematic task in transformer-based RL.
Based on the Transformers-XL (TrXL) architecture (Dai, 2019), Gated Transformer-XL (GTrXL)
introduced by Parisotto et al. (2020) uses gatings, learnable functions that can regulate the proportion
of bypass information from skip-connections. A combination of the TrXL properties and gating
capabilities makes GTrXL able to train well in memory-demanding tasks (Pleines et al., 2023).

3 PROPOSED METHOD

The effects associated with pretraining transformers on offline datasets can have negative conse-
quences, such as limited exploration of the environment and state distribution shift. Our proposed
method avoids these drawbacks by pretraining the transformer in an online manner via behavior
cloning and additional gradient ascent over the critic’s function.

Our method consists of two stages. The key idea is to utilize the accelerator’s stability to provide a
stable learning process for the transformer. Although this section provides an explanation based on
an MLP accelerator, any other model design choices are still compatible and can be used instead

2

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Algorithm 1 TD3-based acceleration stage algorithm
1: Initialize accelerator’s critics Qϕ1 , Qϕ2 , actor πϕ, and transformer actor πθ

2: Initialize target networks ϕ′
1 ← ϕ1, ϕ′

2 ← ϕ2, ϕ′ ← ϕ, θ′ ← θ
3: Initialize replay buffer B and trajectory buffer T
4: for t = 1 to T do
5: Select action with exploration noise a ∼ πϕ(s) + ϵ,
6: ϵ ∼ N (0, σ) and observe reward r and new state s′

7: Store transition tuple (s, a, r, s′) in B, Store tuple (s, a) in T
8: Sample mini-batch of N transitions (s, a, r, s′) from B
9: ã← πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)

10: y ← r + γmini=1,2 Qϕ′
i
(s′, ã)

11: Update critics ϕi ← argminϕi
N−1

∑
(y −Qϕi

(s, a))2

12: Train transformer by applying algorithms 2 and 3 then clear trajectory buffer T = ∅
13: if t mod d then
14: Update ϕ by the deterministic policy gradient:
15: ∇ϕJ(ϕ) = N−1

∑
∇aQϕ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

16: Update target networks:
17: ϕ′

i ← τϕi + (1− τ)ϕ′
i

18: ϕ′ ← τϕ+ (1− τ)ϕ′

19: end if
20: end for

(Section 4 demonstrates results with LSTM-based accelerator in POMDP environments). The main
rule is the following: the accelerator may have weaker performance in the environment, but it must
be more stable in terms of training. This ensures that the accelerator will bring the transformer to a
level sufficient for further online fine-tuning. Although the explanation is based on the Twin Delayed
Deep Deterministic Policy Gradient (Fujimoto et al., 2018) (TD3) algorithm, it can be generalized to
other off-policy actor-critic algorithms such as Deep Deterministic Policy Gradient (Lillicrap, 2015)
or Soft Actor-Critic (Haarnoja et al., 2018).

3.1 THE FIRST STAGE: TRANSFORMER ACCELERATION

In the first stage, the accelerator policy trains by itself while simultaneously serving as a trajectory
generator for the transformer policy. Let us define the accelerator agent as πϕ(a|s) and the trans-
former agent as πθ(a|s). During the entire first stage, πϕ(a|s) trains via the standard RL pipeline,
with the exception that it saves states and actions in a special trajectory buffer T , which is then used
as a dataset to train the transformer.

Algorithm 1 describes the process of transformer acceleration based on the TD3 training pipeline.
All changes made to the standard TD3 algorithm are highlighted in red. In particular, rows 5, 6, 7,
and 12 clarify how trajectories are collected in T and used for transformer acceleration. Note that
this approach can also be applied during the accelerator’s evaluation process.

During the transformer’s update phase, it can utilize either behavior cloning alone or an additional
gradient ascent method, as described in Algorithm 2 and Algorithm 3, respectively. An additional
gradient ascent method provides the transformer’s gradient ascent over accelerator’s critic function.
This is considered an optional enhancement that may improve acceleration but is not strictly neces-
sary. Since the accelerator is trained by TD3 which is an actor-critic algorithm, we want the actor πϕ

to ascend its critic’s function, which approximates the state-action function Qϕi
(s, a). Therefore,

it becomes possible to improve transformer training by adjusting its weights in the direction of the
critic’s gradient ascent, as in Algorithm 3 (details are provided in Section 4).

During the first stage, the transformer agent forms its basic structure of weights that will assist it
in online fine-tuning which is the second stage of our proposed algorithm. This approach leverages
supervised learning, which is beneficial in terms of the transformer’s stability. Notably, since we
generate our transformer’s training data in a real-time manner, we can regulate its quality and diver-
sity by dynamically changing the parameters of the Accelerator’s training. For instance, to increase
exploration, we can add Gaussian noise to the states from the environment, s̃ = s+N (0, σ), sample

3

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

target actions according to these observations, a ∼ πϕ(s̃), store (s̃, a) in T , and use this data within
Algorithm 2. In addition, the length of the Accelerator’s training session can be as long as needed,
so the amount of training data can be adjusted to match the task’s requirements.

These measures help overcome well-known offline RL challenges such as the exploration problem,
dataset size limitations, and state distribution shifts. All the architecture and training details are
available in Table 1.

Algorithm 2 Behavior cloning
Require: Transformer πθ(a|s), T

1: for s, a in T do
2: Make prediction â = πθ(s)
3: Calculate L = MSE(a, â)
4: Update actor θt+1 = θt − α∇θL
5: Update target θ′t+1 ← τθt+1 + (1− τ)θ′t
6: end for

Algorithm 3 Ascending on critic
Require: Transformer πθ(a|s), T , critic Qϕ1

1: for s, a in T do
2: Make prediction â = πθ(s)
3: Calculate Qϕ1(s, â) via accelerator’s critic
4: Update θt+1 = θt + α∇âQ(s, â)∇θâ
5: Update target θ′t+1 ← τθt+1 + (1− τ)θ′t
6: end for

3.2 THE SECOND STAGE: ONLINE FINE-TUNING

The first stage yields a pretrained transformer policy which is ready to continue its training in the
fully online setting. At this stage, we can drop the accelerator’s actor but continue using its critic in
order to conjugate it with the transformer actor. Starting from this time, these two models operate
together in a standard online RL training pipeline, described in Algorithm 4.

Algorithm 4 TD3-based fine-tuning stage algorithm
1: Use Qϕ1 , Qϕ2 ,πθ with their targets from the first stage, initialize empty replay buffer B
2: for t = 1 to T do
3: Select action with exploration noise a ∼ πθ(s) + ϵ, and observe reward r and new state s′

4: Store transition tuple (s, a, r, s′) in B
5: Sample mini-batch of N transitions (s, a, r, s′) from B
6: ã← πθ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
7: y ← r + γmini=1,2 Qϕ′

i
(s′, ã)

8: Update critics ϕi ← argminϕi
N−1

∑
(y −Qϕi(s, a))

2

9: if t mod d then
10: Update θ by the deterministic policy gradient:
11: ∇θJ(θ) = N−1

∑
∇aQϕ1

(s, a)|a=πθ(s)∇θπθ(s)
12: Update target networks:
13: ϕ′

i ← τϕi + (1− τ)ϕ′
i

14: θ′ ← τθ + (1− τ)θ′

15: end if
16: end for

Algorithm 4 describes the fine-tuning stage of the transformer. As mentioned earlier, the acceleration
stage returns three neural networks: the accelerator actor πϕ(a|s), the accelerator critic Qϕi

(i =
1, 2), and the transformer πθ(a|s). During the fine-tuning stage, we continue to use the accelerator
critic alongside the transformer for further online training. In our TD3-based algorithm description,
the fine-tuning stage follows a standard training process using the same TD3 algorithm, where the
actor is the transformer and the critic is the accelerator critic.

As we previously noted, the advantage of our algorithm lies in its complete flexibility when choosing
architectures for the accelerator. This means that in a POMDP setting, it is possible to select a
critic architecture capable of processing state sequences, thereby preventing the critic’s architectural
limitations from affecting the transformer’s fine-tuning stage.

4

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

4 EXPERIMENTS

4.1 ENVIRONMENTS AND BASELINES

We evaluate the proposed method on two types of vector-based environments: MuJoCo (Todorov
et al., 2012) (HalfCheetah, Ant, and Hopper) and ManiSkill (Tao et al., 2024) (PushCube, PullCube).
We also use POMDP MuJoCo versions of the HalCheetah, Ant and Hopper environments in order to
demonstrate the performance of the LSTM accelerator which utilizes sequential data. MuJoCo is a
physics engine designed for research and development in robotics. It is used to simulate locomotion
tasks, where agents learn to move efficiently in complex environments. ManiSkill is a simulation
environment designed for robotic manipulation tasks, focusing on dexterous manipulation, object
interaction, and task-oriented learning. In addition, we provide experiments in the POMDP version
of MuJoCo tasks with masked position information with only velocity information preserved.

In this paper, we use MLP, LSTM (Hochreiter & Schmidhuber, 1997), and Vanilla Trans-
former (Vaswani et al., 2017) baselines trained from scratch using TD3, and compare the accel-
erated transformer’s performance with the performance of the baselines. We use the MLP because
of its ease of learning and stability; it can achieve high episodic rewards on both the MuJoCo and
ManiSkill tasks we use. Similar to the transformer, the LSTM architecture processes a sequence as
input, but it is often easier to train in RL settings and is more robust to noisy or irregularly sampled
data. These considerations motivate comparing the transformer with LSTM to see whether our algo-
rithm allows us to train the transformer to achieve results comparable to those of the LSTM. Finally,
comparing the accelerated transformer with an online-trained Vanilla Transformer helps illustrate
the benefits of our approach.

All the charts in this section describe the training progress of the models in terms of evaluation
reward (for MuJoCo environments) or evaluation success rate (for ManiSkill environments). Each
progress curve also includes a standard deviation, obtained by averaging the key metric over 30 seeds
with 1 parallel environment for MuJoCo tasks, and using a single seed and 50 parallel environments
for ManiSkill tasks. All experiments are conducted on a Tesla V100 GPU with 128GB of RAM.
Additional information about the accelerators, transformers, and baseline models’ parameters, as
well as their corresponding training parameters, is available in Table 1.

4.2 RESEARCH QUESTIONS

This section is dedicated to addressing the research questions (RQ) that arose during the imple-
mentation of the proposed algorithm. Answers to these questions will help clarify the feasibility of
applying this algorithm, its advantages compared to training a transformer from scratch without the
acceleration phase, and provide insights into the nuances of tuning the training process to achieve
maximum effectiveness. Within this section, we have identified four main questions:

1. Can transformer train well on the first stage?

2. Can the transformer achieve performance comparable to MLP and LSTM baselines?

3. Does the additional gradient ascent (Algorithm 3) on the critic’s function, which can be uti-
lized during the acceleration stage, improve the quality/speed of the transformer’s training?

4. What are the other benefits of the transformer acceleration?

These questions aim to provide a comprehensive understanding of the proposed algorithm, its effec-
tiveness, and its practical implications.

RQ1. Can transformer train well on the first stage? All the figures in this section include
the evaluation reward, reflecting the training progress of the transformer and its accelerator during
the acceleration stage. According to Figure 1, the growth rate of the transformer’s performance is
comparable to the growth rate of the LSTM accelerator’s performance. In POMDP HalfCheetah
environment (left figure) the transformer is less stable than its accelerator, which aligns with the
general understanding of the process, as the transformer clones the accelerator’s behavior during
its training session, where the accelerator’s actions are distorted by Gaussian noise for exploration.
Nevertheless, this does not prevent the transformer from learning to operate in the environment. In

5

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 1: The first stage (transformer acceleration) in POMDP HalfCheetah (left) and POMDP
Hopper (right) tasks.

the POMDP Hopper environment (right figure), the transformer achieves an average reward of 1000,
while its accelerator reaches around 1500 at the peak.

Another important observation is how the transformer’s performance mirrors the rises and falls in the
accelerator’s performance. On the HalfCheetah figure, a dip in the accelerator’s performance around
the 300,000-step mark is accompanied by a similar behavior in the transformer’s performance curve.
The same pattern happens on the 600,000th step. It is clear that the first phase of acceleration is
insufficient to obtain a fully trained transformer agent, which is why our algorithm utilizes a second
phase for fine-tuning. Experiments in other environments can be found in Figure 5.

RQ2. Comparison with the baselines. In this section, we evaluate the potential of the proposed
algorithm and address whether the accelerated transformer can achieve performance comparable to
MLP and LSTM. Figure 2 shows that the accelerated transformer reaches a performance competitive
with MLP and LSTM in fewer training steps. According to the results in the HalfCheetah task
(Figure 2, left), the transformer can be fine-tuned to surpass the performance of MLP and LSTM.
Results in the PushCube task (Figure 2, right) demonstrate that it also requires significantly fewer
steps to converge and achieve the maximum success rate.

In conclusion, the results of this and the previous section demonstrate the effectiveness of the pro-
posed algorithm. Although the acceleration stage alone is insufficient to achieve peak performance,
this can be compensated for by an online fine-tuning stage, during which the transformer exhibits sta-
ble, high-quality training. You can find supplementary materials for this experiment in Appendix A.

RQ3. Can additional gradient ascent improve acceleration? The Figures in this section present
the transformer’s evaluation reward or success rate during the acceleration stage, both with and with-
out the additional ascent. According to Section 3.1, there are two ways of training the transformer
on trajectories from T : by behavior cloning only or with additional gradient ascent over the critic’s
function. In this section, we compare these two options to determine whether additional ascent can
improve acceleration. To ensure a fair comparison, we use a fixed model and RL parameters listed
in Table 1. In the experiment we investigate whether additional gradient ascent over the accelerator’s
critic improves and stabilizes training process. We use the same training data for BC loss calculation

Figure 2: Average reward in HalfCheetah (left) and success rate in PushCube (right) tasks.

6

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 3: Success rate in PullCube (left) and PushCube (right) environments.

and ascending over critic. The frequency of both procedures is the same during the whole training
process.

Figure 3 shows the transformer’s acceleration progress during the first stage, both with and without
additional gradient ascent. This technique provides a notable boost in the PullCube task, whereas in
the PushCube environment it does not enhance the acceleration process.

Although training with additional ascent sometimes yields better performance, it does not guarantee
improvement in every environment. To summarize, the use of additional gradient ascent does not
ensure an improvement in the transformer’s training. However, in some cases, it can prove benefi-
cial and provide a performance boost. Each case should be evaluated individually to determine its
effectiveness. You can find additional comparisons for this experiment in Figure 8.

RQ4. What are the other benefits of the transformer acceleration? To address this question, it
is necessary to consider the design of off-policy algorithms, which use a replay buffer for accumulat-
ing experience during the agent’s training. To maintain high-quality training and the necessary level
of exploration, it is essential to create large replay buffers, typically on the order of 1,000,000 obser-
vations (Fujimoto et al., 2018). Training the transformer on multiple environments in parallel, along
with a large context, may require significant memory to store a large replay buffer. In image-based
environments, the allocated memory increases even more due to the need to store images instead of
vectors. Thus, while online training from scratch is feasible for some environments, the proposed
offline pre-training approach offers a potential solution to manage memory constraints and improve
training efficiency, particularly in scenarios involving large-scale data and parallel environment in-
teractions.

Our proposed algorithm addresses this issue, which can be particularly advantageous for low-power
computers. Under the described transformer acceleration algorithm, the trajectory buffer T only
needs to store fresh training data corresponding to the accelerator’s current skills, eliminating the
need to initialize T with a large size. As a result, throughout the entire acceleration stage, our
memory costs for storing the trajectory buffer remain minimal. Furthermore, during the online fine-
tuning stage, the pre-trained transformer also does not require a large replay buffer. The need for
extensive environment exploration has already been satisfied during the acceleration stage, so the
replay buffer B does not need to store highly diverse experience. Consequently, the fine-tuning
process can proceed efficiently with reduced memory overhead, making the algorithm well-suited
for resource-constrained systems.

In the experiment shown in Figure 4, we ran both the accelerated and non-accelerated transformers
with varying replay buffer sizes to highlight a key advantage of our algorithm. We selected replay
buffer sizes of 10,000, 15,000 and 20,000 and trained each model with these sizes. The results
clearly show that the non-accelerated version failed to train effectively with any of the smaller buffer
sizes. In contrast, our model demonstrated effective training with small buffer sizes and only began
to slightly lose quality at the size of 15,000 and 10,000 in the Ant environment. These findings
indicate that the effective threshold for the replay buffer size lies between 20,000 and 10,000, which
is more than 50 times smaller than 1,000,000, the standard size of the buffer.

7

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 4: Comparison of the accelerated and non-accelerated transformer training performance with
B of shape 10, 15 and 20 thousands. HalfCheetah (left), Ant (middle) and Hopper (right) environ-
ments.

5 CONCLUSION

Training transformers in a fully online setting, as well as utilizing offline data for pre-training,
faces challenges such as unstable training, limited datasets, weak exploration, and state distribu-
tion shifts. Our proposed method addresses these issues, enabling more stable and effective training
of transformer-based models. It involves collecting data in an online manner while continuously
training the expert policy, thereby mitigating the problems of limited data and state distribution
shifts. The ability to dynamically adjust the expert policy’s training parameters further enables en-
vironment exploration. The two-stage design of our algorithm allows fine-tuning the accelerated
transformer in an online setting, which helps elevate the agent’s performance to a higher level.

In this paper, we successfully tested the proposed algorithm on control tasks, achieving performance
comparable to MLP and LSTM baselines. However, further development is needed to adapt it to
image-based and PO environments. Additionally, we investigated the impact of additional gradient
ascent on transformer acceleration and demonstrated that, in some cases, this technique can enhance
the algorithm’s quality. We also highlighted a significant advantage of our approach: the ability
to reduce the replay buffer size by orders of magnitude, making the training of computationally
intensive models like transformers more accessible for low-resource systems.

The goal of this work is to introduce the concept of transformer acceleration rather than limit it to the
specific algorithm described here. This approach can take many forms, some of which may prove
equally or even more effective. The proposed concept has potential for further development and for
gradual refinement of the techniques used in acceleration. We hope that our work will inspire further
advances in this direction.

REFERENCES

Bryan Chan, Anson Leung, and James Bergstra. Offline-to-online reinforcement learning for image-
based grasping with scarce demonstrations. arXiv preprint arXiv:2410.14957, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Zihang Dai. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–
1780, 1997. URL https://api.semanticscholar.org/CorpusID:1915014.

8

https://api.semanticscholar.org/CorpusID:1915014

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory gym: Partially observ-
able challenges to memory-based agents in endless episodes. arXiv preprint arXiv:2309.17207,
2023.

Subhojeet Pramanik, Esraa Elelimy, Marlos C Machado, and Adam White. Recurrent linear trans-
formers. arXiv preprint arXiv:2310.15719, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/radford21a.
html.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. arXiv preprint
arXiv:2301.09816, 2023.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse-kai Chan, et al. Maniskill3: Gpu parallelized robotics simulation
and rendering for generalizable embodied ai. arXiv preprint arXiv:2410.00425, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 10 2012.
doi: 10.1109/IROS.2012.6386109.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

9

https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:34748–34761, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. pp. 27042–27059,
2022.

10

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

A APPENDIX

In Table 1 the first two columns describe MLP accelerator’s parameters that were used during ac-
celeration stage. The second two columns describe transformers parameters that were used during
fine-tune stage. Since model parameters are fixed during both stages, this table also consists of all
transformer’s parameters that were used in acceleration stage too.

Table 1: Parameters that were used during both stages (wether it was acceleration stage or trans-
former fine-tuning stage).

1ST STAGE ACCELERATOR PARAMS 2ND STAGE TRANSFORMER PARAMS

PARAMETER MANISKILL MUJOCO MANISKILL MUJOCO

γ-DISCOUNT 0.8 0.99 0.8 0.99
τ -SOFT UPDATE 0.01 0.005 0.01 0.005
POLICY NOISE 0.2 0.2 0.2 0.2
NOISE CLIP 0.5 0.5 0.5 0.5
EXPLORATION NOISE 0.1 0.1 0.1 0.1
BATCH SIZE 600 256 256 256
OPTIMIZER ADAM ADAM ADAM ADAM
LEARNING RATE 3× 10−4 3× 10−4 3× 10−4 3× 10−4

BUFFER SIZE 0.05× 106 0.5× 106 0.01× 106 0.1× 106

LEARNING STARTS 600 25000 0 0
NUM ENVS 50 1 50 1

NUM LAYERS 2 2 1 1
NUM HEADS - - 2 2
DIM MODEL - - 256 256
DIM FEEDFORWARD 256 256 512 512
DROPOUT - - 0.05 0.05
CONTEXT LEN - - 3 3

B SUPPLEMENTARY MATERIALS FOR RQ1

Figure 5: PushCube (bottom left), Hopper (bottom right) and HalfCheetah (top) acceleration
progress.

11

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 6: PickCube (left), Ant (right) acceleration progress

C SUPPLEMENTARY MATERIALS FOR RQ2

Figure 7: Online training progress. Success rate in PullCube (top) and average reward on Hopper
(bottom left) and Ant (bottom right) tasks.

12

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

D SUPPLEMENTARY MATERIALS FOR RQ3

Figure 8: Acceleration progress with and without additional ascent. Ant (top), HalfCheetah (bottom
left) and Hopper (bottom right) environments.

13

	Introduction
	Related Work
	Proposed Method
	The First Stage: Transformer Acceleration
	The Second Stage: Online Fine-Tuning

	Experiments
	Environments and Baselines
	Research Questions

	Conclusion
	Appendix
	Supplementary materials for RQ1
	Supplementary materials for RQ2
	Supplementary materials for RQ3

