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Abstract

We propose L2T, an advancement of visual instruction tuning (VIT). While VIT
equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the
current design choices for VIT often result in overfitting and shortcut learning,
potentially degrading performance. This gap arises from an overemphasis on
instruction-following abilities, while neglecting the proactive understanding of
visual information. Inspired by this, L2T adopts a simple yet effective approach by
incorporating the loss function into both the instruction and response sequences.
It seamlessly expands the training data, and regularizes the MLLMs from overly
relying on language priors. Based on this merit, L2T achieves a significant relative
improvement of up to 9% on comprehensive multimodal benchmarks, requiring
no additional training data and incurring negligible computational overhead. Sur-
prisingly, L2T attains exceptional fundamental visual capabilities, yielding up to
an 18% improvement in captioning performance, while simultaneously alleviating

hallucination in MLLMs. Github code: https://github.com/Feng-Hong/L2T.

1 Introduction

Large Language Models (LLMs) have
achieved significant progress and success.
Built on this, Multimodal LLMs (MLLMs)
have garnered substantial attention in the re-
search community. There has been a surge
in advancements based on the Visual In-
struction Tuning (VIT) [Liu et al., 2023a]
paradigm. By aligning language inputs and
visual representations through simple con-
nectors, and subsequently conducting end-
to-end fine-tuning on carefully designed
multimodal instruction data, MLLMSs [Liu
et al., 2023a, 2024a,b, Zhu et al., 2024,
Tong et al., 2024] have achieved notable
improvements across various multimodal
tasks like visual question answering and
image captioning.
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Figure 1: Performance comparison on 16 tasks be-
tween L2T and VIT using different models, including
TinyLLaVA Qwen2-0.5B [Zhou et al., 2024], LLaVA-
1.5 Vicuna-7B [Liu et al., 2024a], and LLaVA-1.5
Vicuna-13B [Liu et al., 2024a]. The pretraining phase
uses the LLaVA-pretrain-558k dataset, while the fine-
tuning phase employs the LLaVA-mix-665k dataset.
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Typically, visual instruction tuning consists of two stages: pre-training and fine-tuning [Liu et al.,
2023a, Zhu et al., 2024]. In the pre-training stage, a connector is trained to align visual and language
data. The fine-tuning phase is similar to instruction tuning in language models, where the model
is trained to generate responses based on multimodal instructions. However, recent research has
shown that instruction tuning can lead to a series of issues, such as the knowledge degradation [Ghosh
et al., 2024] and hallucinations [Rawte et al., 2023, Tonmoy et al., 2024]. Similar problems have
also been observed in models that employ visual instruction tuning [Huang et al., 2023, Leng et al.,
2024]. The potential causes may lie in overfitting and shortcut learning during instruction tuning [Sun
et al., 2024a]. Figure 2 illustrates an example of a shortcut, where the model might ignore visual
content and generate responses based solely on language priors. Current advancements [Liu et al.,
2024a,b, Bai et al., 2023b, Tong et al., 2024] in MLLMs implicitly mitigate such issues by leveraging
larger, higher-quality, and more diverse training datasets, larger models, and improved pretrained
initializations for visual and language backbones.

In this paper, we propose an orthogonal solution to improving visual instruction tuning: learning to
instruct images as a regularizer, which we refer to as Learning ~ ;==7=====~- SRR T
to InstrucT (L2T). Specifically, in addition to learning to gen- e :
erate responses to given images and instructions as usual, L2T
also learn to generate instructions for images that exclude
templates, which refer to special tokens and high-frequency,
low-information template tokens in the instructions. L2T en-
hances VIT by: (1) expanding the training content to mitigate
overfitting without explicitly enlarging the training set (Sec-
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through simple integration. (3) It shows advantages in im-
proving performance while making minimal compromises in
training and inference costs.
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Figure 2: An example where a pure
language model provides correct an-
swers based only on language pri-
ors, without relying on visual content.
This shows that learning to generate
responses alone cannot prevent the
model from taking shortcuts by ignor-
ing visual content and relying solely
on textual instructions.

2 Method

Problem Formulation. Taking LLaVA as an example, a typical model architecture comprises a
pre-trained large language model f(-) with parameters 67 with the corresponding tokenizer and
embedding layer ¢(-) (e.g., Vicuna [Peng et al., 2023]), a pre-trained visual feature extractor g(-)
with parameters 0, (e.g., CLIP-ViT-L/14 [Radford et al., 2021]), and a cross-modal connector
h(-) with parameters 6y, such as a linear layer or MLP. Let § = {f0¢,0,,6,} denote the set of
all parameters. For an image Xy and a related text instruction X, we obtain the corresponding
textual response through the following forward process. As shown in Figure 3, the image Xy
is forwarded through the visual feature extractor g and cross-modal connector i, mapping it to
visual tokens Hy = h(g(Xy)) in the language embedding space. Hy is then combined with the
language tokens H; = ¢(X;) to form a sequence, which is forwarded into LLM f for autoregressive
generation of the response sequence X 4. The goal of visual instruction tuning is to train the model
to exhibit strong multi-modal instruction-following capabilities.
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Figure 3: The model architecture using LLaVA  Fjgure 4: Tllustration of L2T. In addition to learn-

as an example, and the data flow for generating ing to generate responses like VIT, L2T also

responses from images and instructions. learns to generate instructions that exclude tem-
plates.

Visual Instruction Tuning (VIT). For a given training sample triplet (X, X, X 4)', the sequence
lengths of X; and X 4 are L and L 4, respectively. The training objective of VIT is to learn to
generate the response X 4. Specifically, it involves learning to predict each token X 4 ; in X 4, where
i€{1,2,..., L4}, based on the image Xy, the instruction X7, and the preceding response sequence
X 4,<i- The loss function £ for the training sample is formulated as the negative log-likelihood of the
response given the image and the instruction:

La
L = —logps(Xa|Xy,X;) = =Y logpg(Xai|Xv, X1, Xa,<). ey

i=1

Training is typically divided into two stages: pretraining and fine-tuning. In the pretraining stage,
only the cross-modal connector is trained to align visual features with the language embedding space.
In the fine-tuning stage, the entire model is trained end-to-end, with options to freeze the visual
feature extractor and apply LoRA [Hu et al., 2022] fine-tuning.

Learning to Instruct (L2T). Building upon VIT, we propose extending its paradigm through learning
to instruct images. Specifically, in addition to learning how to generate a response given an image
and an instruction, we also learn how to generate a meaningful instruction for a given image. For a
training sample triplet (Xy, X7, X 4), we define the loss function £ as the negative log-likelihood of
both the instruction and the response conditioned on the image:

Ly La
L= —logpe(Xr,XalXv) = = logpp(XrilXv, X1 <i) = > logpe(XailXv, X1, Xa ).
i=1 i=1
Learn to Instruct Learn to Respond

©))
By learning to generate appropriate instructions for images, L2T achieves two key benefits. 1)It
naturally expands the data the model learns to fit, helping to alleviate potential overfitting to some
extent. 2) Learning to instruct images ensures that the model focuses on the image content, effectively
preventing it from ignoring the visual input and relying solely on languages to generate responses.

Template Removal. To ensure the model learns meaningful content related to the image, we exclude
the learning of certain irrelevant parts of instructions. Such irrelevant context primarily arises from
two sources: (1) system templates and (2) task templates. Specifically, system templates refer to
the tokens used to guide the MLLMs in adopting the role of a helpful and polite Al assistant, or
as the conversational clues distinguishing whether the content is generated by the “USER” or the
“ASSISTANT”. System templates can be easily removed when it is added. Task templates refer to
tokens that indicate the task type and output format. We identify task templates by calculating the
frequency of all sentences in the entire training dataset and selecting the most frequent ones. The
detailed removed task templates can be referred to Appendix A. Note that the training data in the

"For simplicity, we use single-turn conversations as an example, which can be naturally extended to multi-turn
conversations.
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Figure 7: Cases, each including an image, an instruction, and the responses generated by the VIT and
L2T models, respectively. The models are based on LLaVA-1.5 Vicuna-7B. (Left) The VIT model
shows better OCR capabilities. (Middle) The VIT model demonstrates robustness and effectively
avoids being influenced by misleading information in the language instruction. (Right) The VIT
model provides a more comprehensive and accurate image description.

pretraining stage is constructed using image-caption pairs, with a set of template prompts serving as
instructions, which are unrelated to the image content. Therefore, we apply our method L2T only
during the end-to-end fine-tuning stage. In Figure 4, we present an illustration of L2T.

Analysis. To assess the rationality of L2T in alleviating shortcut learning in MLLMs, we conduct
experiments to gain deeper insight into which aspects of visual or instructional content are most
influential in response prediction. Specifically, we first introduce visual contribution (VC), which
quantifies the difference in the log-likelihood of the response when conditioned on both the image
and instruction, versus when conditioned solely on the instruction:

VC =log pg(Xa| Xy, X;) —log pg(Xa| Xy = 0,X;)

where Xy, = ) in the implementation denotes that the original visual input is replaced with random
noise. In this spirit, VC captures the relative importance of visual signals in response prediction,
isolating the contribution of visual information from any confounding effects due to the instructional
signals. Figure 5 presents the VC of L2T and VIT for both the training and testing datasets. Our
findings reveal that L2T achieves a substantial relative improvement, with a 9% increase in VC,
highlighting its effectiveness in regularizing MLLMs to better utilize visual inputs.

To further substantiate these findings, we visualize the attention weights in L2T and VIT. As shown
in Figure 6, L2T leads to stronger activation in the visual components of MLLM attention heads,
indicating more effective utilization of visual inputs. This is consistent with the VC results. More
experimental details and additional visualization results can be referred to Appendix F.

Moreover, Figure 7 presents several cases, each consisting of an image, an instruction, and the
responses generated by the VIT and L2T models, respectively. It can be observed that by learning to
instruct images, the L2T model demonstrates more precise and comprehensive image understanding,
as well as stronger robustness against misleading information in the language instructions.



3 Experiment

3.1 Setup

Model Architectures. (1) TinyLLaVA [Zhou et al., 2024]: We follow TinyLLaVA to utilize small-
scale LLMs, including Qwen-2-0.5B [Yang et al., 2024] and Phi-2-3B [Gunasekar et al., 2023]. The
SigLIP-400M [Zhai et al., 2023] is adopted as the vision encoder due to its effective performance in
combination with small-scale LLMs. The multimodal connector follows LLaVA 1.5 Liu et al. [2024a]
with a two-layer MLP and GELU activation. (2) LLaVA 1.5, LLaVA-NeXT [Liu et al., 2024b]: For
LLaVA 1.5, we use Vicuna-v1.5-7B [Peng et al., 2023] and Vicuna-v1.5-13B [Peng et al., 2023] as
the base LLMs, while for LLaVA-NeXT, Vicuna-v1.5-7B serves as the base LLM. The base vision
encoder is CLIP-ViT-L-14 [Radford et al., 2021], and the connector is a two-layer MLP.

Training Datasets. (1) Pretraining Stage: We adopt the LLaVA 1.5 framework, utilizing the LLaVA-
pretrain-558k data [Liu et al., 2024a] for all pretraining phases. (2) Finetuning Stage: For instruction
tuning, we use the LLaVA-mix-665k data [Liu et al., 2024a] on TinyLLaVA and LLaVA 1.5. For
LLaVA-NeXT, we use the LLaVA-NeXT-Data [Liu et al., 2024b], an expansion of LLaVA-mix-665k
with diverse instruction data. More details can be referred to Appendix B.2.

Implementation Details. We train all models on NVIDIA A100 GPUs, strictly following the training
recipes of TinyLLaVA, LLaVA 1.5 and LLaVA-NeXT. See Appendix B.1 for more details.

Evaluation Benchmarks. We conduct a thorough evaluation of four distinct capabilities using
16 multimodal instruction datasets. These capabilities are categorized as follows: (1) General
Visual Question Answering, assessed through VQAv2 [Goyal et al., 2017], GQA [Hudson and
Manning, 2019], ScienceQA [Lu et al., 2022], and VizWiz [Gurari et al., 2018]; (2) Comprehensive
Multimodal Benchmarks, evaluated using MME [Fu et al., 2023], MMMU [Yue et al., 2024], and
MMStar [Chen et al., 2024b]; (3) Chart, Document, and OCR Understanding, evaluated using
ChartQA [Masry et al., 2022], TextVQA [Singh et al., 2019], DocVQA [Mathew et al., 2021], and
OCR Bench [Liu et al., 2023b]; and (4) Image Captioning, assessed through COCO2017 [Lin et al.,
2014], Flickr30k [Young et al., 2014], NoCaps [Agrawal et al., 2019], RefCOCO [Kazemzadeh et al.,
2014], and TextCaps [Sidorov et al., 2020]. The performance metrics used include CIDEr [Vedantam
et al., 2015] for all captioning tasks, the perception score for MME, and accuracy for the remaining
tasks. The experiments are conducted using LMMs-Eval® [Zhang et al., 2024]. In Section 3.4, some
tasks are evaluated on the lite version, denoted as “-L".

3.2 Main Results

In Table 1, we present a comprehensive evaluation of L2T across multiple benchmarks.

General Visual Question Answering. We first evaluate several widely used VQA benchmarks,
including the most prominent VQAv2 benchmark and the visual reasoning-oriented GQA. We also
assess VizWiz, which requires predicting unanswerable questions, and ScienceQA, which covers a
diverse range of scientific topics. Our results demonstrate that our proposed L2T achieves competitive
VQA performance when compared to VIT.

Comprehensive Multimodal Benchmarks. We evaluate the multi-discipline multimodal understand-
ing and reasoning capabilities of our L2T through MME, MMMU and MMStar benchmarks. These
benchmarks span a wide range of disciplines, including Art & Design, Business, Science, Health &
Medicine, Humanities & Social Sciences, Technology & Engineering, and encompass diverse tasks
such as object presence, counting, spatial reasoning, commonsense inference, numerical computation,
and code reasoning. Our results demonstrate that L2T consistently outperforms VIT, achieving an
average relative improvement of up to 3.7%. This underscores the effectiveness of L2T in enhancing
performance across diverse multimodal applications.

Chart, Document, and OCR Understanding. We include a diverse set of OCR-related datasets to
evaluate the performance of models in locating, extracting and interpreting text from various data
visualizations, including charts, diagrams, documents, and natural images, in order to accurately
address the associated questions. The results indicate that our L2T significantly outperforms VIT
across all OCR-related benchmarks, yielding an average relative improvement of 6.3%. This high-

2https://github.com/EvolvingLMMs-Lab/Imms-eval/
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Table 1: Performance comparison of VIT and L2T across 16 representative multimodal bench-
marks. The benchmarks span four categories: General VQA, multi-discipline benchmarks,
Chart/Document/OCR understanding, and image captioning. We report the average relative im-
provement for each category, along with the overall relative improvement across all benchmarks.
“LLaVA-NeXT’s training script is not fully open-sourced; our implementation may differ slightly.

Visual Instruction Tuning (VIT) Learning to Instruct (L2T)

Benchmark TinyLLaVA TinyLLaVA LLaVA-1.5 LLaVA-1.5 LLaVA-NeXT* TinyLLaVA TinyLLaVA LLaVA-1.5 LLaVA-1.5 LLaVA-NeXT"

Qwen-2-0.5B Phi-2-3B Vicuna-7B Vicuna-13B Vicuna-7B Qwen-2-0.5B Phi-2-3B Vicuna-7B Vicuna-13B Vicuna-7B
VQAvV2 72.31 77.32 76.64 78.26 80.07 72.35 77.48 77.35 78.70 80.62
GQA 57.48 61.46 61.97 63.25 64.24 56.89 61.12 62.32 63.91 62.54
ScienceQA 58.55 71.78 69.46 71.39 70.10 59.89 71.00 68.96 71.34 70.60
VizWiz 36.21 40.46 54.39 56.53 55.60 37.84 41.85 55.56 56.02 58.66
Average - - - - - +1.5% +0.5% +0.7% +0.2% +1.1%
MME 1189.99 1475.51 1508.26 1522.60 1477.28 1175.24 1431.12 1531.37 1533.63 1556.44
MMMU 29.67 36.67 36.33 34.33 36.11 32.33 37.89 37.11 34.89 35.56
MMStar 34.93 36.07 33.65 36.12 37.26 36.14 36.44 34.63 36.66 38.98
Average - - - - - +3.7% +0.4% +2.2% +1.3% +2.8%
ChartQA 13.28 16.48 18.24 17.92 54.88 13.80 17.20 18.96 20.44 66.80
TextVQA 44.48 52.10 46.09 48.73 64.82 45.12 52.35 47.58 50.24 65.06
DocVQA 2232 28.46 21.43 23.49 68.49 24.60 30.74 23.99 25.59 72.52
OCR Bench 26.50 34.50 31.30 33.30 52.00 27.20 35.40 32.30 36.20 55.80
Average - - - - - +4.6% +3.9% +5.6% +8.7% +8.8%
C0OCO02017 97.85 100.82 110.38 115.20 99.96 100.37 102.61 112.96 114.46 139.21
Flickr30k 64.50 76.00 74.85 79.45 68.46 66.09 78.34 77.64 81.45 75.26
NoCaps 92.02 101.13 105.54 109.15 88.35 93.08 103.60 108.09 110.02 114.10
RefCOCO 17.50 30.59 29.76 34.22 33.82 27.55 52.98 42.24 56.16 35.36
TextCaps 95.80 105.79 98.15 103.71 70.40 94.99 105.36 105.14 107.58 74.03
Average - - - - - +12.6%  +16.0% +11.5% +141% +17.6%
Overall - - - - - | +6.1% +6.2% +5.6% +6.9% +8.5%

lights the effectiveness of the proposed L2T in extracting fine-grained visual information. This can be
attributed to the fact that our L2T encourages the proactive generation of instructions. In OCR-related
datasets like TextVQA, the instructions require predicting “Reference OCR token" that captures the
informative textual content within the image. This necessitates a more comprehensive understanding
of the low-level information embedded in the images, thus enhancing OCR capabilities.

Image Captioning. We assess image-captioning, a representative image-text task widely used as a
pretraining task for MLLMs. Our analysis includes classical captioning datasets such as COC0O2017
and Flickr30k, along with more specialized datasets such as TextCaps, which involves fine-grained
textual content description, and NoCaps, which represents out-of-domain scenarios. The results
demonstrate that L2T achieves the most substantial performance improvement over VIT on captioning
datasets, among the various capabilities evaluated, with an average relative improvement of up to
17.6%. The reasons are two-fold: (1) L2T motivates a more comprehensive understanding of the
images, which guarantees the generation of accurate descriptions, and (2) L2T alleviates the negative
effects of overfitting on instruction-following abilities, preserving more of the captioning skills
acquired during the pretraining stage.

Finding. L2T consistently outperforms VIT across all benchmarks, achieving an average relative
improvement of up to 8.5%. The most significant gains are observed in OCR-related and captioning
datasets, with improvements of up to 8.8% and 17.6%. This suggests that L2T excels at regularizing
MLLMs to pay more attention to visual input and strengthening their fundamental visual capabilities.

3.3 Hallucination Evaluation

In this section, we evaluate the effectiveness of L2T in mitigating hallucinations, as shown in Table 2.



Table 2: Hallucination evaluation results. We present the average accuracy computed across ad-
versarial, popular and random splits of POPE, along with per-instance CHAIR; and per-sentence
CHAIR; (J) on COCO2014, with superscript G as the greedy strategy and superscript B as beam
search. Additionally, we report the Question Pair Accuracy (qAcc), Figure Accuracy (f Acc) and All
Accuracy (aAcc) for Hallusion Bench, along with the GPT score and hallucination rate on MMHAL-
Bench. Best results are highlighted in bold. Experiments are based on LLaVA-1.5 Vicuna-7B.

Dataset POPE COC02014 HallusionBench

Metric  Adv. Pop. Random CHAIRS (|) CHAIRY (J) CHAIR® (J) CHAIR? () qAce fAcc  aAcc
VIT 85.17 87.30 88.47 48.60 13.40 53.40 14.90 10.33 1936 43.85
L2T 85.60 87.90 88.47 46.20 11.80 51.40 13.10 10.77 1936 44.90

Dataset MMHAL-Bench

Metric  Score Hal. Rate (J) Attribute  Adversarial ~Comparison Counting Relation Environment Holistic ~ Other
VIT 1.73 0.68 3.00 1.25 1.58 2.50 1.17 2.08 1.00 1.25
L2T 2.36 0.53 3.08 1.67 2.92 1.92 2.25 333 1.92 1.83

Results on POPE. POPE [Li et al., 2023b] is the most commonly used benchmark for object
hallucination. It consists of “Yes or No" questions to evaluate the MLLMs’ capability to determine
whether the given object is in the image. We report accuracies based on questions derived from
adeversarial, popular and random sampling. L2T outperforms VIT in both adversarial and popular
sampling settings, showcasing the effectiveness of L2T in reducing object hallucinations.

Results on CHAIR Evaluation. In addition to the discriminative evaluations on POPE, we utilize the
CHAIR metric [Rohrbach et al., 2018] as a complementary approach to evaluate object hallucination
in image captioning tasks. Specifically, CHAIR quantifies the proportion of objects referenced
in an image caption that are absent from the corresponding ground-truth label set. As shown in
Table 2, our L2T consistently outperforms VIT, achieving improvements of 2.2% and 1.7% in terms
of the CHAIR; and CHAIR; metric, respectively. This further demonstrates that our L2T effectively
regularize MLLMs, reducing the generation of plausible but visually irrelevant contents.

Results on MMHAL-Bench. CHAIR mainly focuses on object hallucination by evaluating the pres-
ence of objects. To provide a more fine-grained assessment, we further adopt MMHAL-Bench [Sun
et al., 2024b] to evaluate a broader range of hallucination types. For evaluating the quality of the gen-
erated content, we leverage GPT-4 to compute the GPT score and hallucination rate for comparison.
The results demonstrate that L2T significantly outperforms VIT by 36% in average score and 22% in
hallucination rate. Moreover, L2T consistently outperforms VIT across various hallucination types,
with notable improvements in adversarial, comparison, relation, environment, and holistic settings.

Results on HallusionBench. To further improve the comprehensiveness of hallucination evaluation,
we use HallusionBench [Guan et al., 2024] to include more scenarios with various disciplines, image
types and input modalities. We report Question Pair Accuracy (qAcc), Figure Accuracy (f Acc) and
All Accuracy (aAcc) based on GPT-4 for comparison. The results demonstrate that L2T outperforms
VIT, with improvements of 0.44% and 1.05% in terms of g Acc and a Acc, respectively, highlighting
its effectiveness in mitigating a wider range of failure modes in multimodal hallucinations.

3.4 Further Analysis

Mitigate Overfitting from the Loss Perspective. In Figure 8, we present the loss distributions of
our L2T and VIT on the training dataset (VQAv2) and test datasets (DocVQA and NoCaps). The
cross-entropy loss is calculated specifically for the response component, excluding the instruction
part, even for L2T. The results reveal that L2T exhibits slightly higher loss than VIT on the training
data but achieves lower loss on unseen test data. This clearly demonstrates that our method, by
learning to instruct images as a regularizer, effectively avoids overfitting on the training data and
exhibits superior generalization performance.

Ablation on the Scale of Instruction Data. To investigate the impact of different data volumes during
the instruction tuning phase on L2T, we present the performance of both the baseline VIT and L2T at
40%, 60%, 80% data levels in Figure 9(a). Note that we use the same scale for the axes of both radar
charts. It can be observed that, at the same data scale, L2T significantly outperforms VIT. Specifically,
from 40% to 80% instruction data, our method shows an average performance improvement over VIT
across the eight metrics in Figure 9(a) by 5.9%, 13.0%, and 9.3%, respectively. The performance
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Figure 8: (a) Training loss distribution of L2T and ~ Figure 9: Ablation on (a) instruction data scale
VIT on VQAV2. (b) Testing loss distribution of ~and (b) pretraining data scale. The figure shows
L2T and VIT on DocVQA. The standard cross- the performance of L2T and VIT using 40%,
entropy loss is calculated for the response part. 60%, 80%, and 100% of the data, with another

Experiments are based on TinyLLaVA Qwen2- stage using the full dataset. Experiments are
0.5B. based on TinyLLaVA Qwen2-0.5B.

Table 4: Ablations on template removal. The table shows the performance of VIT, which learns to
respond on X 4, and L2T, which learns to instruct using variants of progressively removing system
template X7 and task template X7 Here, X I\S’T refers to the instructions excluding both the system
and task templates. Experiments are based on TinyLLaVA Qwen2-0.5B.

Method Benchmark A
x5 XT XS5 X4 VQAV2-L VizWizL MMMU MMStar ChartQA OCR Bench Flickr30k-L ~ RefCOCO-L
I 1 1
v 64.02 29.90 2967  34.93 13.28 26.50 70.28 14.81
v NV 65.06 28.96 3111 34.57 14.48 26.90 73.79 19.76 +6%
v v v 65.26 29.52 3122 3585 13.76 27.40 7421 21.97 +9%
v v 66.34 29.74 3233 36.14 13.80 27.20 74.30 23.11 +11%

improvements suggest that our method benefits from increasing data volume, highlighting its potential
for continuous improvement within the research trend of expanding data scaling laws.

Ablation on the Scale of Pretraining Data. We also investigate the impact of data volumes during
the pretraining phase on L2T, with the results shown in Figure 9(b). L2T demonstrates a clear
advantage over the baseline at the same data scale. From 40% to 80% pretraining data, the average
improvements are 10.9%, 8.7%, and 8.5%, respectively. Interestingly, the performance with 80%
pretraining data even surpasses that with 100% pretraining data. This “less-is-more" [Zhou et al.,
2023] phenomenon highlights the complexity of how pretraining data impacts final performance.

Ablation on Types of instruction
data. We selected different types of
data from the full dataset (mixed with
10% of other types of data), includ-
ing QA data, GPT-generated data, se-

Table 3: Performance comparison of VIT and L2T when
using a single data type as the primary training data, includ-
ing Choice, Grounding, GPT-generated, Captioning, and QA
data. Experiments are based on TinyLLaVA Qwen2-0.5B.

lection data, grounding data, and cap- Data  Method VQAv2-L MMMU ChartQA RefCOCO-L A
tioning data.We conduct instruction Choice Xg 2(2)-;8 ;}gg }%gg ;0-‘3‘2 2
tuning using each of these data types, . . . > R
and the results are presented in Ta- Grounding Yo% 3310 3376 1132 2501 p

. L2T 52.62 3211 1132 2651 +0%
ble 3. It can be observed that the im-

VIT 53.90 3111 11.60 8.42 -
provements of our method vary con-  GPTgen  yh)r 55716 3178 1168 1134 +10%
51df:rably across dlff.eren.t data types, coom VI YTRT) 044 1152 16,02 B
which we attribute primarily to the dif- aptioning y »p 47.46 3111 12.00 16.85 +5%
ferenges in instructioq quality. The 'in- oA VIT 63.26 31.00 1184 16.94 _
structions for grounding data consist L2T 62.28 33.00 1236 29.69 +21%

only of fixed templates and almost ran-

dom bounding box coordinates, making it difficult for the model to gain improvements from learning
such instructions. In contrast, the instructions for QA data contain a wealth of information related to
the image content, which enables our method to provide a significant improvement.

Ablation on Template Removal. To gain more insights, we conduct experiments to assess the impact
of removing each prompt template from the instructions, as shown in Table 4. Four experimental
setups are considered: (1) the baseline method, which learns only the answer component; (2) the



Table 6: Performance comparison on VLM baseline Prism-7B. L2T yields consistent improvements
across diverse benchmarks, highlighting its general effectiveness.

Task GQA VizWiz TextVQA RefCOCO RefCOCO+ RefCOCOg POPE VSR AI2D
VIT Prism-7B 61.92  55.36 52.80 56.70 50.70 52.70 88.00 53.20 55.50
L2T Prism-7B  62.62  57.75 55.60 66.00 58.90 62.00 88.50 61.70 57.10

straightforward method, which learns both the full set of instructions and answers; (3) the method
that learns the instructions excluding system and format messages (USER/ASSISTANT tokens),
while still learning the answers; and (4) the method that learns the instructions without system/format
messages and task-specific prompts, while learning the answers as well. The results indicate that
progressively removing task-irrelevant template tokens enhances the overall performance of L2T,
preventing MLLMs from overfitting to redundant template tokens.

Computational Analysis. To validate the computa-

tional efficiency of L2T, we conduct experiments on 04) EE 12T

finetuning LLaVA-1.5 Vicuna-7B using instructional m—

data with varying instruction-to-response length ra- 03

tios (L;/L 4), ranging from 0.05 to 20. The data are %

sampled from the training set. We report the average %2

number of samples per second and the average num- |

ber of steps per second (averaged over 100 training

steps). Figure 10 demonstrates that L2T achieves 0008 o : 0 2
an average of 0.331 = 0.005 steps per second, while Instruction-to-response Length Ratios

VIT achieves 0.334 £ 0.005. Our L2T incur only a
negligible computational overhead of less than 1%.
Detailed results can be referred to Table 11 in the
Appendix E.

Figure 10: Computational cost across dif-
ferent L;/L4. Experiments are based on
LLaVA-1.5 Vicuna-7B.

Evaluation on another VLM baseline Prism-7B. To further verify the generalizability of L2T,
we conduct additional experiments on another robust vision-language model (VLM) baseline,
Prism [Karamcheti et al., 2024], which surpasses LLaVA-1.5 by incorporating optimized train-
ing strategies, advanced image preprocessing, and fused visual backbones such as SigLIP and
DiNOv2. We apply L2T to Prism-DINOSigLIP-Controlled-7B and compare it with the standard
VIT-style Prism baseline across diverse benchmarks, including visual question answering (GQA,
VizWiz, TextVQA), localization (RefCOCO, RefCOCO+, RefCOCOQg), and challenging reasoning
tasks (POPE, VSR, AI2D). As shown in Table 6, L2T consistently improves performance across all
benchmarks, demonstrating its effectiveness and broad applicability.

Effect on Textual Understanding.
To examine whether L2T compro- Table 5: Performance comparison on text-only benchmarks.

mises language proficiency by altering L2T maintains comparable or improved performance, indi-
the SFT data composition, we eval- cating no degradation in core language ability.

uate the model on several text-only Benchmark MTBench WildBench MMLU AGIEval
benchmarks, including MT-Bench,  virrLrava157B 535 -9.40 4957  32.62
WildBench, MMLU, and AGIEval. LiT LLaVA1.5-7B 5.49 -6.27 49.18 32.49

We use the LLaVA-1.5 Vicuna-7B
model as the baseline and apply L2T under identical training configurations. As shown in Ta-
ble 5, L2T achieves comparable results to the baseline on MT-Bench, MMLU, and AGIEval, while
notably improving WildBench performance. These results indicate that learning to instruct functions
as a synergistic regularization rather than a disruptive modification, enhancing visual grounding
without compromising the model’s core text comprehension capabilities.

Exploring the potential of L2T for self-improving instruction tuning. To illustrate the broader
potential of L2T, we conduct a pilot exploration where the model leverages its own generation
capability to enhance itself. Starting from a L2T model pretrained on a 100k subset of the LLaVA-mix-
665k dataset, we prompt it with image-only inputs to automatically produce 100k instruction-response
pairs. These self-generated samples are then merged with the original training data for continued
fine-tuning. As shown in Table 7, this simple self-bootstrapping process leads to consistent gains
across multiple benchmarks. The results highlight L2T’s potential to evolve through its own generated
supervision, paving the way toward self-improving vision—language models.



Table 7: Exploring the potential of L2T for self-improving instruction tuning. Incorporating 100k
model-generated instruction-response pairs improves performance across diverse benchmarks.

Benchmark VQAvV2-L VizWiz-L. MMMU MMSTAR ChartQA OCR Bench Flickr30k-L RefCOCO-L
L2T TinyLLaVA-0.5B 56.68 23.20 31.78 33.46 11.96 23.40 68.55 17.42
L2T TinyLLaVA-0.5B w/ generated data 60.80 24.22 32.33 34.75 12.44 24.50 68.32 24.53

4 Related Work

Visual Instruction Tuning. Recent advances in multimodal learning [Radford et al., 2021, Zhou
et al., 2025, Zhao et al., 2025, Liu et al., 2025] have greatly enhanced the integration of visual and
linguistic understanding. Building upon these foundations, the concept of Visual Instruction Tuning
was first introduced in LLaVA [Liu et al., 2023a] and MiniGPT-4 [Zhu et al., 2024], aiming to unify
the understanding of vision and language by leveraging pre-trained visual and language models.
Common system architectures typically consist of (1) a pre-trained visual model for encoding visual
features, (2) a pre-trained large language model for interpreting images and user instructions and
generating responses, and (3) a cross-modal connector for aligning visual features with the language
model’s input. Visual resamplers, such as Qformer [Li et al., 2023a], can serve as an optional module
to reduce the number of visual patches [Bai et al., 2023a, Dai et al., 2023]. LLaVA-NeXT [Liu et al.,
2024b] significantly enhances visual perception by using dynamic visual resolutions. DEEM [Luo
et al., 2024] replaces the traditional visual encoder with a diffusion model, further enhancing visual
perception. Cambrain-1 [Tong et al., 2024] improves visual robustness through visual encoder routing,
but it also introduces higher training overhead.

(Language) Instruction Tuning. Instruction tuning has emerged as a critical approach in aligning
large language models (LLMs) with specific tasks or domains. By fine-tuning language models on
datasets composed of task instructions and corresponding responses, this approach has demonstrated
its effectiveness in enhancing generalization to unseen tasks, as evidenced by models like Instruct-
GPT [Ouyang et al., 2022] and Flan-PaLLM [Chung et al., 2024]. Early explorations of instruction
tuning achieved notable success using human-written completions [Bai et al., 2022, Ouyang et al.,
2022, Wei et al., 2022]. Recent studies [Wang et al., 2023, Honovich et al., 2023] have expanded on
this by exploring how content generated by large language models can be used to construct instruction
tuning datasets, further enhancing model capabilities.

The most relevant recent work to ours is IM [Shi et al., 2024], which incorporates loss over instructions
during the instruction tuning process of language models. However, our work differs significantly
in the following key aspects: 1. Scope: Our work focuses on MLLMs, whereas IM is on language
models. 2. Motivation: Our primary motivation is to encourage the model to pay greater attention
to visual information and avoid shortcut learning based solely on textual cues. In contrast, IM is
primarily aimed at mitigating overfitting. 3. Methodological Differences: We employ an automated
approach to filter out the impact of frequently occurring template instructions (see ablation study in
Table 4), whereas IM only filters a limited set of special tokens, such as “<|user|>". 4. Scalability:
We validate the effectiveness of L2T on a large-scale dataset of nearly 1M samples, whereas IM’s
evaluation is limited to much smaller datasets, showing performance saturation at just 13k samples.

5 Conclusion

In this paper, we propose L2T, which enhances multimodal capabilities by learning to instruct
images as a regularizer, rather than focusing only on learning to respond. This enables L2T to
seamlessly expand the training data, reducing overfitting and proactively guiding the model to learn
visual inputs more effectively, thereby avoiding shortcuts. Experimental results demonstrate the
effectiveness of L2T across 16 multimodal tasks, highlighting its superior performance on OCR and
image captioning tasks by placing greater emphasis on visual content. Furthermore, L2T significantly
improves hallucination mitigation. It is also worth noting that our method is orthogonal to existing
advancements in MLLMs and can be easily integrated into these methods with minimal compromises
on computational costs. We believe that L2T has the potential to evolve the general VIT framework by
mitigating overfitting, enhancing data efficiency, and promoting improved generalization in MLLMs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All statements in the abstract and introduction are aligned with the main
contribution of the paper: learning to instruct images as a regularizer for visual instruction
tuning. All claims are supported by extensive experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included the limitations of the work in Appendix H.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the details for reproducing the experimental results in Sec-
tion 3.1, including training and model details. Additionally, in Appendix B.1, we provided a
comprehensive overview of the hyperparameter configuration.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For anonymity reasons, we have not made our code public. Upon acceptance,
we will release our code on GitHub.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.
¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details, including the model architecture, implementation details,
training data, evaluation benchmarks, hyperparameters, and more, are provided in Section 3.1
and Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to limited computational resources, we did not include error bars. This
aligns with most work in visual instruction tuning, where error bars are typically omitted
due to the high cost of multiple runs.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 3.1 and Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve human participants or any risks related to privacy,
bias, or societal harm, so it fully follows the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed both potential positive societal impacts and negative societal
impacts of the work in Appendix I.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets used in our research are all existing publicly available datasets,
and this work primarily focuses on designing an improved approach of visual instruction
tuning.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code, data, and models used are properly cited. We will include the license,
copyright, and terms of use for the code asset.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Upon acceptance, we will provide a well-documented README file that
includes clear instructions, details about the code and model, and running examples to
ensure easy understanding and usage.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Removed Task Templates

In this section, we provide a comprehensive overview of the task templates removed during the
training of TinyLLaVA, LLaVA 1.5, and LLaVA-NeXT, as shown in Table 8 and Table 9. Notably,
LLaVA-NeXT-Data includes a more diverse set of instruction datasets, leading to a wider variety
of task templates. Consequently, a larger number of task templates are removed compared to those
discarded from the LLaVA-mix-665k dataset.

Table 8: Detailed removed task templates for training TinyLLaVA, LLaVA 1.5.

Task Templates

Answer the question using a single word or phrase.

Answer with the option’s letter from the given choices directly.

Provide a one-sentence caption for the provided image. Reference OCR token:
Please provide a short description for this region:

Please provide the bounding box coordinate of the region this sentence describes:

What is the title of this book?
What is the genre of this book?
What type of book is this?
Who is the author of this book?
Who wrote this book?

Table 9: Detailed removed task templates for training LLaVA-NeXT.

Task Templates

Answer the question using a single word or phrase.

Provide a short description for the given region.

Answer with the option’s letter from the given choices directly.

OCR this image section by section, from top to bottom, and left to right.
If a word is split due to a line break in the image, use a space instead.

‘Who is the author of this book?

Provide a one-sentence caption for the provided image.

‘What is the genre of this book?

Are the values in the chart presented in a percentage scale?

Which group has the smallest summed value?

Is this book related to?

What is the label of the second bar from the left in each group?

Which group of bars contains the smallest valued individual bar in the whole chart?
Which group of bars contains the largest valued individual bar in the whole chart?
How many bars are there?

‘What is the value of the largest bar?

Does the chart contain any negative values?

‘Which algorithm has the smallest accuracy summed across all the datasets?
‘What is the label of the second group of bars from the left?

‘Which object is preferred by the most number of people summed across all the categories?
‘What is the label of the first group of bars from the left?

Which object is the most preferred?

Which item sold the most number of units summed across all the stores?
What is the label of the second bar from the left?

How many groups of bars are there?

Which algorithm has the lowest accuracy?

‘Which algorithm has the highest accuracy?

‘Which algorithm has highest accuracy for any dataset?

‘Which algorithm has lowest accuracy for any dataset?

‘Which object is the most preferred in any category?

‘What is the label of the second bar from the bottom in each group?

‘What is the difference between most and least preferred object?

How much more accurate is the most accurate algorithm compared to the least accurate algorithm?

Which item sold the least units?

How many people prefer the most preferred object?

How many units of the most sold item were sold?

How many units did the best selling item sell in the whole chart?
‘Which item sold the least units in any shop?

How many people like the least preferred object in the whole chart?
‘What is the label of the third bar from the left in each group?

‘What is the label of the first group of bars from the bottom?

‘What is the label of the second group of bars from the bottom?
‘What is the label of the first bar from the bottom?

Answer the question with GPT-T-COCO format.

What is the title of this book?

Provide the bounding box coordinates of the region that the given sentence describes.
Do not insert line breaks in the output text.

What type of book is this?

Describe this image in detail with GPT-T-COCO format.

Provide the requested information directly.

Answer the question with a single word.

Is each bar a single solid color without patterns?

Which group has the largest summed value?

Does the chart contain ked bars?

What is the label of the first bar from the left in each group?

What is the value of the smallest individual bar in the whole chart?

What is the value of the largest individual bar in the whole chart?

Which bar has the largest value?

Which bar has the smallest value?

Are the values in the chart presented in a logarithmic scale?

‘Which algorithm has the largest accuracy summed across all the datasets?

Which object is preferred by the least number of people summed across all the categories?
What is the setting of the image?

Which item sold the least number of units summed across all the stores?

What is the label of the first bar from the left?

How many bars are there per group?

Which object is the least preferred?

Which object is the least preferred in any category?

What is the accuracy of the algorithm with lowest accuracy?

What is the accuracy of the algorithm with highest accuracy?

‘What is the highest accuracy reported in the whole chart?

What is the lowest accuracy reported in the whole chart?

What is the label of the third group of bars from the left?

‘What is the label of the first bar from the bottom in e:
What is the difference between the largest and the smal
What is the label of the third bar from the left?
How many units of the least sold item were sold?
Which item sold the most units?

Which item sold the most units in any shop?

How many people prefer the least preferred object?
How many units did the worst selling item sell in the whole chart?

How many people like the most preferred object in the whole chart?

What is the label of the fourth group of bars from the left?

How many more of the most sold item were sold compared to the least sold item?
What is the label of the second bar from the bottom?

What is the label of the third group of bars from the bottom?

group?
st value in the chart?

B More Details on Experimental Setup

B.1 More Details on Hyperparameter

Detailed hyperparameters for training TinyLLaVA, LLaVA 1.5 and LLaVA-NeXT are shown in
Table 10. For TinyLLaVA and LLaVA 1.5, pretraining is conducted with a learning rate of le-3
and a batch size of 256, while finetuning uses a learning rate of 2e-5 and a batch size of 128. For
LLaVA-NeXT, pretraining uses a learning rate of 1e-3 and a batch size of 128, with finetuning using
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a learning rate of le-5 and a batch size of 32. All experiments use the AdamW optimizer [Loshchilov
and Hutter, 2019] and a cosine decay schedule with a warm up ratio of 0.03. During pretraining
phase, only the multimodal connector is trained. In finetuning, TinyLLaVA and LLaVA 1.5 jointly
train the connector and language model, while LLaVA-NeXT trains all parameters, including the
vision encoder.

Table 10: Training Hyperparameters for TinyLLaVA, LLaVA 1.5 and LLaVA-NeXT.

H TinyLLaVA & LLaVA 1.5 LLaVA-NeXT
yperparameter

Pretrain Finetune Pretrain Finetune
Learning rate (LR) le-3 2e-5 le-3 le-5
LR warmup ratio 0.03 0.03 0.03 0.03
Batch size 256 128 128 32
LR schedule cosine decay cosine decay cosine decay cosine decay
Epoch 1 1 1 1
Optimizer AdamW AdamW AdamW AdamW
Trainable parameters MLP MLP, LLM MLP Vision enc., MLP, LLM

B.2 More Details on Training Data

In the finetuning stage of instruction tuning, we use the LLaVA-mix-665k data [Liu et al., 2024a]
on TinyLLaVA and LLaVA 1.5, which incorporates a diverse set of instruction-following datasets,
including free conversational data (LLaVA-Instruct [Liu et al., 2023a]), visual question answer-
ing (VQAV2 [Goyal et al., 2017], GQA [Hudson and Manning, 2019], OKVQA [Marino et al.,
2019], A-OKVQA [Schwenk et al., 2022]), OCR and captioning (OCRVQA [Mishra et al., 2019],
TextCaps [Sidorov et al., 2020]), and visual grounding (RefCOCO [Kazemzadeh et al., 2014], VG [Kr-
ishna et al., 2017]). For LLaVA-NeXT, we use the LLaVA-NeXT-Data [Liu et al., 2024b], which
extends the LLaVA-mix-665k [Liu et al., 2024a] dataset with high-quality user instruction data from
LAION-GPT-V, ShareGPT-4V [Chen et al., 2024a], and LLaVA-demo [Liu et al., 2023a], as well
as OCR, document, and chart data from DocVQA [Mathew et al., 2021], SynDog-EN [Kim et al.,
2022], ChartQA [Masry et al., 2022], DVQA [Kafle et al., 2018], and AI2D [Kembhavi et al., 2016].

C More Details on CHAIR Evaluation

As mention in Section 3.3, we utilize the CHAIR metric to evaluate object hallucination in image
captioning tasks. The metric assesses object hallucinations through two dimensions: per-instance
CHAIR; and per-sentence CHAIR;. The former measures the fraction of object instances that
are hallucinated, while the latter determines the proportion of sentences that contain at least one
hallucinated object. Definitions of these two metrics are formally provided:

CHAIR, — [{hallucinated objects}|
" |{all objects mentioned}|’

|{sentences with hallucinated object}|

CHAIR; =
‘ |{ all sentences}|

We follow [Huang et al., 2023] to perform the CHAIR evaluation on the COCO2014 dataset. Specifi-
cally, we randomly select 500 images in the validation set. The decoding process uses the greedy
strategy and the Beam search with Npeqy, = 5, with a maximum of 512 tokens for new content
generated.

D More Cases

More cases of our L2T compared to VIT are shown in Figure 11. Our L2T consistently outperforms
VIT across a range of scenarios, including OCR, image captioning, and hallucination mitigation.
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Instruction: i
What is written in the image?
VIT Model:

The image features cursive
writing, which appears to be
a signature or a handwritten
message.

L2T Model:

The image features a
handwritten word "centre"
\, written in cursive. VAN

S,
"\

Instruction: \
Context: Scarlet macaws live in the forests of Central
and South America. They eat large seeds and nuts.

The shape of its beak is adapted to crack open large,
hard nuts. Which bird's beak is also adapted to crack
large, hard nuts?

A. African gray parrot  B. White-tipped sicklebill
Answer with the option's letter from the given choices
directly.

VIT Model: B
L2T Model: A /

Instruction: Y
Provide a one-sentence
caption for the provided

. image.

VIT Model

7 Amanis pulling a large

pipe on a trailer.

L2T Model:

Two men are standing next

to a truck with a long tube

Instruction:

Which color flowers are on top, and which color
flowers are on the bottom?

VIT Model:

The white flowers are on the top, and the blue
flowers are on the bottom.

L2T Model:

The blue flowers are on top, and the white flowers

are on the bottom.

P A /
‘\\ on it. N S
e Instruction: \\
/

In the picture, which buttons should | use to control the stove above?

VIT Model:

The buttons on the silver stove to the left of the white countertops should be used to control
the stove. There are a total of 22 buttons in various positions on the front of the stove, so pay
attention to the ones that correspond to your needs and use them accordingly.

L2T Model:

In the image, the stove is a modern, digital stove with a control panel. To control the stove, you
should use the buttons on the control panel. These buttons are likely to be used for adjusting
the temperature, timer settings, and other functions of the stove. The control panel is typically
\ located on the front or side of the stove, and it allows you to operate the stove safely and /
.. efficiently. 7

Figure 11: More cases of L2T and VIT across OCR, image captioning, and hallucination mitigation
tasks.

E Computational Cost

Table 11 presents the computational cost of VIT and L2T across different instruction-to-response
length ratios. The experiments are conducted on 8 NVIDIA A100 GPUs.

Table 11: Computational cost of VIT and L2T across different instruction-to-response length ratios.
We report the number of samples per batch and steps per batch. Experiments are based on LLaVA-1.5
Vicuna-7B.

Q/A Ratio 0.05 0.1 1 10 20
Metric sample/s step/s sample/s step/s sample/s step/s sample/s step/s sample/s step/s
VIT 2.617 0.327 2,692  0.337 2.645 0.331 2.708 0339  2.678 0.335
L2T 2640 0330  2.623 0.328 2676 0334 2613 0.327 2.708 0.338

F Visualization of Attention Heads

Recent observations [Orgad et al., 2025, Shen et al., 2025] show that the hidden activation of the
token preceding the answer (the colon *“:”, in the prompt “ASSISTANT:”) encodes more information
than the output logits. Inspired by this, we select this token’s hidden activation for visualization.
Specifically, we visualize 14 attention heads from the last layer of a 24-layer transformer during
inference, focusing on their activation across input tokens, particularly image tokens, to compare
VIT and L2T. Data samples are randomly selected from VQAv2 [Goyal et al., 2017], GQA [Hudson
and Manning, 2019] and OKVQA [Marino et al., 2019]. Detailed information about the selected
examples is provided in Table 12, and the visualizations of the corresponding attention heads are
presented in Figure 6 and Figure 12.
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Table 12: Examples for visualization of attention heads.

Prompt Image Visualization

A chat between a curious user and an ar- § !
tificial intelligence assistant. The assistant
gives helpful, detailed, and polite answers to
the user’s questions. USER: <image>\nOn
which side of the photo is the faucet, the right
or the left?\nAnswer the question using a sin-
gle word or phrase. ASSISTANT:

Figure 6

A chat between a curious user and an artifi-
cial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
user’s questions. USER: <image>\nls the car
to the left or to the right of the man?\nAnswer
the question using a single word or phrase.
ASSISTANT:

Figures 12(a) and 12(b)

A chat between a curious user and an artifi-
cial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
user’s questions. USER: <image>\nWhere
these red vegetables imported to the us or
exported from the us?\nAnswer the question
using a single word or phrase. ASSISTANT:

Figures 12(c) and 12(d)

A chat between a curious user and an ar-
tificial intelligence assistant. The assistant
gives helpful, detailed, and polite answers to
the user’s questions. USER: <image>\nIn
which knee is the hole in the women’s
pants?\nAnswer the question using a single
word or phrase. ASSISTANT:

Figures 12(e) and 12(f)

G Discussion on the Scope of This Work

Recent vision—language models (VLMs) often struggle with challenges such as hallucination and
shortcut learning, which can limit their reliability and generalization. Addressing these issues requires
careful consideration of the interactions between different training stages, including Supervised
Fine-Tuning (SFT), rule-based Reinforcement Learning (RL), and Reinforcement Learning from
Human Feedback (RLHF).

Our work focuses on improving the foundational SFT stage. We posit that the quality of early
instruction tuning directly influences the effectiveness and safety of subsequent alignment. Indeed,
recent studies indicate that applying RL or RLHF on models already prone to hallucination or shortcut
learning can reinforce these issues, leading to confidently incorrect outputs.

L2T addresses this problem at its root by reducing shortcut learning and enhancing visual grounding
during SFT. A stronger SFT foundation provides a more reliable base for RLHF, enabling safer
and more effective alignment. While recent work has emphasized RL and reward modeling as
post-training interventions, foundational flaws in SFT can persist or even intensify during alignment.
Thus, improving early-stage instruction tuning serves as a preventive measure rather than relying
solely on corrective post-training methods.

Overall, this perspective highlights the broader impact of L2T: by enhancing the base model during
SFT, it facilitates downstream alignment and helps define the scope of our contribution in enabling
safer and more generalizable multimodal training strategies.
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(e) Case 3: Attention weights in VIT. (f) Case 3: Attention weights in L2T.
Figure 12: Visualization of attention weights in VIT and L2T for additional cases. Darker colors
indicate higher attention weights. Experiments are based on TinyLLaVA Qwen2-0.5B.

H Limitations

Despite the promising capabilities underscored by L2T, several limitations must be acknowledged.
First, the performance improvements achieved by L2T mainly stem from the informative instruction
content that aids in better understanding visual inputs. In contrast, redundant instruction content, such
as system or task templates, do not contribute to performance gains, as they lack relevant information
about the visual content. Second, it is critical to ensure that the instructions do not contain harmful or
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biased content. The presence of such content could raise concerns about the fairness and reliability of
MLLMs, making them more susceptible to generating flawed, biased, or even harmful responses.

I Broader Impact

This work focuses on improving vision instruction tuning techniques, advancing the multimodal
capabilities. It can benefit applications such as assistive technologies, education, and content cre-
ation. For example, individuals with visual impairments could gain access to enhanced image-to-text
descriptions, improving accessibility and inclusivity. However, alongside the development of multi-
modal technologies, it is crucial to address the risks of bias and harmful content. The model may
inadvertently propagate societal biases embedded in the training data, leading to discriminatory or
inappropriate outputs. Furthermore, enhanced capabilities could be exploited to generate convincing
but harmful misinformation or deepfakes, posing risks to societal trust and safety. To responsibly
advance this technology, we emphasize the importance of robust mitigation strategies, including
diverse and inclusive training data, bias detection tools, and ethical safeguards against misuse. Ensur-
ing that these technologies serve the public good requires ongoing collaboration among researchers,
developers, and policymakers, fostering innovation while minimizing unintended negative impacts.
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