

Learning to Instruct for Visual Instruction Tuning

Zhihan Zhou^{*1} Feng Hong^{*1} Jianan Luo¹ Yushi Ye¹

Jiangchao Yao^{✉1} Dongsheng Li² Bo Han³ Ya Zhang^{4,5} Yanfeng Wang⁴

¹Cooperative Medianet Innovation Center, Shanghai Jiao Tong University

²Microsoft Research Asia ³Hong Kong Baptist University

⁴School of Artificial Intelligence, Shanghai Jiao Tong University

⁵Institute of Artificial Intelligence for Medicine, Shanghai Jiao Tong University School of Medicine

{zhihanzhou, feng.hong, Sunarker}@sjtu.edu.cn

Abstract

We propose L2T, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, L2T adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, L2T achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, L2T attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs. Github code: <https://github.com/Feng-Hong/L2T>.

1 Introduction

Large Language Models (LLMs) have achieved significant progress and success. Built on this, Multimodal LLMs (MLLMs) have garnered substantial attention in the research community. There has been a surge in advancements based on the Visual Instruction Tuning (VIT) [Liu et al., 2023a] paradigm. By aligning language inputs and visual representations through simple connectors, and subsequently conducting end-to-end fine-tuning on carefully designed multimodal instruction data, MLLMs [Liu et al., 2023a, 2024a,b, Zhu et al., 2024, Tong et al., 2024] have achieved notable improvements across various multimodal tasks like visual question answering and image captioning.

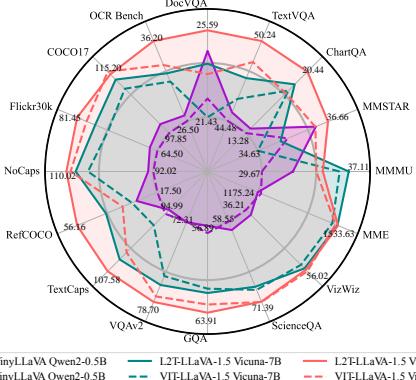


Figure 1: Performance comparison on 16 tasks between L2T and VIT using different models, including TinyLLaVA Qwen2-0.5B [Zhou et al., 2024], LLaVA-1.5 Vicuna-7B [Liu et al., 2024a], and LLaVA-1.5 Vicuna-13B [Liu et al., 2024a]. The pretraining phase uses the LLaVA-pretrain-558k dataset, while the fine-tuning phase employs the LLaVA-mix-665k dataset.

* Equal contribution. Work done during Feng Hong’s internship at Microsoft Research Asia.

Typically, visual instruction tuning consists of two stages: pre-training and fine-tuning [Liu et al., 2023a, Zhu et al., 2024]. In the pre-training stage, a connector is trained to align visual and language data. The fine-tuning phase is similar to instruction tuning in language models, where the model is trained to generate responses based on multimodal instructions. However, recent research has shown that instruction tuning can lead to a series of issues, such as the knowledge degradation [Ghosh et al., 2024] and hallucinations [Rawte et al., 2023, Tommoy et al., 2024]. Similar problems have also been observed in models that employ visual instruction tuning [Huang et al., 2023, Leng et al., 2024]. The potential causes may lie in overfitting and shortcut learning during instruction tuning [Sun et al., 2024a]. Figure 2 illustrates an example of a shortcut, where the model might ignore visual content and generate responses based solely on language priors. Current advancements [Liu et al., 2024a,b, Bai et al., 2023b, Tong et al., 2024] in MLLMs implicitly mitigate such issues by leveraging larger, higher-quality, and more diverse training datasets, larger models, and improved pretrained initializations for visual and language backbones.

In this paper, we propose an orthogonal solution to improving visual instruction tuning: learning to instruct images as a regularizer, which we refer to as **Learning to InstrucT** (L2T). Specifically, in addition to learning to generate responses to given images and instructions as usual, L2T also learn to generate instructions for images that exclude templates, which refer to special tokens and high-frequency, low-information template tokens in the instructions. L2T enhances VIT by: (1) expanding the training content to mitigate overfitting without explicitly enlarging the training set (Section 3.4); and (2) learning to instruct images, which forces the model to focus more on the visual content and prevents learning some shortcuts (Section 2).

We conduct extensive experiments across a range of 16 tasks, comparing L2T and VIT on different models. As shown in Figure 1, L2T achieves a significant relative improvement of up to 6% over VIT in overall multimodal task performance. Moreover, L2T shows significant potential in alleviating hallucination issues in MLLMs, as demonstrated across four diverse hallucination benchmarks (Section 3.3). Through comprehensive and detailed experiments, L2T demonstrates the following advantages: (1) It improves the ability across different multimodal tasks compared to the conventional visual instruction tuning, especially those focusing more on visual content, such as OCR, captioning and hallucination mitigation. (2) Our method is orthogonal to existing research advancements and can further enhance MLLMs’ performance through simple integration. (3) It shows advantages in improving performance while making minimal compromises in training and inference costs.

2 Method

Problem Formulation. Taking LLaVA as an example, a typical model architecture comprises a pre-trained large language model $f(\cdot)$ with parameters θ_f with the corresponding tokenizer and embedding layer $t(\cdot)$ (e.g., Vicuna [Peng et al., 2023]), a pre-trained visual feature extractor $g(\cdot)$ with parameters θ_g (e.g., CLIP-ViT-L/14 [Radford et al., 2021]), and a cross-modal connector $h(\cdot)$ with parameters θ_h , such as a linear layer or MLP. Let $\theta = \{\theta_f, \theta_g, \theta_h\}$ denote the set of all parameters. For an image \mathbf{X}_V and a related text instruction \mathbf{X}_I , we obtain the corresponding textual response through the following forward process. As shown in Figure 3, the image \mathbf{X}_V is forwarded through the visual feature extractor g and cross-modal connector h , mapping it to visual tokens $\mathbf{H}_V = h(g(\mathbf{X}_V))$ in the language embedding space. \mathbf{H}_V is then combined with the language tokens $\mathbf{H}_I = t(\mathbf{X}_I)$ to form a sequence, which is forwarded into LLM f for autoregressive generation of the response sequence \mathbf{X}_A . The goal of visual instruction tuning is to train the model to exhibit strong multi-modal instruction-following capabilities.

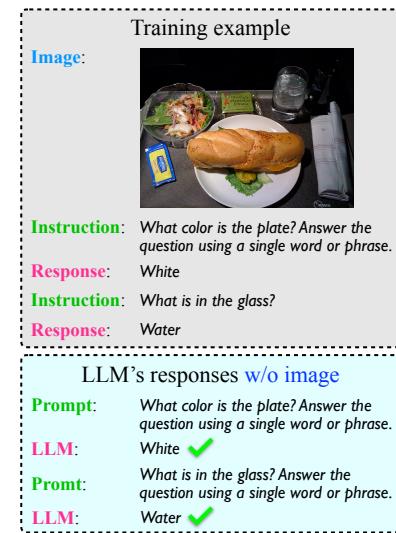


Figure 2: An example where a pure language model provides correct answers based only on language priors, without relying on visual content. This shows that learning to generate responses alone cannot prevent the model from taking shortcuts by ignoring visual content and relying solely on textual instructions.

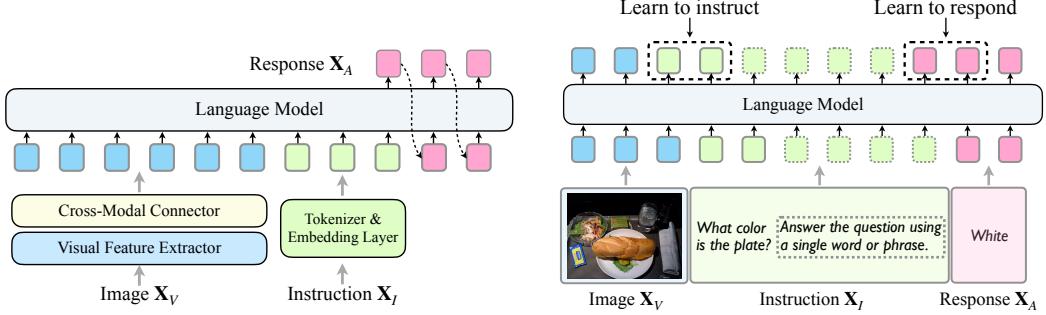


Figure 3: The model architecture using LLaVA as an example, and the data flow for generating responses from images and instructions.

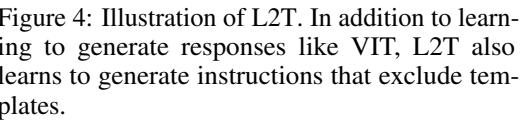


Figure 4: Illustration of L2T. In addition to learning to generate responses like VIT, L2T also learns to generate instructions that exclude templates.

Visual Instruction Tuning (VIT). For a given training sample triplet $(\mathbf{X}_V, \mathbf{X}_I, \mathbf{X}_A)$ ¹, the sequence lengths of \mathbf{X}_I and \mathbf{X}_A are L_I and L_A , respectively. The training objective of VIT is to learn to generate the response \mathbf{X}_A . Specifically, it involves learning to predict each token $\mathbf{X}_{A,i}$ in \mathbf{X}_A , where $i \in \{1, 2, \dots, L_A\}$, based on the image \mathbf{X}_V , the instruction \mathbf{X}_I , and the preceding response sequence $\mathbf{X}_{A,<i}$. The loss function \mathcal{L} for the training sample is formulated as the negative log-likelihood of the response given the image and the instruction:

$$\mathcal{L} = -\log p_\theta(\mathbf{X}_A | \mathbf{X}_V, \mathbf{X}_I) = -\sum_{i=1}^{L_A} \log p_\theta(\mathbf{X}_{A,i} | \mathbf{X}_V, \mathbf{X}_I, \mathbf{X}_{A,<i}). \quad (1)$$

Training is typically divided into two stages: pretraining and fine-tuning. In the pretraining stage, only the cross-modal connector is trained to align visual features with the language embedding space. In the fine-tuning stage, the entire model is trained end-to-end, with options to freeze the visual feature extractor and apply LoRA [Hu et al., 2022] fine-tuning.

Learning to Instruct (L2T). Building upon VIT, we propose extending its paradigm through learning to instruct images. Specifically, in addition to learning how to generate a response given an image and an instruction, we also learn how to generate a meaningful instruction for a given image. For a training sample triplet $(\mathbf{X}_V, \mathbf{X}_I, \mathbf{X}_A)$, we define the loss function \mathcal{L} as the negative log-likelihood of both the instruction and the response conditioned on the image:

$$\mathcal{L} = -\log p_\theta(\mathbf{X}_I, \mathbf{X}_A | \mathbf{X}_V) = -\underbrace{\sum_{i=1}^{L_I} \log p_\theta(\mathbf{X}_{I,i} | \mathbf{X}_V, \mathbf{X}_{I,<i})}_{\text{Learn to Instruct}} - \underbrace{\sum_{i=1}^{L_A} \log p_\theta(\mathbf{X}_{A,i} | \mathbf{X}_V, \mathbf{X}_I, \mathbf{X}_{A,<i})}_{\text{Learn to Respond}}. \quad (2)$$

By learning to generate appropriate instructions for images, L2T achieves two key benefits. 1) It naturally expands the data the model learns to fit, helping to alleviate potential overfitting to some extent. 2) Learning to instruct images ensures that the model focuses on the image content, effectively preventing it from ignoring the visual input and relying solely on languages to generate responses.

Template Removal. To ensure the model learns meaningful content related to the image, we exclude the learning of certain irrelevant parts of instructions. Such irrelevant context primarily arises from two sources: (1) system templates and (2) task templates. Specifically, system templates refer to the tokens used to guide the MLLMs in adopting the role of a helpful and polite AI assistant, or as the conversational clues distinguishing whether the content is generated by the “USER” or the “ASSISTANT”. System templates can be easily removed when it is added. Task templates refer to tokens that indicate the task type and output format. We identify task templates by calculating the frequency of all sentences in the entire training dataset and selecting the most frequent ones. The detailed removed task templates can be referred to Appendix A. Note that the training data in the

¹For simplicity, we use single-turn conversations as an example, which can be naturally extended to multi-turn conversations.

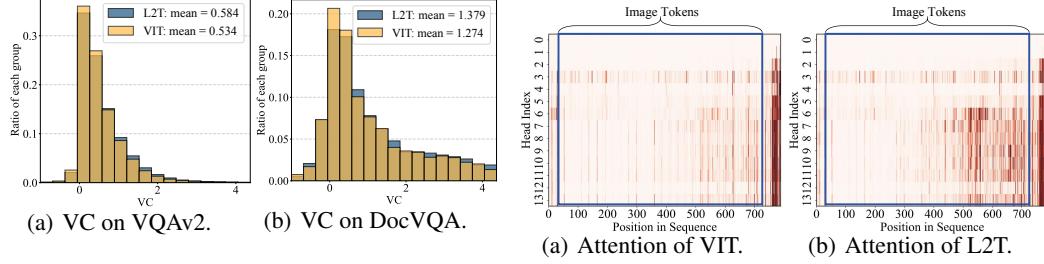


Figure 5: The visual contribution (VC) distributions of VIT and L2T on the VQAv2 training data and DocVQA test data. Experiments are based on TinyLLaVA Qwen2-0.5B.

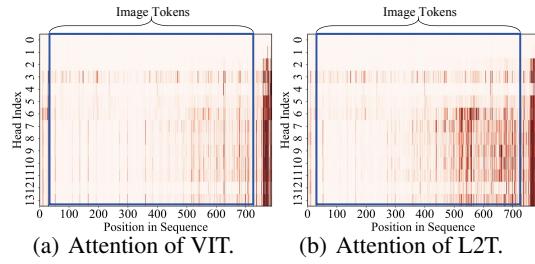


Figure 6: Visualization of attention weights. Darker colors indicate higher attention weights. Experiments are based on TinyLLaVA Qwen2-0.5B.

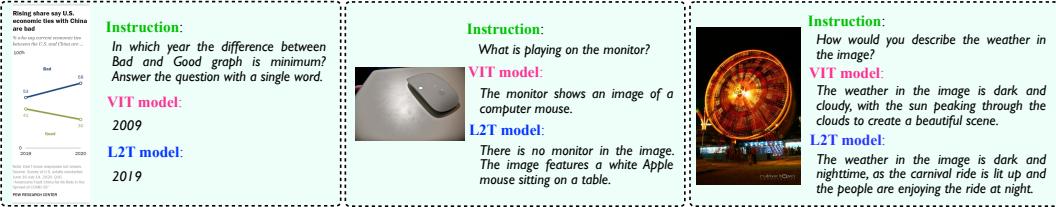


Figure 7: Cases, each including an image, an instruction, and the responses generated by the VIT and L2T models, respectively. The models are based on LLaVA-1.5 Vicuna-7B. (Left) The VIT model shows better OCR capabilities. (Middle) The VIT model demonstrates robustness and effectively avoids being influenced by misleading information in the language instruction. (Right) The VIT model provides a more comprehensive and accurate image description.

pretraining stage is constructed using image-caption pairs, with a set of template prompts serving as instructions, which are unrelated to the image content. Therefore, we apply our method L2T only during the end-to-end fine-tuning stage. In Figure 4, we present an illustration of L2T.

Analysis. To assess the rationality of L2T in alleviating shortcut learning in MLLMs, we conduct experiments to gain deeper insight into which aspects of visual or instructional content are most influential in response prediction. Specifically, we first introduce visual contribution (VC), which quantifies the difference in the log-likelihood of the response when conditioned on both the image and instruction, versus when conditioned solely on the instruction:

$$VC = \log p_\theta(\mathbf{X}_A | \mathbf{X}_V, \mathbf{X}_I) - \log p_\theta(\mathbf{X}_A | \mathbf{X}_V = \emptyset, \mathbf{X}_I)$$

where $\mathbf{X}_V = \emptyset$ in the implementation denotes that the original visual input is replaced with random noise. In this spirit, VC captures the relative importance of visual signals in response prediction, isolating the contribution of visual information from any confounding effects due to the instructional signals. Figure 5 presents the VC of L2T and VIT for both the training and testing datasets. Our findings reveal that L2T achieves a substantial relative improvement, with a 9% increase in VC, highlighting its effectiveness in regularizing MLLMs to better utilize visual inputs.

To further substantiate these findings, we visualize the attention weights in L2T and VIT. As shown in Figure 6, L2T leads to stronger activation in the visual components of MLLM attention heads, indicating more effective utilization of visual inputs. This is consistent with the VC results. More experimental details and additional visualization results can be referred to Appendix F.

Moreover, Figure 7 presents several cases, each consisting of an image, an instruction, and the responses generated by the VIT and L2T models, respectively. It can be observed that by learning to instruct images, the L2T model demonstrates more precise and comprehensive image understanding, as well as stronger robustness against misleading information in the language instructions.

3 Experiment

3.1 Setup

Model Architectures. (1) TinyLLaVA [Zhou et al., 2024]: We follow TinyLLaVA to utilize small-scale LLMs, including Qwen-2-0.5B [Yang et al., 2024] and Phi-2-3B [Gunasekar et al., 2023]. The SigLIP-400M [Zhai et al., 2023] is adopted as the vision encoder due to its effective performance in combination with small-scale LLMs. The multimodal connector follows LLaVA 1.5 Liu et al. [2024a] with a two-layer MLP and GELU activation. (2) LLaVA 1.5, LLaVA-NeXT [Liu et al., 2024b]: For LLaVA 1.5, we use Vicuna-v1.5-7B [Peng et al., 2023] and Vicuna-v1.5-13B [Peng et al., 2023] as the base LLMs, while for LLaVA-NeXT, Vicuna-v1.5-7B serves as the base LLM. The base vision encoder is CLIP-ViT-L-14 [Radford et al., 2021], and the connector is a two-layer MLP.

Training Datasets. (1) Pretraining Stage: We adopt the LLaVA 1.5 framework, utilizing the LLaVA-pretrain-558k data [Liu et al., 2024a] for all pretraining phases. (2) Finetuning Stage: For instruction tuning, we use the LLaVA-mix-665k data [Liu et al., 2024a] on TinyLLaVA and LLaVA 1.5. For LLaVA-NeXT, we use the LLaVA-NeXT-Data [Liu et al., 2024b], an expansion of LLaVA-mix-665k with diverse instruction data. More details can be referred to Appendix B.2.

Implementation Details. We train all models on NVIDIA A100 GPUs, strictly following the training recipes of TinyLLaVA, LLaVA 1.5 and LLaVA-NeXT. See Appendix B.1 for more details.

Evaluation Benchmarks. We conduct a thorough evaluation of four distinct capabilities using 16 multimodal instruction datasets. These capabilities are categorized as follows: (1) General Visual Question Answering, assessed through VQAv2 [Goyal et al., 2017], GQA [Hudson and Manning, 2019], ScienceQA [Lu et al., 2022], and VizWiz [Gurari et al., 2018]; (2) Comprehensive Multimodal Benchmarks, evaluated using MME [Fu et al., 2023], MMMU [Yue et al., 2024], and MMStar [Chen et al., 2024b]; (3) Chart, Document, and OCR Understanding, evaluated using ChartQA [Masry et al., 2022], TextVQA [Singh et al., 2019], DocVQA [Mathew et al., 2021], and OCR Bench [Liu et al., 2023b]; and (4) Image Captioning, assessed through COCO2017 [Lin et al., 2014], Flickr30k [Young et al., 2014], NoCaps [Agrawal et al., 2019], RefCOCO [Kazemzadeh et al., 2014], and TextCaps [Sidorov et al., 2020]. The performance metrics used include CIDEr [Vedantam et al., 2015] for all captioning tasks, the perception score for MME, and accuracy for the remaining tasks. The experiments are conducted using LMMs-Eval² [Zhang et al., 2024]. In Section 3.4, some tasks are evaluated on the lite version, denoted as “-L”.

3.2 Main Results

In Table 1, we present a comprehensive evaluation of L2T across multiple benchmarks.

General Visual Question Answering. We first evaluate several widely used VQA benchmarks, including the most prominent VQAv2 benchmark and the visual reasoning-oriented GQA. We also assess VizWiz, which requires predicting unanswerable questions, and ScienceQA, which covers a diverse range of scientific topics. Our results demonstrate that our proposed L2T achieves competitive VQA performance when compared to VIT.

Comprehensive Multimodal Benchmarks. We evaluate the multi-discipline multimodal understanding and reasoning capabilities of our L2T through MME, MMMU and MMStar benchmarks. These benchmarks span a wide range of disciplines, including Art & Design, Business, Science, Health & Medicine, Humanities & Social Sciences, Technology & Engineering, and encompass diverse tasks such as object presence, counting, spatial reasoning, commonsense inference, numerical computation, and code reasoning. Our results demonstrate that L2T consistently outperforms VIT, achieving an average relative improvement of up to 3.7%. This underscores the effectiveness of L2T in enhancing performance across diverse multimodal applications.

Chart, Document, and OCR Understanding. We include a diverse set of OCR-related datasets to evaluate the performance of models in locating, extracting and interpreting text from various data visualizations, including charts, diagrams, documents, and natural images, in order to accurately address the associated questions. The results indicate that our L2T significantly outperforms VIT across all OCR-related benchmarks, yielding an average relative improvement of 6.3%. This high-

²<https://github.com/EvolvingLMMs-Lab/lmms-eval/>

Table 1: Performance comparison of VIT and L2T across 16 representative multimodal benchmarks. The benchmarks span four categories: General VQA, multi-discipline benchmarks, Chart/Document/OCR understanding, and image captioning. We report the average relative improvement for each category, along with the overall relative improvement across all benchmarks. ^{*}LLaVA-NeXT’s training script is not fully open-sourced; our implementation may differ slightly.

Benchmark	Visual Instruction Tuning (VIT)					Learning to Instruct (L2T)				
	TinyLLaVA Qwen-2-0.5B	TinyLLaVA Phi-2-3B	LLaVA-1.5 Vicuna-7B	LLaVA-1.5 Vicuna-13B	LLaVA-NeXT* Vicuna-7B	TinyLLaVA Qwen-2-0.5B	TinyLLaVA Phi-2-3B	LLaVA-1.5 Vicuna-7B	LLaVA-1.5 Vicuna-13B	LLaVA-NeXT* Vicuna-7B
VQAv2 General QA	72.31	77.32	76.64	78.26	80.07	72.35	77.48	77.35	78.70	80.62
GQA General QA	57.48	61.46	61.97	63.25	64.24	56.89	61.12	62.32	63.91	62.54
ScienceQA Science QA	58.55	71.78	69.46	71.39	70.10	59.89	71.00	68.96	71.34	70.60
VizWiz General QA	36.21	40.46	54.39	56.53	55.60	37.84	41.85	55.56	56.02	58.66
Average	-	-	-	-	-	+1.5%	+0.5%	+0.7%	+0.2%	+1.1%
MME Multi-discipline	1189.99	1475.51	1508.26	1522.60	1477.28	1175.24	1431.12	1531.37	1533.63	1556.44
MMMU Multi-discipline	29.67	36.67	36.33	34.33	36.11	32.33	37.89	37.11	34.89	35.56
MMStar Multi-discipline	34.93	36.07	33.65	36.12	37.26	36.14	36.44	34.63	36.66	38.98
Average	-	-	-	-	-	+3.7%	+0.4%	+2.2%	+1.3%	+2.8%
ChartQA Chart Understanding	13.28	16.48	18.24	17.92	54.88	13.80	17.20	18.96	20.44	66.80
TextVQA OCR	44.48	52.10	46.09	48.73	64.82	45.12	52.35	47.58	50.24	65.06
DocVQA Doc. Understanding	22.32	28.46	21.43	23.49	68.49	24.60	30.74	23.99	25.59	72.52
OCR Bench OCR	26.50	34.50	31.30	33.30	52.00	27.20	35.40	32.30	36.20	55.80
Average	-	-	-	-	-	+4.6%	+3.9%	+5.6%	+8.7%	+8.8%
COCO2017 Image Captioning	97.85	100.82	110.38	115.20	99.96	100.37	102.61	112.96	114.46	139.21
Flickr30k Image Captioning	64.50	76.00	74.85	79.45	68.46	66.09	78.34	77.64	81.45	75.26
NoCaps Image Captioning	92.02	101.13	105.54	109.15	88.35	93.08	103.60	108.09	110.02	114.10
RefCOCO Image Captioning	17.50	30.59	29.76	34.22	33.82	27.55	52.98	42.24	56.16	35.36
TextCaps Image Captioning	95.80	105.79	98.15	103.71	70.40	94.99	105.36	105.14	107.58	74.03
Average	-	-	-	-	-	+12.6%	+16.0%	+11.5%	+14.1%	+17.6%
Overall	-	-	-	-	-	+6.1%	+6.2%	+5.6%	+6.9%	+8.5%

lights the effectiveness of the proposed L2T in extracting fine-grained visual information. This can be attributed to the fact that our L2T encourages the proactive generation of instructions. In OCR-related datasets like TextVQA, the instructions require predicting “Reference OCR token” that captures the informative textual content within the image. This necessitates a more comprehensive understanding of the low-level information embedded in the images, thus enhancing OCR capabilities.

Image Captioning. We assess image-captioning, a representative image-text task widely used as a pretraining task for MLLMs. Our analysis includes classical captioning datasets such as COCO2017 and Flickr30k, along with more specialized datasets such as TextCaps, which involves fine-grained textual content description, and NoCaps, which represents out-of-domain scenarios. The results demonstrate that L2T achieves the most substantial performance improvement over VIT on captioning datasets, among the various capabilities evaluated, with an average relative improvement of up to 17.6%. The reasons are two-fold: (1) L2T motivates a more comprehensive understanding of the images, which guarantees the generation of accurate descriptions, and (2) L2T alleviates the negative effects of overfitting on instruction-following abilities, preserving more of the captioning skills acquired during the pretraining stage.

Finding. L2T consistently outperforms VIT across all benchmarks, achieving an average relative improvement of up to 8.5%. The most significant gains are observed in OCR-related and captioning datasets, with improvements of up to 8.8% and 17.6%. This suggests that L2T excels at regularizing MLLMs to pay more attention to visual input and strengthening their fundamental visual capabilities.

3.3 Hallucination Evaluation

In this section, we evaluate the effectiveness of L2T in mitigating hallucinations, as shown in Table 2.

Table 2: Hallucination evaluation results. We present the average accuracy computed across adversarial, popular and random splits of POPE, along with per-instance CHAIR_i and per-sentence CHAIR_s (\downarrow) on COCO2014, with superscript G as the greedy strategy and superscript B as beam search. Additionally, we report the Question Pair Accuracy ($q\text{Acc}$), Figure Accuracy ($f\text{Acc}$) and All Accuracy ($a\text{Acc}$) for Hallusion Bench, along with the GPT score and hallucination rate on MMHAL-Bench. Best results are highlighted in **bold**. Experiments are based on LLaVA-1.5 Vicuna-7B.

Dataset			POPE				COCO2014				HallusionBench						
Metric	Adv.	Pop.	Random	CHAIR_s^G (\downarrow)	CHAIR_i^G (\downarrow)	CHAIR_s^B (\downarrow)	CHAIR_i^B (\downarrow)	$q\text{Acc}$	$f\text{Acc}$	$a\text{Acc}$							
VIT	85.17	87.30	88.47		48.60	13.40	53.40	14.90	10.33	19.36	43.85						
L2T	85.60	87.90	88.47		46.20	11.80	51.40	13.10	10.77	19.36	44.90						
Dataset																	
MMHAL-Bench																	
Metric	Score	Hal. Rate (\downarrow)	Attribute	Adversarial	Comparison	Counting	Relation	Environment	Holistic	Other							
VIT	1.73	0.68	3.00	1.25	1.58	2.50	1.17	2.08	1.00	1.25							
L2T	2.36	0.53	3.08	1.67	2.92	1.92	2.25	3.33	1.92	1.83							

Results on POPE. POPE [Li et al., 2023b] is the most commonly used benchmark for object hallucination. It consists of “Yes or No” questions to evaluate the MLLMs’ capability to determine whether the given object is in the image. We report accuracies based on questions derived from adversarial, popular and random sampling. L2T outperforms VIT in both adversarial and popular sampling settings, showcasing the effectiveness of L2T in reducing object hallucinations.

Results on CHAIR Evaluation. In addition to the discriminative evaluations on POPE, we utilize the CHAIR metric [Rohrbach et al., 2018] as a complementary approach to evaluate object hallucination in image captioning tasks. Specifically, CHAIR quantifies the proportion of objects referenced in an image caption that are absent from the corresponding ground-truth label set. As shown in Table 2, our L2T consistently outperforms VIT, achieving improvements of 2.2% and 1.7% in terms of the CHAIR_s and CHAIR_i metric, respectively. This further demonstrates that our L2T effectively regularize MLLMs, reducing the generation of plausible but visually irrelevant contents.

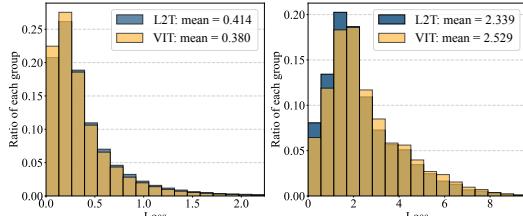
Results on MMHAL-Bench. CHAIR mainly focuses on object hallucination by evaluating the presence of objects. To provide a more fine-grained assessment, we further adopt MMHAL-Bench [Sun et al., 2024b] to evaluate a broader range of hallucination types. For evaluating the quality of the generated content, we leverage GPT-4 to compute the GPT score and hallucination rate for comparison. The results demonstrate that L2T significantly outperforms VIT by 36% in average score and 22% in hallucination rate. Moreover, L2T consistently outperforms VIT across various hallucination types, with notable improvements in adversarial, comparison, relation, environment, and holistic settings.

Results on HallusionBench. To further improve the comprehensiveness of hallucination evaluation, we use HallusionBench [Guan et al., 2024] to include more scenarios with various disciplines, image types and input modalities. We report Question Pair Accuracy ($q\text{Acc}$), Figure Accuracy ($f\text{Acc}$) and All Accuracy ($a\text{Acc}$) based on GPT-4 for comparison. The results demonstrate that L2T outperforms VIT, with improvements of 0.44% and 1.05% in terms of $q\text{Acc}$ and $a\text{Acc}$, respectively, highlighting its effectiveness in mitigating a wider range of failure modes in multimodal hallucinations.

3.4 Further Analysis

Mitigate Overfitting from the Loss Perspective. In Figure 8, we present the loss distributions of our L2T and VIT on the training dataset (VQAv2) and test datasets (DocVQA and NoCaps). The cross-entropy loss is calculated specifically for the response component, excluding the instruction part, even for L2T. The results reveal that L2T exhibits slightly higher loss than VIT on the training data but achieves lower loss on unseen test data. This clearly demonstrates that our method, by learning to instruct images as a regularizer, effectively avoids overfitting on the training data and exhibits superior generalization performance.

Ablation on the Scale of Instruction Data. To investigate the impact of different data volumes during the instruction tuning phase on L2T, we present the performance of both the baseline VIT and L2T at 40%, 60%, 80% data levels in Figure 9(a). Note that we use the same scale for the axes of both radar charts. It can be observed that, at the same data scale, L2T significantly outperforms VIT. Specifically, from 40% to 80% instruction data, our method shows an average performance improvement over VIT across the eight metrics in Figure 9(a) by 5.9%, 13.0%, and 9.3%, respectively. The performance



(a) Train loss on VQAv2. (b) Test loss on DocVQA.

Figure 8: (a) Training loss distribution of L2T and ViT on VQAv2. (b) Testing loss distribution of L2T and ViT on DocVQA. The standard cross-entropy loss is calculated for the response part. Experiments are based on TinyLLaVA Qwen2-0.5B.

Table 4: Ablations on template removal. The table shows the performance of ViT, which learns to respond on X_A , and L2T, which learns to instruct using variants of progressively removing system template X_I^S and task template X_I^T . Here, $X_I^{\setminus S, T}$ refers to the instructions excluding both the system and task templates. Experiments are based on TinyLLaVA Qwen2-0.5B.

Method	Benchmark										Δ		
	$X_I^{\setminus S, T}$	X_I^T	X_I^S	X_A	VQAv2-L	VizWiz-L	MMMU	MMStar	ChartQA	OCR Bench	Flickr30k-L	RefCOCO-L	
✓	✓	✓	✓	✓	64.02	29.90	29.67	34.93	13.28	26.50	70.28	14.81	-
✓	✓	✓	✓	✓	65.06	28.96	31.11	34.57	14.48	26.90	73.79	19.76	+6%
✓	✓	✓	✓	✓	65.26	29.52	31.22	35.85	13.76	27.40	74.21	21.97	+9%
✓	✓	✓	✓	✓	66.34	29.74	32.33	36.14	13.80	27.20	74.30	23.11	+11%

improvements suggest that our method benefits from increasing data volume, highlighting its potential for continuous improvement within the research trend of expanding data scaling laws.

Ablation on the Scale of Pretraining Data. We also investigate the impact of data volumes during the pretraining phase on L2T, with the results shown in Figure 9(b). L2T demonstrates a clear advantage over the baseline at the same data scale. From 40% to 80% pretraining data, the average improvements are 10.9%, 8.7%, and 8.5%, respectively. Interestingly, the performance with 80% pretraining data even surpasses that with 100% pretraining data. This “less-is-more” [Zhou et al., 2023] phenomenon highlights the complexity of how pretraining data impacts final performance.

Ablation on Types of instruction data. We selected different types of data from the full dataset (mixed with 10% of other types of data), including QA data, GPT-generated data, selection data, grounding data, and captioning data. We conduct instruction tuning using each of these data types, and the results are presented in Table 3. It can be observed that the improvements of our method vary considerably across different data types, which we attribute primarily to the differences in instruction quality. The instructions for grounding data consist only of fixed templates and almost random bounding box coordinates, making it difficult for the model to gain improvements from learning such instructions. In contrast, the instructions for QA data contain a wealth of information related to the image content, which enables our method to provide a significant improvement.

Ablation on Template Removal. To gain more insights, we conduct experiments to assess the impact of removing each prompt template from the instructions, as shown in Table 4. Four experimental setups are considered: (1) the baseline method, which learns only the answer component; (2) the

(a) Instruction data scale. (b) Pretraining data scale.

Figure 9: Ablation on (a) instruction data scale and (b) pretraining data scale. The figure shows the performance of L2T and ViT using 40%, 60%, 80%, and 100% of the data, with another stage using the full dataset. Experiments are based on TinyLLaVA Qwen2-0.5B.

Table 3: Performance comparison of ViT and L2T when using a single data type as the primary training data, including Choice, Grounding, GPT-generated, Captioning, and QA data. Experiments are based on TinyLLaVA Qwen2-0.5B.

Data	Method	VQAv2-L	MMMU	ChartQA	RefCOCO-L	Δ
Choice	ViT	52.76	31.56	12.56	20.45	-
	L2T	50.90	31.22	11.88	25.33	+3%
Grounding	ViT	53.10	33.76	11.32	25.01	-
	L2T	52.62	32.11	11.32	26.51	+0%
GPT-gen	ViT	53.90	31.11	11.60	8.42	-
	L2T	55.16	31.78	11.68	11.34	+10%
Captioning	ViT	45.12	29.44	11.52	16.02	-
	L2T	47.46	31.11	12.00	16.85	+5%
QA	ViT	63.26	31.00	11.84	16.94	-
QA	L2T	62.28	33.00	12.36	29.69	+21%

Table 6: Performance comparison on VLM baseline Prism-7B. L2T yields consistent improvements across diverse benchmarks, highlighting its general effectiveness.

Task	GQA	VizWiz	TextVQA	RefCOCO	RefCOCO+	RefCOCOg	POPE	VSR	AI2D
VIT Prism-7B	61.92	55.36	52.80	56.70	50.70	52.70	88.00	53.20	55.50
L2T Prism-7B	62.62	57.75	55.60	66.00	58.90	62.00	88.50	61.70	57.10

straightforward method, which learns both the full set of instructions and answers; (3) the method that learns the instructions excluding system and format messages (USER/ASSISTANT tokens), while still learning the answers; and (4) the method that learns the instructions without system/format messages and task-specific prompts, while learning the answers as well. The results indicate that progressively removing task-irrelevant template tokens enhances the overall performance of L2T, preventing MLLMs from overfitting to redundant template tokens.

Computational Analysis. To validate the computational efficiency of L2T, we conduct experiments on finetuning LLaVA-1.5 Vicuna-7B using instructional data with varying instruction-to-response length ratios (L_I/L_A), ranging from 0.05 to 20. The data are sampled from the training set. We report the average number of samples per second and the average number of steps per second (averaged over 100 training steps). Figure 10 demonstrates that L2T achieves an average of 0.331 ± 0.005 steps per second, while VIT achieves 0.334 ± 0.005 . Our L2T incur only a negligible computational overhead of less than 1%. Detailed results can be referred to Table 11 in the Appendix E.

Evaluation on another VLM baseline Prism-7B. To further verify the generalizability of L2T, we conduct additional experiments on another robust vision-language model (VLM) baseline, Prism [Karamcheti et al., 2024], which surpasses LLaVA-1.5 by incorporating optimized training strategies, advanced image preprocessing, and fused visual backbones such as SigLIP and DiNOv2. We apply L2T to Prism-DINOSigLIP-Controlled-7B and compare it with the standard VIT-style Prism baseline across diverse benchmarks, including visual question answering (GQA, VizWiz, TextVQA), localization (RefCOCO, RefCOCO+, RefCOCOg), and challenging reasoning tasks (POPE, VSR, AI2D). As shown in Table 6, L2T consistently improves performance across all benchmarks, demonstrating its effectiveness and broad applicability.

Effect on Textual Understanding.

To examine whether L2T compromises language proficiency by altering the SFT data composition, we evaluate the model on several text-only benchmarks, including MT-Bench, WildBench, MMLU, and AGIEval. We use the LLaVA-1.5 Vicuna-7B

model as the baseline and apply L2T under identical training configurations. As shown in Table 5, L2T achieves comparable results to the baseline on MT-Bench, MMLU, and AGIEval, while notably improving WildBench performance. These results indicate that learning to instruct functions as a synergistic regularization rather than a disruptive modification, enhancing visual grounding without compromising the model’s core text comprehension capabilities.

Exploring the potential of L2T for self-improving instruction tuning. To illustrate the broader potential of L2T, we conduct a pilot exploration where the model leverages its own generation capability to enhance itself. Starting from a L2T model pretrained on a 100k subset of the LLaVA-mix-665k dataset, we prompt it with image-only inputs to automatically produce 100k instruction-response pairs. These self-generated samples are then merged with the original training data for continued fine-tuning. As shown in Table 7, this simple self-bootstrapping process leads to consistent gains across multiple benchmarks. The results highlight L2T’s potential to evolve through its own generated supervision, paving the way toward self-improving vision-language models.

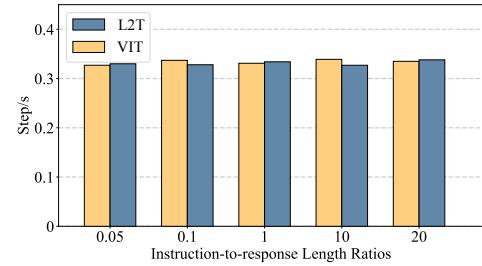


Figure 10: Computational cost across different L_I/L_A . Experiments are based on LLaVA-1.5 Vicuna-7B.

Table 5: Performance comparison on text-only benchmarks. L2T maintains comparable or improved performance, indicating no degradation in core language ability.

Benchmark	MTBench	WildBench	MMLU	AGIEval
VIT LLaVA1.5-7B	5.35	-9.40	49.57	32.62
L2T LLaVA1.5-7B	5.49	-6.27	49.18	32.49

Table 7: Exploring the potential of L2T for self-improving instruction tuning. Incorporating 100k model-generated instruction–response pairs improves performance across diverse benchmarks.

Benchmark	VQAv2-L	VizWiz-L	MMMU	MMSTAR	ChartQA	OCR Bench	Flickr30k-L	RefCOCO-L
L2T TinyLLaVA-0.5B	56.68	23.20	31.78	33.46	11.96	23.40	68.55	17.42
L2T TinyLLaVA-0.5B w/ generated data	60.80	24.22	32.33	34.75	12.44	24.50	68.32	24.53

4 Related Work

Visual Instruction Tuning. Recent advances in multimodal learning [Radford et al., 2021, Zhou et al., 2025, Zhao et al., 2025, Liu et al., 2025] have greatly enhanced the integration of visual and linguistic understanding. Building upon these foundations, the concept of Visual Instruction Tuning was first introduced in LLaVA [Liu et al., 2023a] and MiniGPT-4 [Zhu et al., 2024], aiming to unify the understanding of vision and language by leveraging pre-trained visual and language models. Common system architectures typically consist of (1) a pre-trained visual model for encoding visual features, (2) a pre-trained large language model for interpreting images and user instructions and generating responses, and (3) a cross-modal connector for aligning visual features with the language model’s input. Visual resamplers, such as Qformer [Li et al., 2023a], can serve as an optional module to reduce the number of visual patches [Bai et al., 2023a, Dai et al., 2023]. LLaVA-NeXT [Liu et al., 2024b] significantly enhances visual perception by using dynamic visual resolutions. DEEM [Luo et al., 2024] replaces the traditional visual encoder with a diffusion model, further enhancing visual perception. Cambrain-1 [Tong et al., 2024] improves visual robustness through visual encoder routing, but it also introduces higher training overhead.

(Language) Instruction Tuning. Instruction tuning has emerged as a critical approach in aligning large language models (LLMs) with specific tasks or domains. By fine-tuning language models on datasets composed of task instructions and corresponding responses, this approach has demonstrated its effectiveness in enhancing generalization to unseen tasks, as evidenced by models like Instruct-GPT [Ouyang et al., 2022] and Flan-PaLM [Chung et al., 2024]. Early explorations of instruction tuning achieved notable success using human-written completions [Bai et al., 2022, Ouyang et al., 2022, Wei et al., 2022]. Recent studies [Wang et al., 2023, Honovich et al., 2023] have expanded on this by exploring how content generated by large language models can be used to construct instruction tuning datasets, further enhancing model capabilities.

The most relevant recent work to ours is IM [Shi et al., 2024], which incorporates loss over instructions during the instruction tuning process of language models. However, our work differs significantly in the following key aspects: 1. Scope: Our work focuses on MLLMs, whereas IM is on language models. 2. Motivation: Our primary motivation is to encourage the model to pay greater attention to visual information and avoid shortcut learning based solely on textual cues. In contrast, IM is primarily aimed at mitigating overfitting. 3. Methodological Differences: We employ an automated approach to filter out the impact of frequently occurring template instructions (see ablation study in Table 4), whereas IM only filters a limited set of special tokens, such as “<|user|>”. 4. Scalability: We validate the effectiveness of L2T on a large-scale dataset of nearly 1M samples, whereas IM’s evaluation is limited to much smaller datasets, showing performance saturation at just 13k samples.

5 Conclusion

In this paper, we propose L2T, which enhances multimodal capabilities by learning to instruct images as a regularizer, rather than focusing only on learning to respond. This enables L2T to seamlessly expand the training data, reducing overfitting and proactively guiding the model to learn visual inputs more effectively, thereby avoiding shortcuts. Experimental results demonstrate the effectiveness of L2T across 16 multimodal tasks, highlighting its superior performance on OCR and image captioning tasks by placing greater emphasis on visual content. Furthermore, L2T significantly improves hallucination mitigation. It is also worth noting that our method is orthogonal to existing advancements in MLLMs and can be easily integrated into these methods with minimal compromises on computational costs. We believe that L2T has the potential to evolve the general VIT framework by mitigating overfitting, enhancing data efficiency, and promoting improved generalization in MLLMs.

Acknowledgement

This work is partially supported by the National Key R&D Program of China (No. 2022ZD0160703), National Natural Science Foundation of China (No. 62306178) and STCSM (No. 22DZ2229005), 111 plan (No. BP0719010). BH is supported by RGC Young Collaborative Research Grant No. C2005-24Y, RGC General Research Fund No. 12200725, and NSFC General Program No. 62376235.

References

Harsh Agrawal, Peter Anderson, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, and Stefan Lee. nocaps: novel object captioning at scale. In *ICCV*, pages 8947–8956. IEEE, 2019.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *Arxiv*, abs/2308.12966, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *ArXiv*, abs/2402.14289, 2023b.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human feedback. *Arxiv*, abs/2204.05862, 2022.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin. Sharegpt4v: Improving large multi-modal models with better captions. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gü̈l Varol, editors, *ECCV*, volume 15075 of *Lecture Notes in Computer Science*, pages 370–387. Springer, 2024a.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-language models? *CoRR*, abs/2403.20330, 2024b.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellar, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models. *J. Mach. Learn. Res.*, 25:70:1–70:53, 2024.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, *NeurIPS*, 2023.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. MME: A comprehensive evaluation benchmark for multimodal large language models. *CoRR*, abs/2306.13394, 2023.

Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Ramaneswaran S., Deepali Aneja, Zeyu Jin, Ramani Duraiswami, and Dinesh Manocha. A closer look at the limitations of instruction tuning. In *ICML*. OpenReview.net, 2024.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA matter: Elevating the role of image understanding in visual question answering. In *2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017*, pages 6325–6334. IEEE Computer Society, 2017.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-language models. In *CVPR*, pages 14375–14385. IEEE, 2024.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. *CoRR*, abs/2306.11644, 2023.

Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P. Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In *CVPR*, pages 3608–3617. Computer Vision Foundation / IEEE Computer Society, 2018.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning language models with (almost) no human labor. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, *ACL*, pages 14409–14428. Association for Computational Linguistics, 2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *ICLR*. OpenReview.net, 2022.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang, and Nenghai Yu. OPERA: alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation. *CoRR*, abs/2311.17911, 2023.

Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual reasoning and compositional question answering. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pages 6700–6709. Computer Vision Foundation / IEEE, 2019.

Kushal Kafle, Brian L. Price, Scott Cohen, and Christopher Kanan. DVQA: understanding data visualizations via question answering. In *CVPR*, pages 5648–5656. Computer Vision Foundation / IEEE Computer Society, 2018.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models. In *ICML*. OpenReview.net, 2024.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara L. Berg. Referitgame: Referring to objects in photographs of natural scenes. In Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, *EMNLP*, pages 787–798. ACL, 2014.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min Joon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is worth a dozen images. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, *ECCV*, volume 9908 of *Lecture Notes in Computer Science*, pages 235–251. Springer, 2016.

Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document understanding transformer. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner, editors, *ECCV*, volume 13688 of *Lecture Notes in Computer Science*, pages 498–517. Springer, 2022.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense image annotations. *Int. J. Comput. Vis.*, 123(1):32–73, 2017.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing. Mitigating object hallucinations in large vision-language models through visual contrastive decoding. In *CVPR*, pages 13872–13882. IEEE, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *ICML*, volume 202 of *Proceedings of Machine Learning Research*, pages 19730–19742. PMLR, 2023a.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, *EMNLP*, pages 292–305. Association for Computational Linguistics, 2023b.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, *ECCV*, volume 8693 of *Lecture Notes in Computer Science*, pages 740–755. Springer, 2014.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, *NeurIPS*, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pages 26286–26296. IEEE, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b.

Yikun Liu, Yajie Zhang, Jiayin Cai, Xiaolong Jiang, Yao Hu, Jiangchao Yao, Yanfeng Wang, and Weidi Xie. Lamra: Large multimodal model as your advanced retrieval assistant. In *CVPR*, pages 4015–4025. Computer Vision Foundation / IEEE, 2025.

Yuliang Liu, Zhang Li, Hongliang Li, Wenwen Yu, Mingxin Huang, Dezheng Peng, Mingyu Liu, Mingrui Chen, Chunyuan Li, Lianwen Jin, and Xiang Bai. On the hidden mystery of OCR in large multimodal models. *CoRR*, abs/2305.07895, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*. OpenReview.net, 2019.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question answering. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, *NeurIPS*, 2022.

Run Luo, Yunshui Li, Longze Chen, Wanwei He, Ting-En Lin, Ziqiang Liu, Lei Zhang, Zikai Song, Xiaobo Xia, Tongliang Liu, Min Yang, and Binyuan Hui. DEEM: diffusion models serve as the eyes of large language models for image perception. *Arxiv*, abs/2405.15232, 2024.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. OK-VQA: A visual question answering benchmark requiring external knowledge. In *CVPR*, pages 3195–3204. Computer Vision Foundation / IEEE, 2019.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. Joty, and Enamul Hoque. Chartqa: A benchmark for question answering about charts with visual and logical reasoning. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, *ACL*, pages 2263–2279. Association for Computational Linguistics, 2022.

Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for VQA on document images. In *WACV*, pages 2199–2208. IEEE, 2021.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. OCR-VQA: visual question answering by reading text in images. In *ICDAR*, pages 947–952. IEEE, 2019.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan Belinkov. Llms know more than they show: On the intrinsic representation of LLM hallucinations. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, *NeurIPS*, 2022.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with GPT-4. *CoRR*, abs/2304.03277, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang, editors, *ICML*, volume 139 of *Proceedings of Machine Learning Research*, pages 8748–8763. PMLR, 2021.

Vipula Rawte, Amit P. Sheth, and Amitava Das. A survey of hallucination in large foundation models. *CoRR*, abs/2309.05922, 2023.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallucination in image captioning. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018*, pages 4035–4045. ACL, 2018.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi. A-OKVQA: A benchmark for visual question answering using world knowledge. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner, editors, *ECCV*, volume 13668 of *Lecture Notes in Computer Science*, pages 146–162. Springer, 2022.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. CODI: compressing chain-of-thought into continuous space via self-distillation. *arXiv*, abs/2502.21074, 2025.

Zhengxiang Shi, Adam X. Yang, Bin Wu, Laurence Aitchison, Emine Yilmaz, and Aldo Lipani. Instruction tuning with loss over instructions. In *NeurIPS*, 2024.

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: A dataset for image captioning with reading comprehension. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, *ECCV*, volume 12347 of *Lecture Notes in Computer Science*, pages 742–758. Springer, 2020.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards VQA models that can read. In *CVPR*, pages 8317–8326. Computer Vision Foundation / IEEE, 2019.

Zechen Sun, Yisheng Xiao, Juntao Li, Yixin Ji, Wenliang Chen, and Min Zhang. Exploring and mitigating shortcut learning for generative large language models. In Nicoletta Calzolari, Min-Yen Kan, Véronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors, *LREC/COLING*, pages 6883–6893. ELRA and ICCL, 2024a.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liangyan Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer, and Trevor Darrell. Aligning large multimodal models with factually augmented RLHF. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *ACL*, pages 13088–13110. Association for Computational Linguistics, 2024b.

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fergus, Yann LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal llms. *Arxiv*, abs/2406.16860, 2024.

S. M. Towhidul Islam Tommoy, S. M. Mehedi Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das. A comprehensive survey of hallucination mitigation techniques in large language models. *CoRR*, abs/2401.01313, 2024.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description evaluation. In *CVPR*, pages 4566–4575. IEEE Computer Society, 2015.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, *ACL*, pages 13484–13508. Association for Computational Linguistics, 2023.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In *ICLR*. OpenReview.net, 2022.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. *CoRR*, abs/2407.10671, 2024.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. *Trans. Assoc. Comput. Linguistics*, 2:67–78, 2014.

Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen. MMMU: A massive multi-discipline multimodal understanding and reasoning benchmark for expert AGI. In *CVPR*, pages 9556–9567. IEEE, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In *ICCV*, pages 11941–11952. IEEE, 2023.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu, Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on the evaluation of large multimodal models. *CoRR*, abs/2407.12772, 2024.

Zihua Zhao, Feng Hong, Mengxi Chen, Pengyi Chen, Benyuan Liu, Jiangchao Yao, Ya Zhang, and Yanfeng Wang. Differential-informed sample selection accelerates multimodal contrastive learning. In *ICCV*, 2025.

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava: A framework of small-scale large multimodal models. *arXiv*, abs/2402.14289, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. LIMA: less is more for alignment. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, *NeurIPS*, 2023.

Zhihan Zhou, Yushi Ye, Feng Hong, Peisen Zhao, Jiangchao Yao, Ya Zhang, Qi Tian, and Yanfeng Wang. Uncover the balanced geometry in long-tailed contrastive language-image pretraining. *Mach. Learn.*, 114(4):106, 2025.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. In *ICLR*. OpenReview.net, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: All statements in the abstract and introduction are aligned with the main contribution of the paper: learning to instruct images as a regularizer for visual instruction tuning. All claims are supported by extensive experimental results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: We included the limitations of the work in Appendix H.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the details for reproducing the experimental results in Section 3.1, including training and model details. Additionally, in Appendix B.1, we provided a comprehensive overview of the hyperparameter configuration.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: For anonymity reasons, we have not made our code public. Upon acceptance, we will release our code on GitHub.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: All the details, including the model architecture, implementation details, training data, evaluation benchmarks, hyperparameters, and more, are provided in Section 3.1 and Appendix B.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[No\]](#)

Justification: Due to limited computational resources, we did not include error bars. This aligns with most work in visual instruction tuning, where error bars are typically omitted due to the high cost of multiple runs.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: See Section 3.1 and Appendix E.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The research does not involve human participants or any risks related to privacy, bias, or societal harm, so it fully follows the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discussed both potential positive societal impacts and negative societal impacts of the work in Appendix I.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets used in our research are all existing publicly available datasets, and this work primarily focuses on designing an improved approach of visual instruction tuning.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All code, data, and models used are properly cited. We will include the license, copyright, and terms of use for the code asset.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: **[Yes]**

Justification: Upon acceptance, we will provide a well-documented README file that includes clear instructions, details about the code and model, and running examples to ensure easy understanding and usage.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: **[NA]**

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: **[NA]**

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Detailed Removed Task Templates

In this section, we provide a comprehensive overview of the task templates removed during the training of TinyLLaVA, LLaVA 1.5, and LLaVA-NeXT, as shown in Table 8 and Table 9. Notably, LLaVA-NeXT-Data includes a more diverse set of instruction datasets, leading to a wider variety of task templates. Consequently, a larger number of task templates are removed compared to those discarded from the LLaVA-mix-665k dataset.

Table 8: Detailed removed task templates for training TinyLLaVA, LLaVA 1.5.

Task Templates
Answer the question using a single word or phrase.
Answer with the option’s letter from the given choices directly.
Provide a one-sentence caption for the provided image. Reference OCR token:
Please provide a short description for this region:
Please provide the bounding box coordinate of the region this sentence describes:
What is the title of this book?
What is the genre of this book?
What type of book is this?
Who is the author of this book?
Who wrote this book?

Table 9: Detailed removed task templates for training LLaVA-NeXT.

Task Templates	
Answer the question using a single word or phrase.	Answer the question with GPT-T-COCO format.
Provide a short description for the given region.	What is the title of this book?
Answer with the option’s letter from the given choices directly.	Provide the bounding box coordinates of the region that the given sentence describes.
OCR this image section by section, from top to bottom, and left to right.	Do not insert line breaks in the output text.
If a word is split due to a line break in the image, use a space instead.	What type of book is this?
Who is the author of this book?	Describe this image in detail with GPT-T-COCO format.
Provide a one-sentence caption for the provided image.	Provide the requested information directly.
What is the genre of this book?	Answer the question with a single word.
Are the values in the chart presented in a percentage scale?	Is each bar a single solid color without patterns?
Which group has the smallest summed value?	Which group has the largest summed value?
Is this book related to?	Does the chart contain stacked bars?
What is the label of the second bar from the left in each group?	What is the label of the first bar from the left in each group?
Which group of bars contains the smallest valued individual bar in the whole chart?	What is the value of the smallest individual bar in the whole chart?
Which group of bars contains the largest valued individual bar in the whole chart?	What is the value of the largest individual bar in the whole chart?
How many bars are there?	Which bar has the largest value?
What is the value of the largest bar?	Which bar has the smallest value?
Does the chart contain any negative values?	Are the values in the chart presented in a logarithmic scale?
Which algorithm has the smallest accuracy summed across all the datasets?	Which algorithm has the largest accuracy summed across all the datasets?
What is the label of the second group of bars from the left?	Which object is preferred by the least number of people summed across all the categories?
Which object is preferred by the most number of people summed across all the categories?	What is the setting of the image?
What is the label of the first group of bars from the left?	Which item sold the least number of units summed across all the stores?
Which object is the most preferred?	What is the label of the first bar from the left?
Which item sold the most number of units summed across all the stores?	How many bars are there per group?
What is the label of the second bar from the left?	Which object is the least preferred?
How many groups of bars are there?	Which object is the least preferred in any category?
Which algorithm has the lowest accuracy?	What is the accuracy of the algorithm with lowest accuracy?
Which algorithm has the highest accuracy?	What is the accuracy of the algorithm with highest accuracy?
Which algorithm has highest accuracy for any dataset?	What is the highest accuracy reported in the whole chart?
Which algorithm has lowest accuracy for any dataset?	What is the lowest accuracy reported in the whole chart?
Which object is the most preferred in any category?	What is the label of the third group of bars from the left?
What is the label of the second bar from the bottom in each group?	What is the label of the first bar from the bottom in each group?
What is the difference between most and least preferred object?	What is the difference between the largest and the smallest value in the chart?
How much more accurate is the most accurate algorithm compared to the least accurate algorithm?	What is the label of the third bar from the left?
Which item sold the least units?	How many units of the least sold item were sold?
How many people prefer the most preferred object?	Which item sold the most units?
How many units of the most sold item were sold?	Which item sold the most units in any shop?
How many units did the best selling item sell in the whole chart?	How many people prefer the least preferred object?
Which item sold the least units in any shop?	How many units did the worst selling item sell in the whole chart?
How many people like the least preferred object in the whole chart?	How many people like the most preferred object in the whole chart?
What is the label of the third bar from the left in each group?	What is the label of the fourth group of bars from the left?
What is the label of the first group of bars from the bottom?	How many more of the most sold item were sold compared to the least sold item?
What is the label of the second group of bars from the bottom?	What is the label of the second bar from the bottom?
What is the label of the first bar from the bottom?	What is the label of the third group of bars from the bottom?

B More Details on Experimental Setup

B.1 More Details on Hyperparameter

Detailed hyperparameters for training TinyLLaVA, LLaVA 1.5 and LLaVA-NeXT are shown in Table 10. For TinyLLaVA and LLaVA 1.5, pretraining is conducted with a learning rate of 1e-3 and a batch size of 256, while finetuning uses a learning rate of 2e-5 and a batch size of 128. For LLaVA-NeXT, pretraining uses a learning rate of 1e-3 and a batch size of 128, with finetuning using

a learning rate of 1e-5 and a batch size of 32. All experiments use the AdamW optimizer [Loshchilov and Hutter, 2019] and a cosine decay schedule with a warm up ratio of 0.03. During pretraining phase, only the multimodal connector is trained. In finetuning, TinyLLaVA and LLaVA 1.5 jointly train the connector and language model, while LLaVA-NeXT trains all parameters, including the vision encoder.

Table 10: Training Hyperparameters for TinyLLaVA, LLaVA 1.5 and LLaVA-NeXT.

Hyperparameter	TinyLLaVA & LLaVA 1.5		LLaVA-NeXT	
	Pretrain	Finetune	Pretrain	Finetune
Learning rate (LR)	1e-3	2e-5	1e-3	1e-5
LR warmup ratio	0.03	0.03	0.03	0.03
Batch size	256	128	128	32
LR schedule	cosine decay	cosine decay	cosine decay	cosine decay
Epoch	1	1	1	1
Optimizer	AdamW	AdamW	AdamW	AdamW
Trainable parameters	MLP	MLP, LLM	MLP	Vision enc., MLP, LLM

B.2 More Details on Training Data

In the finetuning stage of instruction tuning, we use the LLaVA-mix-665k data [Liu et al., 2024a] on TinyLLaVA and LLaVA 1.5, which incorporates a diverse set of instruction-following datasets, including free conversational data (LLaVA-Instruct [Liu et al., 2023a]), visual question answering (VQAv2 [Goyal et al., 2017], GQA [Hudson and Manning, 2019], OKVQA [Marino et al., 2019], A-OKVQA [Schwenk et al., 2022]), OCR and captioning (OCRVQA [Mishra et al., 2019], TextCaps [Sidorov et al., 2020]), and visual grounding (RefCOCO [Kazemzadeh et al., 2014], VG [Krishna et al., 2017]). For LLaVA-NeXT, we use the LLaVA-NeXT-Data [Liu et al., 2024b], which extends the LLaVA-mix-665k [Liu et al., 2024a] dataset with high-quality user instruction data from LAION-GPT-V, ShareGPT-4V [Chen et al., 2024a], and LLaVA-demo [Liu et al., 2023a], as well as OCR, document, and chart data from DocVQA [Mathew et al., 2021], SynDog-EN [Kim et al., 2022], ChartQA [Masry et al., 2022], DVQA [Kafle et al., 2018], and AI2D [Kembhavi et al., 2016].

C More Details on CHAIR Evaluation

As mention in Section 3.3, we utilize the CHAIR metric to evaluate object hallucination in image captioning tasks. The metric assesses object hallucinations through two dimensions: per-instance CHAIR_i and per-sentence CHAIR_s . The former measures the fraction of object instances that are hallucinated, while the latter determines the proportion of sentences that contain at least one hallucinated object. Definitions of these two metrics are formally provided:

$$\text{CHAIR}_i = \frac{|\{\text{hallucinated objects}\}|}{|\{\text{all objects mentioned}\}|},$$

$$\text{CHAIR}_s = \frac{|\{\text{sentences with hallucinated object}\}|}{|\{\text{all sentences}\}|}.$$

We follow [Huang et al., 2023] to perform the CHAIR evaluation on the COCO2014 dataset. Specifically, we randomly select 500 images in the validation set. The decoding process uses the greedy strategy and the Beam search with $N_{beam} = 5$, with a maximum of 512 tokens for new content generated.

D More Cases

More cases of our L2T compared to VIT are shown in Figure 11. Our L2T consistently outperforms VIT across a range of scenarios, including OCR, image captioning, and hallucination mitigation.

Figure 11: More cases of L2T and VIT across OCR, image captioning, and hallucination mitigation tasks.

E Computational Cost

Table 11 presents the computational cost of VIT and L2T across different instruction-to-response length ratios. The experiments are conducted on 8 NVIDIA A100 GPUs.

Table 11: Computational cost of VIT and L2T across different instruction-to-response length ratios. We report the number of samples per batch and steps per batch. Experiments are based on LLaVA-1.5 Vicuna-7B.

Q/A Ratio	0.05		0.1		1		10		20	
	Metric	sample/s	step/s	sample/s	step/s	sample/s	step/s	sample/s	step/s	sample/s
VIT	2.617	0.327	2.692	0.337	2.645	0.331	2.708	0.339	2.678	0.335
L2T	2.640	0.330	2.623	0.328	2.676	0.334	2.613	0.327	2.708	0.338

F Visualization of Attention Heads

Recent observations [Orgad et al., 2025, Shen et al., 2025] show that the hidden activation of the token preceding the answer (the colon “:”, in the prompt “ASSISTANT:”) encodes more information than the output logits. Inspired by this, we select this token’s hidden activation for visualization. Specifically, we visualize 14 attention heads from the last layer of a 24-layer transformer during inference, focusing on their activation across input tokens, particularly image tokens, to compare VIT and L2T. Data samples are randomly selected from VQAv2 [Goyal et al., 2017], GQA [Hudson and Manning, 2019] and OKVQA [Marino et al., 2019]. Detailed information about the selected examples is provided in Table 12, and the visualizations of the corresponding attention heads are presented in Figure 6 and Figure 12.

Table 12: Examples for visualization of attention heads.

Prompt	Image	Visualization
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user’s questions. USER: <image>\nOn which side of the photo is the faucet, the right or the left?\nAnswer the question using a single word or phrase. ASSISTANT:		Figure 6
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user’s questions. USER: <image>\nIs the car to the left or to the right of the man?\nAnswer the question using a single word or phrase. ASSISTANT:		Figures 12(a) and 12(b)
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user’s questions. USER: <image>\nWhere these red vegetables imported to the us or exported from the us?\nAnswer the question using a single word or phrase. ASSISTANT:		Figures 12(c) and 12(d)
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user’s questions. USER: <image>\nIn which knee is the hole in the women’s pants?\nAnswer the question using a single word or phrase. ASSISTANT:		Figures 12(e) and 12(f)

G Discussion on the Scope of This Work

Recent vision–language models (VLMs) often struggle with challenges such as hallucination and shortcut learning, which can limit their reliability and generalization. Addressing these issues requires careful consideration of the interactions between different training stages, including Supervised Fine-Tuning (SFT), rule-based Reinforcement Learning (RL), and Reinforcement Learning from Human Feedback (RLHF).

Our work focuses on improving the foundational SFT stage. We posit that the quality of early instruction tuning directly influences the effectiveness and safety of subsequent alignment. Indeed, recent studies indicate that applying RL or RLHF on models already prone to hallucination or shortcut learning can reinforce these issues, leading to confidently incorrect outputs.

L2T addresses this problem at its root by reducing shortcut learning and enhancing visual grounding during SFT. A stronger SFT foundation provides a more reliable base for RLHF, enabling safer and more effective alignment. While recent work has emphasized RL and reward modeling as post-training interventions, foundational flaws in SFT can persist or even intensify during alignment. Thus, improving early-stage instruction tuning serves as a preventive measure rather than relying solely on corrective post-training methods.

Overall, this perspective highlights the broader impact of L2T: by enhancing the base model during SFT, it facilitates downstream alignment and helps define the scope of our contribution in enabling safer and more generalizable multimodal training strategies.

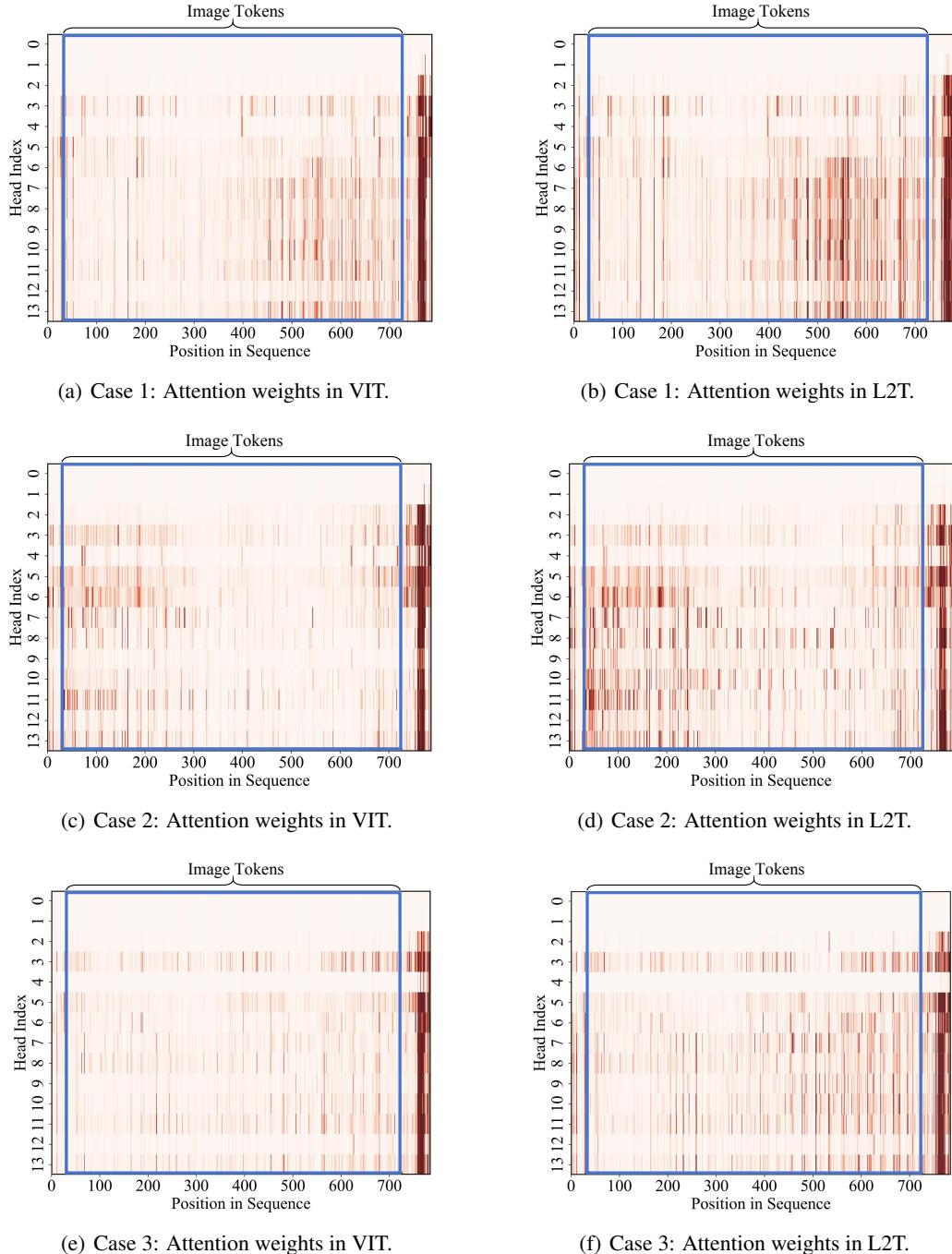


Figure 12: Visualization of attention weights in VIT and L2T for additional cases. Darker colors indicate higher attention weights. Experiments are based on TinyLLaVA Qwen2-0.5B.

H Limitations

Despite the promising capabilities underscored by L2T, several limitations must be acknowledged. First, the performance improvements achieved by L2T mainly stem from the informative instruction content that aids in better understanding visual inputs. In contrast, redundant instruction content, such as system or task templates, do not contribute to performance gains, as they lack relevant information about the visual content. Second, it is critical to ensure that the instructions do not contain harmful or

biased content. The presence of such content could raise concerns about the fairness and reliability of MLLMs, making them more susceptible to generating flawed, biased, or even harmful responses.

I Broader Impact

This work focuses on improving vision instruction tuning techniques, advancing the multimodal capabilities. It can benefit applications such as assistive technologies, education, and content creation. For example, individuals with visual impairments could gain access to enhanced image-to-text descriptions, improving accessibility and inclusivity. However, alongside the development of multimodal technologies, it is crucial to address the risks of bias and harmful content. The model may inadvertently propagate societal biases embedded in the training data, leading to discriminatory or inappropriate outputs. Furthermore, enhanced capabilities could be exploited to generate convincing but harmful misinformation or deepfakes, posing risks to societal trust and safety. To responsibly advance this technology, we emphasize the importance of robust mitigation strategies, including diverse and inclusive training data, bias detection tools, and ethical safeguards against misuse. Ensuring that these technologies serve the public good requires ongoing collaboration among researchers, developers, and policymakers, fostering innovation while minimizing unintended negative impacts.