
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOMIEBOT: AN ADAPTIVE SYSTEM FOR EMBODIED
MOBILE MANIPULATION IN OPEN ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Embodied Mobile Manipulation in Open Environments (EMMOE) is the challenge
that agents understanding user instructions and executing long-horizon everyday
tasks in home environments. This challenge encompasses task planning, decision-
making, navigation and manipulation, and is crucial to develop a powerful home
assistant capable of autonomously completing daily tasks. However, the absence of
a holistic benchmark, data incompatibility between large language models (LLMs)
and mobile manipulation tasks, the lack of a comprehensive framework, and insuf-
ficient dynamic adaptation mechanisms all continue to hinder its development. To
address these issues, we propose EMMOE, the first unified benchmark that simul-
taneously evaluates high-level planners and low-level policies, and new metrics for
more diverse evaluation. Additionally, we manually collect EMMOE-100, the
first everyday task dataset featuring detailed decision-making processes, Chain-of-
Thought (CoT) outputs, feedback from low-level execution and a trainable data for-
mat for Large Multimodal Models (LMMs). Furthermore, we design HOMIEBOT, a
sophisticated agent system which integrates LMM with Direct Preference Optimiza-
tion (DPO) as the high-level planner, small navigation and manipulation models as
the low-level executor. Finally, we demonstrate HOMIEBOT’s performance and
methods for evaluating different models and policies.

1 INTRODUCTION

The embodied agent is defined as the integration of artificial intelligence (AI) with a physical entity,
enabling it to perceive, learn and interact with the environment just like a human. In recent years,
developing agents capable of understanding human instructions and autonomously completing daily
tasks has become an increasingly popular challenge (Song et al., 2023; Yenamandra et al., 2023).
This challenge spans multiple fields, including AI, robotics, computer vision, natural language
processing and so on. Traditional frameworks for embodied agents, such as imitation learning (IL)
and reinforcement learning (RL), have shown limitations on generalization and transfer ability (Shen
et al., 2021; Lightman et al., 2023; Rafailov et al., 2024). Moreover, how to enable robots to actively
explore and adapt to new environments while reducing the reliance on prior knowledge remains a
significant challenge.

Recently, breakthrough developments in LLMs have shown great potential in complex embodied
scenarios (Driess et al., 2023; Chen et al., 2023; Wang et al., 2023). LLMs excel in various natural
language tasks and demonstrate strong generalization ability. Through advanced prompting techniques
such as CoT (Wei et al., 2022), the logical reasoning ability of LLMs has been further improved (Wang
et al., 2022; Fu et al., 2022). Visual Language Models (VLMs) enable LLMs to process visual input
and allow agents to reason and make decisions based on visual observations of the environment,
thus enhancing their perception and understanding abilities. The development of LMMs has further
expanded the application of embodied agents into real-world settings. Moreover, with the ongoing
development of demonstrations, advanced simulators (Szot et al., 2021; Kolve et al., 2017) and
diverse datasets (Das et al., 2018; Li et al., 2023a; Shridhar et al., 2020), the integration of large
models and embodied agents is expected to become the next wave in AI, potentially marking a crucial
breakthrough in the advancement toward physical robotics.

Although LLM-driven embodied agents have been successfully applied to many downstream tasks,
they still face several significant challenges when combined with mobile manipulation tasks:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Task: check if there are bananas in the fridge; if not, get one

from the kitchen and put it in the fridge.

VLM

Low

Level

Execution

Image:

Inventory: None

Historical Execution: (1) [Go to, fridge](success) (2)

[Open, fridge](success) …… (7) [Go to, banana](success)

Feedback: None

Analysis: I successfully arrive the banana and find it, so I

should pick it.

Subtask: [Pick, banana]

Model: RT-1-X

Image:

Inventory: None

Historical Execution: : (1) [Go to, fridge](success) ……

(7) [Go to, banana](success) (8) [Pick, banana](fail)

Feedback: Unable to pick, the subtask is too difficult to

perform.

Analysis: I failed to pick the banana, as the task is too

difficult, so I should go to the kitchen counter next.

Subtask: [Go to, kitchen_counter]

Model: NoMaD

……

……

Figure 1: An illustration of running pipeline
of HomieBot. After receiving images and feed-
back, LMM generates analysis, specific subtask
and model choice for low level executor to per-
form.

1). Many benchmarks for high-level planning
focus on question-answering tasks and decision-
making, while benchmarks for low-level poli-
cies vary across different skills, a more sensible
evaluation approach would integrate both lev-
els into long-horizon tasks and assess the whole
success rates. Moreover, the heavy reliance on
simulators for evaluation and incomplete met-
rics also limits further developments toward real-
world. 2). Robotics data for IL or RL is always
not trainable for LLMs, which require dialogue-
style data. Besides, while LLM training requires
a large amount of data, obtaining an equivalent
volume of robotics data is highly challenging.
LLM prefer to output diverse human-style in-
structions, whereas agents require more precise
and practical instructions. The incompatibility
and lack of data further complicates aligning the
abilities of LLMs with the needs of embodied
agents. 3). To perform human-like long-horizon
tasks, an agent needs to integrate multiple abil-
ities like task planning, decision-making, navi-
gation and manipulation into a comprehensive
framework. However, existing frameworks fail
to satisfy all these requirements simultaneously.
4). The agent must also have strong adaptability
to make adaptation based on feedback and react
with dynamic environment.

To handle these issues and advance the development of embodied agents, we propose EMMOE as
an open challenge, which requires agents understanding and executing long-horizon everyday tasks
in home environments. Besides, we manually collect EMMOE-100, the first everyday task dataset
featuring detailed task-planning processes, analyses of each output, correction during execution and a
trainable data format for LMMs, which will facilitate the alignment of LMM capabilities with specific
embodied tasks. Finally, we introduce HOMIEBOT, a sophisticated agent system that integrates both
high-level and low-level models to complete EMMOE challenge. It is also equipped with multiple
error detection and adaptation mechanisms, an execution demonstration is shown in Fig.1.

In particular, our paper makes the following contributions:

• We propose EMMOE, the first unified benchmark for both high-level and low-level embodied
tasks with three novel metrics for more advanced evaluation.

• We collect EMMOE-100, the first everyday task dataset featuring CoT outputs, diverse task
design, re-plan processes, SFT and DPO (Rafailov et al., 2024) dataset built on it.

• We design HOMIEBOT, a sophisticated agent system which integrates models at different levels,
multiple error detection and adaptation mechanisms to complete EMMOE tasks.

2 EMMOE BENCHMARK

2.1 EMMOE-100 DATASET

Leveraging the interactive environments and robots provided by Habitat HAB 2.0 (Szot et al., 2021),
we collect EMMOE-100, a dataset consists of 100 complex everyday tasks. We sample 100 different
episodes from the Replica Challenge (Szot et al., 2021) to build our scenarios and design various
tasks. In addition to typical tasks like pick something and place it somewhere, we also design other
types of tasks: complex long-horizon tasks which consist of at least ten subtasks; open-ended tasks
that allow multiple possible solutions; logical tasks that provide vague description and require logical
reasoning; human-style tasks which are described in a natural conversation style. As these attributes

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Dataset Comparisons EMMOE-100 is the first dataset to integrate mobile manipulation
tasks with embodied task planning, decomposing long mobile manipulation trajectories into discrete
actions then executed by low-level policies in continuous space.

Low-level
Policy

Selection

Embodied
Task-planning Manipulation Navigation Human

Annotations Re-plan LMM-Trainable
Format

CoT
Analysis

Open-ended
Instructions

OVMM(Yenamandra et al., 2023) ✗ ✗ Continuous Continuous ✗ ✗ ✗ ✗ ✗
BEHAVIOR-1K(Li et al., 2023a) ✗ ✗ Continuous Continuous ✗ ✗ ✗ ✗ ✗
ALFRED(Shridhar et al., 2020) ✗ ✓ Discrete Discrete ✓ ✗ ✓ ✗ ✗

Octopus(Yang et al., 2023a) ✗ ✓ Discrete Discrete Generated Generated ✓ Generated ✗
Habitat 2.0 HAB(Szot et al., 2021) ✗ ✗ Continuous Continuous ✗ ✗ ✗ ✗ ✗

VirtualHome(Puig et al., 2018) ✗ ✓ Discrete ✗ ✓ ✗ ✓ ✗ ✗
ManiSkill-2(Gu et al., 2023) ✗ ✗ Continuous Continuous ✗ ✗ ✗ ✗ ✗

EMMOE-100 ✓ ✓ Continuous Continuous ✓ Human ✓ Human ✓

are not contradictory, a task can possess multiple attributes simultaneously, we also provide a task list
and detailed task statistics in Appendix B.

Notably, EMMOE is not a subset of the Replica dataset and we only use its configuration files to
construct our desired scenarios. We manually controll the robot to complete all tasks and decompose
the execution process into several subtasks, finally we get 966 subtasks in total. In addition to the basic
text descriptions, we also provide each subtask with four first-person view images, along with detailed
annotations to explain the reasoning process behind the execution. Moreover, unlike previous datasets
that assume a fully successful process, we intentionally design some failed subtasks and provide
their corresponding re-plan corrections to enhance the robustness of the dataset, detailed comparisons
between EMMOE-100 and other mobile manipulation or embodied task planning datasets are shown
in Table 1. A demonstration of our task and all its subtasks is shown in Fig.2.

2.2 EVALUATION METRICS

The most fundamental metrics in task planning are Success Rate (SR) and Goal-Condition Success
(GC) (Shridhar et al., 2020). SR measures the rate of successful completions across all tasks, while
GC is the ratio of goal conditions achieved by the end of an episode. An episode is considered
successful only if GC reaches 100%. However, this evaluation metric has clear limitations when
applied to our tasks. First, our task not only focuses on the final result but also pays attention to the
execution process while GC only checks the final status. Additionally, though GC is effective for
evaluating tasks with a single ending, it is not suitable for open-ended tasks. Human-style instructions
are often open-ended and won’t specify where to go or what object to get, leading to situations where
the agent successfully completes the task in a different way but is still considered as a failure for
not meeting pre-defined goal conditions. Moreover, setting new goal-conditions requires a deep
understanding of scene information and rule-based languages like PDDL, which complicates the
collection and development of new datasets. To overcome these limitations and provide a more
diverse assessment of the model’s capabilities, we propose the following new metrics.

Task Progress To better measure the task execution process and success rate, we propose a new
metrics: Task Progress (TP). The calculation method for TP is as follows:

TP = max
ki∈KT

(
len(kcheck

i)

len(ki)

)
(1)

ki is the i-th keypath in the keypath set KT for task T , where a keypath is defined as an ordered set
of all necessary steps required to complete a task. During calculation, nodes must be checked in the
exact order specified by the keypath, any node that passes evaluation will be added to another ordered
set kcheck

i , the ratio between the length of kcheck
i and the length of ki is used to calculate final TP. Each

task is assigned with multiple keypaths, representing different possible ways to complete the task.
Then the task’s TP is defined as the maximum ratio across all its keypaths, the task is considered
successful only when its TP reaches 100%.

The proposal of TP brings many benefits. First, it does not impact the calculation of previous metrics,
though the length of different keypaths may vary, the episode length remains fixed. Besides, since
keypaths are written in natural language and key node detection only requires high-level subtasks and
execution status, the creation of keypaths is greatly simplified. This allows researchers to quickly

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task: check if there are bananas in the fridge; if not, get one from the kitchen and put it in the fridge

[Go to, fridge] [Open, fridge] [Go to, kitchen_counter]

[Pick, banana]

[Go to, fridge][Put, banana, fridge][Close, fridge]End

Initial

front

back

left

right

Figure 2: Data example in EMMOE-100 dataset. A key feature in our dataset is the emphasis on
the execution process. In this task, the agent must check the fridge first; Otherwise, even if the agent
finally gets a banana from the kitchen, it will not be considered as a success.

define new tasks and keypaths when collecting EMMOE datasets in new environments. Finally,
this approach enables detection and evaluation in real-world settings, where writing PDDL files for
evaluation is not feasible. More details about TP and keypath are in Appendix B.1.

Success End Rate To develop an agent that can automatically complete assigned tasks without
human intervention or background information, it is crucial to equip it with the ability to judge when
to stop. Without this capability, even a successfully completed task could result in an endless loop.
Therefore, we propose a new metric Success End Rate (SER) to evaluate whether the agent has the
ability to determine the appropriate timing for termination, and the calculation method is as follows:

SER =
len(S)∑

t∈M countt(end)
(2)

where M is the set of all trajectories, S is the set of successful trajectories, countt(end) equals 1
if the final action in the trajectory t is End or 0 otherwise, and len(S) is the number of successful
task trajectories. This metric is significant for testing fully automatic embodied agents in the future.
Once it exceeds a certain threshold or even reaches 100%, metrics like GC or TP will no longer be
needed to calculate the SR, as the agent would already have the ability to correctly determine when
to terminate the task. Calculation demonstrations are in Appendix B.1.

Success Re-plan Rate In the real-world deployment of agents, the ability to quickly adapt to
the environment and adjust from failure to complete tasks is crucial as the cost of failure is often
unacceptable. However, there is a lack of an appropriate metric to measure this adaptive capability.
Therefore, we propose Success Re-plan Rate (SRR), which measures the model’s ability to effectively
re-plan for task success. It is calculated as follows:

SRR =

∑
t∈S countt(replan)∑
t∈M countt(replan)

(3)

where countt(replan) is the number of re-plans in trajectory t. A higher SRR value indicates powerful
generalization and adaptability of the model. More demonstrations can be found in Appendix B.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Low

Level

Execution

LLM

Share Projection

Encoder Zoo

Word Embedding

Layer

𝑜1 𝑜2 𝑜3 𝑜4
𝑠

𝑂 = {𝐴, 𝑆,𝑚}

𝑖𝑛𝑣ℎ 𝑓

𝑆,𝑚, 𝑖𝑛𝑣

𝑜, 𝑓

Environment

action

perception

Replan Execution

𝑇

Figure 3: Overview of HomieBot HomieBot leverages two modules: High-Level Planning and
Low-Level Execution to complete complex daily tasks.

3 HOMIEBOT

3.1 OVERVIEW

In this section, we’ll introduce how our HomieBot accomplishes EMMOE tasks and the overview of
its frame is shown in the Fig.3. The process of EMMOE tasks can be described as: the agent needs to
make embodied decisions based on current environments and historical execution records in open
environments, then navigates and manipulates within a continuous space, the obtained results and
feedback will be used for the next decision. We divide this process into two main parts: High Level
Planning (HLP) and Low Level Execution (LLE). HLP is responsible for embodied decision-making
and planning adaptation while LLE handles continuous execution and provide feedback to HLP. We
will describe HLP in Section 3.2 and LLE in Section 3.3.

3.2 HIGH LEVEL PLANNING (HLP)

The key challenge in long-horizon planning is to ensure LLM-generated plans are practical, especially
when static plans fail to adapt to dynamic changes. Agents need to continuously interact with the
environment to refine and adjust plans based on real-time feedback. We select Video-LLaVA (Lin
et al., 2023) as our base planner model M and fine-tune it with our EMMOE data. Additionally, we
design elaborate input and output instructions to facilitate dynamical adjustment during execution.

Multimodal Instruction We decompose a long mobile manipulation trajectory into several sub-
tasks, and our multimudal instruction I is shown as follows:

I = {o1∼4, s, T, inv, h, f} (4)

In the visual part, four first-person view images o1∼4 correspond to four directions: front, left,
back and right. In the text part, system information s and user task T remain fixed throughout the
conversation, reminding the agent of its responsibility. Feedback f indicates the state of the last
execution and error information if failed, and it will also be used to update other parts of I . Inventory
inv reflects what the agent currently holds, mainly to prevent generation of illogical actions, inv
will be updated based on both f and the type of the last action. Execution history h logs all previous
subtasks and their results. After receiving f , the last subtask and its result will be updated into
h. Notably, unlike some previous methods would first perform visual detection (Song et al., 2023)
or input background information (Yang et al., 2023a) into the LLM, all background information
including BEV (Bird’s Eye View) images are prohibited and we directly input o1∼4 to LMM, which
means the planner must strengthen its intrinsic capability to generate more reasonable outputs.

Json-format Output Since information requirements vary from different low-level policies, a
standardized output format is essential to accommodate these diverse requirements. Besides, it
allows each module to function independently while simplifies module replacement and maintenance.
Therefore, we define our output in the following uniform format:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

O = M(I) = {A,S,m}, S = {action,target} (5)

A represents the analysis of each outputs, which is inspired by works like CoT (Wei et al., 2022),
before generating final outputs, planner model M is expected to summarize previous executions and
current situations, analyze what to do next and then provide the subsequent subtask S. To ensure
the feasibility of the output, action in each subtask must be chosen from the available action list.
Similarly, m which represents the selected low-level models or policies, is also restricted to the a
given model list. To fully separate decision-making from low-level execution and avoid over-reliance
on the simulator, we impose fewer restrictions on target, which can be an object or a location, but
it must be observable in the provided images and deemed necessary for completing the task.

3.3 LOW LEVEL EXECUTION (LLE)

After getting subtask S, model choice m and inventory inv from HLP, LLE would convert them
into precise model-calling instructions. Error detection occurs at different stages to monitor the
execution process. Once execution is completed or terminated, LLE will send environmental images
and feedback to HLP for subsequent decision-making. Considering the limitations of the simulator,
we set up six executable skills (see Table E1 for more details). Since different models require different
input information for execution, the performance of models utilizing background information will
certainly differ from those that do not. Therefore, to ensure fairness in model selection, we establish
two different settings based on whether the simulator’s background information is required.

Execution With Background Information More specifically, execution with background informa-
tion means that the selected model needs to directly obtain precise position and status information of
the target from the simulator. As M3 (Gu et al., 2022) demonstrates excellent performance across
all the skills we define when utilizing background information from the habitat, we choose it as the
unique low-level model. In this case, m is masked and the model choice is always M3. Since M3
requires specific background names and our target cannot be directly recognized by it, we apply
several processing steps before passing the information to M3. This ensures that the information is
converted into a granularity that M3 can recognize. More details are in Section 4.3.

After the execution is completed, in addition to the text and image data provided to HLP, LLE also
captures the entire execution process in a video. At the end of each task, we will obtain a complete
trajectory video with detailed annotations for each step. This means that HomieBot has the potential
to bridge the gap between robot data and LLM data as the entire execution process is fully automated
and the user only needs to set up the scene and input instructions. The video data can be used for IL
in robotics, while the text and image data can be used for LMM training.

Execution Without Background Information Without background information means that the
agent can only rely on the information captured by its own sensors and its intrinsic ability to complete
the task. As shown in Table E2, we set two manipulation models and two navigation models to
perform different actions and model choice m from HLP will determine which model to use. The
manipulation models include RT-1-X (Padalkar et al., 2023) and Octo (Team et al., 2024b), RT-1-X
is used for Pick and Place, and Octo is used for Open and Close. The navigation models consist of
NoMaD (Sridhar et al., 2024) and PixNav (Cai et al., 2024). NoMaD specializes in image navigation
and is suitable when the target is a spot or large objects, whereas PixNav excels at pixel-level and
object navigation, making it ideal when the target is an object.

The primary criterion for selecting low-level models in this setting is that they should be lightweighted
rather than large models, aligning closely with our motivations for this setting. We aims to prepare
for the deployment and evaluation of agents in real-world settings, where background information is
often lacking. Real-world operations require high real-time performance, and the inference speed
of LLMs remains a challenge. By breaking down long-horizon tasks into action primitives, we can
leverage task-specific small language models (SLMs) for these actions, thus reducing time costs and
avoiding an overly large framework.

Error Detection Since errors may occur at different stages during the execution of long-horizon
tasks, to facilitate better communication with HLP and provide more detailed error information, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

design four major types and several sub-types of error detection. Logical error L1: the agent already
holds an object but still attempts to pick/open/close; L2: the agent holds nothing but attempts to put;
L3: the agent attempts to pick/put object in a closed container; L4: the agent attempts to open/close an
non-interactive object. Distance error D1: the agent is too far from the target, preventing interaction
with the target object; D2: the agent is too close to the target,the robotic arm is hindered from
extending properly during interaction. Format Error F1: The output action or model is not in the
available list; F2: The output target does not exist in the scene or can not be recognized by low level
models. Execution Error E1: failure is due to limited capabilities of low-level models or policies;
E2: improper execution may lead to the inventory information being accidentally updated. More
classification and detection details are in Appendix E.

4 EXPERIMENTS

4.1 DATA AUGMENTATION

SFT Augmentation Previous work(Zhang et al., 2024b) has demonstrated that a standardized data
format would significantly enhance model training and evaluation. To this end, we write a uniform
script (see in Appendix F.1) to convert EMMOE-100 data into fixed-format conversation data. During
this process, all failed subtasks will be skipped as they are treated as junk data for the SFT dataset and
we initially obtained 930 SFT data in this way, which is still insufficient for LLM training. To expand
the dataset, we use GPT-4o (Achiam et al., 2023) to regenerate text descriptions of tasks and the
analysis of each subtask for three times. This approach not only enhances the diversity of instructions,
allowing the LLM to adapt to different user input styles, but also helps to avoid introducing additional
inaccuracy or inconsistency. Finally, we obtain 3720 SFT data in total.

DPO Augmentation DPO (Rafailov et al., 2024) training has a strict requirement for data format,
which must include prompt, chosen and rejected. For the ith subtask and its input instruction Ii, if the
execution of model output Oi fails but the next output Oi+1 succeeds after re-plan, we will choose Ii
as the prompt, Oi as the rejected and Oi+1 as the chosen. Although this approach aligns well with the
concept of preference data, the proportion of re-planed data is relatively low. Therefore, we utilize
following methods to construct new DPO data. Order Change: We shuffle the order of successful
subtasks, treating output Oi as chosen and Oi+1 as rejected. This approach aims to help LLMs learn
the logical relationships between subtasks, particularly understanding the optimal order of actions.
Action Change: To standardize the model’s output and reduce responses outside the action list, we
replace subtask actions with non-standard names or actions not in the list. Model Change: To enable
the LLM owns the ability to select the appropriate low-level model for a given scenario, we replace
the model choice with other models in the model list. Finally, we get 10104 DPO data in total. More
visualized processing flows and data samples can be found in Appendix F.2.

4.2 MODEL TRAINING

Training Details We select 90 tasks from EMMOE-100 as our training tasks. Using the methods
described in Section 4.1, we obtain 3,316 SFT training data and 8,984 DPO training data. Then
we choose Video-LLaVA-7B (Lin et al., 2023) as our base model and conduct a two-stage training
process. In the first stage, we fine-tune the base model with a learning rate of 5e-4 on four NVIDIA
A40. In the second stage, we align the fine-tuned model with DPO method and train with a learning
rate of 5e-6. To prevent catastrophic forgetting and retain the model’s intrinsic capability, LoRA (Hu
et al., 2021) is applied in both stages, with LoRA rank set to 128 and α to 256 in stage one, and
LoRA rank set to 8 and α to 8 in stage two. More training details are shown in Appendix G.

4.3 SETUP

Metrics In addition to SR, TP, SER and SRR introduced in Section 2.2, we also choose Path
Length Weighted SR (PLWSR)(Shridhar et al., 2020) as one of our evaluation metrics. PLWSR is
defined as SR×(length of successful trajectory) / max(length of expert trajectory, length of successful
trajectory) and it measures the ability gap between the agent and the expert in successful trajectories.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of tasks in EMMOE-100 dataset. The highest values per metric are
shown in bold. All values are percentages.

Model SR PLWSR TP SRR SER
GPT-4o(Achiam et al., 2023) 13.33 10.51 29.79 3.57 49.38
Gemini-1.5-Pro(Team et al., 2024a) 17.33 14.79 38.03 3.39 55.91
Qwen2-VL-7B(Wang et al., 2024) 1.00 0.50 16.55 0.59 25.00
MiniCPM-V 2.6(Yao et al., 2024) 0.67 0.57 14.45 0.06 40.00

HomieBot-7B (SFT) 27.67 20.88 50.27 9.23 53.90
HomieBot-7B (SFT+DPO) 30.30 24.66 51.39 8.72 60.81

Table 3: Performance comparison of HomieBot bewteen train and test split. The highest values per
metric are shown in bold. All values are percentages.

Model Train split Test split
SR PLWSR TP SRR SER SR PLWSR TP SRR SER

HomieBot (SFT) 28.52 21.49 50.16 9.59 53.85 20.00 15.36 51.19 6.55 54.55
HomieBot (SFT+DPO) 31.84 25.82 52.29 9.69 60.71 16.67 14.36 43.39 3.08 62.50

Baselines High Level Planner: Modular framework and communication mechanism greatly
facilitate the deployment of various LMMs into our HomieBot. We select four representative LMMs
as baseline planners: GPT-4o (Achiam et al., 2023), Gemini-1.5-Pro (Team et al., 2024a), Qwen2-
VL-7B (Wang et al., 2024) and MiniCPM-V 2.6 (Yao et al., 2024). GPT-4o and Gemini-1.5-Pro can
be easily integrated into HomieBot after minimal adjustments to format requirements. By leveraging
the in-context learning abilities and providing output examples for each inference, the other two
models can also be deployed into our system. Low Level Executor: We extract individual skills from
M3 (Gu et al., 2022) and modify their implementations. The original skills require the initial and final
states of the object. We map the object name to obtain specific background information and select the
nearest object. Additionally, the arm status will be reset after each execution to enhance the success
rate. We also pass all environmental state information between executions to ensure environmental
consistency. We provide more deployment details in Appendix H.1.

Evaluation Dataset All tasks in EMMOE-100 will be used for evaluation, the remaining ten tasks
that are not used as training data will serve as our test set. Each task is executed three times, with a
maximum step limit of 20. We will use the average result of each task for the final calculation.

4.4 RESULTS

We first conduct a unified evaluation since all data are unseen to baseline models, and the results
are shown in Table 2. Our DPO version achieves the best performance in SR, PLWSR and TP
metrics, significantly surpassing the baseline models. Additionally, it is evident that for open-source
models of similar size, even state-of-the-art LMMs like Qwen2-VL-7B (Wang et al., 2024) and
MiniCPM-V 2.6 (Yao et al., 2024) struggle to complete EMMOE tasks without additional training.
For SER, though DPO version performs best, the improvement is not so obvious as in other metrics,
Gemini-1.5-Pro even surpasses the SFT version. This is because SER reflects the model’s ability
to correctly judge when a task is completed and should terminate. It is not influenced by format
requirements or low-level execution but is more related to the model’s inherent reasoning ability.
The strong reasoning capabilities of GPT-4o (Achiam et al., 2023) and Gemini-1.5-Pro (Team et al.,
2024a) enable them to effectively determine when a trajectory should end without training.

However, SFT version performs best rather than DPO version for SRR. Since SRR reflects the
model’s ability to adapt to environments and adjust from failure, we think this could be attributed
to limitations of the DPO method (Xu et al., 2024). While DPO brings unparalleled advantages
in training efficiency and speed, it may compromise the model’s generalization and transferability.
Therefore, we evaluate HomieBot separately on training and test set, and the results are shown in
Table 3. As we can observe, while DPO version performs best across all metrics in the training
split, it only outperforms SFT version in SER during the test split. Besides, SRR shows a significant

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Error Statistics The left and right figures respectively depict the proportion of each error
among all errors in successful and failed trajectories. Additionally, we indicate the percentage of
failed execution times out of total execution times next to each model’s name. Due to too few
successful trajectories for Qwen2-VL and MiniCPM-V 2.6, their results will not be shown in the left
figure. All values are percentages and the raw statistical data is available in Appendix H.2.

decline and even performs slightly worse than GPT-4o and Gemini-1.5-Pro. This phenomenon
further confirms that the DPO method introduces certain generalization issues. Notably, SER for both
versions remains stable across the training and test splits, which further demonstrates that SER is
more related to the model’s inherent judgment ability, and our specialized handling of End during
dataset construction has enhanced this ability (See in Appendix F.2).

4.5 ANALYSIS

To further explore the reasons for the overall low success rate and demonstrate how HomieBot can
be used to simultaneously evaluate both HLP and LLE, we conduct a detailed analysis based on the
results in Section 4.4. Using the error classification in Section 3.3 and recorded feedback, we collect
all errors that occurred during experiments. To determine which errors are acceptable and solvable
and which are the main causes of failure, we further classify them according to whether they appear
in successful or failed trajectories, the results are shown in the Figure 4.

Error Analysis Except for E1 and E2 errors which come from low-level models, each type of
error corresponds to different capabilities of LMMs. In failed trajectories, the predominant error
type across all baseline models is F2 error, which largely exceeds other types. This suggests that
the primary factors impeding baseline model’s performance are physical grounding failures and
model hallucinations. In practical execution cases, we observe that even models are told that objects
do not exist or cannot be recognized, they may still output wrong objects or repeat mistakes after
several steps. This issue has been significantly improved in our models, which also highlights the
significance of LMM-trainable format data. With a small amount of data combined with our SFT
and DPO data augmentation methods, LMM can build up a general understanding of the current
environment, enabling outputs to be grounded and compatible with low-level models. Besides, the
ratio of failed executions to total executions for two open-source models is relatively low, indicating
most subtasks are successfully executed, which seems to conflict with the very poor SR. In our
observations, since EMMOE involves very complex and long-horizon tasks, the execution steps can
easily become very long, when the model’s understanding ability is insufficient, it may fail to fully
grasp previous execution content, ultimately resulting in the meaningless output. Although these
subtasks can be successfully executed, they will contribute nothing to the overall task, and even
worse, they will consume remaining steps and fasten task termination. In successful trajectories, the
most common error is D1 error. This indicates that even when the model’s spatial perception ability

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: P represents the percentage of individual action errors relative to the total execution errors.
SR here represents an average value as each skill is attempted up to three times per execution. All
values are percentages and the raw statistical data is available in Appendix H.2.

Metrics Go to Pick Place Open Close

P 38.49 49.77 7.30 3.32 1.11
SR 45.32 22.45 40.97 43.13 36.45

Table 5: The performance of each type of task is presented in the format SR (PLWSR). The highest
value for each model is highlighted in red. All values are percentages.

Model typical long-horizon open-ended logical human-style
HomieBot-7B (SFT) 43.75 (32.31) 24.60 (18.70) 18.52 (11.93) 34.01 (25.45) 25.24 (18.70)
HomieBot-7B (SFT+DPO) 41.67 (34.24) 28.11 (22.82) 15.38 (11.57) 35.86 (28.05) 27.88 (21.78)

is insufficient, it can be adjusted through feedback information. Typically, after a D1 error occurs, the
model will output Go to action based on the feedback, effectively resolving this error. We conduct
more detailed case study in Appendix I.

LLE Evaluation Comprehensive error types allow us to evaluate HLP and LLE separately. We
further classify E1 and E2 errors based on action types and count total occurrences of each action,
the calculation results are shown in Table 4. It is evident that Pick action has a significantly lower
success rate and the highest proportion of execution errors compared to other actions.

Task Performance We also evaluate SR and PLWSR for each type of task defined in Section 2.1. As
shown in Table 5, typical tasks are relatively easy due to straightforward processes and fewer overall
steps. The most challenging are open-ended tasks, which usually have a very long total step count,
with flexible processes and results, demanding powerful capabilities from both HLP and LLE models.

5 LIMITATIONS AND FUTURE WORKS

Limitations Firstly, the range of available actions and interactive objects is limited in Habitat,
restricting the scope of our task design. Secondly, When the scenario is expanded to multiple rooms,
the demands on navigation and memory functions will significantly increase, potentially necessitating
the integration of additional memory mechanisms. Although standardized output enables uniform
evaluation of different models, it will sacrifice certain information precision to meet each model’s
requirements, and the increasing number of model inferences will lead to additional time costs.
Therefore, designing a more efficient workflow and output format is necessary. Finally, disparities
among simulators and between simulators and the real world pose significant challenges for low-level
model transfer and generalization, a more general and universal evaluation platform is needed.

Future Works Recently, more powerful simulators like Robocasa (Nasiriany et al., 2024) enable
the design and collection of a wider range of everyday tasks. Besides, how to efficiently utilize
historical images and videos rather than text only to improve decision-making still needs to be
explored. Additionally, real-world deployment of Homie is possible since the data collection and
evaluation metrics are independent. Furthermore, exploring how Homie can interact or collaborate
with family members to complete daily tasks is also worthful and necessary.

6 CONCLUSION

In our work, we first introduce EMMOE, the first unified benchmark designed to evaluate both high-
level planners and low-level policies. Then we present the collection and features of EMMOE-100
and propose three novel metrics to complement existing metrics. Next, we introduce our HomieBot
and illustrate how its two main components HLP and LLE function. In experimental parts, we
demonstrate how to use original EMMOE data to construct LLM-trainable SFT and DPO datasets
and evaluate different models, we also conduct deep analysis based on detailed error information.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This research utilizes publicly accessible models and simulators, ensuring that all data complies
with privacy regulations and has been anonymized where required. We are aware of potential biases
that may emerge in automated data generation, especially those related to gender, race, or other
attributes. To address this, we have implemented measures to assess and reduce such biases and are
dedicated to continuous improvement in this area. Moreover, we acknowledge the risks of misuse,
such as generating misleading data, and have incorporated safeguards to prevent such uses. Our
objective is to foster the responsible development and application of embodied agent technology
to advance accessibility and automation, while upholding ethical standards in AI development. To
support reproducibility and further research, all code and models will be openly shared.

REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. All the training procedures,
and hyperparameter settings, are described in Appendix G. Detailed information about our datasets
and demonstrations can be found in Appendix B. More examples of metric calculation can be found
in B.1. We provide more details and code clips of our pipeline in Appendix D and Appendix E.
Codes and demonstrations of data augmentation are in Appendix F. We supply more details about the
experiments and running pipelines in Appendix H For theoretical results, we provide a clear outline
of the assumptions and complete proofs in Appendix I. We have also outlined any hardware and
software configurations used for our experiments to further support reproducibility.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023. 7, 8, 28, 33, 34, 35

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022. 18, 19

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3674–3683, 2018. 18

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash Ku-
mar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmentations
and action chunking. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4788–4795. IEEE, 2024. 18

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022. 18, 27

Wenzhe Cai, Siyuan Huang, Guangran Cheng, Yuxing Long, Peng Gao, Changyin Sun, and Hao
Dong. Bridging zero-shot object navigation and foundation models through pixel-guided navigation
skill. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 5228–5234.
IEEE, 2024. 6, 18, 27

Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon Min,
Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, et al. Goat: Go to any thing. arXiv preprint
arXiv:2311.06430, 2023. 18

Yaran Chen, Wenbo Cui, Yuanwen Chen, Mining Tan, Xinyao Zhang, Dongbin Zhao, and He Wang.
Robogpt: an intelligent agent of making embodied long-term decisions for daily instruction tasks.
arXiv preprint arXiv:2311.15649, 2023. 1

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied
question answering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1–10, 2018. 1, 18

Vishnu Sashank Dorbala, Prasoon Goyal, Robinson Piramuthu, Michael Johnston, Dinesh Manocha,
and Reza Ghanadhan. S-eqa: Tackling situational queries in embodied question answering. arXiv
preprint arXiv:2405.04732, 2024. 18

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023. 1, 18

Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Junbo Wang, Haoyi Zhu, and Cewu Lu.
Rh20t: A robotic dataset for learning diverse skills in one-shot. In RSS 2023 Workshop on Learning
for Task and Motion Planning, 2023. 18

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2022. 1

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024. 18

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. Iqa: Visual question answering in interactive environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4089–4098, 2018. 18

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiayuan Gu, Devendra Singh Chaplot, Hao Su, and Jitendra Malik. Multi-skill mobile manipulation
for object rearrangement. arXiv preprint arXiv:2209.02778, 2022. 6, 8, 26

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manipulation
skills. arXiv preprint arXiv:2302.04659, 2023. 3, 18

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021. 7

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In
ICLR 2024 Workshop: How Far Are We From AGI, 2024. 18

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022. 19

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023. 18

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie, and Jason Baldridge.
Stay on the path: Instruction fidelity in vision-and-language navigation. arXiv preprint
arXiv:1905.12255, 2019. 18

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022. 18

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic rein-
forcement learning at scale. arXiv preprint arXiv:2104.08212, 2021. 18

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024. 18

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017. 1

Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-graph:
Vision-and-language navigation in continuous environments. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16, pp.
104–120. Springer, 2020. 18

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martı́n-
Martı́n, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Conference
on Robot Learning, pp. 80–93. PMLR, 2023a. 1, 3, 18

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang, Jiaming
Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-centric
robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18061–18070, 2024. 18

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023b. 18

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023. 1

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023. 5, 7

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
pre-training for visual language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 26689–26699, 2024. 19

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024. 19

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, et al. Openeqa: Embodied
question answering in the era of foundation models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16488–16498, 2024. 18

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
286–299. IEEE, 2024. 19

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327–7334, 2022. 18

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. Advances in Neural Information Processing Systems, 36, 2024. 18

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. arXiv preprint arXiv:2406.02523, 2024. 10

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024. 18

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023. 6, 27

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023. 18

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 8494–8502, 2018. 3

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024. 1, 2, 7, 19

Abhinav Rajvanshi, Karan Sikka, Xiao Lin, Bhoram Lee, Han-Pang Chiu, and Alvaro Velasquez.
Saynav: Grounding large language models for dynamic planning to navigation in new environments.
arXiv preprint arXiv:2309.04077, 2023. 18

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable task planning. arXiv
preprint arXiv:2307.06135, 2023. 18

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Allen Z Ren, Jaden Clark, Anushri Dixit, Masha Itkina, Anirudha Majumdar, and Dorsa Sadigh.
Explore until confident: Efficient exploration for embodied question answering. arXiv preprint
arXiv:2403.15941, 2024. 18

Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hirose, and
Sergey Levine. Vint: A foundation model for visual navigation. arXiv preprint arXiv:2306.14846,
2023. 18

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming Zhang, and Qun Liu. Generate &
rank: A multi-task framework for math word problems. arXiv preprint arXiv:2109.03034, 2021. 1

Yide Shentu, Philipp Wu, Aravind Rajeswaran, and Pieter Abbeel. From llms to actions: Latent
codes as bridges in hierarchical robot control. arXiv preprint arXiv:2405.04798, 2024. 18

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024. 19

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740–10749, 2020. 1, 3, 7, 18

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009, 2023.
1, 5, 18, 19

Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffusion
policies for navigation and exploration. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 63–70. IEEE, 2024. 6, 18, 27

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martı́n-Martı́n, Fei Xia, Kent Elliott
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behavior: Benchmark for
everyday household activities in virtual, interactive, and ecological environments. In Conference
on robot learning, pp. 477–490. PMLR, 2022. 18

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in neural information processing
systems, 34:251–266, 2021. 1, 2, 3

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024a. 8,
33, 34, 36

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024b. 6, 18, 27

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023. 18

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023. 1, 18

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024. 8, 32, 33, 34, 36

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022. 1

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022. 1, 6, 19

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia Gkioxari, Stefan
Lee, Irfan Essa, Devi Parikh, and Dhruv Batra. Embodied question answering in photorealistic
environments with point cloud perception. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6659–6668, 2019. 18

Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and Haibin Yan. Embodied task planning with large
language models. arXiv preprint arXiv:2307.01848, 2023. 18

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36, 2024. 19

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024. 8

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Chencheng Jiang, Haoran Tan, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer
from environmental feedback. arXiv preprint arXiv:2310.08588, 2023a. 3, 5, 18

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1, 2023b. 19

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al. Retroformer: Retrospective large language
agents with policy gradient optimization. arXiv preprint arXiv:2308.02151, 2023. 19

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024. 8, 32, 33, 34

Sriram Yenamandra, Arun Ramachandran, Karmesh Yadav, Austin Wang, Mukul Khanna, Theophile
Gervet, Tsung-Yen Yang, Vidhi Jain, Alexander William Clegg, John Turner, et al. Homerobot:
Open-vocabulary mobile manipulation. arXiv preprint arXiv:2306.11565, 2023. 1, 3, 18

Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. Vlfm: Vision-
language frontier maps for zero-shot semantic navigation. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 42–48. IEEE, 2024. 18

Bangguo Yu, Hamidreza Kasaei, and Ming Cao. L3mvn: Leveraging large language models for
visual target navigation. In 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3554–3560. IEEE, 2023. 18

Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit Bansal, Tamara L Berg, and Dhruv Batra. Multi-
target embodied question answering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6309–6318, 2019. 18

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language
models are semi-parametric reinforcement learning agents. Advances in Neural Information
Processing Systems, 36, 2024a. 19

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023. 31

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower ai
agent systems. arXiv preprint arXiv:2409.03215, 2024b. 7

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023a. 18

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Li Boyi, Shengyu Hao, Shidong Cao, Tian Ye, Jenq-
Neng Hwang, and Gaoang Wang. See and think: Embodied agent in virtual environment. arXiv
preprint arXiv:2311.15209, 2023b. 18

Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen, Hongxia Jin, Lise Getoor, and Xin Eric
Wang. Esc: Exploration with soft commonsense constraints for zero-shot object navigation. In
International Conference on Machine Learning, pp. 42829–42842. PMLR, 2023. 18

Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun Chang, and Xiaodan Liang. Soon: Sce-
nario oriented object navigation with graph-based exploration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12689–12699, 2021. 18

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023. 18

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Supplementary Material

The supplementary material is structured as follows:

• Related Work in Section A.
• Dataset in Section B.
• Metric Calculation in Section B.1.
• High Level Planning in Section D.
• Low Level Execution in Section E.
• Data Augmentation in Section F.
• Training Details in Section G.
• Experimental Details in Section H.
• Case Study in Section I.

A RELATED WORK

A.1 EMBODIED TASKS AND BENCHMARKS

As embodied agents and LLMs develop rapidly, many embodied tasks and benchmarks have emerged.
In Embodied Question Answering (EQA) tasks, EQA-v1 (Das et al., 2018), MT-EQA (Yu et al.,
2019), MP3D-EQA (Wijmans et al., 2019), IQUAD V1 (Gordon et al., 2018), OpenEQA (Majumdar
et al., 2024), HM-EQA (Ren et al., 2024), S-EQA (Dorbala et al., 2024) contains a variety of
task range to evaluate logical reasoning abilities of LLMs. In Vision-and-Language Navigation
(VLN) tasks, R2R (Anderson et al., 2018), R4R (Jain et al., 2019) and VLN-CE (Krantz et al.,
2020), SOON (Zhu et al., 2021) evaluate LLM’s capabilities under different navigation settings.
ALFRED (Shridhar et al., 2020) Behavior series (Srivastava et al., 2022; Li et al., 2023a) focus on
interactive household tasks OVMM (Yenamandra et al., 2023) involves picking and placing any object
in unseen environments. Common grasping datasets include MT-Opt (Kalashnikov et al., 2021),
VIMA (Jiang et al., 2022), ManiSkill2 (Gu et al., 2023), Calvin (Mees et al., 2022), BridgeData-
v2 (Walke et al., 2023), RH20T (Fang et al., 2023) and Open-X (O’Neill et al., 2024). In mobile
manipulation, RT series (Brohan et al., 2022; Zitkovich et al., 2023) and Mobile ALOHA (Fu et al.,
2024) exhibit strong capabilities. Despite numerous benchmarks, a unified benchmark and relevant
task is still missing. Traditional mobile manipulation uses IL to learn entire trajectories, complicating
the evaluation of intermediate processes. In our work, we propose EMMOE, a holistic benchmark
designed to assess both final results and the execution process.

A.2 LLM-DRIVEN EMBODIED AGENTS

LLM-driven embodied agents represent cutting-edge advancements in robotics. SayCan (Ahn et al.,
2022), Palm-E (Driess et al., 2023), LLM-Planner (Song et al., 2023) and EmbodiedGPT (Mu et al.,
2024) combine LLMs with complex embodied tasks. TAPA (Wu et al., 2023) and SayPlan (Rana
et al., 2023) use visual modules for multi-room settings. Voyager (Wang et al., 2023), STEVE (Zhao
et al., 2023b), Smallville (Park et al., 2023) and Octopus (Yang et al., 2023a) use LLMs to choose
pre-defined functions. L3MVN (Yu et al., 2023), ESC (Zhou et al., 2023), SayNav (Rajvanshi et al.,
2023) and VLFM(Yokoyama et al., 2024) build frontier or semantic maps to navigate. ViNT (Shah
et al., 2023) and NoMaD (Sridhar et al., 2024) focus on image navigation, PixNav (Cai et al.,
2024) uses LLM to select target image pixel. GOAT (Chang et al., 2023) is a comprehensive
navigation system. RT-2 (Zitkovich et al., 2023) is the first Visual Language Action (VLA) model.
RoboFlamingo (Li et al., 2023b) and OpenVLA (Kim et al., 2024) are open-source VLA models.
Leo (Huang et al., 2024) focuses on multiple QA problems. Octo (Team et al., 2024b) is a light
model for arm control. ALOHA (Zhao et al., 2023a) improves action prediction through action
chunking. RoboAgent (Bharadhwaj et al., 2024) enhances object detection and generalization, and
LCB (Shentu et al., 2024) uses LLMs to generate implicit strategy goals. ManipLLM (Li et al., 2024)
and VoxPoser (Huang et al., 2023) combine environmental perception and task execution.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 ADAPTATION FROM FEEDBACK

Discrepancies between LLM’s outputs and real-world conditions always lead to execution failures.
LLM-Planner (Song et al., 2023) make a straightforward re-plan. Self-Refine (Madaan et al., 2024)
use single LLM as generator and evaluator. Reflexion (Shinn et al., 2024) treats LLM as the Actor
and the evaluator as the Critic. ViLA (Lin et al., 2024) utilizes GPT-4V (Yang et al., 2023b) to
obtain visual feedback. However, self-improvement relies heavily on prompt design and intrinsic
capabilities of LLMs. If errors unrelated to planning occur, LLMs may struggle to self-correct. Inner
Monologue (Huang et al., 2022) and RoCo (Mandi et al., 2024) utilizes external collision detection
and feedback. DoReMi (Xie et al., 2024) sets pre-defined constrains. Nevertheless, LLMs may make
same mistakes in similar situations as the model weights are not changed. SayCan (Ahn et al., 2022)
trains a value function to consider both generated actions and their values. Remember (Zhang et al.,
2024a) builds a memory module and retrieves similar state-action pairs. Retroformer (Yao et al.,
2023) learns a retrospective model via policy gradient optimization. While RL-based adaptation
mechanisms are able to adjust actions before execution, defining and training an effective value
function or reward model is highly challenging. The recently popular DPO (Rafailov et al., 2024)
algorithm greatly simplifies this process by requiring only a preference dataset. In our HOMIEBOT,
we use DPO for model alignment, CoT (Wei et al., 2022) and self-reflection for decision-making.
Additionally, error detection and feedback mechanisms are applied during low-level execution.

B DATASET

B.1 DATASET DETAILS

(a) Task Classification (b) Task Cloud

Figure B1: Dataset Statistics

In terms of task classification, the long-horizon task is the most, with 84 (76 in the train set and 8 in
the test set). The least task is the most difficult open-ended task, with 6 in the train set and 3 in the
test set. The distribution of the five types of tasks in the train and test sets is also approximately the
same. In the word cloud map, we can see that put, find, sofa, etc. are popular words in our task.

B.2 DATASET DEMONSTRATION

Here we provide a demonstration of EMMOE data, its viusal information is shown in Fig. B2, the
collection method is as Section 2.1.

Task: check if there are anything in the kitchen drawer, if it’s empty put a short can into it

Subtask1: [Go to, blue_sofa] (PixNav)
Analysis: According to my final task, I must go to kitchen first, but I can’t find kitchen in my sight
and I find a blue sofa, so I should go to the blue sofa first and find kitchen later
Feedback: None
Inventory: None

Subtask2: [Go to, living_room] (NoMaD)
Analysis: I successfully arrived sofa but I still can’t find kitchen, as I see living room, I should go
to living room then keep searching kitchen

Feedback: None
Inventory: None

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure B2: Task Demonstration. line: subtask sequence; row: front, left, back, right

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Subtask3: [Go to, kitchen_drawer] (NoMaD)
Analysis: I successfully arrived the living room and find the kitchen drawer, so I should go to kitchen
drawer next

Feedback: None
Inventory: None

Subtask4: [Open, kitchen_drawer] (octo)
Analysis: I successfully arrived the kitchen drawer but it’s closed. To check items in the drawer, I
should open it first
Feedback: None
Inventory: None

Subtask5: [Go to, kitchen_counter] (NoMaD)
Analysis: I successfully opened the drawer and find nothing in it, according to my task, I should put a
short can into it in this case, as I find one on the kitchen counter, I should go there next

Feedback: None
Inventory: None

Subtask6: [Pick, short_can] (RT-1-X)
Analysis: I successfully arrived the kitchen counter and find the can, so I should pick it next
Feedback: None
Inventory: short_can

Subtask7: [Go to, kitchen_drawer] (NoMaD)
Analysis: I successfully picked the short can and I should come back to kitchen drawer to put it in
Feedback: None
Inventory: short_can

Subtask8: [Put, short_can, kitchen_drawer] (RT-1-X)
Analysis: I successfully arrived the kitchen drawer and I should put the can into it next
Feedback: None
Inventory: None

Subtask9: [Close, kitchen_drawer] (octo)
Analysis: I successfully put the can into the drawer, and it’s better to close the drawer next
Feedback: None
Inventory: None

Subtask10: [End]
Analysis: According to the historical execution and final task, I have finally finished the task and it
’s time to end
Feedback: None
Inventory: None

We also provide all designed tasks here, the task design principles focus on reflecting human’s real-life
with a variety of common demands and task descriptions.

(1) fetch a frozen meat can and put it on the kitchen counter
(2) clean up the brown table and place all items in the fridge
(3) find a cold apple and put it on the kitchen_counter
(4) find an bowl and put it on the sofa
(5) find an master_chef_can on the wood_table and put it into the drawer
(6) go to the floor 2
(7) prepare neccessary ingredients to make a fruit salad and put them on the yellow_table
(8) keep the number of red_boxes on the yellow_table to 5
(9) search a blue can for me
(10) fetch one crack box and one sugar box and put them on the beige table
(11) find two cracker boxes in the room and put them on the kitchen counter
(12) check if there are apples in the fridge and put one into it if not
(13) pick all fruit on the brown table and put them on the sofa
(14) put the bowl into the kitchen cabinet
(15) find a bleach cleanser and a sponge then place them on the brown table
(16) fetch two apples from the kitchen counter and put them into the fridge
(17) clean the wood table and put all items except mug to the sofa
(18) I want to eat at the brown table and prepare a fish can for me
(19) fetch two cracker_boxes from the kitchen sink and refrigerate them
(20) check and close all kitchen facilities
(21) prepare two bowls on the brown table
(22) fetch two meat_cans from the kitchen and put them on the beige table
(23) find a mug and put it on the tvstand
(24) go to kitchen then put the red box into the drawer and put the red can into the fridge
(25) find an apple and place it on the tv_stand
(26) clean the tvstand and put all items to the sofa
(27) clean up the tv_stand and put all items in the kitchen drawer
(28) put the sponge and bleach cleanser on the sofa into the kitchen drawer
(29) freeze a sugar_box
(30) put the blue can on the kitchen_counter to the fridge
(31) find two potted_meat_cans and put them on the sofa
(32) clean up the blue table and put all items to the white cabinet
(33) find an apple and put it on the sofa
(34) take a bowl and a meat can from the kitchen and put them on the brown table
(35) clean up the kitchen sink and put fruit to the fridge other items to the kitchen_counter
(36) replenish the number of blue cans on the table to 3
(37) find two bowls in the room and put them in the kitchen sink
(38) put all cracker_boxes on the tvstand to the sofa
(39) take a yellow box and put it into the fridge.
(40) put the apple on the blue table to the sofa
(41) fetch 3 different kinds of fruit and put them on the beige table
(42) I want to eat at the brown table and prepare some fruit for me
(43) put the frozen sponge into the kitchen drawer

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(44) put all bowls on the sofa to the kitchen sink
(45) get a can in the fridge and put it on the table
(46) prepare a washed apple then put it on the yellow table
(47) clean up the tvstand
(48) clean up the chair
(49) put everything in the kitchen sink onto the kitchen_counter
(50) wash the bowl on the kitchen_counter
(51) fetch two sugar boxes in the fridge and put them on the brown table, if there aren’t enough sugar
boxes in the fridge, find them elsewhere in the room
(52) Prepare a soup_can and a red_bowl on the kitchen_counter
(53) put all the fruit on the kitchen_counter into the sink
(54) put the bowl on the wood_table and the apple on the kitchen_counter to the kitchen sink
(55) refrigerate all master_chef_cans on the tvstand
(56) clean up the blue sofa
(57) find a gelation_box and put it in the drawer
(58) put the cracker box in the kitchen sink to the sofa
(59) check if there is food on the sofa then put them in the fridge if so
(60) refrigerate all lemons in the kitchen drawer
(61) put all food on the sofa into the drawer
(62) take the bowl on the table to the kitchen
(63) clean up the tv_stand and place items on the kitchen_counter
(64) check if there are bananas in the fridge; if not, get one from the kitchen and put it in the
fridge
(65) fetch a yellow box from the refrigerator and place it on the table, if there isn’t one, get it
from the kitchen
(66) clean the sofa and put all items on the table in front of it
(67) find an apple and place it in the drawer
(68) Put the red bowl on the blue table in the fridge.
(69) go to the second floor
(70) keep the number of red_boxes on the yellow_table to 3 and put extra red_boxes to the
kitchen_counter
(71) clean up the beige table and put all items to kitchen
(72) put all fruit in the living_room to the fridge
(73) find an apple and place it in the fridge
(74) find a bowl and a mug then put them into the kitchen sink
(75) replenish the number of pears in the fridge to 3
(76) find an apple and put it on the brown table
(77) put all lemons and apples on the sofa to the tvstand
(78) put all bowls in the open drawer onto the kitchen_counter
(79) clean up the sofa and put all items into the drawer
(80) clean up the sofa and place all items on the nearby chair
(81) freeze the meat can on the blue desk
(82) check and close all appliances in the room
(83) get a cold apple and put it on the wood table
(84) check if there are anything in the kitchen drawer, if it’s empty put a short can into it
(85) turn off all appliances in the room then go the door and wait
(86) prepare some food and put it on the brown table
(87) check items in the fridge then increase the number of blue cans to 2
(88) find a box and put it on the tvstand
(89) clean the table in front of you and put all items into the sink
(90) find two bananas on the tvstand and put them to the kitchen sink
(91) find the bowl in the drawer and put it to the kitchen sink
(92) get a cold fruit and prepare to wash it
(93) clean the sofa
(94) put all items on the sofa to the tvstand
(95) put all items on the blue sofa to the white desk
(96) find the sponge and put it into the drawer
(97) find two kinds of fruit and put them on the tvstand
(98) find a banana and place it in a bowl
(99) put the bowl on the brown table into the kitchen sink and put the suger_box on the tvstand to the
sofa
(100) put the green_can on the brown_table to the fridge

C METRIC CALCULATION

C.1 TASK PROGRESS

In the task demonstrated in Appendix B, it’s easy to find that to complete the task, we have to open
the drawer to see if there is anything, and then we have to finish a put operation (put short can in the
drawer). In addition to these two, we can also add some operation like, go to the drawer, close the
cook and other actions which do not influence the final success. So we get the keypath as shown
below,

[
[

"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",
"[End]"

],
[

"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

"[Close, drawer]",
"[End]"

],
[

"[Go to, drawer]",
"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",
"[End]"

],
[

"[Go to, drawer]",
"[Open, kitchen_drawer]",
"[Put, short_can, kitchen_drawer]",
"[Close, drawer]",
"[End]"

]
]

Here’s an example to show how to calculate TP,
(1) [Go to, kitchen](success)
(2) [Open, drawer](success)
(3) [Put, short_can, drawer](fail)
(4) [Go to, kitchen_counter](success)
(5) [Put, short_can, kitchen_counter](fail)
(6) [Go to, drawer](success)
(7) [Put, short_can, drawer](fail)
(8) [Go to, kitchen_counter](success)
(9) [Put, short_can, kitchen_counter](fail)
(10) [Go to, drawer](success)
(11) [Put, short_can, drawer](fail)
(12) [Go to, kitchen_counter](success)
(13) [Put, short_can, kitchen_counter](fail)
(14) [Go to, drawer](success)
(15) [Put, short_can, drawer](fail)
(16) [Go to, kitchen_counter](success)
(17) [Put, short_can, kitchen_counter](fail)
(18) [Go to, drawer](success)
(19) [Put, short_can, drawer](fail)
(20) [Go to, kitchen_counter](success)

This is the result of one run, and we can see that the TP of this run is as calculated in section 2.2,
max (13 , 1

4 , 1
2 , 2

5) = 0.5.

C.2 SUCCESS END RATE

In the above result, the number of steps reach 20, and there is no End action to terminate the task.
Here’s a example to show the success end.

(1) [Go to, kitchen_counter](success)
(2) [Go to, yellow_box](success)
(3) [Pick, yellow_box](success)
(4) [Go to, fridge](success)
(5) [Put, yellow_box, fridge](fail)
(6) [Open, fridge](fail)
(7) [Go to, kitchen_counter](success)
(8) [Put, yellow_box, kitchen_counter](success)
(9) [Go to, fridge](success)
(10) [Open, fridge](success)
(11) [Go to, kitchen_counter](success)
(12) [Pick, yellow_box](success)
(13) [Go to, fridge](success)
(14) [Put, yellow_box, fridge](success)
(15) [Close, fridge](success)
(16) [End]

This is the result of one run for the task take a yellow box and put it into the fridge, and we can judge
by its keypath that it complete the task successfully. It has End action, so the End is a success end
which can be treated as one of the numerators when calculating SER in Section 2.2. In fact, as said in
Section 2.2, successful task trajectory must have one end, but there maybe other unsuccessful task
trajectories have ends, that’s why we calculating SER.

C.3 SUCCESS RE-PLAN RATE

First of all, the next action our agent takes after the previous action failed is called replan. Use the
above subsection result as an example, and it’s a successful task trajectory. In the step 5, the agent try

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

to put the yellow box in the fridge but failed, and then, it try to open the fridge which can be treated
as a success replan even though it failed again. Since the action “open fridge” is a meaningful action
which can lead to the final success. It’s one of the numerators when calculating SRR in Section 2.2.
Also, in the first subsection for TP, the example is an unseccessful task trajectory, so the actions like
“put short can drawer” are not success replan.

D HIGH LEVEL PLANNING

In this section, we will should how the high-level planner described in Section 3.2 works step by
step. To provide more intuitive understanding, we extract core sections from the original code and
adapt them into a more general and easy-to-understand format to illustrate the process flow, this
processing method is also applied to all subsequent code demonstrations. First, we provide the system
information used in HomieBot, and all subsequent references to system information are consistent
with what is provided here.

You are a powerful housework assistant, I will give you following information for you to make a
decision toward the final task.
(1) Observation images: Four first-person perspective images of the current environment, in the order
of front, left, back, and right.
(2) Task: Your final goal.
(3) Inventory: Your current assets, remember that you are a one-hand agent, which means you can’t open
or pick when your Inventory is not None, and you can’t put if your Inventory is None, this is very
important.
(4) Historical Execution: Subtasks that were already fulfilled in the history, and the execution status
of each subtask(success or fail). You need to make decisions based on historical actions, current

circumstances and your final task.
(5) Feedback: Feedback will provide error information of the last execution, it will be None if the
last execution ends successfully.

You should output with following formats:
Analysis: Make a detailed summary of your current situation based on given information, analyse and
decide what to do next and output the reason of your decision.
Subtask: [action, target], choose your action from the action list [Go to, Pick, Put, Open, Close, End
], and the target can be a place or a object from your observation. If you choose Put as your action,
output in format [Put, object, place] which means put the object to the place. If the final task is
done and no more action is needed, just output [End].
Model: Choose one most suitable model in the model list [NoMaD, PixNav, octo, RT-1-X]. NoMaD can go to
a spot like living room, PixNav focuses on object navigation and can go to a object, octo can handle
with open and close, RT-1-X is good at picking and putting.

You need to focus on the consistency with previous subtasks. You should pay attention to current
Inventory and avoid conflicts.
Remember you can only go to the place and interact with the objects you observe in your sight.
Remember the logic between outputs, it is recommended to open the receptacle before you pick something
because you can’t open while holding, and it’s recommended to arrive the object place before you
interact with it.
Remember you just need to output the next subtask to be fulfilled and don’t output a whole plan, this
is very important.
Remember you should output strictly with the response template.
Now, I will send the message so that you can make planning accordingly.

Next, we define some classes to make the overall process more readable and smooth. Here we only
list most relevant and important parts in the process.

import os
import json
import re

class Conversations:
def __init__(self, max_round=20):

self.system = SYSTEM_INFO
self.history = []
self.round = 0
self.window = 3
self.max_round = max_round

def get_history_prompt(self):
history_prompt = ""
if self.round < self.window:

history_prompt = "".join(self.history)
else:

history_prompt = "".join(self.history[-3:])
return history_prompt

def reset(self):
self.history = []
self.round = 0

def save(self, save_path):
with open(os.path.join(save_path, "conversation.json"), "w") as file:

json.dump(self.history, file, indent=4)

class HomieBot:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

def __init__(self):
self.conv = Conversations()
self.inventory = []
self.comm = Communicator()

def get_inventory(self):
if len(self.inventory) == 0:

return "None"
else:

return " ".join(self.inventory)

def generate_instruction(self, task, feedback, historical_execution):
if historical_execution == "":

instruction = f"Task: {task}\nInventory: {self.get_inventory()}\nHistorical Execution: None
\nFeedback: None\nNow based on the instruction above, please output Analysis, Subtask and
Model in mentioned format.\n"

else:
instruction = f"Task: {task}\nInventory: {self.get_inventory()}\nHistorical Execution: {
historical_execution}\nFeedback: {feedback}\nNow based on the instruction above, please
output Analysis, Subtask and Model in mentioned format.\n"

return instruction

def update_inventory(self, subtask, feedback):
subtask = subtask.lower()
if "None" in feedback:

if "pick" in subtask:
obj = subtask.split.split(’,’)[1].strip()
self.inventory.append(obj)

if "put" in subtask:
self.inventory.pop()

else:
if "put" in subtask and "the object is missing" in feedback:

self.inventory.pop()

def end(self):
self.comm.close_connection()

the most important function generate instruction works as described in Section 3.2, which contains
task, inventory, history and feedback.

Afterward, we provide the process for HomieBot to execute the task in a single trajectory.

homie = HomieBot()
task = "input your task"
save_path = "save_path"
feedback = ""
historical_execution = ""

while homie.conv.round < homie.conv.max_round:
homie.conv.round += 1
instruction = homie.generate_instruction(task, feedback, historical_execution)
images = homie.comm.receive_env_images()

output = model_inference(instruction, images)
homie.conv.history.append(f"USER:\n{instruction}ASSISTANT:\n{output}\n")

pattern = r’.*Analysis: *(.+?) *Subtask: *\[(.*?)\].*Model: *(.*?)$’
match = re.search(pattern, output, re.DOTALL)
analysis = match.group(1).strip()
subtask = match.group(2).strip()
model_choice = match.group(3).strip()

homie.comm.send_subtask(subtask, model_choice, homie.get_inventory())
feedback, signal = homie.comm.receive_feedback()

homie.update_inventory(subtask, feedback)
historical_execution += f"({homie.conv.round}) {subtask}({signal}) "

if "end" in subtask.lower():
break

homie.conv.save(save_path)
homie.end()

the realization of function model inference varies from different models, but it’s quite easy to deploy
different models into HomieBot as we can see in the code.

E LOW LEVEL EXECUTION

E.1 PIPELINE

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

def error_detection(action, target, inventory, env):
Format Error Detection
if action not in action_list:

return ’fail’, f’{action} is not in the action list! You should only choose actions in the list
.’

mapping_dict = load_name_mapping()
if target in mapping_dict:

target = mapping_dict[target]
else:

return ’fail’, f’{target} does not exist! Please choose another object’

Logical Error Detection
if inventory != ’None’ and action in [’pick’, ’open’, ’close’]:

return ’fail’, f’Unable to {action}, the hand is full’
if inventory == ’None’ and action == ’put’:

return ’fail’, f’Unable to {action}, the hand is empty’

if action == ’put’ and "closed" in check_status(target):
return ’fail’, f’Unable to put, the {target} is closed, you should open it first’

if action in [’open’,’close’] and "non-interactive" in check_status(target):
return ’fail’, f’Can not {action} {target}! Please choose another object’

Distance Error Detection
if action != "go to":

distance = calculate_distance(env, target)
if distance > 2:

return ’fail’, f’Unable to {action}, the target is far away’
if distance < 0.1:

return ’fail’, f’Unable to {action}, the target is too close’

return ’success’, ’None’

max_count = 20
comm = Communicator()
save_path = "save_path"
count_steps = 1
env = init_env()

while count_steps <= max_count:
images = get_env_images(save_path, env, count_steps)
comm.send_env_images(images)

action, target, inventory = comm.receive_subtask()
if "end" in action.lower():

comm.send_feedback("None", "success")
break

Error Detection Before Execution
signal, feedback = error_detection(action, target, inventory, env)
if signal == "fail":

comm.send_feedback(feedback, signal)
break

for retry in range(3):
reset_arm(env)
Error Detection During and After Execution
signal, feedback, env = execution(action, target, inventory, env)
if signal == ’success’:

break
elif action == ’put’ and env[’grasped_obj’] is None:

feedback = f’Unable to {action}, and the object is missing’
break

elif retry == 2:
feedback = f’Unable to {action}, the subtask is too difficult to perform’

if signal == ’success’:
feedback = "None"

count_steps += 1
comm.send_feedback(feedback, signal)

E.2 SKILLS

The skill we choose and their functions are shown in Table E1.

E.3 MODELS

M3 (Gu et al., 2022) can flexible interact with target objects from various locations based on the
integration of manipulative skills and mobility, while navigational skills are designed to accommodate
multiple endpoints, ultimately leading to successful operations. Specifically, M3 implements these
concepts by emphasizing mobile manipulation skills over fixed skills and training navigational skills
using area targets rather than point targets.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table E1: The list of skills we used with descriptions and examples

Skill Description Example

Pick object Pick an object up pick sugar box
Put object to place Put an object into a place put lemon on brown table
Open container Open the container open the fridge
Close container Close the container close the kitchen drawer
Go to place navigate to a place navigate TV stand
Go to object navigate to where an object is navigate bowl
End End the execution End

Table E2: Descriptions of Low Level Models used in HOMIEBOT.

Model Input Capability Task

RT-1-X(Brohan et al., 2022) RGB & Instructions Manipulation Picking & Placing
Octo(Team et al., 2024b) RGB & Instructions Manipulation Opening & Closing
NoMaD(Sridhar et al., 2024) RGB & Goal-Image Image-Navigation Navigate to Spot & Large Object
PixNav(Cai et al., 2024) RGB & Goal-Name Pixel-Navigation Navigate to Object

RT-1-X ((Padalkar et al., 2023)) architecture utilizes image and text instructions as inputs, and
generates discrete end-effector actions as outputs. Specifically, RT-1-X is a transformer-based model
that guides robotic arms to complete various manipulation tasks. RT-1-X is an extension of the RT-1
((Brohan et al., 2022)) model, which is designed for robot control and trained on a large-scale robot
dataset.

Octo ((Team et al., 2024b)) is an open-source, general-purpose policy for robotic manipulation
based on transformers. It supports flexible task and observation definition and can be quickly
integrated into new observation and action spaces.

NoMaD ((Sridhar et al., 2024)) trains a single diffusion strategy for goal-oriented navigation and
goal-independent exploration, the first one is to reach user-specified goals after localization and the
second one is to search new environments. The method is instantiated using a transformer-based
large-scale policy trained on data from various ground robots.

PixNav ((Cai et al., 2024)) is a pixel-guided navigational skill. It designs an LLM-based planner
that utilizes common sense between objects and rooms to select the optimal waypoints, which are
then executed by a pixel navigation strategy to achieve long-line-of-sight navigation. In this pipeline,
we use its ability of finding the optimal waypoint and pixel navigation to navigate to some specific
small object such as lemon and sugar box.

E.4 ERROR CLASSIFICATION

Logical error. If the hand already has an object (inventory is not empty) but still attempts to
perform a pick/open/close operation, the execution will fail, and the message “the hand is full” will be
returned; if the hand has no object (inventory is empty) but still attempts to perform a place operation,
the execution will fail, and the message “the hand is empty” will be returned; if the item is not a
container but still attempts to perform a open/close operation, the execution will fail, and the message
“please choose another object” will be returned. In the execution with environment state information,
if the container is closed and a place operation is still attempted, the execution will fail, and the
message “the container is closed, you should open it first” will be returned.

Distance error. In the execution with environment state information, if the agent is too close to the
target, causing the arm to be unable to extend properly but still attempts to perform a pick/place/open/-
close operation, the execution will fail, and the message “the target is too close” will be returned; if
the agent is too far from the target, causing it to be unable to reach the target object but still attempts
to perform a pick/place/open/close operation, the execution will fail, and the message “the target is
far away” will be returned.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Format Error. For high level planning, it may output an object which is not in the scene, that is, in
low level execution, we can’t find an object with a name matching the input in the scene, the message
“please choose another object” will be returned; also, high level planning may output in a wrong
operation which can not be performed, the message “You should only choose actions in the list” will
be returned.

Execution Error Due to the limited capabilities of low-level models, sometimes the failure is not
caused by HLP. Therefore, each action can be executed up to three times. If it fails after three times, it
will return a message “the subtask is too difficult to perform”; also, when performing a put operation,
if the agent put the wrong place, it will return a message “the object is missing” to remind the agent
to re-plan and re-pick.

F DATA AUGMENTATION

F.1 SFT AUGMENTATION

To expand the original dataset size, we first use GPT-4o (Achiam et al., 2023) to regenerate text
descriptions. Here is the regeneration code clip, we just show how to regenerate task descriptions, but
the regeneration of subtask analysis uses the same template.

client = OpenAI(api_key=’’)
completion = client.chat.completions.create(

model="gpt-4o",
messages=[

{"role": "system", "content": "Rewrite the following text with the same meaning but in a
different description while do not change object’s name: "},
{"role": "user", "content": task}

]
)

Next we show how to convert a single EMMOE data into fix-format conversation data. After
processing, each individual subtask will be combined with all previously subtasks to form a SFT data.

import os
with open(task_path) as file:

content = file.read()

content = content.split("\n\n")
task = content[0]
historical = ""
sft_data = []

for i, subtask_info in enumerate(content[1:]):
subtask_data = {}
subtask_info = subtask_info.strip().split("\n")
if subtask_info[0] == ’’:

continue
subtask_id, decision = subtask_info[0].split(’: ’)
subtask_id = subtask_id.lower()
analysis = subtask_info[1]

if "End" not in decision:
action, model_choice = decision.strip(’)’).split(’ (’)

else:
action = "[End]"
model_choice = "None"

image_paths = [
os.path.join(save_dir, f"{subtask_id}_front.png"),
os.path.join(save_dir, f"{subtask_id}_left.png"),
os.path.join(save_dir, f"{subtask_id}_back.png"),
os.path.join(save_dir, f"{subtask_id}_right.png")

]
for path in image_paths:

if not os.path.exists(path):
raise FileNotFoundError(f"File does NOT exist: {path}")

if i == 0:
instruction = f"{task}\nInventory: None\nHistorical Execution: None\nFeedback: None\nNow,
please output Analysis, Subtask and Model, according to the instruction above."

else:
instruction = f"{task}\n{inventory}\nHistorical Execution:{historical}\n{feedback}\nNow, please
output Analysis, Subtask and Model, according to the instruction above."

answer = f"{analysis}\nSubtask: {action}\nModel: {model_choice}"

feedback = subtask_info[2]
inventory = subtask_info[3]
if "None" in feedback:

historical += f"({i+1}){decision} (success)\n"

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

else:
historical += f"({i+1}){decision} (fail)\n"

conv = []
conv.append({"from": "human", "value": instruction})
conv.append({"from": "gpt", "value": answer})

task_id = ’_’.join(task_path.split(’.’)[0].split(’/’)[-2:])

subtask_data["id"] = task_id + ’_’ + subtask_id
subtask_data["image"] = image_paths
subtask_data["conversations"] = conv

sft_data.append(subtask_data)

We also provide some data samples for more intuitive understanding.
[

{
"id": "21_info_subtask13",
"image": [

"./HomieBot/data/train/21/subtask13_front.png",
"./HomieBot/data/train/21/subtask13_left.png",
"./HomieBot/data/train/21/subtask13_back.png",
"./HomieBot/data/train/21/subtask13_right.png"

],
"conversations": [

{
"from": "human",
"value": "Task: clean up the blue sofa\nInventory: None\nHistorical Execution:(1)[Go to
, blue_sofa] (PixNav) (success)\n(2)[Pick, cracker_box] (RT-1-X) (success)\n(3)[Go to,
kitchen_counter] (NoMaD) (success)\n(4)[Put, cracker_box, kitchen_counter] (RT-1-X) (
success)\n(5)[Go to, blue_sofa] (PixNav) (success)\n(6)[Pick, sugar_box] (RT-1-X) (
success)\n(7)[Go to, kitchen_counter] (NoMaD) (success)\n(8)[Put, sugar_box,
kitchen_counter] (RT-1-X) (success)\n(9)[Go to, blue_sofa] (PixNav) (success)\n(10)[
Pick, soup_can] (RT-1-X) (success)\n(11)[Go to, kitchen_counter] (NoMaD) (success)\n
(12)[Put, soup_can, kitchen_counter] (RT-1-X) (success)\n\nFeedback: None\nNow, please
output Analysis, Subtask and Model, according to the instruction above."

},
{

"from": "gpt",
"value": "Analysis: I successfully put the soup_can on the kitchen_counter, according
to my task, I should go back to the sofa to check whether it’s clean or not\nSubtask: [
Go to, blue_sofa]\nModel: PixNav"

}
]

},
{

"id": "21_info_subtask14",
"image": [

"./HomieBot/data/train/21/subtask14_front.png",
"./HomieBot/data/train/21/subtask14_left.png",
"./HomieBot/data/train/21/subtask14_back.png",
"./HomieBot/data/train/21/subtask14_right.png"

],
"conversations": [

{
"from": "human",
"value": "Task: clean up the blue sofa\nInventory: None\nHistorical Execution:(1)[Go to
, blue_sofa] (PixNav) (success)\n(2)[Pick, cracker_box] (RT-1-X) (success)\n(3)[Go to,
kitchen_counter] (NoMaD) (success)\n(4)[Put, cracker_box, kitchen_counter] (RT-1-X) (
success)\n(5)[Go to, blue_sofa] (PixNav) (success)\n(6)[Pick, sugar_box] (RT-1-X) (
success)\n(7)[Go to, kitchen_counter] (NoMaD) (success)\n(8)[Put, sugar_box,
kitchen_counter] (RT-1-X) (success)\n(9)[Go to, blue_sofa] (PixNav) (success)\n(10)[
Pick, soup_can] (RT-1-X) (success)\n(11)[Go to, kitchen_counter] (NoMaD) (success)\n
(12)[Put, soup_can, kitchen_counter] (RT-1-X) (success)\n(13)[Go to, blue_sofa] (PixNav
) (success)\n\nFeedback: None\nNow, please output Analysis, Subtask and Model,
according to the instruction above."

},
{

"from": "gpt",
"value": "Analysis: According to the historical execution and final task, I have
finally finished the task and it’s time to end\nSubtask: [End]\nModel: None"

}
]

}
]

F.2 DPO AUGMENTATION

The last step for SFT Augmentation and the first step of DPO Augmentation occur simultaneously,
failed subtasks are considered junk data for SFT but can be used to construct DPO data, so we
run data sift function first. After getting initial DPO data, we will use SFT data, model change,
order change and action change to construct final DPO dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

def data_sift(subtask_list):
sft_data = []
dpo_data = []
flag = 1
for i in range(1, len(subtask_list)):

if "Feedback: None" in subtask_list[i]["conversations"][0]["value"]:
sft_data.append(subtask_list[i-1])
if flag == 0:

dpo_data.append({
"prompt": subtask_list[i-2]["conversations"][0]["value"],
"chosen": ’\n’.join(subtask_list[i-1]["conversations"][1]["value"].split(’\n’)[1:])
,
"rejected": ’\n’.join(subtask_list[i-2]["conversations"][1]["value"].split(’\n’)
[1:])

})
flag = 1

else:
flag = 0

sft_data.append(subtask_list[-1])

return sft_data, dpo_data

def dpo_augment(sft_data, dpo_data):
for i in range(len(sft_data)):

prompt = sft_data[i]["conversations"][0]["value"]
chosen = ’\n’.join(sft_data[i]["conversations"][1]["value"].split(’\n’)[1:])
if "End" in sft_data[i]["conversations"][1]["value"]:

continue

def model_change(chosen):
if "NoMaD" in chosen:

return chosen.replace("NoMaD", "PixNav")
elif "PixNav" in chosen:

return chosen.replace("PixNav", "NoMaD")
elif "octo" in chosen:

return chosen.replace("octo", "RT-1-X")
else:

return chosen.replace("RT-1-X", "octo")

def order_change(i, sft_data):
return ’\n’.join(sft_data[i+1]["conversations"][1]["value"].split(’\n’)[1:])

def action_change(chosen):
if "Pick" in chosen:

return chosen.replace("Pick", "Fetch")
elif "Put" in chosen:

return chosen.replace("Put", "Place")
elif "Go to" in chosen:

return chosen.replace("Go to", "Move")
elif "Open" in chosen:

return chosen.replace("Open", "Pull")
elif "Close" in chosen:

return chosen.replace("Close", "Push")

reject1 = model_change(chosen)
reject2 = order_change(i, sft_data)
reject3 = action_change(chosen)
dpo_data.append({"prompt": prompt, "chosen": chosen, "rejected": reject1})
dpo_data.append({"prompt": prompt, "chosen": chosen, "rejected": reject2})
dpo_data.append({"prompt": prompt, "chosen": chosen, "rejected": reject3})

return dpo_data

Notably, action End is special among all available actions and it will only appear as rejected in
DPO data. In the first augmentation stage and order change, since the relationship between chosen
and rejected is Oi and Oi+1 (see definitions in Section 4.1) and there are no other subtasks after
End, which means other actions might appear in either chosen or rejected while End can only be
the rejected. But this effect of suppressing the End output is exactly what we want. Even executing
a few extra steps after completing the task is better than terminating early without finishing the task.
That is to say, We hope the model could consider more and do not output End so easily. Experimental
results in Table 2 and Table 3 confirm the effectiveness of this method as we can see an improvement
in SER metric, another positive phenomenon in results is that the length of the successful paths
hasn’t increased significantly as we observe in PLWSR and TP .

Finally, we provide some DPO data examples.

[
{

"prompt": "Task: Clear everything off the table in front of you and place all the items in the
sink.\nInventory: None\nHistorical Execution:(1)[Pick, yellow_box] (RT-1-X) (success)\n(2)[Put,
yellow_box, sink] (RT-1-X) (success)\n\nFeedback: None\nNow, please output Analysis, Subtask

and Model, according to the instruction above.",
"chosen": "Subtask: [Go to, red_can]\nModel: PixNav",
"rejected": "Subtask: [Pick, red_can]\nModel: RT-1-X"

},

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

{
"prompt": "Task: Collect all the fruit located on the brown table and place them on the sofa.\
nInventory: None\nHistorical Execution:(1)[Go to, brown_table] (NoMaD) (success)\n(2)[Pick,
orange] (RT-1-X) (success)\n(3)[Go to, sofa] (PixNav) (success)\n(4)[Put, orange, sofa] (RT-1-X
) (success)\n(5)[Go to, brown_table] (NoMaD) (success)\n\nFeedback: None\nNow, please output
Analysis, Subtask and Model, according to the instruction above.",
"chosen": "Subtask: [Pick, pear]\nModel: RT-1-X",
"rejected": "Subtask: [Fetch, pear]\nModel: RT-1-X"

},
{

"prompt": "Task: find a blue can for me\nInventory: None\nHistorical Execution: None\nFeedback:
None\nNow, please output Analysis, Subtask and Model, according to the instruction above.",

"chosen": "Subtask: [Go to, fridge]\nModel: PixNav",
"rejected": "Subtask: [Go to, fridge]\nModel: NoMaD"

}
]

G TRAINING DETAILS

G.1 TRAINING PARAMETERS

We use Video-LLaVA-7B (Zhang et al., 2023) as our base model, we also use the training scripts they
provide and partial parameters for sft are as follows.

--lora_enable True
--lora_r 128
--lora_alpha 256
--mm_projector_lr 2e-5
--bits 4
--mm_projector_type mlp2x_gelu
--mm_vision_select_layer -2
--mm_use_im_start_end False
--mm_use_im_patch_token False
--image_aspect_ratio pad
--group_by_modality_length True
--bf16 True
--num_train_epochs 1
--per_device_train_batch_size 16
--per_device_eval_batch_size 4
--gradient_accumulation_steps 1
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 50000
--save_total_limit 1
--learning_rate 5e-4
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1
--tf32 True
--model_max_length 2048
--tokenizer_model_max_length 3072
--gradient_checkpointing True
--dataloader_num_workers 4
--lazy_preprocess True
--report_to tensorboard

We use finetuned model as our base and reference model, and use open-source trl package and
parameters for dpo are as follows.

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type=’nf4’

)
training_args = DPOConfig(

per_device_train_batch_size=16,
per_device_eval_batch_size=4,
gradient_accumulation_steps=1,
gradient_checkpointing=True,
max_grad_norm=0.3,
num_train_epochs=1,
save_steps=1000,
learning_rate=5e-6,
bf16=True,
save_total_limit=1,
logging_steps=10,
output_dir=output_dir,
optim="paged_adamw_32bit",
lr_scheduler_type="cosine",
warmup_ratio=0.03,
remove_unused_columns=False

)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

peft_config = LoraConfig(
r=8,
lora_alpha=8,
target_modules=find_all_linear_names(model),
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",

)
dpo_trainer = DPOTrainer(

model,
model_ref,
args=training_args,
beta=0.1,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
max_prompt_length=2048,
max_length=2048,

)

H EXPERIMENTAL DETAILS

H.1 BASELINE SETUP

To make it more convenient for different models to deploy into our system without training, we
slightly lower output format requirements, here shows the adapatations.

import re

pattern = r’.*Analysis: *(.+?) *Subtask: *\[(.*?)\].*Model: *(.*?)$’
match = re.search(pattern, output, re.DOTALL)
if match == None:

pattern = r’.*Analysis: *(.+?) *Subtask: *(.*?) *Model: *(.*?)$’
match = re.search(pattern, output, re.DOTALL)

Despite lowering the output format standards, the output from 7B-sized models still fails to meet our
least requirements. They either do not output single-step subtasks or the subtask format is far from
requirements. This issue is difficult to resolve by merely adjusting prompts. Therefore, we leverage
the in-context learning abilities of these models by providing an output template example before each
inference. Here, we provide the inference template for Qwen2-VL (Wang et al., 2024) MiniCPM-V
2.6 (Yao et al., 2024) respectively.

Qwen2VL

messages = [
{"role": "system", "content": homie.conv.system},
{"role": "user",
"content": "here is an example output, please strictly follow its format and system reminders
in your output:\nAnalysis: According to my final task, I need to fetch apples first, but it’s
a better choice to go the fridge and open it first, which will avoid potential conflicts, so I
should go to the fridge next\nSubtask: [Go to, fridge]\nModel: NoMaD\n",

},
{"role": "assistant",
"content": "I will surely follow the given format, now you can send prompt to me."

},
{"role": "user",
"content": [

{"type": "image", "image": images[0]},
{"type": "image", "image": images[1]},
{"type": "image", "image": images[2]},
{"type": "image", "image": images[3]},
{"type": "text", "text": instruction}]

}
]
prompt = processor.apply_chat_template(

messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(

text=[prompt],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"

)to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=512)
enerated_ids_trimmed = [

out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
outputs = processor.batch_decode(

generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

)

MiniCPM-V 2.6
image_loads = [Image.open(image).convert(’RGB’) for image in images]
messages = [

{"role": "user",
"content": "here is an example output, please strictly follow its format and system reminders
in your output:\nAnalysis: According to my final task, I need to fetch apples first, but it’s
a better choice to go the fridge and open it first, which will avoid potential conflicts, so I
should go to the fridge next\nSubtask: [Go to, fridge]\nModel: NoMaD\n",

},
{"role": "assistant",
"content": "I will surely follow the given format, now you can send prompt to me.",

},
{"role": "user",
"content": [image_loads[0], image_loads[1], image_loads[2], image_loads[3], instruction]

}
]

output = model.chat(
image=None,
system_prompt=homie.conv.system,
tokenizer=tokenizer

)

H.2 RESULTS

Here we provide more detailed results of experiments in Section 4.4. Table H3 and Table H4 show
the statistics results in percentages while Table H5 and Table H6 show original counts. Table H7
show the original counts and success rate range of each action.

Table H3: Successful Trajectories Error Statistics All definitions are same as in Section 4.4.
Additionally, we add statistics of four primary types.

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All
GPT-4o(Achiam et al., 2023) 3.97 0.79 0.79 0 5.56 44.44 0 44.44 1.59 17.46 19.05 15.87 15.08 30.95 30.29
Gemini-1.5-Pro(Team et al., 2024a) 3.85 3.85 0 7.69 15.38 48.08 0 48.08 0 17.31 17.31 15.38 3.85 19.23 21.80
Qwen2-VL-7B(Wang et al., 2024) 0 0 0 0 0 100 0 0 0 0 0 0 0 0 20
MiniCPM-V 2.6(Yao et al., 2024) 0 0 0 0 0 100 0 0 0 0 0 0 0 0 6.67
HomieBot-7B (SFT) 10.53 9.77 12.78 1.50 34.59 36.09 0 36.09 0 3.01 3.00 24.06 2.26 26.32 14.41
HomieBot-7B (SFT+DPO) 10.17 15.25 9.32 3.39 38.14 33.05 0 33.05 0 3.39 3.39 25.42 0 25.42 12.87

Table H4: Failed Trajectories Error Statistics

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All
GPT-4o(Achiam et al., 2023) 6.87 0.12 0.69 3.65 11.34 8.41 0.06 8.47 0.57 64.88 65.45 13.99 0.75 14.74 73.61
Gemini-1.5-Pro(Team et al., 2024a) 7.48 1.52 2.41 6.45 17.86 9.41 0 9.41 0 47.86 47.86 22.76 2.10 24.86 68.38
Qwen2-VL-7B(Wang et al., 2024) 2.17 9.49 0.99 3.56 16.21 7.71 0 7.71 4.74 54.35 59.09 16.40 0.59 17.00 27.74
MiniCPM-V 2.6(Yao et al., 2024) 8.58 0.80 0.92 1.72 12.01 7.78 0 7.78 3.49 65.39 68.88 10.87 0.46 11.33 31.08
HomieBot-7B (SFT) 11.31 23.85 9.86 4.20 49.24 11.77 0 11.77 0.61 11.47 12.08 24.54 2.37 26.91 35.70
HomieBot-7B (SFT+DPO) 11.46 23.90 11.13 2.62 49.10 9.25 0 9.25 0.25 17.27 17.51 22.67 1.47 24.14 35.88

Table H5: Original Successful Trajectories Statistics All data are integers.

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All
GPT-4o(Achiam et al., 2023) 5 1 1 0 7/126 56 0 56/126 2 22 24/126 20 19 39/126 126/416
Gemini-1.5-Pro(Team et al., 2024a) 4 4 0 8 16/104 50 0 50/104 0 18 18/104 16 4 20/104 104/477
Qwen2-VL-7B(Wang et al., 2024) 0 0 0 0 0/9 9 0 9/9 0 0 0/9 0 0 0/9 9/45
MiniCPM-V 2.6(Yao et al., 2024) 0 0 0 0 0/1 1 0 0/1 0 0 0/1 0 0 0/1 1/15
HomieBot-7B (SFT) 14 13 17 2 46/133 48 0 48/133 0 4 4/133 32 3 35/133 133/923
HomieBot-7B (SFT+DPO) 12 18 11 4 45/118 39 0 39/118 0 4 4/118 30 0 30/118 118/917

I CASE STUDY

We show case studies of the inference from HomieBot in various situations as follows.

Case 1: Successful trajectory

Here we show a successful trajectory of our HomieBot (DPO version). To facilitate understanding,
we convert the dialogue data into the original EMMOE data format. As shown, even if errors occur,
timely adjustments can be made through feedback, ensuring the correctness of the execution process.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table H6: Original Failed Trajectories Statistics

Models L1 L2 L3 L4 L D1 D2 D F1 F2 F E1 E2 E All
GPT-4o(Achiam et al., 2023) 228 4 23 121 376/3317 279 2 281/3317 19 2152 2171/3317 464 25 489/3317 3317/4506
Gemini-1.5-Pro(Team et al., 2024a) 217 44 70 187 518/2900 273 0 273/2900 0 1388 1388/2900 660 61 721/2900 2900/4241
Qwen2-VL-7B(Wang et al., 2024) 33 144 15 54 246/1518 117 0 117/1518 72 825 897/1518 249 9 258/1518 1518/5472
MiniCPM-V 2.6(Yao et al., 2024) 150 14 16 30 210/1748 136 0 136/1748 61 1143 1204/1748 190 8 198/1748 1748/5624
HomieBot-7B (SFT) 148 312 129 55 644/1308 154 0 154/1308 8 150 158/1308 321 31 352/1308 1308/3664
HomieBot-7B (SFT+DPO) 140 292 136 32 600/1222 113 0 113/1222 3 211 214/1222 277 18 295/1222 1222/3406

Table H7: Count are the number of each action error with a total count behind. SRrange are
percentages to indicate the range of success rates of each action, with the average value shown in
parentheses.

Metrics Go to Pick Place Open Close

Count 938/2437 1213/2437 178/2437 81/2437 27/2437
SRrange (45.32)31.19∼82.89 (22.45)18.34∼28.95 (40.97)29.06∼69.40 (43.13)30.13∼75.84 (36.45)26.72∼57.37

Task: put the green_can on the brown_table to the fridge

#Round1
Analysis: According to my final task, I need to go to the green_can first.
Subtask: [Go to, green_can]
Inventory: None
Feedback: None

#Round2
Analysis: I successfully arrived the green_can and I should pick it next
Subtask: [Pick, green_can]
Inventory: green_can
Feedback: None

#Round3
Analysis: I successfully picked the green_can, so according to my final task, I should go to the fridge
to put it down.

Subtask: [Go to, fridge]
Inventory: green_can
Feedback: None

#Round4
Analysis: I successfully arrived the fridge and I should put the green_can into it next
Subtask: [Put, green_can, fridge]
Inventory: green_can
Feedback: Unable to put, the fridge is closed, you should open it first

#Round5
Analysis: I failed to put the green_can into the fridge, since the fridge is closed, so I should open
the fridge first
Subtask: [Open, fridge]
Inventory: green_can
Feedback: Unable to open, the hand is full

#Round6
Analysis: I failed to open the fridge because my hand is full, so I should put the green_can on the
brown_table first
Subtask: [Go to, brown_table]
Inventory: green_can
Feedback: None

#Round7
Analysis: I successfully arrive the brown_table and I should put the green_can on it
Subtask: [Put, green_can, brown_table]
Inventory: None
Feedback: None

#Round8
Analysis: I successfully put the green_can on the brown_table, so I should go to the fridge next
Subtask: [Go to, fridge]
Inventory: None
Feedback: None

#Round9
Analysis: I successfully arrived the fridge and I should open it next
Subtask: [Open, fridge]
Inventory: None
Feedback: None

#Round10
Analysis: I successfully open the fridge and find the green_can, so I should go to the green_can.
Subtask: [Go to, green_can]
Inventory: None
Feedback: None

#Round11

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Analysis: I successfully arrive the green_can and find it, so I should pick it.
Subtask: [Pick, green_can]
Inventory: green_can
Feedback: None

#Round12
Analysis: I successfully picked the green_can, so according to my final task, I should go to the fridge
to put it down.

Subtask: [Go to, fridge]
Inventory: green_can
Feedback: None

#Round13
Analysis: I successfully arrived the fridge and I should put the green_can into it next
Subtask: [Put, green_can, fridge]
Inventory: None
Feedback: None

#Round14
Analysis: I successfully put the green_can into the fridge, so I should close the fridge next
Subtask: [Close, fridge]
Inventory: None
Feedback: None\n

#Round15
Analysis: According to the historical execution and final task, I have finally finished the task and it
’s time to end
Subtask: [End]
Inventory: None
Feedback: None

Case 2: Terrible Grounding

Here we show a terrible grounding problem issues during the inference of GPT4-o (Achiam et al.,
2023). Due to the lengthy path, we only highlight the most critical subtask outputs and their execution
results to emphasize errors (following cases are handled similarly). We can see that the ungrounded
output directly prevents the process to be continued. Even after informing the model that the object
doesn’t exist, the issue remains unresolved. The model continues to output incorrect objects or makes
mistakes again after a few steps.

Task: clean up the beige table and put all items to kitchen

(1) Go to, beige table(success)
(2) Pick, item(fail)
(3) Pick, item(fail)
(4) Pick, item(fail)
(5) Pick, item(fail)
(6) Pick, item(fail)
(7) Pick, item(fail)
(8) Pick, item on the table(fail)
(9) Pick, item on the table(fail)
(10) Pick, item on the table(fail)
(11) Pick, item on the table(fail)
(12) Pick, item(fail)
(13) Pick, item on the table(fail)
(14) Pick, item on the beige table(fail)
(15) Pick, stack of papers(fail)
(16) Pick, box(fail)
(17) Go to, closer to the table(fail)
(18) Pick, item on the table(fail)
(19) Pick, visible item on the beige table(fail)

Case 3: Limited LLE

Here we show a problem issues from the limited ability of low-level models. As we can see in step7
and step8, though high-level planner makes correct plans, execution still fails due to the limited
ability of low-level models, this problem occurs repeatedly during whole process and finally leads to
the failue the trajectory.

Task: take a yellow box and put it into the fridge.

(1) Go to, living room(success)
(2) Pick, yellow box(success)
(3) Go to, kitchen(success)
(4) Open, fridge(fail)
(5) Put, yellow box, counter(fail)
(6) Put, yellow box, table(fail)
(7) Go to, fridge(success)
(8) Open, fridge(fail)
(9) Put, yellow box, counter(fail)
(10) Open, fridge(fail)
(11) Put, yellow box, counter(fail)
(12) Open, fridge(fail)
(13) Put, yellow box, counter(fail)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(14) Open, fridge(fail)
(15) Put, yellow box, counter(fail)
(16) Open, fridge(fail)
(17) Put, yellow box, counter(fail)
(18) Open, fridge(fail)
(19) Put, yellow box, counter(fail)

Case 4: Meaningless Outputs

Here we show a case of Qwen2-VL (Wang et al., 2024) generating a large amount of meaningless
outputs during the inference. As we can see, even though all subtasks are successful, the agent keep
circling in place without making progress. These meaningless outputs quickly consume the remaining
execution steps, ultimately causing the task to fail.

Task: find two bowls in the room and put them in the kitchen sink
(1) Go to, kitchen(success)
(2) Go to, kitchen(success)
(3) Go to, kitchen(success)
(4) Go to, kitchen(success)
(5) Go to, kitchen(success)
(6) Go to, kitchen(success)
(7) Go to, living room(success)
(8) Go to, living room(success)
(9) Go to, kitchen(success)
(10) Go to, kitchen(success)
(11) Go to, living room(success)
(12) Go to, living room(success)
(13) Go to, living room(success)
(14) Go to, living room(success)
(15) Go to, living room(success)
(16) Go to, living room(success)
(17) Go to, living room(success)
(18) Go to, living room(success)
(19) Go to, living room(success)

Case 5: Solvable D1 Error

Here we show how D1 error is solvable during the inference of Gemini-1.5-Pro (Team et al., 2024a).
As we can see in step3, after a D1 error happens, a Go to action can effectively solve it and facilitate
the success of the whole trajectory.

Task: fetch one crack box and one sugar box and put them on the beige table

(1) [Go to, beige_table](success)
(2) [Pick, cracker_box](fail)
(3) [Go to, cracker_box](success)
(4) [Pick, cracker_box](success)
(5) [Go to, beige_table](success)
(6) [Put, cracker_box, beige_table](success)
(7) [Go to, brown_table](success)
(8) [Put, sugar_box, brown_table](fail)
(9) [Go to, beige_table](success)
(10) [Put, sugar_box, beige_table](fail)
(11) [Go to, sugar_box](success)
(12) [Pick, sugar_box](success)
(13) [Go to, beige_table](success)
(14) [Put, sugar_box, beige_table](success)
(15) [End](success)

36

	Introduction
	EMMOE Benchmark
	EMMOE-100 Dataset
	Evaluation Metrics

	HomieBot
	Overview
	High Level Planning (HLP)
	Low level Execution (LLE)

	Experiments
	Data Augmentation
	Model Training
	Setup
	results
	Analysis

	Limitations and Future Works
	Conclusion
	Related Work
	Embodied tasks and benchmarks
	LLM-Driven Embodied Agents
	Adaptation from feedback

	Dataset
	Dataset Details
	Dataset Demonstration

	Metric Calculation
	Task Progress
	Success End Rate
	Success Re-plan Rate

	High Level Planning
	Low Level Execution
	Pipeline
	Skills
	Models
	Error Classification

	Data Augmentation
	SFT Augmentation
	DPO Augmentation

	Training Details
	Training Parameters

	Experimental Details
	Baseline Setup
	Results

	Case Study

