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ABSTRACT

In the era of AI at the edge, self-driving cars, and climate change, the need
for energy-efficient, small, embedded AI is growing. Spiking Neural Networks
(SNNs) are a promising approach to address this challenge, with their event-driven
information flow and sparse activations. We propose Spiking CenterNet for object
detection on event data. It combines an SNN CenterNet adaptation with an effi-
cient M2U-Net-based decoder. Our model significantly outperforms comparable
previous work on Prophesee’s challenging GEN1 Automotive Detection Dataset
while using less than half the energy. Distilling the knowledge of a non-spiking
teacher into our SNN further increases performance. To the best of our knowl-
edge, our work is the first approach that takes advantage of knowledge distillation
in the field of spiking object detection.
Keywords: SNN, Knowledge Distillation, object detection, event data

1 INTRODUCTION

In recent years, the integration of object detection capabilities into edge devices has witnessed un-
precedented growth, driven by the ever-increasing demand for real-time applications in fields such
as automotive and robotics. Edge devices, characterized by their resource-constrained nature, pose
unique challenges in terms of computational efficiency and power consumption. Addressing these
challenges requires innovative approaches that not only provide accurate object detection but also
ensure power-efficiency for operation.

One promising approach for achieving these goals is the utilization of Spiking Neural Networks
(SNNs), which are inspired by the communication mechanism of biological neurons. SNNs ex-
hibit inherent power-efficiency as their distinctive feature is event-driven information processing,
achieved through all-or-nothing events (spikes) for communication between neurons. This attribute
sets SNNs apart from conventional Artificial Neural Networks (ANNs), which primarily rely on
non-binary floating-point values (floats). Spikes facilitate fast, cost-effective neuron interactions via
single-bit electronic impulses, unlike multi-bit data like floats which demand multiple impulses. In
addition, sparse binary value transmission conserves energy by keeping most of the neurons inactive
during operation.

Similarly to SNNs, event-based cameras also exhibit asynchronous behavior, aligning well with
SNNs’ processing capabilities. Event-based cameras provide several benefits compared to conven-
tional frame-based cameras: they have an exceptional temporal resolution in microseconds (Gallego
et al., 2020), rendering them ideal for applications demanding real-time responsiveness. Further-
more, they excel in energy efficiency, transmitting data only in response to sensory input changes
instead of transmitting redundant information as conventional frame-based cameras do. SNNs and
event-based cameras work together effectively, providing fast, energy-efficient data processing.

The development of SNN-based object detectors holds substantial promise for advancing the uti-
lization of SNNs in real-time autonomous applications demanding energy-efficient object detection
capabilities, unlike the predominant focus of previous SNN research on classification tasks. How-
ever, the effective employment of SNNs remains a significant challenge due to the intrinsic difficulty
associated with directly training these networks, given their discrete and spiking (i.e., binary) nature
and thus non-differentiable activations.
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Figure 1: Overview of our spiking object detection model. We combine a ResNet-18 encoder with
M2U-Net-based decoding (Laibacher et al., 2019) to feed into CenterNet-based heads (Zhou et al.,
2019). We remove any residual connections, and replace all activation functions with Parametric
Leaky Integrate-and-Fire (PLIF) neurons. Postprocessing calculates bounding boxes from the head
output.

In this work, we propose a novel fully SNN-based object detection framework (see Fig. 1) trained
on automotive data recorded by event-based cameras. Our key contributions are as follows:

• We propose a modified, spiking version of the simple and versatile CenterNet architecture
(Zhou et al., 2019) which is also - to the best of our knowledge - the first trained SNN
detector that does not require costly Non-Maximum Suppression (NMS).

• We replace CenterNet’s upsampling by the more efficient modules from M2U-Net
(Laibacher et al., 2019) and add binary skip connections between encoder and decoder
which improves gradient flow despite the spiking communication.

• To the best of our knowledge, we are the first that utilize Knowledge Distillation (KD)
for SNNs in the context of object detection, with the aim of addressing the challenges
associated with training efficiency and model generalization.

Our SNN-based object detector outperforms comparable previous work on the challenging GEN1
Automotive Detection (GEN1) dataset by 4 % mean Average Precision (mAP). We show the effec-
tiveness of KD, which improves model performance in terms of mAP by an average of 1.8 % over
a baseline SNN. We also show that our model achieves better power efficiency than its non-spiking
counterpart and the state-of-the-art SNN-based object detectors.

2 RELATED WORK

A major disadvantage of SNNs is training complexity and the spikes’ lower information resolution.
Firstly, due to the discrete and non-differentiable nature of spikes, back-propagation cannot be per-
formed directly for training. Additionally, the temporal aspect turns SNNs into a type of Recurrent
Neural Network (RNN), which is inherently difficult to train (Pascanu et al., 2013). Finally, a se-
ries of binary spikes with practical length can only represent a limited amount of different values in
contrast to the high precision of floating points.
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At the atomic level, there are many different neuron models to use, ranging from the Hodgkin and
Huxley model (Hodgkin & Huxley, 1952), over the Izhikevich neuron model (Izhikevich, 2003) to
the Leaky Integrate-and-Fire (LIF) model (Delorme et al., 1999). As a good trade-off between com-
plexity and efficiency, we choose the PLIF neuron (Fang et al., 2021), which is a LIF with learnable
membrane variables. Due to the aforementioned non-differentiable nature of spikes, special frame-
works are needed for training. Some widely-used methods are Spike Layer Error Reassignment in
Time (SLAYER) (Shrestha & Orchard, 2018) and surrogate gradient learning (Neftci et al., 2019).
While SLAYER uses a temporal credit assignment policy to backpropagate errors to previous layers,
surrogate gradients simply approximate the non-differentiable spiking function with a similar dif-
ferentiable function. We choose surrogate gradients since they enable treating an SNN as a simple
RNN, which allows utilization of established learning algorithms such as Backpropagation Through
Time (BPTT) (Rumelhart et al., 1986).

There are currently two main directions for implementing spiking object detectors: conversion and
training from scratch. Converting the weights of a usually isomorphic non-spiking ANN is popular
for creating complex SNNs because it avoids training non-differentiable spiking functions. However,
these conversions often result in loss of accuracy, which is why the bulk of work in this direction
goes into minimizing conversion loss. SpikingYolo (Kim et al., 2020) is an example of a successful
conversion from ANN to SNN for object detection. However, this network requires at least 1 000
time steps to detect objects with acceptable accuracy. Recently, Qu et al. (2023) achieved good
accuracy with only four time steps, but they stretch the definition of SNNs. They use non-binary
”burst spikes” and spike weighting, which is used to make spike signals more complex, but they
disregard the computational impact of it. While conversion enables the reuse of an existing well-
trained network, the high number of time steps or more complex spikes both negatively affect the
resulting network’s efficiency. Furthermore, conversion from a non-recurrent ANN does not allow
the resulting SNN to take advantage of temporal event data.

An alternative approach is training SNNs from scratch. Cordone et al. (2022) introduced the first
fully spiking SNN for object detection trained on a challenging real-world event dataset. This was
an important milestone for SNN research as it showed the feasibility of training from scratch and a
low-timestep SNN. Su et al. (2023) developed an even better performing SNN model by introducing
a ”spiking residual block”. However, it includes non-spiking residual connections which violate the
SNN’s core principle of spiking signals between layers. We also opt to train our SNN object detector
from scratch to fully utilize the inherent sparsity of trained SNNs and improve upon the previous
fully-spiking standard set by Cordone et al. (2022). Furthermore, we utilize the superior training
capabilities of the non-spiking counterpart as a teacher signal for our SNN model through KD.

The idea of Knowledge Distillation is a well-established learning strategy first shown in (Hinton
et al., 2015) . It is about improving the performance of a smaller, more efficient ”student” network
by transferring the knowledge of a larger, more capable ”teacher” network as an additional soft
learning target to the student network. First examples of using KD for SNNs are limited to sim-
ple classification problems. While Tran et al. (2022) use a more traditional KD approach together
with SNN-to-ANN conversion, Xu et al. (2023) use a novel approach they call ”re-KD” in which
they adapt the network structure on-the-fly while distilling knowledge. Our approach, described in
Section 3.3, is closer to the former. However, KD in object detection is more complicated than in
classification (Chen et al., 2017) and there is - to the best of our knowledge - no previous work of it
with SNN detectors.

3 METHOD

3.1 SPIKING CENTERNET

The main motivation behind constructing our SNN architecture is simplicity, as we find that complex
neural network structures, albeit proven for non-spiking ANNs, function worse with spiking acti-
vations. For example, highly optimized and complex architectures such as EfficientDet (Tan et al.,
2020) suffer from the binarization of feature maps and contain modules such as a singular global fea-
ture factor which as a spike may disable a module’s output completely. Therefore, we construct our
model from two very simple architectures: CenterNet (Zhou et al., 2019) and M2U-Net (Laibacher
et al., 2019).
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Due to its simplicity and reproducibility, CenterNet (Zhou et al., 2019) has become a very influ-
ential object detection model. It features variable backbones and heads for different tasks which
encompass 2D and 3D bounding box detection as well as human pose estimation. The key idea of
the model is to estimate objects or target points (e.g., joints) as key points (activity blobs centered
at target) on 2D classification heatmaps (one for each class, cf. Fig. 4). These heatmaps divide the
input image into a grid of variable size. To balance the grid’s coarseness, an offset regression with
similar shape is also produced. Additionally, depending on the task, bounding box width/height re-
gression may also be used. These predictions are made by individual heads which take feature maps
of roughly the same size as the input. This makes the backbone structure similar to a segmentation
network with an encoder and a decoder part.

The final bounding box predictions are produced by an extraction of local maxima from the heatmap,
which replaces the typical NMS (Bodla et al., 2017) found in other detection models. This allows
us to fully utilize the time dimension and produce several outputs with spiking CenterNet heads
with a hidden spiking layer of 64 channels for the heatmap, offset regression and bounding box
width/height regression (Zhou et al., 2019), rather than only aggregating features over time and
performing a single-step detection as done by Cordone et al. (2022). In our work, we take the mean
of each head’s output over all five time steps to produce a final, more robust output. This allows the
model to be independent of the specific number of time steps and generate results with fewer time
steps if needed (see Fig. 3).

Among the different backbones, we opt for ResNet-18 (He et al., 2016) due to its simplicity and
relatively small size. We adopt the SpikingJelly’s implementation (Fang et al., 2020) of the network
and replace the classic ReLU activation with SpikingJelly’s PLIF neuron throughout the network,
including the decoder. We replace the first convolutional layer to adapt to the number of input
channels depending on the data (i.e., 4 channels for event data, see Section 4.1.1).

3.2 M2U-NET DECODING

M2U-Net (Laibacher et al., 2019) is a popular small segmentation network with 0.55M parame-
ters. It features an encoder-decoder structure similar to the ResNet-18 based backbone in CenterNet
(Zhou et al., 2019). However, M2U-Net uses a static upsampling step rather than weight-based
deconvolution as in CenterNet’s decoding.

Originally, CenterNet’s ResNet-18-based version uses so-called transposed convolutions or decon-
volutions (Zeiler et al., 2010) to increase the feature maps’ size before feeding them to CenterNet’s
heads. However, this relies heavily on the ability of the network to compress spatial information in
the rather low-resolution, but high-dimensional feature maps of the encoding steps. It also requires
the network to learn meaningful deconvolutional weights. Since SNNs are quite limited in feature
map output due to their binary nature and generally work better with fewer tunable weights, we
instead choose a decoding strategy based on M2U-Net.

M2U-Net’s decoding (Laibacher et al., 2019) is particularly suited for SNNs. Its skip connections
between encoder and decoder allow the SNN to retain important high-level information more easily,
and its simple weightless upsampling spares the SNN from unnecessary weights. To do so, we add
M2U-Net’s upsampling blocks and connect the encoder blocks’ outputs with the decoder blocks of
the same input size (see Fig. 1). We replace the ReLU activations with PLIF neurons. However, in
M2U-Net’s Inverted Residual Block, we drop the activation function between the depth-wise and the
point-wise linear convolutions since we can merge them for inference, thus eliminating non-spike
signals between these layers. Furthermore, we remove the identity connection in the Inverted Resid-
ual Connections, as the summation of the identity and residual and the resulting non-binary values
violates the idea of a (binary) SNN. We find that a Boolean OR-operation as a binary alternative
does not improve the result, and instead, we decide to drop the identity connection entirely.

In this way, we create a combination of two networks that we call Spiking CenterNet, which offers
a flexible arrangement consisting of simple, SNN-compatible building blocks.

3.3 KNOWLEDGE DISTILLATION FOR SNNS

As the isomorphic, non-spiking counterpart of our SNN model performs better than the SNN, we try
to distill knowledge from this non-spiking version to the spiking one. Our approach is straightfor-
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Table 1: Results on the GEN1 dataset (De Tournemire et al., 2020).

#Params mAP T Energy
Model (Millions) best mean (mJ)
Non-spiking ANNs:

HMNet-L3 (Hamaguchi et al., 2023) - 0.471 - - -
Ours (ANN teacher) 12.97 0.278 0.275 1 28.214

SNNs:
DenseNet121-24+SSD (Cordone et al., 2022) 8.2 0.189 - 5 10.485
EMS-Res10-YOLO (Su et al., 2023) [1] 6.2 0.267 - 5 -
EMS-Res18-YOLO (Su et al., 2023) [1] 9.3 0.286 - 5 1.965 [2]

Ours (no KD) 12.97 0.223 0.205 5 3.096
Ours (with KD) 12.97 0.229 0.223 5 4.995

1 Su et al. (2023) use non-spiking residual connections.

2 Excludes energy consumption from the first coding layer.

ward: First, the non-spiking teacher is trained separately and then the weights are frozen during the
training of the SNN. For each time step during the latter, we pass the same input to both the SNN
and the teacher. Finally, the teacher’s output is used as a soft target signal to calculate the mean
squared error:

Lteach =
1

T

T−1∑
t=0

∑
p∈Pixels

{op(t)− ôp(t)}2, (1)

where op(t) is the output of the p-th pixel of the SNN model at time t and ôp(t) is the corresponding
teacher output. With this we arrive at an overall loss of:

L = LCN + α · Lteach, (2)

where LCN is the CenterNet loss as in Zhou et al. (2019). We choose α = 1 after initial experiments.

3.4 MEASURING ENERGY CONSUMPTION OF ANNS AND SNNS

One of the most important benefits of SNNs—compared to ANNs—is their energy efficiency. Mea-
suring this advantage, however, is nontrivial if SNN hardware is not yet available. For an ANN, the
number of synaptic operations per layer can be calculated from the architecture of the convolutional
and linear layers, where a Multiply-Accumulate Computation (MAC) takes place per synaptic op-
eration, multiplying each non-spiking activation with the respective weight before adding it to the
internal sum. For an SNN executed on a neuromorphic processor, an Accumulated Computation
(AC) is performed per synaptic operation only upon the receipt of incoming spikes (Chen et al.,
2023) where the corresponding weights only need to be accumulated at the target neuron. There-
fore, the total number of AC operations is calculated by a product of the average firing rate for
a particular layer and the corresponding number of synaptic operations. However, many modern
SNNs trade efficient energy consumption for more accuracy by also using non-spike operations that
also results in MACs. According to Chen et al. (2023), the theoretical computational consumption
can be determined by the number of AC and MAC operations:

ESNN = T · (f · EAC ·OAC + EMAC ·OMAC). (3)

Here, T is the simulation time and f is the average firing rate. EAC, EMAC and OAC, OMAC are
the energy consumption and number of operations for AC and MAC, respectively. We assume
energy consumption values of EAC = 0.9pJ and EMAC = 4.6pJ based on current 45 nm technology
following related works (Horowitz (2014), Su et al. (2023)).
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

4.1.1 DATA

We train and evaluate all our models on the GEN1 dataset (De Tournemire et al., 2020). It consists
of 39 hours of recordings with the 304×240 pixel GEN1 sensor. Its event-based nature makes it par-
ticularly useful for training and evaluating SNNs as it natively provides spike-like and sparse input.
GEN1 features an impressive number of 255,000 annotations for the two classes cars and pedestri-
ans. These qualities made it an established benchmark for SNN-based object detectors (Cordone
et al., 2022; Su et al., 2023). Fig. 2 shows selected scenes.

Following the procedure of Cordone et al. (2022), we sample 100 ms of events preceding every
annotation and split it into binary voxel cubes of 5 time steps, with each split into two micro time
bins that are processed simultaneously. Together with the polarity of events, this gives us 2× 2 = 4
input channels. However, as our non-spiking teacher model only uses one time step, we instead
sample 20 ms for its training to keep the information per time step similar.

4.1.2 HYPERPARAMETERS

We train both our spiking and non-spiking models with the AdamW optimizer with a weight decay
of 1e-4. While the non-spiking model uses a learning rate of 1e-3, the SNN models use 1e-4. All
models use cosine annealing learning rate scheduler that reduces the learning rate to 1e-5. We clip
our gradients at 1 to avoid exploding gradients. Due to faster convergence, the non-spiking model
is trained for just 20 epochs while the spiking models are trained for 50 epochs. We initialized all
but the output convolutions with the Kaiming Uniform method and zero bias. The heatmap head’s
last convolution’s bias was initialized as -2.19 following Zhou et al. (2019) as it results in 1.0 after
softmax activation. The size regression and offset heads’ biases were initialized as 0.15 and 0.5
based on empiric convergence after some initial experiments. The corresponding convolution heads
were initialized with normal distribution with standard deviation 1e-3.

4.1.3 TESTING

Our main performance metric is the COCO mAP (Lin et al., 2014) calculated over 10 IoU values
([.50:.05:.95]) as it is the de-facto standard metric for object detection. Unlike previous works
(Cordone et al., 2022), we focus on the mean performance of five trained model instances with
different seeds as a more robust measurement and report the maximum, i.e., best performing model
only for comparison.

Additionally, we aim to quantify the computational performance of our models as this is the main
motivation behind the development of SNNs. In order to do so, we report the following metrics:

• Number of parameters: As in all neural networks, the number of parameters correlates
with energy consumption. Additionally, embedded (neuromorphic) hardware as the desired
deployment environment often features limitations on network size.

• AC & MAC: We report both the AC and MAC operations as measured by the SyOPs python
library (Chen et al., 2023) to calculate the theoretical energy needs for both the non-spiking
and spiking models.

• Firing rate: We also record the firing rate of the SNNs by calculating the proportion of
active neurons (i.e., spikes) among all neurons (i.e., possible spikes) averaged over the test
set and time steps (cf. sparsity in Cordone et al. (2022)).

To calculate the energy consumption of the SNNs, we mainly use the open-source tool syops-counter
provided by Chen et al. (2023). As depthwise-separable convolutions and Batch Normalization (BN)
layers after convolutions are useful for training, but introduce float values and thus MAC operations,
we merge them according to Rueckauer et al. (2017) before counting energy. We compute the energy
consumption based on the validation split of the GEN1 dataset. The results are reported in Table 1
(energy) and Table 2 (#operations, firing rate).
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Table 2: Total number of operations over time and firing rate.

Model MACs ACs Firing rate
DenseNet121-24+SSD (Cordone et al., 2022) 0 11.65G 37.20 %
EMS-Res18-YOLO (Su et al., 2023) - - 20.09 %[1]

Ours (ANN teacher) 6.13G 0.018G [2] 100.0 %
Ours (no KD) 0 3.44G 10.8 %
Ours (with KD) 0 5.55G 17.4 %

1 Excludes energy consumption from the first coding layer.

2 Stem from binary event data input.
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Figure 2: Prediction of our best SNN model (bottom) and ground truth (top) for selected scenes
of the GEN1 dataset. The different pixel colors indicate the two micro time bins with each two
polarities of brightness change, resulting in four input channels (cf. Section 4.1.1). Note that targets
might be invisible if there is no camera or object motion.

4.2 RESULTS

We report in Table 1 results for three models: Our non-spiking ANN baseline (and teacher), the
isomorphic SNN model without KD, and the SNN model trained with KD . Our results show that
our simplified SNN model with KD reaches a competitive mAP of 0.229 (maximum) and 0.223
(mean), outperforming previous comparable models (Cordone et al., 2022) by a significant margin
of 4 % mAP. Fig. 2 shows object detections for selected scenes.

The results in Tab.1 also suggest that our KD approach makes the SNN model consistently perform
better and less reliant on outliers with a mean mAP difference of +1.8 %. Furthermore, we discover,
that despite the higher number of parameters in our model, it is sparser and more energy efficient
than comparable models (cf. Table 1 & Table 2). However, we observe that the recent work of Su
et al. (2023), who mix non-spiking structures into their SNN model, still performs better in terms of
mAP performance.

Regarding energy consumption, both our baseline SNN and KD-based model significantly outper-
form the 10.485 mJ of the model in Cordone et al. (2022) with 3.096 mJ and 4.995 mJ, respectively,
for the entire sequence of 5 time steps. Su et al. (2023) report a lower energy consumption, but ignore
the initial convolutional layer’s computational impact, making comparison to our results difficult.

4.3 ABLATION STUDIES

In order to explore the capabilities of our SNN models on working with fewer time steps, we first
select the best instance of our models with and without KD based on the results on the validation
subset of the GEN1 dataset. We then modify two parameters: The sequence length, i.e., the number
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(a) Fixed time window of 100 ms (b) Variable time window of 20 ms per step

Figure 3: Impact of the number of time steps in evaluation with a fixed (a) and variable (b) time win-
dow for sampling events. Shown is mAP of our best SNN models on the GEN1 dataset (De Tourne-
mire et al., 2020).

of time intervals the input is divided into, and the sample window size, i.e., the time window in
milliseconds we sample before each ground truth bounding box (see Section 4.1.1). We evaluate
each 5-time-steps-trained model with a different number of time steps, ranging from 1 to 10. We do
so twice: with a fixed time window of 100 ms, i.e. the same information is compressed into fewer
time steps of longer duration, and with a decreasing time window in which each time step has a fixed
duration of 20 ms. The results are shown in Fig. 3. We find that albeit performance unsurprisingly
drops with the number of time steps, performance with 4 time steps still beats previous models with
5 time steps (Cordone et al., 2022) and even 3 time steps still deliver decent performance. While
simply dividing the same time window into more than 5 time steps does not improve performance
significantly, a bigger time window does help slightly. However, past 140 ms a bigger time window
does not help either.

5 DISCUSSION

The main motivation behind our work is introducing a simple, well-performing architecture which
strictly adheres to the definition of an SNN. Some previous works try to define complex, weighted
signals as spikes while ignoring the additional computational cost these non-binary ”spikes” intro-
duce (Qu et al., 2023). Other works such as Su et al. (2023) hide additional non-spiking operations
within ”spiking” blocks: Within their EMS-ResNet, non-binary values are added, max-pooled and
transmitted as residual connections over long distances, rather than cheap binary spikes. These
not only incur additional costly MAC operations, it is also unclear whether spiking neuromorphic
hardware will be able to support such complex neuron blocks.

In light of these concurrent works, it is our desire to keep our architecture as simple as possible and
limit non-binary values to just the interface between convolutional and spiking activation layers as
well as the final output, where the lack of subsequent neurons make spikes less valuable. Our M2U-
Net-based (Laibacher et al., 2019) skip connections, connecting the encoder and decoder part of our
backbone, merely transport sparse binary spikes. These are then concatenated and thus do not add
MAC operations. We found that these skip connections are quite vital for gradient flow and enable
the deep structure of the network; prior to adding them, the model would not learn at all on the GEN1
dataset. Furthermore, our Spiking CenterNet is the first SNN detector without the expensive NMS,
which also allows us to fully utilize the time dimension of the output. Lastly, Spiking CenterNet,
due to its task-specific heads, is like the original CenterNet also easily expandable to other difficult
tasks like 3D bounding box detection and pose estimation, which are not yet explored with SNNs.

We are also—to the best of our knowledge—the first to utilize Knowledge Distillation for training
a spiking object detector. Since we observe that the best non-spiking ANNs still outperform SNNs
by a wide margin (see Table 1), it was our hope to transfer this performance to our SNN model.
We observe that KD indeed improves the result, especially mean performance. It can thus be used
to make the training more consistent. We also observe that a KD-boosted SNN seems to produce
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smoother, and according to mAP better, heatmap outputs (see Fig. 4). However, it also increases the
number of spikes, therefore presenting a trade-off between performance and energy consumption.

(a) Non-spiking ANN (b) SNN (no KD) (c) SNN with KD
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Figure 4: Output of heatmap head (see Fig.1) averaged over time steps of the three evaluated models.
Knowledge Distillation from the non-spiking ANN teacher to the SNN results in a less sparse, but
smoother and ultimately better heatmap.

Our evaluation reveals that despite our higher number of parameters, our SNN models actually
use fewer spikes than comparable models (Cordone et al. (2022), see Table 2). This results in a
lower proportion of active neurons and thus lower firing rate. However, although a low firing rate
is generally considered good (Cordone et al., 2022), it might also indicate an unnecessarily large
network. Especially in light of possible limitations regarding neuron numbers in neuromorphic
hardware, eliminating neurons which are inactive most or all of the time is logical. Nevertheless,
first solving the object detection task at all to a satisfiable degree, which is a challenge in and of
itself, is the prime priority of our work.

Finally, our findings in evaluating our SNN models with fewer time steps indicate that our model
can produce good results within a shorter time window than it has been trained for. This seems to
confirm our decision of taking the mean of the overall network output over time as it makes the
model less reliant on producing the correct output at all five time steps. Of course, during real-time
inference there are no time steps, but our hope is that in this case the neurons’ leaky membrane
constant would smooth over the asynchronous events.

6 CONCLUSION AND FUTURE WORKS

We presented a new, versatile SNN architecture for object detection in the form of our Spiking
CenterNet, consisting solely of simple building blocks and not requiring expensive NMS. Moreover,
we are the first (to the best of our knowledge) to employ Knowledge Distillation for spiking object
detection, which improves our baseline SNN model significantly. We observed that our SNN not
only beats comparative previous work by 4 mAP points, but also uses less than half the energy. We
demonstrate in our work that it is possible to push the performance of SNNs without stretching the
definition of what constitutes an SNN. Furthermore, we show that even the simplest form of KD can
work for spiking object detection. More sophisticated KD versions (e.g., for intermediate features)
or more complex ANN teachers could be investigated in future works. We also plan to extend our
approach to both RGB data input and also to different tasks such as 3D bounding box and human
pose estimation, comparable to the original CenterNet (Zhou et al., 2019).
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