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ABSTRACT

RLHF has emerged as a pivotal step in aligning language models with human
objectives and values. It typically involves learning a reward model from hu-
man preference data and then using reinforcement learning to update the gen-
erative model accordingly. Conversely, Direct Preference Optimization (DPO)
directly optimizes the generative model with preference data, skipping reinforce-
ment learning. However, both RLHF and DPO assume uniform preferences,
overlooking the reality of diverse human annotators. This paper presents a new
method to align generative models with varied human preferences. We propose
an Expectation-Maximization adaptation to DPO, generating a mixture of models
based on latent preference types of the annotators. We then introduce a min-max
regret ensemble learning model to produce a single generative method to minimize
worst-case regret among annotator subgroups with similar latent factors. Our algo-
rithms leverage the simplicity of DPO while accommodating diverse preferences.
Experimental results validate the effectiveness of our approach in producing equi-
table generative policies.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as one of the leading methods
to align Language Models (LMs) to human preferences Ouyang et al. (2022); Stiennon et al. (2020);
Wang et al. (2023b). RLHF focuses on learning a single reward model from human preference
data and uses that to fine-tune and align the LM. To sidestep potentially expensive reinforcement
learning, Direct Preference Optimization (DPO) Rafailov et al. (2024b) is an alignment method that
optimizes the LM policy directly using the preference data. However, DPO implicitly uses the same
reward model as RLHF to train the LM. This reward model reflects the majority opinion of the pref-
erence data annotators and caters to that majority. If the annotator population is not representative of
the general population, then this comes at the cost of neglecting groups underrepresented in the an-
notators, leading to misrepresentation of preferences. On the other hand, if the annotator population
is representative, then opinions of minority groups in the general population are shunned, causing
bias and discrimination.

Most papers that try to deal with this issue learn a reward model and then use a standard RL frame-
work such as PPO to align the LM. However, DPO has several advantages over RLHF, eliminating
the need for a reward model and leading to a more stable pipeline. Zhou et al. (2023) utilizes these
benefits by developing an algorithm that directly optimizes policy by implicitly learning a multi-
objective reward model. However, methods that rely on a multi-dimensional reward model Wang
et al. (2024b); Zhou et al. (2023) implicitly or explicitly have two main drawbacks. First, these
methods typically require annotators to rate data on a multi-dimensional scale, with each dimen-
sion corresponding to a different objective like safety or accuracy. This data is both more costly
and harder to obtain compared to binary preference data Casper et al. (2023). Second, the different
rating objectives must be determined ahead of the data collection stage. This can be a difficult task
as there are many latent factors that might affect the preferences of annotators Siththaranjan et al.
(2023), which can be difficult to discern. For example, if we collect ratings based on helpfulness
and harmfulness similar to Bai et al. (2022), these rankings might not fully explain some preference
decisions made because of cultural, political, or geographical inclinations.
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We propose a pipeline of two algorithms to sidestep the need for RLHF for a heterogeneous popu-
lation, allowing us to cater to diverse preferences without the need for reinforcement learning, let-
ting us reap the added benefits of DPO. In particular, we propose Expectation Maximization Direct
Preference Optimization (EM-DPO) and MinMax Direct Preference Optimization (MinMax-DPO).
EM-DPO uses an EM algorithm Dempster et al. (1977) to simultaneously learn the distribution of
user preference types as well as policies for each type. Note that, if we already knew the group each
user belonged to, we could simply train an optimal DPO policy on each group separately. Since we
do not, we think of our data as being generated by latent mixture model, where for each user we first
draw a latent preference type and then draw a set of annotation data based on the preference type.
We show that one can combine ideas from DPO with the EM algorithm for learning mixture models
and directly learn a distribution of latent types, as well as a regularized optimal policy for each type.
MinMax-DPO then takes these optimal policies and learns one model to best serve the needs of the
population. Figure 1 shows the proposed pipeline.

Figure 1: Proposed pipeline to find the optimal policy. Step 1: We gather binary preference data
from heterogeneous annotators. Step 2: We run an expectation-maximization algorithm EM-DPO
to soft assign annotators to clusters and to find an ensemble of optimal policies. Step 3: We run a
regret-based algorithm Max-Min DPO to learn a linear combination of the optimal policies that is
equitable.

2 RELATED LITERATURE

RLHF With Diverse Preferences: One of the chief issues in RLHF is that of diverse populations;
different annotators could have very different preferences Dumoulin et al. (2023). Several studies
have tried to solve the diverse population problem by learning more expressive reward functions and
then using them to perform RLHF. For example, Rame et al. (2024); Jang et al. (2023); Chakraborty
et al. (2024) maintains and learns several reward models at once. Similarly, Wang et al. (2024b)
learns a multi-dimensional reward model where each dimension provides rewards based on a differ-
ent objective such as safety or usefulness. Yang et al. (2024) proposes a policy-agnostic method to
perform multi-objective LLM alighment. Alternatively, Siththaranjan et al. (2023); Li et al. (2024)
learns a distribution over fixed reward models. Finally, these reward models are combined using
various strategies Bakker et al. (2022); Jang et al. (2023); Rame et al. (2024) to get a final reward
model which is then used to perform RLHF. Chakraborty et al. (2024) also learns multiple reward
models, but performs RL by maximizing the minimum reward thereby ensuring that the final model
is fair. The paper draws on elements of social choice theory, which Conitzer et al. (2024) argues
is an effective path forward for RLHF research in general, specifically regarding issues with aggre-
gating preferences. Dai & Fleisig (2024) outlines a correspondence between the key principles and
desiderata of social choice into the RLHF context.

In an orthogonal approach, Zhong et al. (2024) utilizes meta-learning to learn diverse preferences. In
general, trying to do RLHF with many reward models becomes expensive, making extending DPO
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Rafailov et al. (2024b) an attractive alternative. Swamy et al. (2024) proposes SPO to sidestep rein-
forcement learning using the concept of a minimax winner from social choice theory, but only in the
case of homogeneous preferences. In concurrent work, Park et al. (2024) proposes a personalized
RLHF algorithm which learns clustered policies via a hard Expectation Maximization algorithm
using DPO. We instead propose a soft-clustering algorithm, which enjoys stronger theoretical guar-
antees Dempster et al. (1977). Park et al. (2024) also proposes an algorithm to aggregate estimated
reward functions for a heterogeneous population. Ramé et al. (2024) also deals with the idea of
aggregating reward models to increase robustness. We instead propose a complete pipeline to learn
one equitable policy for a heterogeneous population without appealing to reward model estimation
at all.

DPO Generalizations: Since DPO’s inception Rafailov et al. (2024b), there has been a growing
line of literature on its generalizations, some of which we highlight here. Le et al. (2024) generalizes
DPO to the case of multiple SFT models, while Zhou et al. (2024) generalizes to multiple objectives.
Zeng et al. (2024); Rafailov et al. (2024a) work on extending DPO to work at the token level.
Wang et al. (2023a) extends DPO to work with other types of divergence terms, while Wu et al.
(2024) relates DPO to DRO in order to robustify it. Badrinath et al. (2024) augments DPO with a
computable advantage function to create a hybrid between DPO and RLHF.

Additional work that more generally relates to the fields of reward modeling and preference-based
reinforcement learning can be found in Appendix A.

3 BACKGROUND

In this section, we discuss traditional alignment methods that assume uniform preference among the
whole population, namely RLHF Ziegler et al. (2019); Stiennon et al. (2020); Ouyang et al. (2022)
and DPO Rafailov et al. (2024b).

Reinforcement Learning from Human Feedback (RLHF) The RLHF pipeline has two inputs.
The first is an LM πSFT that is pre-trained on internet-scale data and then fine-tuned with supervised
learning. The second input is a static annotator preference dataset. To collect this data, first pairs of
responses (y1, y2) are generated from πSFT(·|x) where x is a given prompt. Human annotators then
choose the best response between the two - in what follows, let y1 denote the winning response and
y2 denote the losing response. Also, let H be the population of all human annotators and h ∈ H be
the random variable that represents a single human annotator.

In the first step of RLHF, a reward model rϕ(x, y) is fit using the preference data. This is done by
minimizing the following log-likelihood loss:

L(rϕ;D) = −E(x,y1,y2,h)∼D[p(y1 ≻ y2|x)] (1)

To simplify this objective, assume that the relation between preference data and rewards follows
the Bradley-Terry-Luce model Bradley & Terry (1952). Let r∗(x, y) represent the true rewards for
all annotators. Then, according to the BTL model, the probability that an annotator prefers one
response over the other is given by:

p(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
= σ(r∗(x, y1)− r∗(x, y2)), (2)

so the log-likelihood loss to minimize is equivalent to

L(rϕ;D) = −E(x,y1,y2,h)∼D[σ(rϕ(x, y1)− rϕ(x, y2))] (3)

The second and final step is fine-tuning with reinforcement learning (RL) using the learned reward
model rϕ(x, y). More specifically, the Proximal Policy Optimization (PPO) Schulman et al. (2017)
is used in training the LM. The PPO algorithm optimizes the following objective:

π∗
θ = argmax

πθ

Ex∼D,y∼πθ(y|x)[rϕ(y, x)]− βKL[πθ(y|x)||πSFT(y|x)] (4)

Direct Preference Optimization (DPO) DPO optimizes the same objective as PPO as given in 4 but
bypasses learning the reward model by directly optimizing with the preference data by combining
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2 and 4. This results in a pipeline that is not only significantly simpler, but also exhibits greater
stability Rafailov et al. (2024b).

DPO minimizes the following log-likelihood loss directly using preference data to obtain π∗
θ :

L(πθ;πSFT,D) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πSFT(yw|x)

− β log
πθ(yl|x)
πSFT(yl|x)

)]
π∗
θ = argmin

πθ

L(πθ;πSFT,D)
(5)

Both RLHF and DPO assume that preferences are uniform across the population and implicitly or
explicitly learn a single reward model. However, this is not the case in the real world as humans
have diverse preferences and values. Moreover, RLHF and DPO prioritize the majority opinion
of the annotator population. This could lead to misalignment if the annotation population is not
representative of the general population. Traditional methods like RLHF and DPO can therefore
lead to bias and discrimination towards the minority subgroups among the annotator population. We
propose a new algorithm, MinMax-DPO, that learns an equitable and fair optimal policy directly
from binary preference data to bridge this gap.

4 EM-DPO: PROBABILISTIC DIRECT PREFERENCE OPTIMIZATION
ALGORITHM

The Expectation-Maximization Algorithm Dempster et al. (1977); Moon (1996) deals with settings
with mixture data. Data are produced by first drawing a set of latent factors Z and then drawing a set
of observed variables V | Z. The parameters of the likelihood determine both the distribution of the
latent factors p(Z; θ) as well as the conditional likelihood p(V | Z; θ). At step t of the algorithm,
we have a current candidate parameter vector θt and calculate θt+1 as follows:

θt+1 = argmax
θ

Q(θ | θt) := EZ∼p(·|V,θt) [log(p(V,Z | θ))] (6)

In our setting, the latent factors Z = (Z1, . . . , Zn) correspond to the unobserved heterogeneity types
Zi of an annotator i ∈ [n] and V = (V1, . . . , Vm) correspond to the chosen preferences yij1 ⪰ yij2
for each of the prompts Xij assigned to the annotator. We assume for simplicity that each annotator
is assigned m prompts and we let Vij = (Xij , y

ij
1 ⪰ yij2 ), where Xij is the prompt and yij1 ⪰ yij2

is the preference for that prompt. Our parameters θ are (ϕ, ρ, η), where ϕ are the parameters for the
group-wise policies, η the latent distribution of user types and ρ are parameters that determine the
distribution of prompts Xij .

With some calculation, we find that a parameterization of the policy πϕ,z implies a parameterization
of the likelihood (see Appendix B):

p(Vi | Zi; θ) =

m∏
j=1

σϕ(Zi, Vij) p(Xij | Zi; ρ) (7)

where the function σϕ is similar to the parameterization introduced in DPO:

σϕ(z, x, y1, y2) := σ

(
β log

πϕ,z(y1|x)
πSFT(y1|x)

− β log
πϕ,z(y2|x)
πSFT(y2|x)

)
(8)

Note that the latent factors take values in a set of K discrete values {z1, . . . , zK}. In this case, we can
assume a fully non-parametric likelihood p(Z; θ), where η = p(zk; θ) ∈ ∆(K), the K-dimensional
simplex. Subsequently, we can decompose the criterion as:

Q(θ | θt) = EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi, Zi | θ))

]
= EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi | Zi; θ)) + log(p(Zi; θ))

]
(9)
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For further simplification, we note that p(Zi; θ) =
∑K

k=1 ηk1{Zi = zk} to get that

Q(θ | θt) = EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi | Zi; θ)) + log

(
K∑

k=1

ηk1{Zi = zi}

)]
(10)

Assuming that p(Vi | Zi; θ) does not depend on the vector η, so that p(Vi | Zi; θ) = p(Vi | Zi;ϕ, ρ),
the original criterion decomposes into two separate optimization problems:

ηt+1 = argmax
η

EZ∼p(·|V,θt)

[
n∑

i=1

log

(
K∑

k=1

ηk1{Zi = zk}

)]

ϕt+1 = argmax
ϕ,ρ

EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi | Zi;ϕ, ρ))

] (11)

For the E-step, we must characterize the posterior distribution of the latent factors. Under the
assumption that the contexts are un-correlated with the unobserved preference types, which is natural
in the context of LLM fine-tuning, since contexts are randomly assigned to annotators, we can derive
that (see Appendix C):

p(zk | Vi; θ) =
ηk
∏m

j=1 σϕ(zk, Vij)∑K
ℓ=1 ηℓ

∏m
j=1 σϕ(zℓ, Vij)

(12)

For the M -step, we must solve the two optimization problems given above. The solution for η can
be derived in closed form, while the solution for ϕ is independent of the term p(Xij | Zi; ρ):

ηk,t+1 =
1

n

n∑
i=1

p(zk | Vi; θt) (13)

ϕt+1 = argmax
ϕ

n∑
i=1

EZi∼p(·|Vi;θt)

 m∑
j=1

log(σϕ(Zi, Vij))

 (14)

A full derivation is in Appendix D. This gives rise to the following EM algorithm:

Algorithm 1 EM-DPO: Expectation-Maximization Direct Preference Optimization
[1] Input: Preference data D indexed for all human annotators I and containing mi demonstrations
for each human annotator i. Input: pre-trained group-wise models πϕ0,z; ∀z ∈ {z1, . . . , zk}.
Initialize η0 = (1/K, . . . , 1/K) t in {0, . . . , T} E. Calculate posterior p(zk | Vi; θt) for each
annotator i ∈ I:

γi,k =
ηk,t

∏mi

j=1 σϕt(zk, Vij)∑K
ℓ=1 ηℓ,t

∏mi

j=1 σϕt
(zℓ, Vij)

M. Update parameters ϕ, η:

ηk,t+1 =

∑
i∈I γi,k

|H|

ϕt+1 = argmax
ϕ

∑
i∈I

K∑
k=1

γi,k

mi∑
j=1

log(σϕ(zk, Vij))

Return: Policies {πϕt,z : z ∈ {z1, . . . , zk}} and posterior preference weights {γi,k : i ∈ I}.

Note that if we do not share parameters across the policies for each preference type z, i.e. we
have separate parameters ϕz for each z ∈ {z1, . . . , zK}, then the optimization in the final step of
EM-DPO also decomposes into separate policy optimization problems for each preference type:

ϕzk,t+1 = argmin
ϕzk

∑
i∈I

mi∑
j=1

γi,k log(σϕ(zk, Vij)) (15)

5
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Note that the latter is simply a weighted DPO problem, where each demonstration (h, j), which
corresponds to the j-th demonstrations from annotator i, is assigned weight γi,k when optimizing
the policy parameters for preference type zk. Alternatively, for multi-tasking purposes, some pa-
rameters can be shared parameters across policies for each preference type, in which case the final
optimization problem should be solved simultaneously via stochastic gradient descent over the joint
parameters ϕ.

5 MINMAX-DPO: DIRECT OPTIMIZATION FOR MIN-MAX REGRET
ENSEMBLE

5.1 MINMAX REGRET OBJECTIVE

So far, we have shown how to calculate a separate policy that optimizes for each preference popula-
tion z. Our ultimate goal is to output a single policy. Hence, we need to trade-off optimizing for the
preferences of different groups and find a policy that strikes a good balance.

In that respect, to equitably cater to all K sub-populations, we focus on identifying a policy that
minimizes the worst-case regret among the sub-populations. To avoid having to retrain a new policy,
we will restrict ourselves to selecting an ensemble among the already trained policies. As such, we
define the ensemble space of policies as:

Π =

{
K∑

k=1

wkπϕ,zk : w ∈ ∆(K)

}
(16)

If we had access to the reward functions r∗z(y, x), then for any policy π, the expected reward that
population z receives would be:

Rz(π) = Ex∼D,y∼π(·|x) [r
∗
z(y, x)] (17)

Note that if we were to solely focus on population z, we would be optimizing the expected reward
objective above, regularized so as not to deviate from the reference policy. This would yield policy
π∗
z = πϕ∗,z , where ϕ∗ are the policy parameters we calculated based on the EM-DPO algorithm.

Our goal is to find an ensemble policy π such that no population z has very large regret towards
choosing their population-preferred policy π∗

z . Our minimax regret optimization problem can be
simply stated as:

π∗ = argmin
π∈Π

K
max
k=1

[
Rzk(π

∗
zk
)−Rzzkπ)

]+
(18)

where [x]+ = max{x, 0}. Note that we only consider the positive part of the regret.

Why min-max regret? Max-min reward is another fairness criterion that can be applied to the
RLHF problem to ensure equity, as discussed in Chakraborty et al. (2024). However, this criterion
has two major drawbacks. Firstly, the reward model is not uniquely identifiable from preference
data. Two reward models r(x, y) and r′(x, y) are equivalent if r(x, y) − r′(x, y) = f(x) Rafailov
et al. (2024b). Therefore, directly maximizing the minimum reward is ineffective due to this scaling.
We could fix this by standardizing the reward model to set the minimum reward to zero - if r(x, y) is
the recovered reward function, we can use r′(x, y) = r(x, y)−miny r(x, y), which is an equivalent
reward model. Even then, there is another issue with the max-min reward criterion: The max-min
reward focuses on improving rewards for users with the lowest reward, while the min-max regret
function targets users with the highest regrets. These groups differ when users with low rewards
also have low regrets. As an example, consider a setting with fixed context and three responses. If
two users have reward vectors [0, 0.01, 0.02] and [0, 10, 1] respectively, then the max-min reward
objective will choose response 3 to maximize user 2’s reward. However, user 1 is nearly indifferent
between the three choices 2, whereas user 2 strongly prefers option 2. Therefore, it is more ideal to
choose option 2, which the min-max regret criteria chooses.

5.2 REGRET DYNAMICS

We now show that the min-max regret objective can also be optimized over, without access to the
explicit reward functions, but solely based on the policies we have already trained. We can rewrite

6
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our objective as (see Appendix E):

min
w∈∆(K)

max
z∈{z0,z1,...,zK}

K∑
k=1

wk · (Lz,z − Lz,zk) , (19)

where

Lz,z′ := Ex∼D,y∼π∗
z′ (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
. (20)

Letting R denote the (K + 1) × K matrix whose (k, k′) entry (for 0 ≤ k ≤ K, 1 ≤ k′ ≤ K)
corresponds to Rk,k′ := Lzk,zk − Lzk,zk′ , we can re-write the above objective as:

min
w∈∆(K)

max
p∈∆(K+1)

p⊤Rw (21)

This is simply a finite action zero-sum game, where the minimizing player has K actions and the
maximizing player has K + 1 actions. A large variety of methods can be utilized to calculate an
equilibrium of this zero-sum game and hence identify the minimax regret optimal mixture weights
w∗. For instance, we can employ optimistic Hedge vs. optimistic Hedge dynamics, which are known
to achieve fast convergence rates in such finite action zero-sum games Rakhlin & Sridharan (2013)
and then use the average of the solutions over the iterates of training, as described in Algorithm 2.

Algorithm 2 MinMax-DPO: Direct Optimization for Min-Max Regret Ensemble
[1] Input: Distribution D of contexts x. Input: Population-specific optimal policies π∗

z ≡ πϕ∗,z

returned from EM-DPO Input: Number of iterations T and a sufficiently small, albeit constant,
independent of T , step-size η Calculate discrepancies for z, z′ ∈ {z1, . . . , zk}:

Lz,z′ := Ex∼D,y∼π∗
z′ (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
with the convention that Lz0,z0 = Lz0,zk = 0 Calculate (K + 1) × K regret matrix R, whose
k ∈ {0, . . . ,K} and k′ ∈ {1, . . . ,K} entry is:

Rk,k′ := Lzk,zk − Lzk,z′
k
,

Initialize w0 = (1/K, . . . , 1/K) and p0 = (1/(K + 1), . . . , 1/(K + 1)) t in {0, . . . , T}

wt ∝ wt−1 exp
{
−η ·

(
2R⊤pt−1 −R⊤pt−2

)}
pt ∝ pt−1 exp {η · (2Rwt−1 −Rwt−2)}

Return: Policy π∗ =
∑K

k=1 w
∗
kπϕ∗,zk , where w∗ = 1

T

∑T
t=1 wk,t

The solution π∗ returned by Algorithm 2 consistutes a O(log(K) log(T )T−1)-approximate solution
to the min-max regret problem (a direct consequence of the results in Rakhlin & Sridharan (2013)).
This completes our overall direct preference optimization procedure with unobserved heterogeneous
preferences.

One can also optimize a new policy π that does not correspond to an ensemble of the base policies
πϕ∗,z by solving the saddle point problem:

min
π

max
z

Lz(π)Rz(π)−Rz(π
∗
z) (22)

which has already been shown, can be expressed as a function of π∗
z and πSFT. This saddle point

can be solved by policy-gradient vs multiplicative weight dynamics, or for faster convergence via
optimistic policy gradient descent vs optimistic mulitplicative weight dynamics:

ϕt+1 = ϕt − 2∇ϕ

∑
z

pt,zLz(πϕt
) +∇ϕ

∑
z

pt−1,zLz(πϕt−1) (23)

pt+1,z ∝ pt,z exp{η · (2Lz(πϕt)− Lz(πϕt−1))} (24)

7
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6 EXPERIMENTS

6.1 MULTI-ARMED BANDIT EXPERIMENT

6.1.1 SETTINGS

We can draw parallels between the offline contextual bandit problem and the problem of learning
from human preferences Azar et al. (2024). In this setting, the context represents the prompt and the
bandit arms represent the possible responses for the given context. For our experiment, we consider
a simplified case with three arms.

First, we generate 200 annotators drawn randomly from three sub-populations, with 60% of the
population coming from the first sub-population, 30% from the second, and 10% from the third.
The preferences of annotators within each sub-population is homogeneous and therefore, each
sub-population is associated with a single reward model. For our experiment, we model the
sub-population reward model using a linear function, similarly to linear contextual bandits Di-
makopoulou et al. (2019):

r∗z(y, x) = xT θz(y) +N (0, σ) (25)

where θz(y) is the model parameters corresponding to the latent variable z for arm y, x is the context,
and N (0, σ) represents noise with 0 mean and standard deviation σ = 0.01. θz(y) is fixed for any
given sub-population with values θi(i) = [10, 10, 10] and θi(j) = [0, 0, 0], j ̸= i for sub-population
i. We generate 10 preference data pairs per annotator. For each data point, first we draw a context
vector x uniformly randomly from the hypercube [0, 1]3. Then, a pair of responses is generated from
a uniformly random reference policy πSFT = (1/3, 1/3, 1/3). The annotator then chooses a response
yw ≻ yl based on their reward model r∗z(y, x). We implement EM-DPO and MinMax-DPO for this
data. Appendix F shows hyperparameters for the experiment.

6.1.2 RESULTS

We run standard DPO and MinMax-DPO on this experimental setup and calculate the average regret
per user group. The results of this are shown in Figure 2.

Figure 2: DPO vs. MinMax-DPO Regret Plot

We can see that training DPO over the whole population leads to the policy completely optimizing
for the first user group’s preference (i.e., majority opinion), leading to maximal regret for the other
two groups. However, MinMax-DPO achieves the social optimum and respects the preferences of all
three groups, as shown by the equal regret among all three groups. Figure 3 shows the convergence
of the learned weights in the MinMax-DPO algorithm; we see relatively quick convergence to the
optimal weights, which are close to uniform. This is expected as all three sub-groups have perfectly
contradicting opinions because they each prefer a different response.
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Figure 3: Convergence of learned weights in MinMax-DPO.

6.2 LLM EXPERIMENT ON THE IMDB DATASET

6.2.1 SETTINGS

We conduct this experiment on GPT-2 Large, a 774M parameter version of GPT-2 Radford et al.
(2019). We use a synthetically generated dataset using the IMDb reviews Maas et al. (2011) as the
preference dataset. This dataset contains 20,000 preference data points that we assign equally (1,000
preferences per person) to 20 users from 2 different user sub-groups. The first sub-group (Group
1) is majority and comprises of 15 users; this group always prefers the more grammatically correct
response. The second sub-group (Group 2) is minority, containing 5 users; they always prefer the
shorter response. Appendix F contains more details on how the data is generated.

6.2.2 ALGORITHMS

We showcase metrics for 5 policies: (1) MinMax-DPO Policy: The ensemble of Group 1
Policy and Group 1 Policy learned during Algorithm 2. (2) Naive DPO Policy: We
get this policy by simply running DPO on the full preference dataset without learning any sub-
populations. (3) Group 1 Policy and Group 2 Policy: The optimal policies for each of
the sub-groups learned during the EM-DPO algorithm. (4) Cluster-DPO Policy: First, we
perform k-means clustering on the chosen responses. Then we train DPO on each of these preference
clusters. Finally, we run Algorithm 2 on these policies to get this ensemble policy.

6.2.3 RESULTS

Figure 4: The accuracy on an evaluation dataset of the five policies: Naive DPO, Group 1, Group 2,
Cluster-DPO, and MinMax-DPO
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Figure 4 shows the accuracy on an evaluation dataset of 256 data points per user group. Here, we
define accuracy as the percentage of data points (x, y1, y2), where x is the prompt, y1 is the chosen
response, and y2 is the rejected response, such that

β
πϕ,z(y1|x)
πSFT(y1|x)

> β
πϕ,z(y2|x)
πSFT(y2|x)

,

or equivalently, the percentage of data points where the chosen response is given a higher “reward”
than the rejected one.

As expected, Naive DPO caters to group 1, the majority group, with an accuracy of about 80%,
while the minority group only has an accuracy of about 40%. The optimal policies for group 1 and
group 2 have high accuracy for their respective group and low accuracy for the other, but the final
ensembled MinMax-DPO policy is much more equitable, achieving 60.5% accuracy on user group
1 and 52.3% accuracy on user group 2. The Cluster-DPO policy achieves a 51.9% accuracy on
user group 2, but a higher accuracy on group 1. MinMax-DPO slightly outperforms Cluster-DPO in
terms of fairness as the worse off group (group 2) has slightly higher accuracy for MinMax-DPO.
One of our preference metrics - length - is fairly easy to identify for a naive clustering algorithm,
which could explain its superior performance for group 1. We anticipate that this method would
perform worse in situations where preferences are more complex.

Figure 5: The reward margins on an evaluation dataset of the five policies.

Figure 5 shows the reward margins as defined as:

rm(x, y1, y2) = β
πϕ,z(y1|x)
πSFT(y1|x)

− β
πϕ,z(y2|x)
πSFT(y2|x)

on the evaluation dataset for each of the five policies. The black dots highlight the mean margin and
the black bars represent 95% confidence intervals. We see that, again, the MinMax-DPO is more
equitable than the naive policy with slightly positive mean margins for both user groups, whereas the
naive DPO has a negative mean margin for the minority user group. Out of all policies, the worse
mean margin out of the two user groups is highest for the MinMax-DPO policy, further showing
equitability.

6.3 DISCUSSION & LIMITATIONS

We provide a robust framework to train equitable policies for a heterogeneous population with di-
verse preferences. By extending the DPO algorithm, we are able to sidestep reinforcement learning
entirely, enjoying the added stability that DPO provides while making it more applicable to real-
world situations and datasets. We demonstrate our findings on a contextual bandit experiment as
well as a larger-scale LLM experiment, showing how our algorithm, MinMax-DPO, generates a far
more socially equitable policy than standard DPO in diverse populations where some groups may
be underrepresented.

Based on our results, we raise some limitations and directions for future work. Our derivations op-
erate off of the assumption that contexts are uncorrelated given the preference type of the annotator;
this may not be the case in the real world as, to increase accuracy of data collection, annotators
may be given prompts more tuned to their skill sets. We also assume annotators report their pref-
erences honestly, which may not be the case - this raises important questions regarding incentive
compatibility.
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7 REPRODUCIBILITY STATEMENT

We have tried to make the results in this paper as reproducible as possible. Appendix B through
Appendix E contain a complete derivation of the equations required for the algorithms. Appendix F
contains all the hyperparameters used to run the experiments, including the randomness seeds so that
the exact figures can be replicated. Appendix F also contains further information on data generation
for the LLM experiment.
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A ADDITIONAL RELATED WORK

Preference-Based Reinforcement Learning: Reinforcement learning from preferences has been
an active research area for some time, providing a way to train on tasks for which explicitly defin-
ing rewards is hard Wirth et al. (2017); Lee et al. (2021); Abdelkareem et al. (2022). In particular,
Christiano et al. (2017); Ibarz et al. (2018) show that using human preferences to guide reinforce-
ment learning (RLHF) is particularly effective on a variety of tasks, such as training robots. More
recently, RLHF has become a very popular technique to fine-tune language models to do a variety
of tasks such as summarization Ouyang et al. (2022); Ziegler et al. (2019); Stiennon et al. (2020);
Wu et al. (2021). RLHF has also been used to align language models Bai et al. (2022); Askell et al.
(2021). Casper et al. (2023) details several open problems in the field of RLHF, including those
related to the feedback itself, particularly the inverse relation between richness and efficiency. Some
work has been done on this problem with regards to language-based feedback in particular Fu et al.
(2019); Zhou & Small (2021) as well as in more general settings Hwang et al. (2024), but specific
applications to LLMs have not been fully explored.

Challenges with Reward Modeling: In general, human preferences can be difficult to represent
using reward models Hong et al. (2022), and the validity of reward modeling itself is still somewhat
debated Bowling et al. (2023); Bobu et al. (2023); Skalse & Abate (2022). Some work has also
been done to take personality into account when reward modeling Lindner & El-Assady (2022);
Lee et al. (2021), but this area remains open. In general, taking human irrationality into account
when reward modeling (to optimize a more accurate reward function) leads to a trade-off between
efficiency and accuracy Shah et al. (2019); Nguyen et al. (2017). Work has been done on inverse
RL with particular models of suboptimality such as myopia Evans et al. (2016), noise Zheng et al.
(2014), and risk-sensitivity Majumdar et al. (2017), but dealing with general irrationalities remains
open.

The proper use and collection of data remains an issue with RLHF. Sun et al. (2024) analyzes LLM
fine-tuning as a mechanism design problem where agents may have the incentive to misreport their
preferences. Data can also often have issues or certain data points may not be as effective as others;
Wang et al. (2024a) proposes methods to deal with incorrect or ambiguous preference pairs, while
Yin et al. (2024) proposes an extension to DPO which uses contrastive learning to discern between
more and less preferred responses to prompts.

B LIKELIHOOD PARAMETERIZATION

Note that, in our situation, the latent factors and observed variables (Zi, Vi) are independent across
annotators and therefore, the likelihood and the prior factorizes across the annotators. Moreover,
conditional on the latent factor, the Vij are independently distributed across j and for each j the
conditional likelihood takes a logistic form, as follows:

p(Vi | Zi; θ) =

m∏
j=1

p(Vij | Zi; θ) =

m∏
j=1

p(yij1 ⪰ yij2 , Xij | Zi; θ) (26)

=

m∏
j=1

p(yj1 ⪰ yij2 | Xij , Zi; θ) p(Xij | Zi; θ) (27)

=

m∏
j=1

σ
(
r∗
(
Z,Xij , y

ij
1

)
− r∗

(
Z,Xij , y

ij
2

))
p(Xij | Zi; θ), (28)

where r∗ denotes the true reward for the annotator, as in Section 3.

The first part σ
(
r∗(Z,Xj , y

j
1)− r∗(Z,Xj , y

j
2)
)

can also be written in closed form in terms of
the policy parameters πϕ∗,z for each preference type as designated by the same observation as in
Rafailov et al. (2024b):

σ(r∗(z, x, y1)− r∗(z, x, y2)) = σ

(
β log

πϕ∗,z(y1|x)
πSFT(y1|x)

− β log
πϕ∗,z(y2|x)
πSFT(y2|x)

)
(29)
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where πϕ∗,z optimizes the type specific regularized objective:

πϕ∗,z = argmax
π

Ex∼D,y∼π(y|x)[r
∗(z, x, y)]− βKL[π(y|x)||πSFT(y|x)] (30)

We will introduce the shorthand notation:

σϕ(z, x, y1, y2) := σ

(
β log

πϕ,z(y1|x)
πSFT(y1|x)

− β log
πϕ,z(y2|x)
πSFT(y2|x)

)
(31)

Thus a parameterization of the policy space πϕ,z , implies a parameterization of the likelihood:

p(Vi | Zi; θ) =

m∏
j=1

σϕ(Zi, Vij) p(Xij | Zi; θ), (32)

as desired.

C E-STEP DERIVATION

Here, we derive the posterior distribution p(Z | V ; θ) =
∏n

i=1 p(Zi | Vi; θ) for any given parameter
θ. We apply Bayes rule:

p(zk | Vi; θ) =
p(Vi, zk; θ)

p(Vi; θ)
=

p(Vi | zk; θ) p(zk; θ)∑K
ℓ=1 p(Vi | zℓ; θ) p(zℓ; θ)

=
p(Vi | zk;ϕ) ηk∑K
ℓ=1 p(Vi | zℓ;ϕ) ηℓ

(33)

=

∏m
j=1 σϕ(zk, Vij) p(Xij | zk; θ) ηk∑K

ℓ=1

∏m
j=1 σϕ(zℓ, Vij) p(Xij | zℓ; θ) ηℓ

. (34)

In the context of LLMs, the quantity Xij is the prompt and the prompts are randomly assigned to
annotators, so we would expect no correlation between the preference type of the annotator and the
prompt assigned to them. Thus, all prompts are equally likely given the preference type of the an-
notator. Hence, we make the following assumption: [Un-correlated Contexts and Latent Preference
Types] For all k, ℓ ∈ [K]:

p(Xij | Zi = zk; θ) = p(Xij | Zi = zℓ; θ) =: ρ(Xij) (35)

Based on this assumption, we can then write:

p(zk | Vi; θ) =

∏m
j=1 σϕ(zk, Vij)ρ(Xij) ηk∑K

ℓ=1

∏m
j=1 σϕ(zℓ, Vij)ρ(Xij) ηℓ

(36)

Note that we can write:

K∑
ℓ=1

m∏
j=1

σϕ(zℓ, Vij) ρ(Xij) ηℓ =

K∑
ℓ=1

m∏
j=1

ρ(Xij) ·
m∏
j=1

σϕ(zℓ, Vij)ηℓ (37)

=

m∏
j=1

ρ(Xij) ·
K∑
ℓ=1

m∏
j=1

σϕ(zℓ, Vij)ηℓ (38)

Thus, the terms
∏m

j=1 ρ(Xj) cancel from the numerator and denominator in Equation equation 36,
leading to the simplified formula that is independent of π:

p(zk | Vi; θ) =
ηk
∏m

j=1 σϕ(zk, Vj)∑K
ℓ=1 ηℓ

∏m
j=1 σϕ(zℓ, Vj)

(39)
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D M -STEP DERIVATION

We aim to solve the following two optimization problems:

ηt+1 = argmax
η

EZ∼p(·|V,θt)

[
n∑

i=1

log

(
K∑

k=1

ηk1{Zi = zk}

)]

ϕt+1 = argmax
ϕ,ρ

EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi | Zi;ϕ, ρ))

] (40)

The first optimization problem in Equation equation 40 admits a closed-form solution. Letting
wk,t =

∑n
i=1 p(zk | Vi; θt)

EZ∼p(·|V,θt)

[
n∑

i=1

log

(
K∑

k=1

ηk1{Zi = zk}

)]
=

n∑
i=1

K∑
k=1

p(zk | Vi; θt) log(ηk) =

K∑
k=1

wk,t log(ηk)

(41)
Thus the optimization problem that determines ηt+1 takes the simple form
maxη∈∆(K)

∑K
k=1 wk,t log (ηk). The Lagrangian of this problem is L(η, wt, λ) =∑K

k=1 wk,t log(ηk) + λT (η − 1). The KKT condition is:
wk,t

ηk,t+1
= λ =⇒ ηk,t+1 ∝ wk,t =⇒ ηk,t+1 =

wk,t∑
k wk,t

(42)

Moreover, since
∑

k p(zk | Vi; θt) = 1, we have
∑

k wk,t = n. Thus, the above simplifies to:

ηk,t+1 =
1

n
wk,t =

1

n

n∑
i=1

p(zk | Vi; θt) (43)

For the second optimization problem in Equation equation 40, we further decompose the objective:

log(p(Vi | Zi;ϕ, ρ)) =

m∑
j=1

log(p(Vij | Zi;ϕ, ρ)) =

m∑
j=1

log(σϕ(Zi, Vij)) + p(Xij | Zi; ρ) (44)

Assuming that the parameter ρ that determines that p(X | Z; ρ), according to Assumption C is not
subject to joint constraints with the parameter ϕ, we can drop the second part in the objective, when
optimizing for ϕ:

ϕt+1 = argmax
ϕ

EZ∼p(·|V,θt)

 n∑
i=1

m∑
j=1

log(σϕ(Zi, Vij))

 =

n∑
i=1

EZi∼p(·|Vi;θt)

 m∑
j=1

log(σϕ(Zi, Vij))


(45)

Moreover, since ρ does not enter in the update rules for η, ϕ, nor in the calculation of the posterior,
we can ignore it in our EM-DPO algorithm.

E MIN-MAX REGRET OBJECTIVE DERIVATION

We can write, by linearity of expectation:

Rz(π)−Rz(π
∗
z) = Ex∼D,y∼π∗

z (·|x),y′∼π(·|x) [r
∗
z(y, x)− r∗z(y

′, x)] (46)

= βEx∼D,y∼π∗
z (·|x),y′∼π(·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)
− log

(
π∗
z(y

′|x)
πSFT(y′|x)

)]
(47)

= β

(
Ex∼D,y∼π∗

z (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
− Ex∼D,y′∼π(·|x)

[
log

(
π∗
z(y

′|x)
πSFT(y′|x)

)])
.

(48)
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For any z, z′ ∈ {z1, . . . , zk}, we will let:

Lz,z′ := Ex∼D,y∼π∗
z′ (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
(49)

Given the policy parameters we estimated in the EM-DPO section, these quantities can be calculated
as simple empirical averages over the annotated data. Moreover, note that since our policy π ∈ Π is
a mixture policy over the policies π∗

z′ for z′ ∈ {z1, . . . , zk} with weights w ∈ ∆(K), we can write:

Rz(π)−Rz(π
∗
z) = β

(
Lz,z −

K∑
k=1

wk · Lz,zk

)
= β

K∑
k=1

wk · (Lz,z − Lz,zk) , (50)

Thus, our minimax regret objective can be simply written as:

min
w∈∆(K)

max
z∈{z1,...,zk}

[
K∑

k=1

wk · (Lz,z − Lz,zk)

]+
= min

w∈∆(K)
max

z∈{z1,...,zk}
max

{
0,

K∑
k=1

wk · (Lz,z − Lz,zk)

}
(51)

Introducing a fake preference population z0 that always has 0 regret, i.e. Lz0,z0 = Lz0,zk = 0, we
can re-write the above objective simply as:

min
w∈∆(K)

max
z∈{z0,z1,...,zk}

K∑
k=1

wk · (Lz,z − Lz,zk) (52)

F ADDITIONAL EXPERIMENT DETAILS

F.1 IMDB DATA GENERATION

We use the IMDb dataset Maas et al. (2011) to generate a synthetic preference dataset. More specif-
ically, we use a publicly available adaptation of the IMDb dataset1. This dataset uses the first 20
tokens from the original IMDb datasetMaas et al. (2011) as the prompt and then two responses are
generated for each prompt using a GPT-2 Large model that is fine-tuned on the IMDb dataset. We
synthetically generate preference data for two user groups using this dataset. We select a random
subset of 5,000 prompts and assign it equally among 5 users (1,000 preferences per user). This
constitutes the first sub-group and these users always prefer the response that is shorter in length.
We automatically label the preference data for this group by simply counting the number of words
in the response. Next, we select 15,000 prompts from the remaining data and assign it to 15 users
(1,000 preference per user). This is the second sub-group where the users always prefer the response
that is more grammatically correct. We use LanguageTool2 to automatically to find the number of
grammatical errors in a given text and divide this number by the length of the text to get a correctness
score. The users prefer the response with a higher correctness score.

F.2 CLUSTER-DPO

The Cluster-DPO policy is generated as follows. We naively cluster the 20 users into 2 user sub-
groups using k-means clustering on the average embedding of all the preferred texts of that user.
Embeddings are generated using the RoBERTa-Large model Liu (2019). Then, we train a DPO
policy on each cluster separately and combine them using Algorithm 2; we are essentially replacing
the EM-DPO step with a naive clustering step.

F.3 HYPERPARAMETERS

Table 1 shows the hyperparameters for the bandit experiment and Table 2 for the LLM experiment.
We ran the bandit experiment on one A100 GPU. On average, the code took approximately 1 hour
to run. The LLM experiment was run on 5x NVIDIA A6000 GPUs. Every step of the EM algorithm
took about 40 minutes to run for a grand total of 13 hours.

1Modified IMDb dataset
2LanguageTool
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Hyperparameter Value
Neural Network Layers 3
Neural Network Hidden Dimension 10
Learning Rate 0.01
Optimizer Adam
DPO Regularization Constant Beta 1
Max Epochs for Optimization 1000
Max Steps for EM-DPO 100
Max Steps for MINMAX-DPO 1000
Seed (numpy and torch) 123

Table 1: Hyper-parameters for the contextual bandit experiment

Parameter Value
Learning Rate 5e-7
Beta 0.1
Max Text Length (Prompt + Response) 512
No. of Training Epochs 1
No. of Evaluation Examples 256
Optimizer RMSprop
No. of Warmup Steps for Learning Rate 150
No. of Iterations of the EM Algorithm 10
No. of Prompts to Estimate the Regret Matrix 512
Eta for Algorithm 2 0.05
Total Steps for Algorithm 2 10000
No. of Examples for Evaluation 256
Seed (DPO), Seed1 (Evaluation), Seed2 (Evaluation) 0, 42, 62

Table 2: Hyper-parameters for the IMDb LLM experiment
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