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ABSTRACT

Spurious correlations arise when AI models capture statistical dependencies that do
not reflect the true causal structure of the underlying reality, leading to unreliable
predictions and unsafe decision-making, particularly in high-stakes domains. While
causal discovery methods exist to infer causal structure from data, many are compu-
tationally expensive and non-differentiable, limiting their integration into modern
AI systems. In this work, we introduce a differentiable approach to causal ordering
that allows causal discovery to be seamlessly incorporated as a module within exist-
ing machine learning pipelines. Our method builds upon Intersort (Chevalley et al.,
2025), a score-based algorithm for discovering causal order in Directed Acyclic
Graphs (DAGs) using interventional data. To enable differentiable optimization, we
develop a continuous relaxation of Intersort using differentiable sorting and ranking
techniques, allowing causal constraints to be directly integrated into gradient-based
learning frameworks. By incorporating causal discovery as a regularizer, our ap-
proach encourages models to rely on causal relationships rather than spurious
correlations, ultimately improving their robustness and trustworthiness when ac-
tions are taken based on the learned model. Empirical results demonstrate that
enforcing causal order as an inductive bias enhances model generalization and inter-
pretability, making AI systems more reliable and safer for real-world deployment.

1 INTRODUCTION

Machine learning models often exploit spurious correlations and shortcut learning strategies rather
than learning true underlying causal relationships (Geirhos et al., 2020). This reliance on statistical
patterns, rather than causal mechanisms, leads to poor generalization, particularly when applied to out-
of-distribution data. Addressing this issue requires embedding causal reasoning directly into learning
frameworks, enabling models to leverage causal structure rather than coincidental associations.

Causal discovery provides a pathway toward such robust learning by identifying the causal
ordering of variables within a system. However, existing methods for causal discovery are either
computationally intractable at scale or non-differentiable (Spirtes et al., 2000; Heinze-Deml et al.,
2018), making them difficult to integrate into modern deep learning pipelines. Recently, Chevalley
et al. (2025) introduced a novel score-based approach to infer causal order using interventional
data, but its reliance on combinatorial optimization over the permutahedron renders it impractical
for large-scale datasets and gradient-based learning frameworks.

To address these challenges, we introduce DiffIntersort, a differentiable and scalable reformulation
of Intersort. By leveraging continuous relaxations (Cuturi, 2013), including differentiable sorting
and ranking, we make causal order discovery computationally efficient and seamlessly integrable into
modern machine learning models. This allows causal order to function as a regularizer, encouraging
models to align with causal mechanisms rather than spurious correlations.

To evaluate the potential of causal order regularization, we integrate our regularizer into a causal
discovery algorithm. Our empirical evaluations on diverse simulated datasets—including linear,
random Fourier features, gene regulatory networks (GRNs) and neural network models—demonstrate
that the proposed regularized algorithm significantly outperforms baseline methods such as GIES
(Hauser & Bühlmann, 2012) and DCDI (Brouillard et al., 2020) on RFF and GRN data. Moreover,
we demonstrate that our approach exhibits robustness across different data distributions and noise
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types. The algorithm efficiently scales with large datasets, maintaining consistent performance
regardless of data size. These results underscore the potential of using our differentiable score to
improve performance and generalizability in a scalable manner.

More broadly, this work contributes to the growing vision of integrating causal reasoning into deep
learning. By embedding causal order as an inductive bias in differentiable models, we move beyond
purely associational representations toward models that align with causal mechanisms. This approach
has the potential to improve model generalization, robustness to interventions, and interpretability
across domains such as genomics, neuroscience, and reinforcement learning. We believe that
enabling scalable differentiable causal discovery is a key step toward imbuing machine learning
models with a more principled understanding of cause and effect.

2 METHOD

We here present our methodological contribution, introducing a differentiable score on causal orders,
and then describing how to use it as a regularizer. Detailed theoretical definitation and notations can
be found in Appendix A.

2.1 DIFFERENTIABLE SCORE

While Intersort demonstrates cutting-edge results in discerning causal order among variables, its
primary drawback is the substantial computational cost, which restricts its application to small-scale
problems. The authors of the original paper acknowledged this limitation, confining their evaluation to
a mere 30 nodes Chevalley et al. (2025). A covariate set of this size is prohibitively small for many real-
world problems, such as those in genomics and climate change, where tens of thousands of variables
are considered. We aim to enhance the scalability of Intersort through a differentiable objective func-
tion. This not only facilitates scaling to a considerably larger number of variables but even more im-
portantly enables the integration of this algorithm in end-to-end gradient-based model training. In the
subsequent sections, we initially revisit the fundamental score that underpins Intersort. Following this,
we proceed to present a differentiable formulation, DiffIntersort, that addresses these shortcomings.

Intersort score– Given an observational distribution P
C,(∅)
X and a set of interventional distributions

Pint = {P C,do(Xk:=Ñk)
X , k ∈ I}, I ⊆ V , Chevalley et al. (2025) define the following score for a

permutation π, for some statistical distance D : P(M)× P(M)→ [0,∞), ϵ > 0, c > ϵ:

S(π, ϵ,D, I, P C,(∅)
X ,Pint, c) =

∑
π(i)<π(j),i∈I,j∈V

(
D
(
P

C,(∅)
Xj

, P
C,do(Xi:=Ñi)
Xj

)
− ϵ
)

+c · d · 1
D
(
P

C,(∅)
Xj

,P
C,do(Xi:=Ñi)

Xj

)
>ϵ

(1)

Intuitively, the summation measures how well the causal order aligns with strong causal effects.
The second term’s rescaling by a factor of d ensures that effects exceeding ϵ will prioritize ordering
constraints, enforcing π(i) < π(j) by amplifying their relative importance compared to effects
smaller than ϵ.

DiffIntersort score– To make Intersort differentiable, we reparameterize the ordering of variables
using a potential vector p ∈ Rd, where the relative values of p determine the causal ordering. This
allows us to construct a soft permutation matrix, which we optimize using the Sinkhorn operator
to maintain differentiability. Specifically, we parameterize the ordering of the variable as determined
by a permutation of the variables π through a potential p ∈ Rd such that π(i) < π(j) ⇐⇒ pi > pj .
We write the permutation matrix associated to p as σ(p), which is a d × d binary matrix, where
σ(p)ij = 1 if π(i) = j. We define (grad(p))ij = pi − pj , which is nonnegative if and only if
π(i) < π(j) is in the associated topological order. Applying the element-wise Step function produces
(Step(grad(p)))ij = 1pi−pj>0 which is a matrix of the possible edges according to the potential p.

We aim to rewrite the score such that it is parameterized by a potential p. Building the matrix
D ∈ Rd×d as

Dij =


D
((
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, P
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+c · d · 1
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(
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,P
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Xj
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>ϵ

if i ∈ I

0 if i /∈ I

(2)
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we can write the score in terms of the potential instead of permutation as follows:

S(p, ϵ,D, I, P C,(∅)
X ,Pint, c) = ⟨D,Step(grad(p))⟩F . (3)

The relationship between the potential and permutation is clarified through the following theoretical
result.

Theorem 2.1. Let P = argmaxp S(p, ϵ,D, I, P C,(∅)
X ,Pint, c) s.t. pi ̸= pj∀i, j ∈ V , be the set

of potentials that maximize the score, such that no two entries of the potentials are equal. Π =

argmaxπ S(π, ϵ,D, I, P C,(∅)
X ,Pint, c) be the set of permutations that maximize the Intersort score.

For every π ∈ Π, there is a set p̄ ⊂ P such that ∀p ∈ p̄ : π(i) < π(j) ⇐⇒ pi > pj .

The proof can be found in the appendix in Appendix F. This score is still not practically useful
as it provides non-informative gradients for p. To remedy this, inspired by Annadani et al. (2023)
we define L ∈ {0, 1}d×d as a matrix with upper triangular part to be 1, and vector o = [1, . . . , d]T .
They propose the formulation

Step(grad(p)) = σ(p)Lσ(p)T . (4)

and σ(p) is equivalent to the following optimization problem

σ(p) = argmax
σ′∈Σd

pT (σ′o) (5)

where Σd represents the space of all d dimensional permutation matrices. The reformulation of the
permutation as an optimization problem over the set Σd can be further rewritten as

σ = argmax
σ′∈Σd

⟨σ′,M⟩F (6)

where M = poT . Mena et al. (2018) demonstrated that this non-differentiable argmax problem
can be reformulated by regularizing it with the entropy and solving this smooth problem with the
Sinkhorn algorithm. Specifically, they showed that S(M/t) = argmaxσ′∈Bd

⟨σ′,M⟩+ tH(σ′),
where H(·) denotes the entropy function and the parameter t controls the smothness of the
approximation and S(M) is the Sinkhorn operator. The Sinkhorn operator on a matrix M involves
a sequence of alternating row and column normalizations, known as Sinkhorn iterations. We refer
readers to the original paper (Sinkhorn, 1964) and further applications (Adams & Zemel, 2011)
of Sinkhorn operator for detailed presentation. Furthermore, we have that the regularized solution
converges to the solution of Equation (6) as t → 0, shown by limt→0 S(M/t). We note here that
other differentiable approximation for the permutation matrix could be used. See Appendix D.5
for a review of the differentiable sorting and ranking literature.

In practice, we approximate the limit with a value of t > 0 and a certain number of iterations
T , which results in a differentiable and doubly stochastic matrix in the d-dimensional Birkhoff
polytope Bd, the convex hull of "hard" permutation matrices. In our experiments, we use t = 0.05
and T = 500. After applying the Sinkhorn operator to obtain a differentiable approximation of
the permutation matrix, we use the Hungarian algorithm Kuhn (1955) to project it back to a valid
binary permutation, ensuring consistency with the discrete causal ordering while maintaining
differentiability through the straight-through estimator (Bengio et al., 2013). The resulting binary
matrix is denoted as STbin(poT /t) with "bin" emphasizing a binary-valued matrix. As a result, the
score becomes differentiable and can be differentiated through the iterations of the Sinkhorn operator.
By replacing the non-differentiable part of Equation (2) with this matrix, the complete form of the
differentiable score (we call it DiffIntersort) is derived as

S(p, ϵ,D, I, P C,(∅)
X ,Pint, t, T ) =

〈
D,

(
STbin

(
poT

t

)
LSTbin

(
poT

t

)T
)〉

F

. (7)

For the rest of the paper, we drop the subscript "bin" and use S(p) for conciseness. The maximizers
of the DiffIntersort score and the Intersort score are equal for t → 0 and T → ∞ (Theorem 2.1).
The DiffIntersort score S(p) can be maximized with respect to the potential vector p using gradient
descent algorithms. This allows us to find the ordering of the variables that is best aligned with the
interventional data, according to the statistical distances captured in D.
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2.2 DIFFINTERSORT AS A CAUSAL REGULARIZER

We now look at a potential application of our DiffIntersort score, beyond causal order learning as
in Chevalley et al. (2025). In particular, we want to evaluate its potential use as a causal regularizer
in a differentiable learning model. To test that idea, we now proceed to use the score as a regularizer
in a simple causal discovery algorithm. We emphasize here that the goal is not to present a new
causal discovery algorithm per se, but to evaluate the usefulness of the DiffIntersort regularizer
in causal tasks. Let us consider a dataset X ∈ Rn×d consisting of n observations of d variables
{X1, X2, . . . , Xn}. Our goal is to recover the causal structure and ordering of the variables from
both observational and interventional data. Let S(p) be the DiffIntersort score, which measures the
consistency of the ordering induced by p with the interventional data. A regularized causal discovery
objective can then be formulated as the following regularized optimization problem

min
θ,p

Lfit(θ,p) + λS(p), (8)

where θ represents the parameters of the causal mechanisms (e.g., weight matrices in linear models),
and Lfit(θ,p) is the fitting loss that measures how well the model with parameters θ explains the
observed data. The regularization ensures that the potential vector p also minimizes the DiffIntersort
score, thus enforcing a causal ordering consistent with the interventional data.The regularization
parameter λ > 0 controls the trade-off between fitting the data and enforcing the causal ordering
through the DiffIntersort score.

As an example, a linear causal model can be constructed as

Xj =

d∑
i=1

WjiXi + bj +Nj , (9)

where Wji are the entries of the weight matrix W ∈ Rd×d, bj is the bias term, and Nj is a noise term.
To enforce the causal ordering induced by p, we use the permuted upper-triangular matrix Mp =
STbin(po

T /t)LSTbin(po
T /t)T , which is a d× d matrix with d(d− 1)/2 entries equal to 1. The matrix

represents the possible locations of edges in the graph according to the causal ordering p. By element-
wise multiplication W̃ = W◦MT

p , matrix Mp acts as a mask to ensure that variable Xj may depend
on variables preceding it in the causal ordering. The predicted values can be written in terms of the en-
tries of W̃ as X̂j =

∑d
i=1 W̃jiXi+bj . We described our fitting loss and learning algorithm in details

in Appendix C. Our model can be extended to more complex parameterizations beyond the linear case,
such as by adapting existing causal discovery methods that optimize over the permutahedron (see
Appendix D.3 for a review). However, we adopt this simpler model to isolate and clearly assess the im-
pact of regularization, independent of performance gains that may arise from a more complex model.

3 EMPIRICAL RESULTS

We next evaluate the proposed DiffIntersort differentiable score both in its effectiveness in deriving
the causal order of a system, as well as it usefulness as a differentiable regularizer in a causal
discovery model.

We first evaluate the DiffIntersort score in it ability to recover the causal order in simulated graphs and
distance matrices. We here reproduce the experiment of (Chevalley et al., 2025). We compare the top
order divergence of DiffIntersort to SORTRANKING, and to Intersort for 5 and 30 variables, and the
upper-bounds of Thm 2 and Thm 4 derived in (Chevalley et al., 2025). Intersort does not scale beyond
30 variables (see Appendix I.1 for an analysis of the training time scaling). The upper bounds act as
a sanity check, providing a measure of how close the approximate solution is to the true optimum of
the score. We evaluate on both Erdős-Rényi distribution (Erdős et al., 1960) and scale-free network
modeled by the Barabasi-Albert distribution Albert & Barabási (2002), with varying edge densities
and intervention coverage. The results are reported in Figure 1 for 2000 variables and in Figures 6
and 7 for 5, 30, 100 and 1000 variables. It is crucial that our score be optimizable up to at least 2000
variables, as it is a common scale in real world datasets such as single-cell transcriptomics (Replogle
et al., 2022). As studied previously, we initialize DiffIntersort with the solution of SORTRANK-
ING, and use Adam (Kingma, 2014) to optimize the score. As observed, DiffIntersort fulfills the
upper-bounds for all settings, even at large scale, which allows us to not reject the hypothesis that
DiffInterosrt finds an optimum of the score. At large scale, it also outperforms SORTRANKING in
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(a) Simulation ER with 2000 variables (b) Simulation SF with 2000 variables

Figure 1: Simulation and comparison between the bounds of Theorems 2 and 4 of Chevalley et al. (2025)
for Erdős-Rényi (ER, left) and scale-free networks (SF, right) with 2000 variables. We compare the causal
order obtained by maximizing our proposed DiffIntersort score and the output of SORTRANKING. For each
setting, we draw 1 graph per setting, following an ER distribution with a probability of edges per variable pe in
{0.0001, 0.00005, 0.00002} and following a Barabasi-Albert SF distribution, with an average edge per variable
in {1, 2, 3}. A setting is the tuple (pint, pe), where pe = 2E(#edges)

d(d−1)
for the SF distribution. For each graph, we

run the algorithm on 1 configuration, where each configuration corresponds to a draw of the targeted variables
following pint. We have pint ∈ {0.25, 0.33, 0.5, 0.66, 0.75}. Settings are ordered on the x-axis following the
effective intervention ratio pint√

pe
(Chevalley et al., 2025).

almost all settings. Those results validate our proposed approach of solving the Intersort problem
in a continuous and differentiable framework, and guarantees that it is not limited by scale.

We now evaluate our method, DiffIntersort, on simulated data and compare its performance to various
baseline methods. We follow the experimental setup of Chevalley et al. (2025) to ensure a fair
and consistent evaluation across different domains. See Appendix G for details about the synthetic
data generation. Specifically, we generate graphs from an Erdős-Rényi distribution (Erdős et al.,
1960) with an expected number of edges per variable c ∈ {1, 2}. Data is simulated using both linear
relationships and random Fourier features (RFF) additive functions to capture non-linear dependencies.
In addition to these synthetic datasets, we apply our models to simulated single-cell RNA sequencing
data generated using the SERGIO tool (Dibaeinia & Sinha, 2020), utilizing the code provided by
Lorch et al. (2022) (MIT License, v1.0.5). We also test our method on neural network functional data
following the setup of Brouillard et al. (2020), using the implementation from Nazaret et al. (2023)
(MIT License, v0.1.0). To assess the impact of interventions, we vary the ratio of intervened variables
in the set 25%, 50%, 75%, 100%. All datasets are standardized based on the mean and variance of
the observational data to eliminate the Varsortability artifact identified by Reisach et al. (2021). For
the linear and RFF domains, the noise distribution is chosen uniformly at random from the following
options: uniform Gaussian (noise scale independent of the parents), heteroscedastic Gaussian (noise
scale functionally dependent on the parents), and Laplace distribution. In the neural network domain,
the noise distribution is Gaussian with a fixed variance. We conduct experiments on 10 simulated
datasets for each domain and each ratio of intervened variables. The observational datasets contain
5,000 samples, and each intervention dataset comprises 100 samples, mirroring the sample sizes
typically found in real single-cell transcriptomics studies (Replogle et al., 2022).

We compare the performance of DiffIntersort and SORTRANKING (Chevalley et al., 2025) as
measured by the top order divergence Dtop on 100 variables in Figure 8. For the DiffIntersort score
and the Intersort score, we use the same parameters as in Chevalley et al. (2025): ϵ = 0.3 for linear,
RFF and NN data, and ϵ = 0.5 for GRN data, and c = 1.0. We use the Wasserstein distance (Villani
et al., 2009) for the statistical metric. Results for 10 and 30 variables, additionally compared to
Intersort, can be found in the appendix in Figure 10. As can be observed, the performance of the
two algorithms is close. This demonstrates that the optimizing DiffIntersort can be solved at scale
using continuously differentiable optimization also on realistic synthetic data.

We evaluate our regularized causal discovery method on synthetic datasets from four domains: linear
structural equation models (SEMs), gene regulatory networks (GRNs), random Fourier features
(RFFs), and neural networks (NNs). For each model type, we consider variable sizes of 10, 30, and
100 to assess scalability and performance across different problem dimensions. We use two evaluation
metrics: Structural Hamming Distance (SHD) (Tsamardinos et al., 2006) and Structural Intervention
Distance (SID) (Peters & Bühlmann, 2015) to compare inferred graphs to the true causal graphs.
We compare to two baselines, namely GIES (Hauser & Bühlmann, 2012) and DCDI (Brouillard
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(a) GRN, 30 vars, SHD (b) Linear, 30 vars, SHD (c) RFF, 30 vars, SHD (d) NN, 30 vars, SHD

Figure 2: Comparison of SHD (lower is better) for GRN, Linear, RFF, and Neural Network data with 30
variables. Our method (CausalDisco with and without constraint) achieves lower SHD values compared to
baseline methods on GRN and RFF data. GIES outperforms on the linear data and DCDI performs slightly better
on NN data.

et al., 2020). We note that those two baselines do not scale to 100 variables. For our model, we
compare the performance of our proposed causal discovery model with and without the DiffIntersort
constraint (i.e. λ = 0). For the regularized model, we use a high value of λ = 100.0, as we do not
observe a negative effect of over-regularizing, and we thus ensure that the learn potential is close
to the optimla of the DiffIntersort score (see Appendix I.2 for an analysis). We present the results
for the SHD metrics at 30 variables in Figure 2. The results for 10 and 30 variables for SHD can
be found in the appendix in Figure 12. The results for SID can be found in Figure 15 in the appendix.

As can be seen, the DiffIntersort constraint is consistently beneficial in terms of performance on both
metrics, for all types of data and at all considered scales. This comparison validates the usefulness of
inducing the interventional faithfulness inductive bias to a causal models via the DiffIntersort score. It
also enforces generalizability across data settings. We expect that this approach may be applicable to
other causal tasks of interest, in settings where a large set of single variable interventions are available.
Compared to baselines, our model outperforms on the GRN and RFF data. GIES is the best model on
linear data, and DCDI has a slightly better performance on NN data. GIES and DCDI do not scale to
100 variables but we would expect the results to be the same, as our algorithm has an F1 score that is
almost unaffected by the number of variables (see Figure 9). The results on the F1 score also shows the
robustness of our causal discovery model with the DiffIntersort constraint to the number of variables.

4 CONCLUSION

We addressed the scalability and differentiability limitations of Intersort, a score-based method for dis-
covering causal orderings using interventional data. By reformulating the Intersort score with differen-
tiable sorting—leveraging the Sinkhorn operator—we enabled scalable and differentiable optimization
of causal orderings. This reformulation allows the Intersort score to function as a continuous regular-
izer in gradient-based learning frameworks, broadening its applicability to downstream causal tasks.
Our approach preserves Intersort’s theoretical advantages while significantly enhancing its practicality
for large-scale problems. Empirical evaluations show that integrating the differentiable Intersort score
into causal discovery improves performance over unregularized methods, particularly in complex
settings with non-linear dependencies and large variable sets. The method remains robust across
different data distributions and noise levels, scaling effectively without performance degradation.

Beyond causal discovery, our work contributes to a broader vision: integrating causal reasoning into
modern machine learning pipelines. Differentiable causal ordering regularization has the potential to
enhance model robustness, generalization, and interpretability. In genomics, it could help respect
known gene regulatory hierarchies, reducing spurious correlations. In reinforcement learning, it could
constrain policies to follow valid causal dependencies, improving sample efficiency. In interpretability
research, enforcing causal order could lead to more reliable model explanations by aligning feature
importance with causal influence. More broadly, this work suggests a new research direction: how
can causal ordering serve as a foundation for more causally-aware deep learning models? By bridging
interventional faithfulness with gradient-based learning, we move toward models that do more than
capture statistical patterns—they reflect underlying causal processes. Future work may explore
deeper theoretical guarantees, real-world applications, and architectures that natively integrate causal
ordering constraints, shaping the future of causal learning at the intersection of representation learning
and interpretability.
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A DEFINITIONS AND ASSUMPTIONS

In this section, we introduce notations and definitions that are used throughout the paper inspired by
(Pearl, 2009; Peters et al., 2017).

Let (M, d) be a metric space, and let P(M) denote the set of probability measures over M.
We define D to be a statistical distance function D : P(M) × P(M) → [0,∞) that measures
the divergence between probability distributions on M. Consider a set of d random variables
X = (X1, X2, . . . , Xd) indexed by V = {1, 2, . . . , d}, with joint distribution PX. We denote the
marginal distribution of each variable as PXi

for i ∈ V . A causal graph is a tuple G = (V,E) of
nodes and edges that form a Directed Acyclic Graph (DAG), where V is the set of nodes (variables),
and E ⊆ V × V is the set of directed edges representing causal relationships. An edge (i, j) ∈ E
indicates that variable Xi is a direct cause of variable Xj . Let AG be the adjacency matrix of G,
where AG

ij = 1 if (i, j) ∈ E, and AG
ij = 0 otherwise. For each node j ∈ V , the set of parents Pa(j)

consists of all nodes with edges pointing to j, i.e., Pa(j) = {i ∈ V | (i, j) ∈ E}. We denote the
set of descendants of node i as DeG(i), which includes all nodes reachable from i via directed paths.
Similarly, the set of ancestors of i is denoted as AnG(i).

An SCM C = (S, PN ) consists of a set of structural assignments S and a joint distribution over
exogenous noise variables PN . Each variable Xj is assigned via a structural equation:

Xj = fj
(
XPa(j), Nj

)
,

where Nj is an exogenous noise variable, and XPa(j) are the parent variables of Xj . The exogenous
variable need not be independent, potentially introducing confounding.

In our work, we focus on interventions that modify the structural assignments of certain variables.
Specifically, we consider interventions where the structural assignment of a variable Xk is replaced
by a new exogenous variable Ñk, independent of its parents Xk = Ñk.

Definition A.1. A causal order of the graph G = (V,E) is a permutation π : V → V such that
for any edge (i, j) ∈ E, we have π(i) < π(j). This ensures that causes precede their effects in the
ordering (Peters et al., 2017). Multiple causal orders may satisfy the same DAG.

Since G is acyclic, at least one causal order exists, though it may not be unique. We denote the set of
all valid causal orders consistent with G as Π∗.

Definition A.2. To measure the discrepancy between a proposed permutation π and the causal
structure of the graph G, we use the top order divergence (Rolland et al., 2022), defined as:

Dtop(G, π) =
∑

π(i)>π(j)

AG
ij .

This divergence counts the number of edges that are inconsistent with the ordering π, i.e., edges
where the cause appears after the effect in the proposed ordering. For any causal order π∗ ∈ Π∗, we
have Dtop(G, π∗) = 0.

Assumption A.3 (Interventional Faithfulness). Interventional faithfulness (Chevalley et al., 2025)
assumes that all directed paths in the causal graph manifest as significant changes in the distribution
under interventions as measured by a statistical distance. Specifically, if intervening on variable
Xi leads to a detectable change in the distribution of variable Xj , then there must be a directed path
from Xi to Xj in the causal graph G. Conversely, if there is no directed path from Xi to Xj , then
intervening on Xi does not affect the distribution of Xj beyond a significance threshold ϵ.

Interventional faithfulness allows us to use statistical divergences between marginal observational
and interventional distributions to infer the causal ordering of variables. By assuming interventional
faithfulness, we can relate changes observed under interventions to the underlying causal structure.

B COMPUTATIONAL COMPLEXITY OF DIFFINTERSORT

DiffIntersort scales efficiently compared to combinatorial search methods. Its primary computational
cost comes from (1) Differentiable Score Computation: O(d2) due to matrix operations; (2) Sinkhorn

11



Published as an SCSL Workshop Paper at ICLR 2025.

Algorithm 1 DiffIntersort Causal Discovery Algorithm

1: for epoch← 1 to max_epochs do
2: LDiffIntersort ← λ2S(p)
3: for each mini-batch Xbatch, interventionsbatch do
4: Forward Pass: Compute predictions X̂← f(Xbatch; θ,p)
5: Compute Fitting Loss Lfit(θ,p):
6: Compute MAE for observational data:
7: Lobs ← 1

n0

∑n0

i=1 ℓ(xi, x̂i)
8: Compute MAE for interventional data and environment invariance:
9: Lint ← γ

∑
e∈E ω

e
(

1
ne

∑ne

i=1 ℓ
e(xi, x̂i)− Lobs

)
10: Total fitting loss:
11: Lfit ← Lobs + Lint
12: Compute Regularization Loss:
13: LL1 ← λ1∥W∥1
14: Compute Total Loss: L ← Lfit + LL1 + LDiffIntersort
15: Backward Pass: Compute gradients∇θ,pL
16: Update Parameters: θ,p← Optimizer(θ,p)
17: end for
18: end for
19: Return Causal edges and variable ordering

Operator: O(d2T ), where T is the number of iterations (typically T = 500); (3) Hungarian Algo-
rithm: Worst-case O(d3), but empirically O(d2) due to initialization with a near-optimal solution.
Thus, the practical complexity is closer to O(d2T ), significantly outperforming combinatorial meth-
ods like Intersort. Experiments confirm scalability to thousands of variables, making DiffIntersort
well-suited for genomics and other high-dimensional applications.

C DETAILED DESCRIPTION OF THE CAUSAL DISCOVERY LOSS

Inspired by the fitting loss in Shen et al. (2023), we define the fitting loss Lfit(θ) as:

Lfit(θ,p) =
1

n0

n0∑
i=1

ℓ(xi, x̂i; θ,p)+γ
∑
e∈E

ωe

 1

ne

ne∑
i=1

ℓe(xi, x̂i; θ,p)−
1

n0

n0∑
i=1

ℓ0(xi, x̂i; θ,p)

 ,

(10)

where ℓ(xi, x̂i; θ) is the mean absolute error (MAE) loss function for observational sample i,
ℓe(xi, x̂i; θ) is the loss for samples in environment e. In our case, an environment corresponds
to an intervention on one variable. γ ≥ 0 is a parameter controlling the emphasis on invariance
across environments. We use γ = 0.5. ωe are weights for each environment. We set ωe = 1

|E| .
E is the set of environments, with 0 ∈ E denoting the reference observational environment. ne is
the number of samples in environment e ∈ E . The loss encourages the model to fit the data in the
reference environment while penalizing deviations in performance across different environments,
promoting robustness to interventions. This should encourage the weights to corresponds to the true
causal weights, as the equivalence between robustness and causality is well established (Meinshausen,
2018).

Combining the fitting loss and the regularization terms, the final loss function is:
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L(θ,p) = 1

n0

n0∑
i=1

ℓ(xi, x̂i; θ,p)

+ γ
∑
e∈E

ωe

 1

ne

ne∑
i=1

ℓe(xi, x̂i; θ,p)−
1

n0

n0∑
i=1

ℓ0(xi, x̂i; θ,p)


+ λ1 ∥W∥1 + λ2S(p).

(11)

This loss function includes all the components: (1) Data Fitting Loss: Measures how well the
model predicts the observed data, adjusted for interventions; (2) Environment Invariance Penalty:
Encourages the model to have consistent performance across different environments; (3) L1 Regular-
ization: Promotes sparsity in the weight matrix W; (4) DiffIntersort Regularization: Incorporates
interventional faithfulness by penalizing with the DiffIntersort score S(p) Equation (7). We also
note that no acyclicity constraint is needed as the weight matrix is enforced to be acyclic through the
masking based on the causal order p.

The full learning algorithm is described in Algorithm 1.

D RELATED WORK

D.1 CAUSAL DISCOVERY METHODS

Causal discovery aims to identify cause-and-effect relationships among variables, typically repre-
sented as Directed Acyclic Graphs (DAGs). Various methodologies have been developed to infer
these structures from data, primarily categorized into constraint-based, score-based, and hybrid
approaches.

D.1.1 CONSTRAINT-BASED METHODS

These methods rely on statistical tests to assess conditional independencies in the data. The PC
algorithm (Spirtes et al., 2000) is a prominent example that iteratively removes edges between
variables based on conditional independence tests, constructing a skeleton of the causal graph and
then orienting the edges to form a DAG. Its extension, the Fast Causal Inference (FCI) (Spirtes, 2001)
algorithm, accounts for latent confounders and selection bias, providing a more robust framework in
complex scenario.

D.1.2 SCORE-BASED METHODS

These approaches assign scores to different graph structures based on how well they fit the data and
search for the graph with the optimal score. The Greedy Equivalence Search (GES) (Chickering, 2002)
algorithm begins with an empty graph and incrementally adds edges to maximize a chosen score,
such as the Bayesian Information Criterion (BIC). The Greedy Interventional Equivalence Search
(GIES) (Hauser & Bühlmann, 2012) extends GES by incorporating interventional data, enhancing its
ability to uncover causal directions that are indistinguishable using observational data alone.

D.1.3 FUNCTIONAL CAUSAL MODEL-BASED METHODS

These methods assume specific functional relationships between variables. For instance, the Linear
Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006) assumes that the data-generating
process is linear with non-Gaussian noise, enabling the identification of causal directions that are not
identifiable under Gaussian assumptions.

D.2 DIFFERENTIABLE CAUSAL DISCOVERY METHODS

Differentiable causal discovery methods have gained prominence due to their ability to integrate
seamlessly with gradient-based optimization frameworks. A notable example is the NOTEARS
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(Zheng et al., 2018; 2020) algorithm, which formulates the structure learning problem as a continuous
optimization task. It introduces a smooth characterization of the acyclicity constraint, enabling the
use of standard numerical optimization techniques. However, enforcing this acyclicity constraint can
be computationally intensive, especially for large-scale problems.

Building upon NOTEARS, several methods have been proposed to improve efficiency and scalability.
For instance, DAGs with No Fears (Wei et al., 2020) re-examines the continuous optimization
framework, addressing limitations in the original formulation and proposing enhancements to the
optimization process. Similarly, DAG-NoCurl (Yu et al., 2021) introduces a no-curl constraint
to ensure acyclicity, offering an alternative approach to the acyclicity enforcement in NOTEARS.
Additionally, the Differentiable Causal Discovery from Interventional Data (DCDI) (Brouillard et al.,
2020) method leverages interventional data to enhance identifiability and employs neural networks
to model complex causal relationships. Several other prominent differentiable methods have been
proposed in this line of research, including Differentiable Causal Discovery from Interventional Data
(DCDI) Brouillard et al. (2020), Stable Differentiable Causal Discovery (SDCD) (Nazaret et al., 2023),
Differentiable Causal Discovery Under Latent Interventions Faria et al. (2022), Differentiable Causal
Discovery with Residual Independence (DARING) He et al. (2021), and Dagma-DCE Waxman et al.
(2024).

Despite these advancements, enforcing acyclicity constraints remains a challenge, often leading to
increased computational complexity and potential convergence issues.

D.3 PERMUTATION-BASED METHODS

To address the challenges associated with acyclicity constraints, permutation-based methods have
been developed, focusing on learning over the topological ordering of the variables. By optimizing
over the permutahedron—the convex hull of all permutation vectors—these methods inherently
ensure acyclicity without the need for explicit constraints.

Key developments include:

• Greedy Sparsest Permutation (GSP): This method associates a score to each permutation
of variables and performs a greedy search to find the permutation that leads to the sparsest
DAG, effectively learning the causal structure by identifying the optimal variable ordering
Solus et al. (2021).

• Permutation-Based Causal Inference with Interventions: Extending GSP, IGSP (Wang
et al., 2017; Yang et al., 2018; Squires et al., 2020) incorporates interventional data into
the permutation-based framework, enhancing the identifiability of causal structures by
leveraging additional experimental information.

• DAG Learning on the Permutahedron: This method formulates DAG learning as an
optimization problem over the permutahedron, guaranteeing the learning of a valid DAG
and allowing for end-to-end training without preprocessing steps Zantedeschi et al. (2023).

• COSMO: Massidda et al. (2024) introduced COSMO, a constraint-free continuous op-
timization scheme for acyclic structure learning. At its core, COSMO employs a novel
differentiable approximation of an orientation matrix parameterized by a single priority
vector, enabling the learning of a smooth orientation matrix and the resulting acyclic ad-
jacency matrix without explicitly evaluating acyclicity at any step. This approach ensures
convergence to an acyclic solution and offers improved scalability due to its asymptotically
faster computations.

• QWO: Shahverdikondori et al. (2024) introduced a novel method to enhance the efficiency of
computing the optimal DAG for a given permutation, significantly speeding up permutation-
based causal discovery in Linear Gaussian Acyclic Models.

• BayesDAG: Annadani et al. (2023) introduced BayesDAG, a framework that employs
gradient-based posterior inference for causal discovery. This method utilizes stochastic
gradient Markov Chain Monte Carlo (SG-MCMC) and variational inference to sample from
the posterior distribution of DAGs, allowing for uncertainty quantification in the inferred
causal structures. BayesDAG is applicable to both linear and nonlinear causal models,
providing flexibility in modeling complex data-generating processes.
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• DP-DAG: DP-DAG (Charpentier et al., 2022) is a differentiable probabilistic model designed
for efficient DAG sampling suitable for continuous optimization. The method samples a
DAG by first determining a linear ordering of nodes and then sampling edges consistent with
this ordering. This approach ensures the generation of valid DAGs throughout the training
process and eliminates the need for complex augmented Lagrangian optimization schemes.
Additionally, the authors propose VI-DP-DAG, which combines DP-DAG with variational
inference to approximate the posterior probability over DAG edges given observed data.

In summary, while differentiable causal discovery methods like NOTEARS have advanced the field
by enabling continuous optimization, permutation-based methods provide a compelling alternative
by focusing on learning variable orderings. This approach inherently satisfies acyclicity, offering
advantages in efficiency and scalability. This approach has benefited from advances in differentiable
ranking and sorting, allowing continous and differentiable relaxations of causal discovery over the
permutahedron.

D.4 CAUSAL ORDERING DISCOVERY

Causal ordering, which involves finding the causal order of the variables, is a foundational step
in causal discovery. Even though it does not identify the exact graph, it can facilitate subsequent
edge recovery using techniques like penalized regression (Bühlmann et al., 2014; Shimizu et al.,
2011). Moreover, even without full causal graph identification, a valid causal order allows for the
construction of a fully connected graph that accurately describes interventional distributions (Peters
& Bühlmann, 2015; Bühlmann et al., 2014).

Recent studies have highlighted that sorting variables by variance can recover causal order in
simulated datasets (Reisach et al., 2021). Building on this insight, several algorithms have been
developed to infer causal order from observational data, employing methods such as score matching
(Rolland et al., 2022; Montagna et al., 2023a;b).

In the context of interventional data, proposed a rule-based algorithm to infer causal order. Intersort
improved on this idea by introducing a score-based method to derive the causal, which leverages
optimization tools for enhanced scalability. Additionally, Intersort provides theoretical results that
upper-bound the expected error of the algorithm, particularly in scenarios where only a subset of
variables is intervened upon.

D.5 DIFFERENTIABLE SORTING AND RANKING

Differentiable sorting and ranking techniques have emerged as essential tools for integrating ranking
and sorting operations into end-to-end learning frameworks. Traditional sorting operators, being
non-differentiable, posed significant challenges in gradient-based optimization. To address this,
Grover et al. (2019) introduced NeuralSort, a continuous relaxation of the sorting operator, enabling
differentiable approximations of permutation matrices . Cuturi et al. (2019) further advanced this
field by framing ranking and sorting as optimal transport problems, employing entropic regularization
and Sinkhorn iterations to approximate ranks and sorted values.

Subsequent works have explored improvements in efficiency and applicability. Prillo & Eisenschlos
(2020) proposed SoftSort, a simple yet effective continuous relaxation of the argsort operator, offering
state-of-the-art performance with computational efficiency. Blondel et al. (2020) introduced fast
differentiable sorting and ranking operators with O(n log n) complexity, achieved by projecting
inputs onto the permutahedron and employing isotonic optimization.

Extensions have also focused on stability and scalability. Petersen et al. (2021) presented differentiable
sorting networks by relaxing conditional swap operations, addressing challenges such as vanishing
gradients in large datasets. Building on this, Petersen et al. (2022) proposed monotonic differentiable
sorting networks, introducing sigmoid-based relaxations to ensure gradient correctness and robustness.

E INTERSORT OPTIMIZATION DETAILS

Chevalley et al. (2025) propose the Intersort algorithm to optimize the score. Specifically, the Intersort
algorithm consists of two steps. The first step, SORTRANKING, finds an initial by ordering the
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observed statistical D
(
P

C,(∅)
Xj

, P
C,do(Xi:=Ñi)
Xj

)
distances from highest to lowest, adding an edge to

the solution if it does not create a cycle. When the significance threshold ϵ is reached, the algorithm
stops and returns the topological order of the built graph as an initial solution for the second step. This
runtime complexity of this algorithm is O(d · |I| log(d · |I|)). The second step, LOCALSEARCH,
iteratively searches in a close neighborhood in permutation space for a higher scoring solution, until
the score cannot be improved anymore. For each iteration, the complexity is O(d2), and the number
of iterations is approximately O(d).
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F PROOFS

Proof of Theorem 2.1. First, let us recall that we have p ∈ Rd, and π ∈ {0, 1, . . . , d}d, where
∀i, j ∈ {0, 1, . . . , d}, πi ̸= πj . We thus trivially have that any permutation π can be represented
by a potential p, by pi = −πi∀i ∈ {0, 1, . . . , d}. We now have to prove that if π ∈ Π, then
the corresponding potential pπ ∈ P. Let s = maxπ S(π, ϵ,D, I, P C,(∅)

X ,Pint, c) be the maximum
achievable score. The sum of the score is over the elements of Dij where πi < πj . For all
these pairs of indices, we also have that pπi

> pπj
, and thus for all those pairs, we also have

(Step(grad(pπ)))ij = 1. This exactly corresponds to the elements that are non-zero and thus
contribute to the sum in Equation (3). Thus we have that S(pπ) = s, and as such pπ ∈ P, which
concludes the proof.

G DETAILS OF EMPIRICAL EVALUATION

We here describe the setting of our synthetic evaluation. We follow the setup of Chevalley et al.
(2025), which was based on the setup and implementation of Lorch et al. (2022).

G.1 LINEAR AND RANDOM FOURIER FEATURE (RFF) DOMAINS

Each causal variable xj is modeled in terms of its parents xpa(j) using the equation:

xj ← fj(xPaGj
, ϵj) = fj(xPaGj

) + hj(xPaGj
)ϵj ,

where ϵj denotes additive noise, potentially heteroscedastic. The noise scale hj(x) is specified as:

hj(x) = log(1 + exp(gj(x))),

with gj(x) being a nonlinear function. For heteroscedastic noise, random Fourier features are used,
configured with a length scale of 10.0 and output scale of 2.0.

Interventions fix the value of the intervened variable to a constant drawn from a signed Uniform
distribution over [1.0, 5.0].

G.1.1 DOMAIN-SPECIFIC MODELING

• Linear Domain: Causal functions are linear transformations:

fj(xPaGj
) = w⊤

j xPaGj
+ bj ,

where wj and bj are sampled independently. Specifically, wj is drawn from a signed
Uniform distribution over [1, 3], and bj is sampled from a Uniform distribution over [−3, 3].

• RFF Domain: Causal functions are modeled using a Gaussian Process (GP) approximation
via random Fourier features:

fj(xPaGj
) = bj + cj

√
2

M

M∑
m=1

α(m) cos

(
1

ℓj
ω(m) · xPaGj

+ δ(m)

)
,

where α(m) ∼ N (0, 1), ω(m) ∼ N (0, I), and δ(m) ∼ Uniform(0, 2π). Parameters bj , cj ,
and ℓj are sampled independently: ℓj from Uniform([7.0, 10.0]), cj from Uniform([10.0,
20.0]), bj from Uniform([-3, 3]), and M = 100.

G.2 SIMULATION OF SINGLE-CELL GENE EXPRESSION DATA

Realistic single-cell RNA sequencing data is generated using the SERGIO simulator (Dibaeinia &
Sinha, 2020). SERGIO models gene expression as snapshots from the steady state of a dynamical
system governed by the chemical Langevin equation. Gene interactions are defined by a causal graph
G, with variability introduced through master regulator (MR) rates. Cell types are distinguished by
differences in MR rates, which affect noise and expression profiles.
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G.2.1 SIMULATION PARAMETERS

Simulations cover c = 5 cell types and d genes. Key parameters include:

• Interaction strengths k: Uniform([1.0, 5.0]),
• MR production rates b: Uniform([1.0, 3.0]),
• Hill coefficients: γ = 2.0,
• Decay rates: λ = 0.8,
• Noise scale: ζ = 1.0.

Interventions correspond to gene knockouts, where expression is fixed at 0. Technical noise is not
simulated.

G.3 SIMULATION OF NEURAL NETWORK-BASED DATA

To simulate data for causal discovery, random fully connected neural networks (MLPs) are used to
define conditional distributions.

G.3.1 NEURAL NETWORK SPECIFICATION

Each MLP has a single hidden layer of 10 neurons and uses ReLU activation. The MLP maps inputs
xPaGj

to a scalar output representing the mean µ of a conditional Gaussian:

pj(xj |xPaGj
) ∼ N (µ = MLP(xPaGj

), σ = 1.0).

G.3.2 INTERVENTIONAL DATA GENERATION

Interventions alter the distribution of affected nodes. For an intervened node, the distribution is set to:

pj(xj |do(xj)) ∼ N (2, 1.0),

independent of the MLP, to simulate intervention effects.

18



Published as an SCSL Workshop Paper at ICLR 2025.

H HYPERPARAMETERS

Table 1: Hyperparameters for the DiffIntersort Causal Discovery Algorithm

Parameter Value Description
λ1 0.01 L1 regularization coefficient for the weight matrix W.
λ2 100.0 Regularization parameter for the DiffIntersort regularization
scaling c Dimension dependent Scaling factor for the distance matrix (see Table 2).
n_iter 2000 Maximum total number of iterations for the optimization process.
lr_int Dimension dependent Learning rate for the permutation optimizer parameters (see Table 2).
n_iter_sinkhorn 500 Number of iterations for the Sinkhorn normalization process.
t_sinkhorn 0.05 Temperature parameter for the Sinkhorn normalization.
eps 0.3 or 0.5 for GRN Epsilon value for the distance matrix.
p_scale 0.001 Initial scaling factor for the initialization of the permutation vector p.
Number batches 3 Number of mini-batches per iterations.
γ 0.5 Parameter controlling the emphasis on invariance across environments.
betas (0.9, 0.99) Beta parameters for the Adam optimizer of the potential.
lr_weights 1e-3 Learning rate for the data fitting parameters.

Table 2: Configuration Parameters for Different Dimensions

Dimension Learning Rate (lr) Scaling c

3 0.05 0.1
10 0.05 0.5
30 0.01 1.0
100 0.001 1.0
1000 0.0005 1.0
2000 0.0001 1.0
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I ADDITIONAL EXPERIMENTS

I.1 TRAIN TIME SCALING

Figure 3: Normalized scale change in training time (y-axis) for Intersort, DiffIntersort and SORTRANKING
across different values of d (x-axis) at 50% intervention fraction on the Neural Network data. The training time
for each model is normalized to start at 1 for the smallest d, illustrating the relative growth in computational cost
as the number of variables (d) increases. The plot uses a logarithmic y-scale to highlight differences in scaling
behavior between models. A reference line at 1 indicates the baseline training time for d = 10.

Figure 4: Training time (y-axis, log scale) for Intersort, DiffIntersort and SORTRANKING across different
values of d at various intervention fraction (x-axis) on the Neural Network data.
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Figure 5: Comparison of SHD Causal Disco across different regularization values (Sweep) on Linear data with
30 variables. The x-axis represents the number of interventions, while the y-axis shows the Structural Hamming
Distance (SHD) for causal discovery. Transparent scatter points indicate individual data samples, while solid
lines connect the median SHD values at each intervention level for each sweep value. Lower SHD values indicate
better causal structure recovery. The plot highlights how different regularization strengths impact performance
across varying intervention numbers.

I.2 REGULARIZATION SWEEP

We test different values for the regularization strength of DiffIntersort in causal discovery (see
Figure 5). We observed that there does not seem to be major differences and that there are no risks of
over-regularization. We thus use a value of λ2 = 100.0 for all experiments.
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I.3 SIMULATED DISTANCE MATRICES

(a) Simulation ER with 5 variables (b) Simulation ER with 30 variables

(c) Simulation ER with 100 variables (d) Simulation ER with 1000 variables

Figure 6: Comparison of performance on simulated ER graphs in terms of Dtop divergence between the
two bounds of (Chevalley et al., 2025), DiffIntersort, Intersort, and SORTRANKING. For each setting, we
draw multiple graphs, where a setting is the tuple (pint, pe). Then, for each graph, we run the algorithm on
multiple configurations, where a configuration corresponds to a set of intervened variables following pint.
We have pint ∈ {0.25, 0.33, 0.5, 0.66, 0.75} for all scales. For 5 variables, pe ∈ {0.5, 0.66, 0.75}. For
30, pe ∈ {0.05, 0.1, 0.2}. For 1000 variables, pe ∈ {0.005, 0.002, 0.001}. For 20000 variables settings,
pe ∈ {0.0001, 0.00005, 0.00002}. These probabilities approximately correspond to an average of 1, 2, or 3
edges per variable.
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(a) Simulation SF with 5 variables (b) Simulation SF with 30 variables

(c) Simulation SF with 100 variables (d) Simulation SF with 1000 variables

Figure 7: Comparison of performance on simulated SF graphs in terms of Dtop divergence between the two
bounds of (Chevalley et al., 2025), DiffIntersort, Intersort and SORTRANKING. For each setting, we draw
multiple graphs, where a setting is the tuple (pint, pe). The networks follow a Barabasi-Albert SF distribution,
with average edge per variable in {1, 2, 3}. A setting is the tuple (pint, pe), where pe = 2E(#edges)

d(d−1)
. Then,

for each graph, we run the algorithm on multiple configurations, where a configuration corresponds to a set of
intervened variables following pint. We have pint ∈ {0.25, 0.33, 0.5, 0.66, 0.75} for all scales.

I.4 SIMULATED DATA
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(a) Linear 100 variables (b) RFF 100 variables

(c) GRN 100 variables (d) NN 100 variables

Figure 8: Top order diverge scores (lower is better) assessing the quality of the derived causal order, comparing
our method based on the DiffIntersort score to SORTRANKING on 100 variables, for various types of data.
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Figure 9: F1 score of our algorithm with DiffIntersort constraint for the four considered data types over the
fraction of intervened variables for 10, 30, and 100 variables. As can be observed, the performance is consistent
across the scale of the number of variables as there is no major drop in performance at 100 variables compared
to 10 and 30 variables.
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(a) Linear 10 variables (b) Linear 30 variables

(c) RFF 10 variables (d) RFF 30 variables

(e) GRN 10 variables (f) GRN 30 variables

(g) NN 10 variables (h) NN 30 variables

Figure 10: Top order diverge scores (lower is better) assessing the quality of the derived causal order, comparing
our method based on the DiffIntersort score to SORTRANKING and Intersort on 10 and 30 variables, for various
types of data.
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(a) Linear 10 variables (b) Linear 30 variables (c) Linear 100 variables

(d) RFF 10 variables (e) RFF 30 variables (f) RFF 100 variables

(g) GRN 10 variables (h) GRN 30 variables (i) GRN 100 variables

(j) NN 10 variables (k) NN 30 variables (l) NN 100 variables

Figure 11: Top order diverge scores (lower is better) assessing the quality of the derived causal order, comparing
our method based on the DiffIntersort score to SORTRANKING and Intersort on 10 and 30 variables, for various
types of data for a scale free network distribution.
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(a) GRN, 10 vars, SHD (b) Linear, 10 vars, SHD (c) RFF, 10 vars, SHD (d) NN, 10 vars, SHD

(e) GRN, 100 vars, SHD (f) Linear, 100 vars, SHD (g) RFF, 100 vars, SHD (h) NN, 100 vars, SHD

Figure 12: Comparison of Structural Hamming Distance (SHD) for Gene, Linear, RFF, and Neural Network
models with varying numbers of variables.

(a) GRN, 10 vars, SHD (b) Linear, 10 vars, SHD (c) RFF, 10 vars, SHD (d) NN, 10 vars, SHD

(e) GRN, 30 vars, SHD (f) Linear, 30 vars, SHD (g) RFF, 30 vars, SHD (h) NN, 30 vars, SHD

(i) GRN, 100 vars, SHD (j) Linear, 100 vars, SHD (k) RFF, 100 vars, SHD (l) NN, 100 vars, SHD

Figure 13: Comparison of Structural Hamming Distance (SHD) for Gene, Linear, RFF, and Neural Network
models with varying numbers of variables for a scale-free network distribution.
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(a) GRN, 10 vars, SID (b) GRN, 30 vars, SID (c) GRN, 100 vars, SID

(d) Linear, 10 vars, SID (e) Linear, 30 vars, SID (f) Linear, 100 vars, SID

(g) RFF, 10 vars, SID (h) RFF, 30 vars, SID (i) RFF, 100 vars, SID

(j) NN, 10 vars, SID (k) NN, 30 vars, SID (l) NN, 100 vars, SID

Figure 14: Comparison SID (lower is better) for GRN, Linear, RFF, and Neural Network models with varying
numbers of variables.
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(a) GRN, 10 vars, SID (b) GRN, 30 vars, SID (c) GRN, 100 vars, SID

(d) Linear, 10 vars, SID (e) Linear, 30 vars, SID (f) Linear, 100 vars, SID

(g) RFF, 10 vars, SID (h) RFF, 30 vars, SID (i) RFF, 100 vars, SID

(j) NN, 10 vars, SID (k) NN, 30 vars, SID (l) NN, 100 vars, SID

Figure 15: Comparison SID (lower is better) for GRN, Linear, RFF, and Neural Network models with varying
numbers of variables for a scale-free network distribution.
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