
Under review as submission to TMLR

Autoencoding Hyperbolic Representation for
Adversarial Generation

Anonymous authors
Paper under double-blind review

Abstract

With the recent advance of geometric deep learning, neural networks have been extensively
used for data in non-Euclidean domains. In particular, hyperbolic neural networks have
proved successful in processing hierarchical information of data. However, many hyperbolic
neural networks are numerically unstable during training, which precludes using complex
architectures. This crucial problem makes it difficult to build hyperbolic generative mod-
els for real and complex data. In this work, we propose a hyperbolic generative network in
which we design novel architecture and layers to improve stability in training. Our proposed
network contains three parts: first, a hyperbolic autoencoder (AE) that produces hyperbolic
embedding for input data; second, a hyperbolic generative adversarial network (GAN) for
generating the hyperbolic latent embedding of the AE from simple noise; third, a generator
that inherits the decoder from the AE and the generator from the GAN. Our architecture
fosters expressive and numerically stable representation in the hyperbolic space. Theoret-
ically, we validate the training of GAN in the hyperbolic space, and prove stability of our
hyperbolic layers used in the AE. Experiments show that our model is capable of generating
tree-like graphs as well as complex molecular data with state-of-the-art structure-related
performance.

1 Introduction

High-dimensional data often show an underlying geometric structure, which cannot be easily captured by
neural networks designed for Euclidean spaces. Recently, there is intense interest in learning good representa-
tion for hierarchical data, for which the most natural underlying geometry is hyperbolic. A hyperbolic space
is a Riemannian manifold with a constant negative curvature (Anderson, 2006). The exponential growth of
the radius of the hyperbolic space provides high capacity, which makes it particularly suitable for modeling
tree-like hierarchical structures. Hyperbolic representation has been successfully applied to, for instance,
social network data in product recommendation (Wang et al., 2019), molecular data in drug discovery (Yu
et al., 2020; Wu et al., 2021), and skeletal data in action recognition (Peng et al., 2020).

Many recent works (Ganea et al., 2018; Shimizu et al., 2021; Chen et al., 2021) have successfully designed
hyperbolic neural operations. These operations have been used in generative models for generating samples
in the hyperbolic space. For instance, several recent works (Nagano et al., 2019; Mathieu et al., 2019; Dai
et al., 2021b) have built hyperbolic variational autoencoders (VAE) (Kingma & Welling, 2014). On the other
hand, Lazcano et al. (2021) have generalized generative adversarial networks (GAN) (Goodfellow et al., 2014;
Arjovsky et al., 2017) to the hyperbolic space. However, the above hyperbolic generative models are known
to suffer from gradient explosion when the networks are deep. In order to build hyperbolic networks that
can generate real data, it is desired to have a framework that has both representation power and numerical
stability.

In recent advancements, there has been a notable shift towards the manipulation of the latent space of
autoencoders (AEs), including models like Latent Diffusion (Van Den Oord et al., 2017; Rombach et al.,
2022), which has opened up a plethora of benefits across various domains. This manipulation has allowed
for the latent representations to serve not just as a means for dimensionality reduction but as foundational

1

Under review as submission to TMLR

elements in generative modeling. Researchers and practitioners have leveraged these representations for
generating new, synthetic instances of data that retain the complexity and diversity of their training sets
(Razavi et al., 2019; Esser et al., 2020). Beyond serving as a powerful tool for learning representations,
the latent representation is increasingly utilized for its inherent smoothness (Rubanova et al., 2019) and
numerically stable gradient properties (Li et al., 2020).

To leverage these insights, we design a novel stable hybrid model which learns complex structures and
hyperbolic embeddings from data, and then generates examples by sampling from random noises in the
hyperbolic space. Altogether, our model contains three parts: first, it uses a hyperbolic AE to learn the
embedding of training data in the latent hyperbolic space; second, we use a hyperbolic GAN to learn the
mapping from a wrapped normal noise to the latent distribution; third, we generate samples by sequentially
applying the GAN’s generator and the AE’s decoder. We name our model as Hyperbolic AE-GAN, or
HAEGAN for short. The advantage of this architecture is twofold: it boasts expressivity by processing noise
through both generator and decoder layers, and it allows for the AE’s flexible design without compromising
the GAN’s sampling efficiency. In addition, HAEGAN avoids the complicated form of ELBO in hyperbolic
VAE, which is one source of numerical instability. We highlight the main contributions of this paper as
follows:

• We design a novel hybrid AE-GAN framework for learning hyperbolic distributions. To the best of
our knowledge, no prior works have used such framework. Compared with other models, HAEGAN
enjoys both expressivity and numerical stability.

• As to the hyperbolic GAN, we theoretically validate the Wasserstein GAN formulation, especially
the way of sampling from the geodesic connecting a real sample and a generated sample.

• As to the hyperbolic AE, we design a novel concatenation operation in the hyperbolic space. We
theoretically investigate its numerical stability and empirical comparisons with other hyperbolic
networks.

• In the experiments part, we illustrate that HAEGAN has the capacity not only to faithfully generate
synthetic hyperbolic data, but also to generate real data with sound quality. In particular, we
show that HAEGAN achieves comparable performance in molecular generation, especially in metrics
related to structural properties.

2 Background

2.1 Hyperbolic Geometry

Hyperbolic geometry is a special kind of Riemannian geometry with a constant negative curvature (Cannon
et al., 1997; Anderson, 2006). To extract hyperbolic representations, it is necessary to choose a “model”,
or coordinate system, for the hyperbolic space. Popular choices include the Poincaré ball model and the
Lorentz model, where the latter is found to be more numerically stable (Nickel & Kiela, 2018). We work
with the Lorentz model Ln

K = (L, g) with a constant negative curvature K, which is an n-dimensional
manifold L embedded in the (n + 1)-dimensional Minkowski space, together with the Riemannian metric
tensor g = diag([−1,1⊤

n]), where 1n denotes the n-dimensional vector whose entries are all 1’s. Every point
in Ln

K is represented by x = [xt,x
⊤
s]⊤, xt > 0,xs ∈ Rn, and satisfies ⟨x,x⟩L = 1/K, where ⟨·, ·⟩L is the

Lorentz inner product induced by gK :⟨x,y⟩L := x⊤gy = −xtyt + x⊤
s ys, x,y ∈ Ln

K . In the rest of the
paper, we will refer to xt as the “time component” and xs as the “spatial component”. Extensive details are
provided in Appendix A.1.

Notation We use dL(x,y) to denote the length of a geodesic (“distance” along the manifold) connecting
x,y ∈ Ln

K . For each point x ∈ Ln
K , the tangent space at x is denoted by TxLn

K . The norm ∥·∥L =
√

⟨·, ·⟩L.
For x,y ∈ Ln

K and v ∈ TxLn
K , we use expK

x (v) to denote the exponential map of v at x; on the other hand,
we use logK

x : Ln
K → TxLn

K to denote the logarithmic map such that logK
x (expK

x (v)) = v. For two points
x,y ∈ Ln

K , we use PTK
x→y to denote the parallel transport map which “transports” a vector from TxLn

K to
TyLn

K along the geodesic from x to y.

2

Under review as submission to TMLR

2.2 Hyperbolic Neural Operations

In this section, we introduce the fundamental linear layers designs in Hyperbolic space. Additional intro-
ductions of Graph Neural Network layers and Hyperbolic-Euclidean conversion layers can be found in the
Appendix A.2.

Fully connected linear layers are the fundamental building block of Euclidean deep learning. In Euclidean
space, each linear layer can be represented by a linear transformation add bias. Specifically, suppose the
input is x ∈ Rn, an Euclidean linear layer is

y = Wx + b (1)

where y ∈ Rm is the output, W ∈ Rm×n is learnable weight matrix, b ∈ Rm is the learnable bias.

To define a linear layer in hyperbolic space, the crucial part is to define a hyperbolic linear transformation.
However, if we have an x ∈ Ln

K and use an arbitrary matrix W ∈ R(n+1)×(m+1) as weight matrix, the output
y is not guaranteed in the Lm

K . To constraint the output in the hyperbolic space, there are two lines of works,
the tangent linear layers (Ganea et al., 2018; Shimizu et al., 2021; Chami et al., 2019) and fully hyperbolic
linear layers (Chen et al., 2021).

Tangent Linear Layers The idea of this kind of linear layers is to perform linear transformation in the
tangent space. Since the tangent space of any Riemannian manifold is an Euclidean subspace, it is possible to
perform linear transformation in such space. Chami et al. (2019) defined the linear transformation of x ∈ Ln

K

to y ∈ Lm
K by first logmap x to the tangent space of the origin, perform Euclidean linear transformation by

matrix W ∈ Rn×M , and expmap it back to Lm
K :

y = W ⊗K x = expK
o

(
W logK

o (x)
)

(2)

However, cascading many exponential and logarithmic maps may lead to numerical instability (Chami et al.,
2019; Chen et al., 2021). Thus, people are interested in developing hyperbolic linear layers without the use
of exponential and logarithmic maps.

Fully Hyperbolic Linear Layers In Lorentz model, the constraint for the point x = [xt
xs

] ∈ Ln
K are

⟨x,x⟩L = −x2
t + |xs|2 = 1/K. (3)

where | · | is the Euclidean 2-norm. Thus, whatever the spacial component xs changes, we could always
calculate the xt =

√
|xs|2 − 1/K to make it in the Lorentz space.

Using this idea, Chen et al. (2021) proposed the fully hyperbolic linear layer, which applies a genreal linear
transformation to the spatial component of the input, and calculate the time component so that the whole

vector lies in the hyperboloid. Specifically, it maps x ∈ Ln
K to

[√
∥Wx∥2 − 1/K

Wx

]
, where W ∈ Rn×(m+1).

With additional activation, bias and normalization, a general expressive linear layer transforms an input
x ∈ Ln

K to

y = HLinear(x) =
[√

∥h(x)∥2 − 1/K
h(x)

]
∈ Ln

K . (4)

Here,

h(x) =
λσ
(
v⊤x + b′)

∥Wτ(x) + b∥
(Wτ(x) + b), (5)

where v ∈ Rn+1 and W ∈ Rn×(m+1) are trainable weights, b ∈ Rn and b′ ∈ R are trainable biases, σ is the
sigmoid function, τ is the activation function, and the trainable parameter λ > 0 scales the range. We may
also write h(x;W, b) to emphasize its dependence on W and b.

We remark that using Lorentz model comes with many advantage in numerical stability. We will demonstrate
this in the next section, and in the experiments in §5.2.

3

Under review as submission to TMLR

3 Lorentz Concatenation

3.1 Motivation and Definition

Concatenation and split are essential operations in neural networks for feature combination, parallel com-
putation, etc. Shimizu et al. (2021) proposed Poincaré β-concatenation and β-split in the Poincaré model.
Specifically, they first use the logarithmic map to lift hyperbolic points to the tangent plane of the origin,
then perform Euclidean concatenation and split in this tangent space, and finally apply β regularization and
apply the exponential map to bring it back to the Poincaré ball.

Since we use the Lorentz model, the above operations are not useful and we need to define concatenation
and split in the Lorentz space. One could define operations in the tangent space similarly to the Poincaré β-
concatenation and β-split. More specifically, if we want to concatenate the input vectors {xi}N

i=1 where each
xi ∈ Lni

K , we could follow a “Lorentz tangent concatenation”: first lift each xi to vi = logK
o (xi) =

[vit
vis

]
∈

Rni+1, and then perform the Euclidean concatenation to get v :=
[
0,v⊤

1s
, . . . ,v⊤

Ns

]⊤. Finally, we would get
y = expK

o (v) as a concatenated vector in the hyperlolic space. We denote y = HTCat({xi}N
i=1). Similarly,

we could perform the “Lorentz tangent split” on an input xi ∈ Ln
K with split sub-dimensions

∑N
i=1 ni = n to

get v = logK
o (x) =

[
0,v⊤

1s
∈ Rn1 , . . . ,v⊤

Ns
∈ RnN

]⊤, vi =
[0

vis

]
∈ ToLni

K , and the split vectors yi = expK
o (vi)

successively.

Unfortunately, there are two problems with both the Lorentz tangent concatenation and the Lorentz tangent
split. First, they are not “regularized”, which means that the norm of the spatial component will increase
after concatenation, and decrease after split. This will make the hidden embeddings numerically unstable.
This problem could be partially solved by adding a hyperbolic linear layer after each concatenation and split,
similarly to Ganea et al. (2018), so that we have a trainable scaling factor λ to regularize the norm of the
output. The second and more important problem is that if we use the Lorentz tangent concatenation and
split in a deep neural network, there would be too many exponential and logarithmic maps. It on one hand
suffers from severe precision issue due to the inaccurate float representation (Yu & De Sa, 2019; 2021), and
on the other hand easily suffers from gradient explosion. Moreover, the tangent space is chosen at o. If the
points to concatenate are not close to o, their hyperbolic relation may not be captured very well. Therefore,
we abandon the use of the tangent space and propose more direct and numerically stable operations, which
we call the “Lorentz direct concatenation and split”, defined as follows.

Given the input vectors {xi}N
i=1 where each xi ∈ Lni

K and M =
∑N

i=1 ni, the Lorentz direct concatenation
of {xi}N

i=1 is defined to be a vector y ∈ LM
k given by

y = HCat({xi}N
i=1) =


√√√√ N∑

i=1
x2

it
+ (N − 1)/K,x⊤

1s
, · · · ,x⊤

Ns

⊤

. (6)

Note that each xis
is the spatial component of xi. If we consider xi ∈ Lni

K as a point in Rni+1, the projection
of xi onto the Euclidean subspace {0}×Rn, or the closest point there, is xis

. The Lorentz direct concatenation
can thus be considered as Euclidean concatenation of projections, where the Euclidean concatenated point
is mapped back to LM

K by the inverse map of the projection. We remark that this concatenation directly
inherits from the Lorentz model.

We also define the Lorentz split for completeness, though our main focus is on concatenation: Given an
input x ∈ Ln

K , the Lorentz direct split of x, with sub-dimensions n1, · · · , nN where
∑N

i=1 ni = n, will be
{yi}N

i=1, where each yi ∈ Lni

K is given by first splitting x as x =
[
xt,y

⊤
1s
, · · · ,y⊤

Ns

]⊤, and then calculating

the corresponding time dimension as yi =
[√

∥yis
∥2 − 1/K
yis

]
.

3.2 Advantage of Lorentz Direct Concatenation

Firstly, we state the following theoretical result regarding the exploding gradient of the Lorentz tangent
concatenation.

4

Under review as submission to TMLR

Theorem 3.1. Let {xi}N
i=1, where xi ∈ Lni

K , denote the input features. Let y = HCat({xi}N
i=1) denote the

output of the Lorentz direct concatenation and z = HTCat({xi}N
i=1) denote the output of the Lorentz tangent

concatenation. Fix j ∈ {1, · · · , N}. The following results hold:

1. For any {xi}N
i=1 and any entry y∗ of y, ∥∂y∗/∂xjs |x1,··· ,xN

∥ ≤ 1.
2. For any M > 0, there exist {xi}N

i=1 and an entry z∗ of z for which ∥∂z∗/∂xjs |x1,··· ,xN
∥ ≥ M .

This theorem shows that while the Lorentz direct concatenation has bounded gradients, there is no control on
the gradients of Lorentz tangent concatenation. The proof can be found in Appendix C.1 and we give a simple
numerical validation in Appendix C.2. We also provide an empirical validation of Theorem 3.1 in Appendix
C.3, where we compare the gradient of the two concatenation methods in hyperbolic neural networks. We
also include additional analysis on the effect of the two concatenation methods to the hyperbolic distance in
Appendix C.4.

4 Hyperbolic Auto-Encoder Generative Adversarial Networks

4.1 Architecture of HAEGAN Encoders Decoders

Training
Data

Encoders

Generator
Wrapped Normal

Distribution Critic

Decoders

(a)

(b)

(c)

zreal
<latexit sha1_base64="DH+lxmwSx9B5rCPw1QI/4HAT+I8=">AAACA3icbVC7TsMwFHV4lvIKsMFiUSExVUlBgrGChbFI9CG1UeQ4TmvVsSPbQSpRJBZ+hYUBhFj5CTb+BqfNAC1Hsnx0zr32vSdIGFXacb6tpeWV1bX1ykZ1c2t7Z9fe2+8okUpM2lgwIXsBUoRRTtqaakZ6iSQoDhjpBuPrwu/eE6mo4Hd6khAvRkNOI4qRNpJvHw4CwUI1ic2VPeR+NpBxZh5gee7bNafuTAEXiVuSGijR8u2vQShwGhOuMUNK9V0n0V6GpKaYkbw6SBVJEB6jIekbylFMlJdNd8jhiVFCGAlpDtdwqv7uyFCsijFNZYz0SM17hfif1091dOlllCepJhzPPopSBrWARSAwpJJgzSaGICypmRXiEZIIaxNb1YTgzq+8SDqNuntWb9ye15pXZRwVcASOwSlwwQVoghvQAm2AwSN4Bq/gzXqyXqx362NWumSVPQfgD6zPH8t2mOY=</latexit>

zfake
<latexit sha1_base64="vEiOw/Yl9h5D6vBICTjJ21lyzoQ=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4KkkVdFl047KCfUAbwmQyaYfOZMLMRKgh4MZfceNCEbf+hDv/xkmbhbYeGOZwzr3ce0+QMKq043xbS8srq2vrlY3q5tb2zq69t99RIpWYtLFgQvYCpAijMWlrqhnpJZIgHjDSDcbXhd+9J1JREd/pSUI8joYxjShG2ki+fTgIBAvVhJsve8j9bCB5FqExyXPfrjl1Zwq4SNyS1ECJlm9/DUKBU05ijRlSqu86ifYyJDXFjOTVQapIgvAYDUnf0BhxorxsekMOT4wSwkhI82INp+rvjgxxVaxpKjnSIzXvFeJ/Xj/V0aWX0ThJNYnxbFCUMqgFLAKBIZUEazYxBGFJza4Qj5BEWJvYqiYEd/7kRdJp1N2zeuP2vNa8KuOogCNwDE6BCy5AE9yAFmgDDB7BM3gFb9aT9WK9Wx+z0iWr7DkAf2B9/gC3hpjZ</latexit>

zembd
<latexit sha1_base64="qZ7tz6Bd7pIb1LykOfMuORFo2II=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4KkkVdFl047KCfUAbwmQyaYfOTMLMRKgh4MZfceNCEbf+hDv/xkmbhbYeGOZwzr3ce0+QMKq043xbS8srq2vrlY3q5tb2zq69t99RcSoxaeOYxbIXIEUYFaStqWakl0iCeMBINxhfF373nkhFY3GnJwnxOBoKGlGMtJF8+3AQxCxUE26+7CH3s4HkGeFBmOe+XXPqzhRwkbglqYESLd/+GoQxTjkRGjOkVN91Eu1lSGqKGcmrg1SRBOExGpK+oQJxorxsekMOT4wSwiiW5gkNp+rvjgxxVaxpKjnSIzXvFeJ/Xj/V0aWXUZGkmgg8GxSlDOoYFoHAkEqCNZsYgrCkZleIR0girE1sVROCO3/yIuk06u5ZvXF7XmtelXFUwBE4BqfABRegCW5AC7QBBo/gGbyCN+vJerHerY9Z6ZJV9hyAP7A+fwC5GJja</latexit>

zgen
<latexit sha1_base64="nnMlF/DlIYi9hovyTenMZXVuyjs=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiRV0GXRjcsK9gFtCJPJpB06MwkzE6GG4MZfceNCEbd+hTv/xkmbhbYeGOZwzr3ce0+QMKq043xbS8srq2vrlY3q5tb2zq69t99RcSoxaeOYxbIXIEUYFaStqWakl0iCeMBINxhfF373nkhFY3GnJwnxOBoKGlGMtJF8+3AQxCxUE26+7CH3s4Hk2ZCIPPftmlN3poCLxC1JDZRo+fbXIIxxyonQmCGl+q6TaC9DUlPMSF4dpIokCI/RkPQNFYgT5WXTE3J4YpQQRrE0T2g4VX93ZIirYktTyZEeqXmvEP/z+qmOLr2MiiTVRODZoChlUMewyAOGVBKs2cQQhCU1u0I8QhJhbVKrmhDc+ZMXSadRd8/qjdvzWvOqjKMCjsAxOAUuuABNcANaoA0weATP4BW8WU/Wi/VufcxKl6yy5wD8gfX5A/rVmHI=</latexit>

Training
Data

Reconstruc
tion

Generation

Figure 1: Overview of HAEGAN. (a) The hyperbolic
AE. (b) The hyperbolic GAN for generating the latent
embeddings. The encoders in (b) are identical to (a).
(c) The process for sampling molecules. The generator
in (c) is identical to (b) and the decoders in (c) are
identical to (a).

Although recent proposals of hyperbolic generative
models have transferred VAE and GAN to the hy-
perbolic domain (Nagano et al., 2019; Mathieu et al.,
2019; Dai et al., 2021b; Lazcano et al., 2021), they
are known to suffer from numerical instability, which
hinders building large-scale hyperbolic generative
models. To this end, we design our HAEGAN model
to contain both a hyperbolic AE and a hyperbolic
GAN. First, we train a hyperbolic AE and use the
encoder to embed the dataset into a latent hyper-
bolic space. Then, we use our hyperbolic GAN to
learn the latent distribution of the embedded data.
Finally, we sample hyperbolic embeddings using the
generator and use the decoder to get samples in the
original space. An illustration of HAEGAN is shown
in Figure 4.

The overall structure of HAEGAN distributes learn-
ing into two architectures and thus reduces the scale
of either standalone network. Nevertheless, both the
GAN and the AE require carefully chosen structures
in order to guarantee numerical stability. We discuss
the hyperbolic GAN and hyperbolic AE in the next
two subsections respectively.

4.2 Hyperbolic GAN

4.2.1 Architecture of HGAN

We could use the hyperbolic linear layers in §2.2 to define a hyperbolic GAN whose generator and critic are
in the hyperbolic space.

The generator pushes forward a wrapped normal distribution G(o, I) to a hyperbolic distribution via a
cascading of lgen hyperbolic linear layers. Specifically, we sample z(0) ∼ G(o, I) from the wrapped normal
distribution (Nagano et al., 2019), and produce zfake following

z(l) = HLineardl−1,dl
(z(l−1)), l = 1, · · · , lgen,

zfake = z(lgen).
(7)

5

Under review as submission to TMLR

The critic aims to distinguish between fake data generated from the generator and real data. It contains
a cascading of ldis hyperbolic linear layers, and a centroid distance layer whose output is a score in R.
Specifically,

z(l) = HLineardl−1,dl
(z(l−1)), l = 1, · · · , ldis,

s = HCDistdldis ,1(z(ldis)).
(8)

4.2.2 Hyperbolic Wasserstein GAN and Gradient Penalty

We adopt the framework of Wasserstein GAN (Arjovsky et al., 2017), which aims to minimize the
Wasserstein-1 (W1) distance between the distribution pushed forward by the generator and the data distri-
bution. Since dL is a valid metric, the W1 distance between two hyperbolic distribution Pr,Pg defined on
the Lorentz space is

W1(Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [dL(x,y)], (9)

where Π(Pr,Pg) is the set of all joint distributions whose marginals are Pr and Pg, respectively. By
Kantorovich-Rubinstein duality (Villani, 2009), we have the following more tractable form of W1 distance

W1(Pr,Pg) = sup
∥D∥L≤1

Ex∼Pr [D(x)] − Ex∼Pg [D(x)], (10)

where the supremum is over all 1-Lipschitz functions D : Ln
K → R, represented by the critic. To enforce the

1-Lipschitz constraint, we adopt a penalty term on the gradient following Gulrajani et al. (2017). The loss
function is thus

LWGAN = E
x̃∼Pg

[D(x̃)] − E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[
(∥∇D(x̂)∥L − 1)2

]
, (11)

where D is the critic, ∇D(x̂) is the Riemannian gradient of D(x) at x̂, Pg is the generator distribution
and Pr is the data distribution. Crucially Px̂ samples uniformly along the geodesic between pairs of points
sampled from Pg and Pr instead of a linear interpolation. This manner of sampling is validated in the
following proposition,
Proposition 4.1. Let Pr and Pg be two distributions in Ln

K and f∗ be an optimal solution of
max∥f∥L≤1 Ey∼Pr

[f(y)] − Ex∼Pg
[f(x)] where ∥·∥L is the Lipschitz norm. Let π be the optimal coupling

between Pr and Pg that minimizes W (Pr,Pg) = infπ∈Π(Pr,Pg) Ex,y∼π[dL(x,y)], where Π(Pr,Pg) is the set of
joint distributions π(x,y) whose marginals are Pr and Pg, respectively. Let xt = γ(t), 0 ≤ t ≤ 1 be the
geodesic between x and y, such that γ(0) = x, γ(1) = y, γ′(t) = vt ∈ T Ln

K , ∥vt∥L = dL(x,y). If f∗ is
differentiable and π(x = y) = 0, then it holds that

P(x,y)∼π

[
∇f∗ (xt) = vt

dL(x,y)

]
= 1. (12)

The proof of this proposition can be found in Appendix D.1. This WGAN-GP formulation is capable of
sampling distributions in low-dimensional hyperbolic spaces, which is illustrated in Appendix D.1.1.

4.3 Hyperbolic AE

HAEGAN enjoys expressivity and flexibility in choosing the AE for embedding the hyperbolic distribution.
Since most interesting datasets are not readily presented in the hyperbolic domain, the hyperbolic AE can
also learn to represent them in the hyperbolic domain. In this case, the first layer of the hyperbolic AE is
constructed by the hyperbolic embedding layer (Nagano et al., 2019) from Euclidean to the hyperbolic space.

The design of AE structure varies according to the type of data, which will be described in detail for each
experimental task. Nevertheless, one common operation for building hyperbolic decoders for tree-structured
data is message passing, which requires concatenating messages from different parts of a tree. We use our
novel concatenation operation (§3) here to enforce stable training.

6

Under review as submission to TMLR

5 Experiments

In this section, we present two experiments utilizing HAEGAN: Random Tree Generation (§5.1) and de novo
Molecular Generation (§5.2). Additionally, a proof-of-concept MNIST generation experiment is included in
the Appendix E.

5.1 Random Tree Generation

Recent studies (Boguná et al., 2010; Krioukov et al., 2010; Sala et al., 2018; Sonthalia & Gilbert, 2020) have
found that hyperbolic spaces are suitable for tree-like graphs. Thus, we perform an experiment in which we
use HEAGAN to generate random trees. We compare the performance of HAEGAN with other hyperbolic
models. In this experiment, the AE consists of a tree encoder and a tree decoder, explained in the following
paragraph.

5.1.1 Model Architecture

Tree Encoder The tree encoder for the random tree T contains the following layers. First, each node
feature xv (which is the zero vector in the random trees) is mapped to the hyperbolic space via

x(0)
v = E2HdT0

(xv). (13)

Next, the hyperbolic feature is passed to a hyperbolic GCN with lT layers

x(l) = HGCN(x(l−1)), l = 1, · · · , lT . (14)

Finally, we take the centroid of the embeddings of all vertices to get the hyperbolic embedding zG of the
entire tree,

zT = HCent(x(lT)). (15)

Tree Decoder We adopted the tree decoder from Jin et al. (2018; 2019). The tree T = (VT , ET) is
generated using a tree recurrent neural network in a top-down and node-by-node fashion. The generation
process resembles a depth-first traversal over the tree T . Staring from the root, at each time step t, the
model makes a decision whether to continue generating a child node or backtracking to its parent node. If
it decides to generate a new node, it will further predict the cluster label of the child node. It makes these
decision based on the messages passed from the neighboring node. We remark that we do not use the gated
recurrent unit (GRU) for message passing. The complex structure of GRU would make the training process
numerically unstable for our hyperbolic neural network. We simply replace it with a hyperbolic linear layer.

Message Passing Let Ẽ = {(i1, j1), . . . , (im, jm)} denote the collection of the edges visited in a depth-first
traversal over T , where m = 2|ET |. We store a hyperbolic message hit,jt

for each edge in Ẽ. Let Ẽt be the
set of the first t edges in Ẽ. Suppose at time step t, the model visit node it and it visits node jt at the next
time step. The message hit,jt is updated using the node feature xit and inward messages hk,it . We first use
hyperbolic centroid to gather the inward messages to produce

znei = HCent(HLineardT ,dT
({hk,it

}(k,it)∈Ẽ,k ̸=jt
)), (16)

and then map the tree node features to the hyperbolic space to produce

zcur = HEmbeddT0 ,dT
(xit). (17)

Finally, we combine them using the Lorentz Direct Concatenation and pass them through a hyperbolic linear
layer to get the message

hit,jt
= HLinear2×dT ,dT

(HCat({zcur, znei})) . (18)

7

Under review as submission to TMLR

Topological Prediction At each time step t, the model makes a binary decision on whether to generate a
child node, using tree embedding zT , node feature xit , and inward messages hk,it using the following layers
successively:

znei = HCent(HLineardT ,dT
({hk,it}(k,it)∈Ẽ)),

zcur = HEmbeddT0 ,dT
(xit

),
zall = HLinear3×dT ,dT

(HCat({zcur, znei, zT })) ,
pt = Softmax(HCDistdT ,2(zall)).

(19)

Label Prediction If a child node jt is generated, we use the tree embedding zT and the outward message
hit,jt

to predict its label. We apply the following two layers successively:

zall = HLinear2×dT ,dT
(HCat({hit,jt

, zT })) ,
qt = Softmax(HCDistdT ,dT0

(zall)).
(20)

The output qt is a distribution over the label vocabulary. When jt is a root node, its parent it is dummy
and the message is padded with the origin of the hyperbolic space hit,jt

= o.

Training The topological and label prediction have two induced losses. Suppose p̂t, q̂t are the the ground
truth topological and label values, obtained by doing depth-first traversal on the real junction tree. The
decoder minimizes the following cross-entropy loss:

Ltopo =
m∑

t=1
Lcross(p̂t,pt), Llabel =

m∑
t=1

Lcross(q̂t, qt), (21)

where Lcross is the cross-entropy loss. During the training phase, we use the teacher forcing strategy: after
the predictions at each time step, we replace them with the ground truth. This allows the model to learn
from the correct history information.

5.1.2 Experimental Settings

Dataset Our dataset consists of 500 randomly generated trees. Each tree is created by converting a
uniformly random Prüfer sequence (Prüfer, 1918). The number of nodes in each tree is uniformly sampled
from [20, 50]. The dataset is randomly split into 400 for training and 100 for testing.

Baselines and Ablations We compare HAEGAN with the following baseline hyperbolic generation meth-
ods. HGAN, where we only use a hyperbolic Wasserstein GAN without the AE structure, where the tree
decoder as the generator and the tree decoder as the critic. HVAE-w and HVAE-r, where we use the same
AE but follow the ELBO loss function used by Mathieu et al. (2019) instead of having a GAN (“w” and “r”
refer to using wrapped and Riemannian normal distributions, respectively). Although we mainly focus on
hyperbolic methods, we also compare with the following Euclidean generation methods: GraphRNN (You
et al., 2018b) and AEGAN. The latter has the same architecture as HAEGAN but all layers and operations
are Euclidean.

As discussed in previous sections, our default choice in HAEGAN is to use Lorentz direct Concatenation
and fully hyperbolic linear layers (Chen et al., 2021). We also consider the following ablations of HAEGAN:
HAEGAN-H, where the fully hyperbolic linear layers are replaced with the tangent linear layers defined
by Ganea et al. (2018); HAEGAN-β, where the concatenation in HAEGAN is replaced by β-concatenation
(Shimizu et al., 2021); HAEGAN-T, where the concatenation is replaced by the Lorentz tangent concatena-
tion.

Metrics We use the following metrics from You et al. (2018b) to evaluate the models: The Maximum
Mean Discrepancy (MMD) of degree distribution (Degree), MMD of the orbit counts statistics distribution
(Orbit); Average difference of orbit counts statistics (Orbit), Betweenness Centrality (Betweenness), Close-
ness Centrality (Closeness). All metrics are calculated between the test dataset and 100 samples generated
from the models.

8

Under review as submission to TMLR

Table 1: Results of the tree generation experiments. “NaN” indicates NaN loss during training.

Concat HNN MMD Average Difference Time
Degree Orbit Orbit Betweenness Closeness (s/step)

HGAN Direct Fully 0.000566 0.000056 0.131509 0.027145 0.022921 1.5472
HVAE-w Direct Fully NaN NaN NaN NaN NaN 1.6712
HVAE-r Direct Fully NaN NaN NaN NaN NaN 1.7394

GraphRNN N/A N/A 0.002681 0.000106 0.143869 0.025565 0.022051 0.0933
AEGAN N/A N/A 0.001343 0.000050 0.140482 0.025666 0.021855 1.1874

HAEGAN-H Direct Tangent 0.000743 0.000010 0.138211 0.024512 0.022037 1.8513
HAEGAN-β Beta Fully 0.000470 0.000001 0.129896 0.026102 0.022375 1.7529
HAEGAN-T Tangent Fully 0.000314 0.000052 0.131563 0.024171 0.021858 1.6385
HAEGAN Direct Fully 0.000156 0.000005 0.123286 0.023706 0.021740 1.3146

5.1.3 Results

Table 1 presents results and runtime of all models. For all metrics, a smaller number implies a better result.
Our default choice of HAEGAN (with direct concatenation and fully hyperbolic linear layers) performs the
best across all metrics except the MMD of orbit counts statistics distribution, in which it just marginally
falls behind the β-concatenation. In particular, the Lorentz direct concatenation generally performs better
and more efficiently than Lorentz tangent concatenation and β-concatenation. Also, the fully hyperbolic
linear layer is superior to the tangent linear layer in both effectiveness and efficiency. Our results also
show the advantage of the overall framework compared with either a single GAN or VAE. On one hand,
the performance of HAEGAN is much better than HGAN. On the other hand, we note that the hyperbolic
VAE-based methods suffer from numerical instability for this simple dataset even when using fully hyperbolic
linear layers and direct concatenation, possibly because of the complicated ELBO loss. Finally, we remark
that it is clear from the results that the hyperbolic models are better at generating trees than the Euclidean
ones.

5.2 De Novo Molecular Generation

Molecular

Graph

Graph

Encoder

Tree

Encoder

Junction

Tree

Hyperbolic

Embedding

zG
<latexit sha1_base64="RSNZFx8u/5Q28R+iDmiy0OBQ9TY=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUoKEowVDDAWiT6kNoocx22tOk5kO5VK1D9hYQAhVv6Ejb/BaTNAy5EsH51zr3x8goQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB+Db3OxMqFYvFo54m1IvwULABI1gbybftfhDzUE0jc2VPM//Ot6tOzZkDrRK3IFUo0PTtr34YkzSiQhOOleq5TqK9DEvNCKezSj9VNMFkjIe0Z6jAEVVeNk8+Q2dGCdEgluYIjebq740MRyoPZyYjrEdq2cvF/7xeqgfXXsZEkmoqyOKhQcqRjlFeAwqZpETzqSGYSGayIjLCEhNtyqqYEtzlL6+Sdr3mXtTqD5fVxk1RRxlO4BTOwYUraMA9NKEFBCbwDK/wZmXWi/VufSxGS1axcwx/YH3+ACGVk/o=</latexit>

zT
<latexit sha1_base64="WqVy8VUPA5DQInuqoEi12YygFvE=">AAAB+XicbVC7TsMwFL0pr1JeAUYWiwqJqUoKEowVLIxF6ktqo8hx3Naq40S2U6lE/RMWBhBi5U/Y+BucNgO0HMny0Tn3yscnSDhT2nG+rdLG5tb2Tnm3srd/cHhkH590VJxKQtsk5rHsBVhRzgRta6Y57SWS4ijgtBtM7nO/O6VSsVi09CyhXoRHgg0ZwdpIvm0PgpiHahaZK3ua+y3frjo1ZwG0TtyCVKFA07e/BmFM0ogKTThWqu86ifYyLDUjnM4rg1TRBJMJHtG+oQJHVHnZIvkcXRglRMNYmiM0Wqi/NzIcqTycmYywHqtVLxf/8/qpHt56GRNJqqkgy4eGKUc6RnkNKGSSEs1nhmAimcmKyBhLTLQpq2JKcFe/vE469Zp7Vas/Xlcbd0UdZTiDc7gEF26gAQ/QhDYQmMIzvMKblVkv1rv1sRwtWcXOKfyB9fkDNUmUBw==</latexit>

Tree

Decoder

Graph

Decoder

Figure 2: Illustration of the auto-encoder used in the
HAEGAN for molecular generation. The input molec-
ular graph is firstly coarsened into the junction tree.
Then both of them are encoded using graph and tree
encoders to their respective hyperbolic embeddings zT

and zG. To reconstruct the molecule, we first decode
the junction tree from zT , and then reconstruct the
molecular graph using the junction tree and zG.

It is a crucial task in machine learning to learn the
structure of molecules, which has important appli-
cations in the discovery of drugs and proteins (El-
ton et al., 2019). Since molecules naturally show a
graph structure, many recent works use graph neural
networks to extract their information and accord-
ingly train molecular generators (Simonovsky & Ko-
modakis, 2018; De Cao & Kipf, 2018; Jin et al., 2018;
2019). In particular, Jin et al. (2018; 2019) pro-
posed a bi-level representation of molecules where
both a junction-tree skeleton and a molecular graph
are used to represent the original molecular data. In
this way, a molecule is represented in a hierarchical
manner with a tree-structured scaffold. Given that
hyperbolic spaces can well-embed such hierarchical
and tree-structured data (Peng et al., 2021), we ex-
pect that HAEGAN can leverage the structural in-
formation. To validate its effectiveness, in this sec-
tion, we test HAEGAN using molecular generative
tasks, where the latent distribution is embedded in
a hyperbolic manifold.

9

Under review as submission to TMLR

In our experiments, we design both a hyperbolic tree AE and a hyperbolic graph AE in our HAEGAN to
embed the structural information of the atoms in each molecule, as illustrated in Figure 2. Specifically,
our model takes a molecular graph as the input, passes the original graph to the graph encoder and feeds
the corresponding junction tree to the tree encoder, acquiring hyperbolic latent representations zG of the
graph, as well as zT for the junction tree. Then, the junction tree decoder constructs a tree from zT

autoregressively. Finally, the graph decoder recovers the molecular graph using the generated junction tree
and zG. The hyperbolic representation is supposed to better leverage the hierarchical structure from the
junction-tree than the graph neural networks (Jin et al., 2018; 2019).

5.2.1 Model Architecture

Notation We denote a molecular graph as G = (VG, EG), where VG is the set of nodes (atoms) and EG

is the set of edges (bonds). Each node (atom) v ∈ VG has a node feature xv describing its atom type and
properties. The molecular graph is decomposed into a junction tree T = (VT , ET) where VT is the set of
atom clusters. We use u, v, w to represent graph nodes and i, j, k to represent tree nodes, respectively. The
dimensions of the node features of the graph xv and the tree xi are denoted by dG0 and dT0 , respectively.
The hidden dimensions of graph and tree embeddings are dG, dT , respectively.

Graph and Tree Encoder The design of the graph encoder the same with the encoder in the random
tree generation experiment (§5.1.1). The graph encoder maps a graph to a latent hyperbolic feature zG:

x(0)
v = E2HdG0

(xv),

x(l) = HGCN(x(l−1)), l = 1, · · · , lG,
zG = HCent(x(lG)).

(22)

The tree encoder is similar with the graph encoder, it encodes the junction tree to hyperbolic embedding
zT with a hyperbolic GCN of depth lT . The only difference is that its input feature xi’s are one-hot vectors
representing the atom clusters in the cluster vocabulary. We need to use a hyperbolic embedding layer as
the first layer of the network accordingly.

x
(0)
i = HEmbeddT0 ,dT

(xi),

x(l) = HGCN(x(l−1)), l = 1, · · · , lT ,
zT = HCent(x(lT)).

(23)

Tree Decoder Similar to Jin et al. (2018; 2019), we generate a junction tree T = (VT , ET) using a tree
recurrent neural network in a top-down and node-by-node fashion. Its architecture is the same as the tree
decoder in the random tree generation experiment (§5.1.1) and we will not elaborate here.

Graph Decoder The graph decoder assembles a molecular graph given a junction tree T̂ = (V̂ , Ê) and
graph embedding zG. Let Gi be the set of possible candidate subgraphs around tree node i, i.e. the different
ways of attaching neighboring clusters to cluster i. We want to design a scoring function for each candidate
subgraph G

(i)
j ∈ Gi. To this end, we first use the hyperbolic GCN and hyperbolic centroid to acquire the

hyperbolic embedding z
G

(i)
j

of each subgraph G
(i)
j . Specifically,

x(0)
v = E2HdG0

(xv),

x(l) = HGCN(x(l−1)), l = 1, · · · , lG,
z

G
(i)
j

= HCent(x(lG)).
(24)

Then, the embedding of the subgraph is combined with the embedding of the molecular graph zG by the
Lorentz Direct Concatenation to produce zall, and gathered by a hyperbolic centroid to acquire a score

zall = Hlinear2×dG,dG
(HCat({z

G
(i)
j

, zG})),

s
(i)
j = HCDistdG,1(zall) ∈ R.

(25)

10

Under review as submission to TMLR

Training We define the loss for the graph decoder to be the sum of the cross-entropy losses in each Gi.
Specifically, suppose the correct subgraph is G(i)

c ,

Lassm =
∑

i

s(i)
c − log

∑
G

(i)
j

∈Gi

exp(s(i)
j)

 . (26)

Similar to the tree decoder, we also use teacher forcing when training the graph decoder.

5.2.2 Experimental Settings

Dataset We train and test our model on the MOSES benchmarking platform (Polykovskiy et al., 2020),
which is refined from the ZINC dataset (Sterling & Irwin, 2015) and contains about 1.58M training, 176k
test, and 176k scaffold test molecules. The molecules in the scaffold test set have different Bemis-Murcko
scaffolds (Bemis & Murcko, 1996), which represent the core structures of compounds, than both the training
and test sets. They are used to determine whether a model can generate novel molecular scaffolds.

Baselines We compare our model with the following baselines: non-neural models including the Hidden
Markov Model (HMM), the N-Gram generative model (NGram) and the combinatorial generator; neu-
ral methods including CharRNN (Segler et al., 2018), AAE (Kadurin et al., 2017a;b; Polykovskiy et al.,
2018), VAE (Gómez-Bombarelli et al., 2018; Blaschke et al., 2018), JTVAE (Jin et al., 2018), LatentGAN
(Prykhodko et al., 2019). The benchmark results are taken from (Polykovskiy et al., 2020).

Ablations On one hand, we consider a Euclidean counterpart of HAEGAN, named as AEGAN, to examine
whether the hyperbolic setting indeed contributes. The architecture of AEGAN is the same as HAEGAN,
except that the hyperbolic layers are replaced with Euclidean ones. On the other hand, we also report the
following alternative hyperbolic methods: HVAE-w and HVAE-r, where we use the same tree and graph AE
but follow the ELBO loss function used by Mathieu et al. (2019) instead of having a GAN (“w” and “r” refer
to using wrapped and Riemannian normal distributions, respectively); HGAN, where we train an end-to-end
hyperbolic WGAN with the graph and tree decoder as the generator, and the graph and tree encoder as the
critic; HAEGAN-H, HAEGAN-β, and HAEGAN-T as introduced in §5.1.

Metrics We briefly describe how the models are evaluated. Detailed descriptions of the following metrics
can be found in the MOSES benchmarking platform (Polykovskiy et al., 2020). We generate a set of 30,000
molecules, which we call the “generated set”. On one hand, we report the standard metrics in molecular
generation: Validity, Unique(ness), and Novelty scores, which are the percentage of valid, unique, and novel
molecules in the generated set, respectively. On the other hand, we evaluate the following structure-related
metrics by comparing the generated set with the test set and the scaffold set: Similarity to a Nearest Neighbor
(SNN) and the Scaffold similarity (Scaf). SNN is the average Tanimoto similarly (Tanimoto, 1958) between
the generated molecule and its nearest neighbor in the reference set. Scaf is cosine distances between the
scaffold frequency vectors (Bemis & Murcko, 1996) of the generated and reference sets. In particular, SNN
compares the detailed structures while Scaf compares the skeleton structures. By considering them with
both the test and the scaffold test sets, we measure both the structural similarity to training data and the
capability of searching for novel structures.

5.2.3 Results

We report in Table 2 the performance of HAEGAN and the baselines. For each metric described above, we
take the mean and standard deviation from three independent samples. For all the metrics, a larger number
implies a better result. We use bold font to highlight the best performing model in each criterion.

First of all, HAEGAN achieves perfect validity and uniqueness scores, which implies the hyperbolic embed-
ding adopted by HAEGAN does not break the rule of molecule structures and does not induce mode collapse.
Moreover, our model significantly outperforms the baseline models in the SNN metric. This means that the
molecules generated by our model have a closer similarity to the reference set. It implies that our model

11

Under review as submission to TMLR

Table 2: Performance in Validity, Unique(ness), Novelty, SNN, and Scaf metrics. Reported (mean ± std)
over three independent samples. HVAE-w, HVAE-r, HGAN, HAEGAN-H, HAEGAN-β, HAEGAN-T are
not included in the table as they all produce “NaN”.

Model Validity (↑) Unique (↑) Novelty (↑) SNN (↑) Scaf (↑)
Test TestSF Test TestSF

Train 1 1 1 0.6419 0.5859 0.9907 0
HMM 0.076±0.032 0.567±0.142 0.999±0.001 0.388±0.011 0.380±0.011 0.207±0.048 0.049±0.018

NGram 0.238±0.003 0.922±0.002 0.969±0.001 0.521±0.001 0.499±0.001 0.530±0.016 0.098±0.014
Combinatorial 1.0±0.0 0.991±0.001 0.988±0.001 0.451±0.001 0.439±0.001 0.445±0.006 0.087±0.003

CharRNN 0.975±0.026 0.999±0.001 0.842±0.051 0.602±0.021 0.565±0.014 0.924±0.006 0.110±0.008
AAE 0.937±0.034 0.997±0.002 0.793±0.029 0.608±0.004 0.568±0.005 0.902±0.038 0.079±0.009
VAE 0.977±0.001 0.998±0.001 0.695±0.007 0.626±0.001 0.578±0.001 0.939±0.002 0.059±0.010

JTVAE 1.0±0.0 0.999±0.001 0.914±0.009 0.548±0.008 0.519±0.007 0.896±0.004 0.101±0.011
LatentGAN 0.897±0.003 0.997±0.001 0.950±0.001 0.537±0.001 0.513±0.001 0.887±0.001 0.107±0.010

HAEGAN (Ours) 1.0±0.0 1.0±0.0 0.905±0.006 0.631±0.004 0.593±0.002 0.874±0.002 0.113±0.007
AEGAN 1.0±0.0 0.968±0.001 0.995±0.009 0.459±0.006 0.452±0.006 0.203±0.004 0.058±0.008

captures better the underlying structure of the molecules and our hyperbolic latent space is more suitable
for embedding molecules than its Euclidean counterparts. Our model also achieves competitive performance
in the Scaf metric when the reference set is the scaffold test set. This shows that our model is better at
searching on the manifold of scaffolds and can generate examples with novel core structures.

Next, although AEGAN can also achieve very good performance in validity, uniqueness, and novelty, we
notice the big margin HAEGAN has over AEGAN in the structure-related metrics. This suggests that
working with the hyperbolic space is necessary in our approach and the hyperbolic space better represents
structural information.

Lastly, the alternative hyperbolic models all suffer from numerical instability and training reports NaN. This
is not surprising since hyperbolic neural operations are known to easily make training unstable, especially
in deep and complex networks. The result reveals the stronger numerical stability of HAEGAN, which
highlights the importance of (1) the overall framework of HAEGAN (v.s. HVAE); (2) the fully hyperbolic
layers (v.s. HAEGAN-H); (3) the Lorentz direct concatenation (v.s. HAEGAN-β, HAEGAN-T).

6 Conclusion and Limitations

In this paper, we proposed HAEGAN, a hybrid generative framework. We showed that HAEGAN is capable
of generating both synthetic hyperbolic data and real molecular data with state-of-the-art performance in
structure-related metrics. It is not only an effective hyperbolic generative model, but also the first hyperbolic
model that accommodates deep architectures while not suffering from numerical instability. This is attributed
to the following: first, the overall hybrid framework; second, the fully hyperbolic operations performed in
the Lorentz space; third, the direct concatenation. We expect that HAEGAN can be applied to broader
scenarios due to the flexibility in designing the hyperbolic AE and the possibility of building deep models.

Despite the promising results, we point out two possible limitations of the current model. First, not all
complex modules are directly compatible with HAEGAN. Indeed, if the gated recurrent units (GRU) were
used in our molecular generation task, the complex structure of GRU would cause unstable training and that
is why a hyperbolic linear layer is used instead. Nevertheless, we expect defining more efficient hyperbolic
operations that incorporate recurrent operations may alleviate the problem and leave it to future work.
Second, although the hyperbolic operations in HAEGAN do not require going back and forth between the
hyperbolic and the tangent spaces, we need to use exponential maps when sampling from the wrapped normal
distribution. We will also work on more efficient ways of sampling from the hyperbolic Gaussian.

12

Under review as submission to TMLR

References
James W Anderson. Hyperbolic geometry. Springer Science & Business Media, 2006.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, pp. 214–223. PMLR, 2017.

Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. Constant curvature graph convolutional networks.
In International Conference on Machine Learning, pp. 486–496. PMLR, 2020.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks. Journal of
medicinal chemistry, 39(15):2887–2893, 1996.

Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jürgen Bajorath, and Hongming Chen. Application of
generative autoencoder in de novo molecular design. Molecular informatics, 37(1-2):1700123, 2018.

Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with hyperbolic
mapping. Nature communications, 1(1):1–8, 2010.

Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent variable modelling
with hyperbolic normalizing flows. In International Conference on Machine Learning, pp. 1045–1055.
PMLR, 2020.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry. Flavors
of geometry, 31(59-115):2, 1997.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural net-
works. Advances in neural information processing systems, 32:4868–4879, 2019.

Ines Chami, Albert Gu, Dat P Nguyen, and Christopher Ré. Horopca: Hyperbolic dimensionality reduction
via horospherical projections. In International Conference on Machine Learning, pp. 1419–1429. PMLR,
2021.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Fully
hyperbolic neural networks. arXiv preprint arXiv:2105.14686, 2021.

Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A hyperbolic-to-hyperbolic graph convolutional network.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 154–163,
2021a.

Shuyang Dai, Zhe Gan, Yu Cheng, Chenyang Tao, Lawrence Carin, and Jingjing Liu. Apo-vae: Text
generation in hyperbolic space. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 416–431, 2021b.

Nicola De Cao and Thomas Kipf. MolGAN: An Implicit Generative Model for Small Molecular Graphs.
ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models, 2018.

Daniel C Elton, Zois Boukouvalas, Mark D Fuge, and Peter W Chung. Deep learning for molecular design—a
review of the state of the art. Molecular Systems Design & Engineering, 4(4):828–849, 2019.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis,
2020.

Pengfei Fang, Mehrtash Harandi, and Lars Petersson. Kernel methods in hyperbolic spaces. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 10665–10674, 2021.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in neural
information processing systems, 31:5345–5355, 2018.

13

Under review as submission to TMLR

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations in
product spaces. In International Conference on Learning Representations, 2019.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of wasserstein gans. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International Conference on Machine Learning, pp. 2323–2332. PMLR, 2018.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-graph
translation for molecule optimization. In International Conference on Learning Representations, 2019.

Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen, Kuzma
Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep adversarial au-
toencoders for new molecule development in oncology. Oncotarget, 8(7):10883, 2017a.

Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex Aliper, and Alex Zhavoronkov. drugan: an
advanced generative adversarial autoencoder model for de novo generation of new molecules with desired
molecular properties in silico. Molecular pharmaceutics, 14(9):3098–3104, 2017b.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations (ICLR), 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná. Hyperbolic
geometry of complex networks. Physical Review E, 82(3):036106, 2010.

Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. Lorentzian distance learning for hyperbolic repre-
sentations. In International Conference on Machine Learning, pp. 3672–3681. PMLR, 2019.

Diego Lazcano, Nicolás Fredes Franco, and Werner Creixell. HGAN: Hyperbolic generative adversarial
network. IEEE Access, 9:96309–96320, 2021. doi: 10.1109/ACCESS.2021.3094723.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients for
stochastic differential equations. In International Conference on Artificial Intelligence and Statistics, pp.
3870–3882. PMLR, 2020.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. Advances in Neural
Information Processing Systems, 32:8230–8241, 2019.

Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher De Sa. Differ-
entiating through the fréchet mean. In International Conference on Machine Learning, pp. 6393–6403.
PMLR, 2020.

14

Under review as submission to TMLR

Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, and Yee Whye Teh. Continuous hier-
archical representations with poincaré variational auto-encoders. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori Koyama. A wrapped normal distri-
bution on hyperbolic space for gradient-based learning. In International Conference on Machine Learning,
pp. 4693–4702. PMLR, 2019.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic
geometry. In International Conference on Machine Learning, pp. 3779–3788. PMLR, 2018.

W. Peng, T. Varanka, A. Mostafa, H. Shi, and G. Zhao. Hyperbolic deep neural networks: A survey. IEEE
Transactions on Pattern Analysis & Machine Intelligence, December 2021. doi: 10.1109/TPAMI.2021.
3136921.

Wei Peng, Jingang Shi, Zhaoqiang Xia, and Guoying Zhao. Mix dimension in poincaré geometry for 3d
skeleton-based action recognition. In Proceedings of the 28th ACM International Conference on Multime-
dia, pp. 1432–1440, 2020.

Daniil Polykovskiy, Alexander Zhebrak, Dmitry Vetrov, Yan Ivanenkov, Vladimir Aladinskiy, Polina
Mamoshina, Marine Bozdaganyan, Alexander Aliper, Alex Zhavoronkov, and Artur Kadurin. Entan-
gled conditional adversarial autoencoder for de novo drug discovery. Molecular pharmaceutics, 15(10):
4398–4405, 2018.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai Tatanov,
Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark Veselov, et al. Molec-
ular sets (moses): a benchmarking platform for molecular generation models. Frontiers in pharmacology,
11:1931, 2020.

Heinz Prüfer. Neuer beweis eines satzes über permutationen. Arch. Math. Phys, 27(1918):742–744, 1918.

Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous, Esben Jannik
Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation method using latent vector
based generative adversarial network. Journal of Cheminformatics, 11(1):1–13, 2019.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-based genera-
tive modeling on manifolds. Advances in Neural Information Processing Systems, 34, 2021.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic embed-
dings. In International conference on machine learning, pp. 4460–4469. PMLR, 2018.

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1):120–131, 2018. doi:
10.1021/acscentsci.7b00512.

Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a flow-
based autoregressive model for molecular graph generation. In International Conference on Learning
Representations (ICLR), 2020.

15

Under review as submission to TMLR

Ryohei Shimizu, YUSUKE Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In International
Conference on Learning Representations, 2021.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using variational
autoencoders. In International conference on artificial neural networks, pp. 412–422. Springer, 2018.

Rishi Sonthalia and Anna Gilbert. Tree! i am no tree! i am a low dimensional hyperbolic embedding.
Advances in Neural Information Processing Systems, 33:845–856, 2020.

Teague Sterling and John J. Irwin. Zinc 15 – ligand discovery for everyone. Journal of Chemical Information
and Modeling, 55(11):2324–2337, 2015. doi: 10.1021/acs.jcim.5b00559. PMID: 26479676.

Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, and Philip S Yu. Hyperbolic
variational graph neural network for modeling dynamic graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 4375–4383, 2021.

Taffee T Tanimoto. Elementary mathematical theory of classification and prediction. 1958.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Xiao Wang, Yiding Zhang, and Chuan Shi. Hyperbolic heterogeneous information network embedding. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 5337–5344, 2019.

Zhenxing Wu, Dejun Jiang, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Dongsheng Cao, and Tingjun
Hou. Hyperbolic relational graph convolution networks plus: a simple but highly efficient qsar-modeling
method. Briefings in Bioinformatics, 22(5):bbab112, 2021.

Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, and Irwin King. Hyperbolic graph
neural networks: A review of methods and applications. arXiv preprint arXiv:2202.13852, 2022.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy network
for goal-directed molecular graph generation. Advances in neural information processing systems, 31,
2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine learning, pp. 5708–5717.
PMLR, 2018b.

Ke Yu, Shyam Visweswaran, and Kayhan Batmanghelich. Semi-supervised hierarchical drug embedding in
hyperbolic space. Journal of chemical information and modeling, 60(12):5647–5657, 2020.

Tao Yu and Christopher M De Sa. Numerically accurate hyperbolic embeddings using tiling-based models.
Advances in Neural Information Processing Systems, 32, 2019.

Tao Yu and Christopher M De Sa. Representing hyperbolic space accurately using multi-component floats.
Advances in Neural Information Processing Systems, 34:15570–15581, 2021.

Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Fanny Ye. Hyperbolic graph attention
network. IEEE Transactions on Big Data, 2021.

16

Under review as submission to TMLR

A Preliminaries

A.1 Hyperbolic Geometry

We describe some fundamental concepts in hyperbolic geometry related to this work.

The Lorentz Model The Lorentz model Ln
K = (L, g) of an n dimensional hyperbolic space with constant

negative curvature K is an n-dimensional manifold L embedded in the (n+1)-dimensional Minkowski space,
together with the Riemannian metric tensor g = diag([−1,1⊤

n]), where 1n denotes the n-dimensional vector

whose entries are all 1’s. Every point in Ln
K is represented by x =

[
xt

xs

]
, xt > 0,xs ∈ Rn and satisfies

⟨x,x⟩L = 1/K, where ⟨·, ·⟩L is the Lorentz inner product induced by g:

⟨x,y⟩L := x⊤gy = −xtyt + x⊤
s ys, x,y ∈ Ln

K . (27)

Geodesics and Distances Geodesics are shortest paths in a manifold, which generalize the notion of
“straight lines” in Euclidean geometry. In particular, the length of a geodesic in Ln

K (the “distance”)
between x,y ∈ Ln

K is given by

dL(x,y) = 1√
−K

cosh−1(K⟨x,y⟩L). (28)

Tangent Space For each point x ∈ Ln
K , the tangent space at x is TxLn

K := {y ∈ Rn+1 | ⟨y,x⟩L = 0}. It
is a first order approximation of the hyperbolic manifold around a point x and is a subspace of Rn+1. We
denote ∥v∥L =

√
⟨v,v⟩L as the norm of v ∈ TxLn

K .

Exponential and Logarithmic Maps The exponential and logarithmic maps are maps between hy-
perbolic spaces and their tangent spaces. For x,y ∈ Ln

K and v ∈ TxLn
K , the exponential map expK

x (v) :
TxLn

K → Ln
K maps tangent vectors to hyperbolic spaces by assigning v to the point expK

x (v) := γ(1), where
γ is the geodesic satisfying γ(0) = x and γ′(0) = v. Specifically,

expK
x (v) = cosh(ϕ)x + sinh(ϕ)v

ϕ
, ϕ =

√
−K∥v∥L. (29)

The logarithmic map logK
x (y) : Ln

K → TxLn
K is the inverse map that satisfies logK

x (expK
x (v)) = v. Specifically,

logK
x (y) = cosh−1(ψ)√

−K
y − ψx

∥y − ψx∥L
, ψ = K⟨x,y⟩L. (30)

Parallel Transport For two points x,y ∈ Ln
K , the parallel transport from x to y defines a map PTK

x→y,
which “transports” a vector from TxLn

K to TyLn
K along the geodesic from x to y. Parallel transport preserves

the metric, i.e. ∀u,v ∈ TxLn
K ,
〈

PTK
x→y(v),PTK

x→y(u)
〉

L
= ⟨v,u⟩L. In particular, the parallel transport in

Ln
K is given by

PTK
x→y(v) = ⟨y,v⟩L

−1/K − ⟨x,y⟩L
(x + y). (31)

A.2 Additional Hyperbolic Neural Operations

A.2.1 Hyperbolic Aggregation Operations

In hyperbolic space, the "average" operation is not well-defined, i.e. the Euclidean mean does not guarantee
the result is still in hyperbolic space. There are two generalizations of Euclidean mean in hyperbolic space,
the Fréchet Mean and the Hyperbolic Centroid.

17

Under review as submission to TMLR

Fréchet Mean Fréchet Mean is defined as the direct generalization of Euclidean mean for any metric
space. In hyperbolic space, it can be defined as:

µ∗
0 = arg min

µ∈Ln
K

N∑
i=1

νi[dK
L (xi,µ)]2, (32)

However, the Fréchet mean does not have a closed form solution in hyperbolic space. There are works for
calculating the hyperbolic Fréchet mean iteratively (Lou et al., 2020; Gu et al., 2019), but they were quite
inefficient and hard to pass gradients.

Hyperbolic Centroid The notion of a centroid is extended to Ln
K by Law et al. (2019), defined to be the

point µ∗ that minimizes a weighted sum of the squared Lorentzian distance:

µ∗ = arg min
µ∈Ln

K

N∑
i=1

νid
2
L(xi,µ), (33)

where {xi}N
i=1 is the set of points to aggregate, ν is the weight vector whose entries satisfy νi ≥ 0,

∑
i νi > 0,

i = 1, · · · , N . The squared Lorentzian distance is defined as

d2
L(x,y) = ∥x − y∥2

L = 2/K − 2⟨x,y⟩L (34)

It satisfies all the axioms of a distance metric except the triangle inequality. Thus, it is a Fréchet mean of a
pseudo-hyperbolic space. Fortunately, this centroid has a closed form solution given by

HCent({xi}N
i=1,ν) = µ∗ =

∑N
i=1 νixi

√
−K

∣∣∣∥∑N
i=1 νixi∥L

∣∣∣ . (35)

A.2.2 Hyperbolic Graph Neural Network

Given the hyperbolic linear layers and hyperbolic aggregation, it is straightforward to generalize the Euclidean
Graph Convolutional Networks (Kipf & Welling, 2017) to hyperbolic space (Chami et al., 2019; Chen et al.,
2021):

x(l)
v = HGCN(X(l−1))v = HCent({HLineardl−1,dl

(x(l−1)
u) | u ∈ N(v)},1) (36)

where x
(l)
v is the feature of node v in layer l, dl denotes the dimensionality of layer l, and N(v) is the set of

neighbor points of node v.

Since hyperbolic space is better at embedding hierarchal data, graphs with Gromov hyperbolicity δ (Sonthalia
& Gilbert, 2020) similar to that of a hyperboloid can we naturally embedded in hyperbolic space.

A.2.3 Hyperbolic-Euclidean Conversion Layers

Sometimes, it is necessary to find a learnable way to convert data between hyperbolic and Euclidean space.
In this section, we introduce some learnable layers to convert between them.

Euclidean to Hyperbolic It is possible that a dataset is originally represented as Euclidean, albeit having
a hierarchical structure. In this case, the most obvious way of processing is to view the data in the tangent
space and use the exponential or logarithmic maps to transform it to hyperbolic space. In order to map
t ∈ Rn to the hyperbolic space Lm

K , Nagano et al. (2019) add a zero padding to the front of t to make it a
vector in ToLm

K , and then apply the exponential map. This Euclidean to Hyperbolic (E2H) operation was
originally used for sampling, but can also be generally used to map from the Euclidean to the hyperbolic
spaces. Specifically,

y = E2Hm(t) = expK
o ([0

t]) , (37)

where o =
[√

−1/K, 0, . . . , 0
]⊤

is the hyperbolic origin.

18

Under review as submission to TMLR

For better expressivity, especially when the input x ∈ Rn is one-hot, one can first map the input to a hidden
embedding h = Wx ∈ Rm with a trainable embedding matrix W ∈ Rn×m. Then, it is mapped to hyperbolic
space by the E2H operation defined as above. That is,

y = HEmbedn,m(x) = E2H (Wx) . (38)

This layer was previously used by Nagano et al. (2019) for word embedding.

Hyperbolic to Euclidean Some machine learning tasks requires Euclidean output (such as classification),
thus it is necessary to construct a layer to transform Hyperbolic features to Euclidean. It is possible to directly
use logarithmic map to convert hyperbolic features to the tangent space and view that as Euclidean features.
However, it is hard to pass gradients through logarithmic map. Another way to extract Euclidean features
is by calculating distances, since distances are intrinsically Euclidean.

The Hyperbolic Centroid Distance Layer (Liu et al., 2019) is a numerically stable way of converting Hyper-
bolic features to Euclidean. It maps points from Ln

K to Rm. Given an input x ∈ Ln
K , it first initializes m

trainable centroids {ci}m
i=1 ⊂ Ln

K , then produces a vector of distances

y = HCDistn,m(x) = [dK
L (x, c1) · · · dK

L (x, cm)]⊤, (39)

B Related Works

Machine Learning in Hyperbolic Spaces A central topic in machine learning is to find methods and
architectures that incorporate the geometric structure of data (Bronstein et al., 2021). Due to the data
representation capacity of the hyperbolic space, many machine learning methods have been designed for
hyperbolic data. Such methods include hyperbolic dimensionality reduction (Chami et al., 2021) and kernel
hyperbolic methods (Fang et al., 2021). Besides these works, deep neural networks have also been proposed
in the hyperbolic domain. One of the earliest such models was the Hyperbolic Neural Network (Ganea et al.,
2018) which works with the Poincaré ball model of the hyperbolic space. This was recently refined in the
Hyperbolic Neural Network ++ (Shimizu et al., 2021). Another popular choice is to use the Lorentz model of
the hyperbolic space (Chen et al., 2021; Yang et al., 2022). Our model also uses Lorentz space for numerical
stability.

Hyperbolic Graph Neural Networks Graph neural networks (GNNs) are successful models for learning
representations of graph data. Recent studies (Boguná et al., 2010; Krioukov et al., 2010; Sala et al., 2018;
Sonthalia & Gilbert, 2020) have found that hyperbolic spaces are suitable for tree-like graphs and a variety
of hyperbolic GNNs (Chami et al., 2019; Liu et al., 2019; Bachmann et al., 2020; Dai et al., 2021a; Chen
et al., 2021) have been proposed. In particular, Chami et al. (2019); Liu et al. (2019); Bachmann et al. (2020)
all performed message passing, the fundamental operation in GNNs, in the tangent space of the hyperbolic
space. On the other hand, Dai et al. (2021a); Chen et al. (2021) designed fully hyperbolic operations so that
message passing can be done completely in the hyperbolic space. Some recent works address special GNNs.
For instance, Sun et al. (2021) applied a hyperbolic time embedding to temporal GNN, while Zhang et al.
(2021) designed a hyperbolic graph attention network. We also notice the recent survey on hyperbolic GNNs
by Yang et al. (2022).

Hyperbolic Generative Models Generative neural networks in the Euclidean domain cannot embed
information of the hyperbolic geometry. To address that, Nagano et al. (2019) designs a wrapped normal
distribution in the hyperbolic space which enables taking gradient and uses it as the latent distribution of
a variational autoencoder (VAE). Mathieu et al. (2019) considers both the wrapped normal distribution
and maximum entropy normal distribution and uses them to construct an VAE on the Poincaré space.
Dai et al. (2021b) also builds a VAE in the Poincaré space, which uses the primal-dual formulation of the
Kull-backLeibler (KL) divergence. Other than using VAE, other generation frameworks are also adapted
to the hyperbolic space. For instance, Bose et al. (2020) lifts normalizing flows on the tangent plane of
the hyperbolic space for generation. Lazcano et al. (2021) uses hyperbolic linear layers in GAN for image
generation. Despite the importance of the GAN framework, we are unaware of other hyperbolic GAN models.

19

Under review as submission to TMLR

Our proposed model contains a hyperbolic encoder-decoder to learn the graph-to-graph mapping, as well as
a hyperbolic GAN for generating latent embeddings, whose generator uses the wrapped normal distribution
as input.

Molecular Generation State-of-the-art methods for molecular generation usually treat molecules as ab-
stract graphs whose nodes represent atoms and edges represent chemical bonds. Early methods for molecular
graph generations usually generate adjacency matrices via simple multilayer perceptrons (Simonovsky & Ko-
modakis, 2018; De Cao & Kipf, 2018). Recently, Jin et al. (2018; 2019) proposed to treat a molecule as a
multiresolution representation, with a junction-tree scaffold, whose nodes represent valid molecular substruc-
tures. Other molecular graph generation methods include (You et al., 2018a; Shi* et al., 2020). Methods
that work with SMILES (Simplified Molecular Input Line Entry System) notations instead of graphs in-
clude (Segler et al., 2018; Gómez-Bombarelli et al., 2018; Blaschke et al., 2018; Kadurin et al., 2017a;b;
Polykovskiy et al., 2018; Prykhodko et al., 2019). Since the hyperbolic space is promising for tree-like struc-
tures, hyperbolic GNNs have also been recently used for molecular generation (Liu et al., 2019; Dai et al.,
2021a).

C Additional Analysis of Concatenation

C.1 Proof of Theorem 3.1

Proof. 1. First, consider the case where y∗ is one of the spatial components of y. According to (6), y∗ is
a copy of an entry in xis

for some i ∈ {1, · · · , N}. Therefore, if i ̸= j, ∂y∗/∂xjs
is a zero vector; if i = j,

∂y∗/∂xjs a one-hot vector. In both cases, ∥∂y∗/∂xjs∥ ≤ 1.

Next, consider the case where y∗ = yt is the time component of y. According to (6), ∂y∗/∂xjs
=

xjs√∑N
i=1 ∥xis∥2 − 1

K

and thus
∥∥∥∥ ∂y∗

∂xjs

∥∥∥∥ = ∥xjs
∥√∑N

i=1 ∥xis∥2 − 1
K

≤ 1 since the curvature K < 0.

We conclude that ∥∂y∗/∂xjs
∥ ≤ 1 for any entry y∗ in y.

2. Write z =
[
zt, z

⊤
1s
, · · · , z⊤

Ns

]⊤. According to the definition of the Lorentz tangent concatenation as well
as formulas (29) and (30), for l ∈ {1, · · · , N}, the p-th entry of the vector zls can be written in the following
concrete form:

zlsp = sinh(∆)
∆

cosh−1
(

−K
√

∥xls∥2 − 1
K

)
√

−K
xlsp

∥xls∥

= sinh(∆)
∆

sinh−1
(√

K2 ∥xls
∥2 −K − 1

)
√

−K
xlsp

∥xls
∥
, (40)

where

∆ =
√

−K

(
N∑

i=1

(
sinh−1

(√
K2 ∥xis

∥2 −K − 1
))2

)1/2

. (41)

Let j ̸= l. Differentiating zlsp with respect to xjsk, the k-th entry of xjs , yields

∂zlsp

∂xjsk
= Cl

(
cosh(∆)

∆2 − sinh(∆)
∆3

)
· sinh−1

(√
K2 ∥xjs

∥2 −K − 1
)

·

1√
∥xjs

∥2 − 1
K

xjsk√
∥xjs

∥2 − 1+K
K2

, (42)

where
Cl = sinh−1

(√
K2 ∥xls

∥2 −K − 1
)
xlsp

∥xls
∥

(43)

20

Under review as submission to TMLR

does not depend on xjs
.

Arbitrarily take fixed xis
for all i ̸= l with particularly xjsk > 0. Also arbitrarily take fixed xlsq for q ̸= p.

We claim that ∂zlsp

∂xjsk
→ ∞ as xlsq → ∞.

To prove the claim, first note that

∂Cl

∂xlsp
=

x2
lsp

∥xls
∥2
√

∥xjs
∥2 − 1

K

√
∥xjs

∥2 − 1+K
K2

+

(
1 −

x2
lsp∥∥x2
ls

∥∥
) sinh−1

(√
K2 ∥xls∥2 −K − 1

)
∥xls

∥
. (44)

Since x2
lsp ≤ ∥xls

∥2 and
sinh−1

(√
K2∥xls ∥2−K−1

)
∥xls ∥ > 0, the second term in (44) is positive. Con-

sequently, ∂Cl/∂xlsp > 0 and thus Cl is a positive term that increases with xlsp. Moreover,

sinh−1
(√

K2 ∥xjs
∥2 −K − 1

)
1√

∥xjs∥2 − 1/K

xjsk√
∥xjs

∥2 − 1+K
K2

in (42) is a fixed positive term that does

not depend on xlsp. Hence, we only need to show that cosh(∆)
∆2 − sinh(∆)

∆3 → ∞ as xlsp → ∞. Since ∆ → ∞

as xlsp → ∞, this reduces to proving f(t) = cosh(t)
t2

− sinh(t)
t3

→ ∞ as t → ∞, which is an immediate result
once we write explicitly that

f(t) = 1
2

(
e−t

t3
+ e−t

t2
+ (t− 1)et

t3

)
. (45)

We conclude that for any M > 0, there exist {xi}N
i=1 and an entry z∗ of z, i.e. zlsp above, for which all

entries of ∂z∗/∂xjs
are no less than M . Thus it also holds that ∥∂z∗/∂xjs

|x1,··· ,xN
∥ ≥ M .

C.2 Numerical Validation of Theorem 3.1

In this section, we numerically validate Theorem 3.1 by showing the gradients of the Lorentz tangent con-
catenation and the Lorentz direct concatenation under the following simple setting. We concatenate two
1-dimensional Lorentz vectors to obtain a 2-dimensional Lorentz vector.

Denote x =
[√

x2
s + 1, xs

]⊤
∈ L1

−1 and y =
[√

y2
s + 1, ys

]⊤
∈ L1

−1 to be the two input vectors under
the Lorentz model with K = −1. For both the Lorentz tangent concatenation and the Lorentz direct
concatenation, let z = [zt, zs0, zs1]⊤ ∈ L2

−1 denote the concatenated vector of x and y. Numerically, we
consider the range of xs, ys ∈ [−100, 100] and calculate the gradients of each entry of z with respect to xs,

that is, ∂zt

∂xs

∣∣∣∣∣
xs,ys∈[−100,100]

, ∂zs0

∂xs

∣∣∣∣∣
xs,ys∈[−100,100]

and ∂zs1

∂xs

∣∣∣∣∣
xs,ys∈[−100,100]

. We plot them in Figure 3. We

remark that due to symmetry, the graphs are the same for ∂

∂ys
.

From Figure 3, we observe unbounded gradients in each component of the gradient of the Lorentz tangent
concatenation. On the other hand, all the components of the gradient of the Lorentz direct concatenation
has an absolute value bounded by 1. The results of this numerical experiment have validated the conclusion
in Theorem 3.1.

C.3 Empirical Validation of Theorem 3.1

In this section, we design the following simple experiment to show the advantage of our Lorentz direct
concatenation over the Lorentz tangent concatenation when they are used in simple neural networks. The
hyperbolic neural network in this simple experiment consists of a cascading of L blocks, and the architecture

21

Under review as submission to TMLR

xs

°100°75°50°25
0

25
50

75
100

y s

°100
°75
°50
°25

0
25

50
75

100

@
z t

@
x

s

°10

°5

0

5

10

xs

°100°75°50°25
0

25
50

75
100

y s

°100
°75
°50
°25

0
25

50
75

100

@
z s

0
@
x

s

2

4

6

8

10

12

14

xs

°100°75°50°25
0

25
50

75
100

y s

°100
°75
°50
°25

0
25

50
75

100

@
z s

1
@
x

s

°10.0

°7.5

°5.0

°2.5

0.0

2.5

5.0

7.5

10.0

xs

°100°75°50°25
0

25
50

75
100

y s

°100
°75
°50
°25

0
25

50
75

100

@
z t

@
x

s

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

xs

°100°75°50°25
0

25
50

75
100

y s

°100
°75
°50
°25

0
25

50
75

100

@
z s

0
@
x

s

0.96

0.98

1.00

1.02

1.04

xs

°100°75°50°25
0

25
50

75
100

y s

°100
°75
°50
°25

0
25

50
75

100

@
z s

1
@
x

s

°0.04

°0.02

0.00

0.02

0.04

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 3: Illustration of the gradients of both concatenation methods (a) Lorentz tangent concatenation (b)
Lorentz direct concatenation. (a1) & (b1) ∂zt

∂xs
; (a2) & (b2) ∂zs0

∂xs
; (a3) & (b3) ∂zs1

∂xs
.

of each block is illustrated in Figure 4. A d-dimensional input is fed into two different hyperbolic linear
layers, whose outputs are then concatenated by the Lorentz direct concatenation and the Lorentz tangent
concatenation, respectively. Then, the concatenated output further goes through another hyperbolic linear
layer whose output is again d-dimensional. Specifically, for l = 0, · · · , L− 1,

h
(l)
1 = Hlineard,d(x(l)), h

(l)
2 = Hlineard,d(x(l));

h(l) = HCat(h(l)
1 ,h

(l)
2); x(l+1) = Hlinear2×d,d(h(l)).

(46)

x(l)
<latexit sha1_base64="UYNBG1czpi7F7Dzb9zNd3qIO6uU=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDiJexGQY9BLx4jmAckMcxOepMhs7PLzKwYlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXeXHwuujet+Oyura+sbm7mt/PbO7t5+4eCwoaNEMayzSESq5VONgkusG24EtmKFNPQFNv3RzdRvPqLSPJL3ZhxjN6QDyQPOqLFS8+khLYmzSa9QdMvuDGSZeBkpQoZar/DV6UcsCVEaJqjWbc+NTTelynAmcJLvJBpjykZ0gG1LJQ1Rd9PZuRNyapU+CSJlSxoyU39PpDTUehz6tjOkZqgXvan4n9dOTHDVTbmME4OSzRcFiSAmItPfSZ8rZEaMLaFMcXsrYUOqKDM2obwNwVt8eZk0KmXvvFy5uyhWr7M4cnAMJ1ACDy6hCrdQgzowGMEzvMKbEzsvzrvzMW9dcbKZI/gD5/MH8hCPTw==</latexit>

HLinear1

HLinear2

h
(l)
1

<latexit sha1_base64="zhjWlyjcMxkikF6MEQD0h16MVBA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsh7VqyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8c3Mbz9RpVkk780kpr7AQ8lCRrCx0sOo7z2mZX4+7RdLbsWdA60SLyMlyNDoF796g4gkgkpDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lEguq/XR+8BSdWWWAwkjZkgbN1d8TKRZaT0RgOwU2I73szcT/vG5iwis/ZTJODJVksShMODIRmn2PBkxRYvjEEkwUs7ciMsIKE2MzKtgQvOWXV0mrWvFqlerdRal+ncWRhxM4hTJ4cAl1uIUGNIGAgGd4hTdHOS/Ou/OxaM052cwx/IHz+QMCP4/j</latexit>

h
(l)
2

<latexit sha1_base64="xeaVk6wJRYLtakWNyHDwFW+eBgk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsh7VqyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8c3Mbz9RpVkk780kpr7AQ8lCRrCx0sOoX31My/x82i+W3Io7B1olXkZKkKHRL371BhFJBJWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LJRZU++n84Ck6s8oAhZGyJQ2aq78nUiy0nojAdgpsRnrZm4n/ed3EhFd+ymScGCrJYlGYcGQiNPseDZiixPCJJZgoZm9FZIQVJsZmVLAheMsvr5JWteLVKtW7i1L9OosjDydwCmXw4BLqcAsNaAIBAc/wCm+Ocl6cd+dj0Zpzsplj+APn8wcDyY/k</latexit>

h(l)
<latexit sha1_base64="D2to97WhF6S0mLrGTSmiwFE+j1M=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgiWF20psMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7/FhwbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SxbDBIhGptk81Ci6xYbgR2I4V0tAX2PLHtzO/9YRK80g+mEmMvZAOJQ84o8ZKrdFjWhbn036x5FbcOcgq8TJSggz1fvGrO4hYEqI0TFCtO54bm15KleFM4LTQTTTGlI3pEDuWShqi7qXzc6fkzCoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQgUbgrf88ippViveRaV6f1mq3WRx5OEETqEMHlxBDe6gDg1gMIZneIU3J3ZenHfnY9Gac7KZY/gD5/MH2XCPPw==</latexit>

HLinear3Concat x(l+1)
<latexit sha1_base64="xMu7I/a5j0+R7QFjkOM9/+rlSbI=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJUhLJbBT0WvXisYD+kXUs2zbahSXZJsmJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dpaWV1bX1nMb+c2t7Z3dwt5+Q0eJIrROIh6pVoA15UzSumGG01asKBYBp81geD3xm49UaRbJOzOKqS9wX7KQEWysdP/0kJb4qXcy7haKbtmdAi0SLyNFyFDrFr46vYgkgkpDONa67bmx8VOsDCOcjvOdRNMYkyHu07alEguq/XR68BgdW6WHwkjZkgZN1d8TKRZaj0RgOwU2Az3vTcT/vHZiwks/ZTJODJVktihMODIRmnyPekxRYvjIEkwUs7ciMsAKE2MzytsQvPmXF0mjUvbOypXb82L1KosjB4dwBCXw4AKqcAM1qAMBAc/wCm+Ocl6cd+dj1rrkZDMH8AfO5w/MHo+/</latexit>

Figure 4: Illustration of the l-th block in the simple hyperbolic neural network.

In our test, we take d = 64. We sample input and output data from two wrapped normal distributions with
different means (input: origin o, output: E2H(164)) and variances (input: diag(164), output: 3 × diag(164)).
Taking the input as x(0), we fit x(L) to the output data. We record the average gradient norm of the three
hyperbolic linear layers in each block. The results for L = 64 blocks and L = 128 blocks are shown in Figure
5. Clearly, for the first 20 blocks, the Lorentz tangent concatenation leads to significantly larger gradient
norms. This difference in norms is clearer when the network is deeper. The gradients from the Lorentz direct
concatenation are much more stable.

22

Under review as submission to TMLR

0 10 20 30 40 50 60
Blocks

20

40

60

80

100

120

140

160

G
ra

di
en

t N
or

m

Lorentz Direct Concatenation
Lorentz Tangent Concatenation

(a)

0 20 40 60 80 100 120
Blocks

0

200

400

600

800

G
ra

di
en

t N
or

m

Lorentz Direct Concatenation
Lorentz Tangent Concatenation

(b)

Figure 5: Average gradient norm of each block in training. (a) 64 blocks. (b) 128 blocks.

C.4 Effect on Hyperbolic Distances

In this section, we perform additional analysis of Lorentz direct concatenation and Lorentz tangent concate-
nation, particularly their effect on hyperbolic distances.

Distances to Origin First, we study the hyperbolic distances to the hyperbolic origin for both con-
catenation methods. Suppose we have x ∈ Ln

K and y ∈ Lm
K . Let z = HCat(x,y) ∈ Ln+m−1

K and
z′ = HTCat(x,y) ∈ Ln+m−1

K be their hyperbolic direct concatenation and hyperbolic tangent concate-
nation, respectively. We compare the difference between dL(z,o) and dL(z′,o) as follows. Note that the
distance between an arbitrary point x ∈ Ln

K and the origin only depend on the time component:

dL(x,o) = 1√
−K

cosh−1(K⟨x,o⟩L) (47)

= 1√
−K

cosh−1(−Kxt). (48)

Hence, the distance information is completely contained the time component. After the concatenation, the
time component is

√
x2

t + y2
t + 1/K. Consequently, for Lorentz direct concatenation, the distance is

dL(z,o) = 1√
−K

cosh−1
(

−K
√
x2

t + y2
t + 1/K

)
. (49)

For Lorentz tangent concatenation, since both the logarithmic and exponential maps reserve the distances,
one has

dL(z′,o) =
√
dL(x,o)2 + dL(y,o)2

=
√

1
−K

(
cosh−2(−Kxt) + cosh−2(−Kyt)

)
.

(50)

Although the hyperbolic distance dL(z, o) is not the squared sum of dL(x,o) and dL(y,o), dL(z,o) is larger
than each of dL(x,o) and dL(y,o). On the other hand, after concatenation, d2

L(z′,o) = d2
L(x,o) +d2

L(y,o).
This relation agrees with the Euclidean concatenation. However, norm-preservation is not why concatenation
works in the Euclidean domain. Therefore, we don’t consider this as an advantage of the Lorentz tangent
concatenation. The Lorentz direct concatenation is more efficient and stable, and no information is lost
during concatenation. Therefore, it is still preferred as a neural layer.

Relative Distances More importantly, we study how concatenation changes the relative distances, which
is closely related to stability. Specifically, we perform the following experiments. Given x,y, c ∈ Ln

K ,

23

Under review as submission to TMLR

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Distance

0.0

0.2

0.4

0.6

0.8
Fr

eq
ue

nc
y

Direct
Tangent

0 1 2 3 4 5
Distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc

y

Direct
Tangent

Figure 6: Difference between concatenated distances and original distances with n = 3. Left: spatial normal.
Right: wrapped normal.

0.0 0.5 1.0 1.5 2.0 2.5
Distance

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fr
eq

ue
nc

y

Direct
Tangent

0 1 2 3 4 5 6
Distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fr
eq

ue
nc

y

Direct
Tangent

Figure 7: Difference between concatenated distances and original distances with n = 16. Left: spatial
normal. Right: wrapped normal.

let xc = HCat(x, c) be the direct-concatenated version of x and c, while yc = HCat(y, c) be the direct-
concatenated version of y and c. Similarly we denote x′

c = HTCat(x, c) and y′
c = HTCat(y, c). Since the

same vector c is attached to x and y, we naturally hope dL(xc,yc) and dL(x′
c,y

′
c) do not deviate much from

dL(x,y).

We describe our experiments as follows. Take K = −1. We randomly sample three points independently
from Ln

K as x, y and c respectively. We have two scenarios for sampling the points: (1) “spatial normal”: the
points are sampled so that their spatial components follow the standard normal distribution; (2) “wrapped
normal”: the points are sampled from the wrapped normal distribution with unit variance. In each scenario,
for n ∈ {3, 16, 64}, we do the experiments for 10,000 times. We report the distances |dL(xc,yc) − dL(x,y)|
and |dL(x′

c,y
′
c) − dL(x,y)| in Figures 6–8, as well as their differences in Figure 9.

Our experiments clearly show that, especially for large dimensions, the distance between dL(xc,yc) and
dL(x,y) is smaller than the distance between dL(x′

c,y
′
c) and dL(x,y). In particular, in many cases,

|dL(xc,yc) − dL(x,y)| is around zero. On the other hand, |dL(x′
c,y

′
c) − dL(x,y)| tend to be large when

n = 16, 64, especially when samples follow the wrapped normal distribution. From this result, the Lorentz
Direct Concatenation should be preferred to the Lorentz Tangent Concatenation. In particular, the signifi-
cant expansion of distance when concatenating with the same vector, in the case n = 64, may be one cause
of numerical instability.

24

Under review as submission to TMLR

0.0 0.5 1.0 1.5 2.0
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

Direct
Tangent

0 2 4 6 8
Distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fr
eq

ue
nc

y

Direct
Tangent

Figure 8: Difference between concatenated distances and original distances with n = 64. Left: spatial
normal. Right: wrapped normal.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Difference

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

Dim=64
Dim=16
Dim=3

8 6 4 2 0 2 4
Difference

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y

Dim=64
Dim=16
Dim=3

Figure 9: Illustration of |dL(xc,yc) − dL(x,y)| − |dL(x′
c,y

′
c) − dL(x,y)|. Left: spatial normal. Right:

wrapped normal.

D Additional Details in Hyperbolic GAN

D.1 Proof of Proposition 4.1

Proof. For the optimal solution f∗, we have

P(x,y)∼π

(
f∗(y) − f∗(x) = dL(y,x)

)
= 1. (51)

Let ψ(t) = f∗ (xt) − f∗(x), 0 ≤ t, t′ ≤ 1. Following Gulrajani et al. (2017), it is clear that ψ is dL(x,y)-
Lipschitz, and f∗(xt) − f∗(x) = ψ(t) = tdL(x,y), f∗(xt) = f∗(x) + tdL(x,y) = f∗(x) + t∥vt∥L.

Let ut = vt

dL(x,y) ∈ T Ln
K be the unit speed directional vector of the geodesic at point xt. Let α : [−1, 1] → Ln

K

be a differentiable curve with α(0) = xt and α′(0) = ut. Note that γ′(t) = dL(x,y)α′(0). Therefore,

lim
h→0

α(h) = lim
h→0

γ

(
t+ h

dL(x,y)

)
= lim

h→0
xt+ h

dL(x,y)
. (52)

25

Under review as submission to TMLR

The directional derivative can be thus calculated as

∇ut
f∗ (xt)

= d

dτ
f∗(α(τ))

∣∣∣∣
τ=0

= lim
h→0

f∗ (α(h)) − f∗ (α(0))
h

= lim
h→0

f∗
(

xt+ h
dL(x,y)

)
− f∗ (xt)

h

= lim
h→0

f∗ (x) + (t+ h
dL(x,y))dL(x,y) − f∗ (x) − tdL(x,y)

h

= lim
h→0

h

h
= 1.

(53)

Since f∗ is 1-Lipschitz, we have ∥∇f∗(xt)∥L ≤ 1. This implies

1 ≥ ∥∇f∗(x)∥2
L

= ⟨ut,∇f∗ (xt)⟩2
L + ∥∇f∗ (xt) − ⟨ut,∇f∗ (xt)⟩ ut∥2

L

= |∇utf
∗ (xt)|2 + ∥∇f∗ (xt) − ut∇utf

∗ (xt)∥2
L

= 1 + ∥∇f∗ (xt) − ut∥2
L ≥ 1.

(54)

Therefore, we have 1 = 1 + ∥∇f∗ (xt) − ut∥2
L, ∇f∗ (xt) = ut. This yields ∇f∗ (xt) = vt

dL(x,y) .

D.1.1 Toy Distribution Generation

We use a set of challenging toy 2D distributions explored by Rozen et al. (2021) to test the effectiveness of the
hyperbolic GAN. We create the dataset in the same way using their code1. For our experiment, the training
data are prepared in the following manner. We first sample 5,000 points from the toy 2D distributions and
scale the coordinates to [−1, 1]. Then, we use the E2H operation (37) to map the points to the hyperbolic
space. These points are treated as the input data of the hyperbolic GAN. Next, we use the hyperbolic GAN
to learn the hyperbolic toy distributions. The generator and the critic both contain 3 layers of hyperbolic
linear layers and 64 hidden dimensions at each layer. The input dimension for the generator is 128.

After we train the hyperbolic GAN, we sample from it and compare with the input data. Note that the
input data and the generated samples are both in the hyperbolic space. To illustrate them, we map both the
input data and the generated samples to the tangent space of the origin by applying the logarithmic map.
We present the mapped input data and generated samples in Figure 10. Clearly, the hyperbolic GAN can
faithfully represent the challenging toy distributions in the hyperbolic space.

Figure 10: Input data and generated samples from the hyperbolic GAN. The hyperbolic data points are
transformed to the tangent space of the origin by the logarithmic map.

1https://github.com/noamroze/moser_flow

26

https://github.com/noamroze/moser_flow

Under review as submission to TMLR

0 10 20 30 40 50 60 70
Epochs

100
75
50
25

0
25
50
75

100

Lo
ss

Generator Loss
Critic Loss

0 10 20 30 40 50 60 70
Epochs

350

300

250

200

150

100

50

0

Lo
ss

Generator Loss
Critic Loss

Figure 11: The training loss of generator and critic in the MNIST generation task. Left: hyperbolic Wasser-
stein GAN. Right: Euclidean Wasserstein GAN.

Figure 12: MNIST samples generated from HAEGAN.

E MNIST Generation Experiment

We train a HAEGAN with the MNIST dataset (LeCun et al., 2010). This serves as an important sanity
check given the promise of using hyperbolic models for vision tasks (Mathieu et al., 2019; Nagano et al.,
2019; Bose et al., 2020). We obverse faithfully generated examples.

E.1 Experimental Settings

Architecture In the HAEGAN for generating MNIST, the encoder of the AE consists of three convolu-
tional layers, followed by an E2H layer and three hyperbolic linear layers, while the decoder consists of three
hyperbolic linear layers, a logarithmic map to the Euclidean space, and three deconvolutional layers.

Dataset The MNIST (LeCun et al., 2010) (Modified National Institute of Standards and Technology)
dataset is a widely used and well-known database of handwritten digits. It contains 60,000 training images
and 10,000 test images of handwritten digits, 0 through 9. The images in the MNIST database are 28x28
pixels in size and are grayscale images.

Training We describe the training procedures as follows. Firstly, we normalize the MNIST dataset and
train the AE by minimizing the reconstruction loss. Secondly, we use the encoder to embed the MNIST
in hyperbolic space and train the hyperbolic GAN with the hyperbolic embedding. Finally, we sample a
hyperbolic embedding using the generator and use it to produce an image by applying the decoder.

The training curves of the hyperbolic GAN of HAEGAN in the MNIST generation task are shown in Figure
11, which we compare with an Euclidean Wasserstein GAN. The critic loss includes the gradient penalty
term. We observe that the trend of loss in the hyperbolic GAN is similar to the Euclidean one (both the
generator and critic) and no instability from the hyperbolic model.

27

Under review as submission to TMLR

Table 3: Quantitative comparison between HAEGAN and other methods in the MNIST generation task.
Log Likelihood (±std) for different embedding dimensions is reported. We use 5000 samples to estimate the
log-likelihood. ⋆ indicates numerically unstable settings.

Model Dimensionality
2 5 10 20

N -VAE (Mathieu et al., 2019) -144.5±0.4 -114.7±0.1 -100.2±0.1 -97.6±0.1
P-VAE (Wrapped) (Mathieu et al., 2019) -143.8±0.6 -114.7±0.1 -100.0±0.1 -97.1±0.1

P-VAE (Riemannian) (Mathieu et al., 2019) -142.5±0.4 -114.1±0.2 -99.7±0.1 -97.0±0.1
Vanilla VAE (Nagano et al., 2019) -140.45±0.47 -105.78±0.51 -86.25±0.52 -77.89±0.36

Hyperbolic VAE (Nagano et al., 2019) -138.61±0.45 -105.38±0.61 -86.40±0.28 -79.23±0.20
AEGAN (Ours) -141.13±0.49 -111.41±0.48 -97.83±0.37 -90.18±0.41

HAEGAN (Ours) -140.24±0.55 -111.29±0.59 -98.15±0.41 -91.37±0.39
2 4 6

N -VAE (Bose et al., 2020) -139.5±1.0 -115.6±0.2 -100.0±0.02
H-VAE (Bose et al., 2020) NaN -113.7±0.9 -99.8±0.2

N C (Bose et al., 2020) -139.2±0.4 -115.2±0.6 -98.70.3
T C (Bose et al., 2020) NaN -112.5±0.2 -99.3±0.2

WHC (Bose et al., 2020) -136.5±2.1 -112.8±0.5 -99.4±0.2

Table 4: Quantitative comparison between HAEGAN and HGAN (Lazcano et al., 2021) in the MNIST
generation task. Fréchet inception distance (±std) is reported. Results for (Lazcano et al., 2021) are taken
directly from the paper.

Model FID

HGAN (Lazcano et al., 2021) 54.95
HWGAN (Lazcano et al., 2021) 12.50
HCGAN (Lazcano et al., 2021) 12.43
HAEGAN (Ours) 8.05±0.37

E.2 Results

We present some generated samples in Figure 12. In Table 3 and Table 4, we report the quantitative results
for the MNIST generation task. First, we compare the negative log-likelihood (NLL) results between our
method and hyperbolic VAEs (Mathieu et al., 2019; Nagano et al., 2019; Bose et al., 2020). The results
are directly taken from the respective papers, which were produced from different numbers of samples: in
Nagano et al. (2019), the NLL is calculated with 500 samples, while Mathieu et al. (2019) used 3,000 samples.
We generate 5,000 samples and compare the NLL with them. Then, we also calculate the FID and compare
it with HGAN (Lazcano et al., 2021). Our NLL results are comparable with the hyperbolic VAEs while FID
is slightly better than HGAN.

F Additional Details on Experiments

F.1 Experiment Details for MNIST Generation

We describe the detailed architecture for the MNIST Generation experiment.

F.1.1 Architecture Details of Auto-Encoder

Encoder

• Input: MNIST image with dimension (28 × 28)

28

Under review as submission to TMLR

• Convolutional Neural Network Encoder

– Convolutional layer
∗ Input channel: 1
∗ Output channel: 8
∗ Kernel Size: 3
∗ Stride: 2
∗ Padding: 1

– Leaky ReLU (0.2)
– Convolutional layer

∗ Input channel: 8
∗ Output channel: 16
∗ Kernel Size: 3
∗ Stride: 2
∗ Padding: 1

– Batch normalization layer (16)
– Leaky ReLU (0.2)
– Convolutional layer

∗ Input channel: 16
∗ Output channel: 32
∗ Kernel Size: 3
∗ Stride: 2
∗ Padding: 0

– Batch normalization layer (32)
– Leaky ReLU (0.2)
– Convolutional layer

∗ Input channel: 32
∗ Output channel: 64
∗ Kernel Size: 3
∗ Stride: 2
∗ Padding: 0

• Map to hyperbolic space: R64 → L64
K

• Hyperbolic linear layers:

– Input dimension: 64
– Hidden dimension: 64
– Depth: 3
– Output dimension: 64

• Output: hyperbolic embeddings in L64
K

Decoder

• Input: hyperbolic embeddings in L64
K

• Hyperbolic linear layers:

– Input dimension: 64
– Hidden dimension: 64
– Depth: 3
– Output dimension: 64

29

Under review as submission to TMLR

• Map to Euclidean space: L64
K → R64

• Transposed Convolutional Neural Network Decoder
– Transposed Convolutional layer

∗ Input channel: 64
∗ Output channel: 64
∗ Kernel Size: 3
∗ Stride: 1
∗ Padding: 0
∗ Output Padding: 0

– Batch normalization layer (64)
– Leaky ReLU (0.2)
– Transposed Convolutional layer

∗ Input channel: 64
∗ Output channel: 32
∗ Kernel Size: 3
∗ Stride: 2
∗ Padding: 0
∗ Output Padding: 0

– Batch normalization layer (32)
– Leaky ReLU (0.2)
– Transposed Convolutional layer

∗ Input channel: 32
∗ Output channel: 16
∗ Kernel Size: 3
∗ Stride: 2
∗ Padding: 1
∗ Output Padding: 1

– Batch normalization layer (16)
– Leaky ReLU (0.2)
– Transposed Convolutional layer

∗ Input channel: 16
∗ Output channel: 1
∗ Kernel Size: 3
∗ Stride: 2
∗ Padding: 1
∗ Output Padding: 1

• Output: Reconstructed MNIST image with dimension (28 × 28)

Hyperparameters

• Manifold curvature: K = −1.0

• For all hyperbolic linear layers:
– Dropout: 0.0
– Use bias: True

• Optimizer: Riemannian Adam (β1 = 0.9, β2 = 0.9)

• Learning Rate: 1e-4

• Batch size: 32

• Number of epochs: 20

30

Under review as submission to TMLR

F.1.2 Architecture Details of Hyperbolic Generative Adversarial Network

Generator

• Input: points in L128
K sampled from G(o,diag(1128))

• Hyperbolic linear layers:

– Input dimension: 128
– Hidden dimension: 64
– Depth: 3
– Output dimension: 64

• Output: points in L64
K

Critic

• Input: points in L64
K

• Hyperbolic linear layers:

– Input dimension: 3
– Hidden dimension: 64
– Depth: 3
– Output dimension: 64

• Hyperbolic centroid distance layer: L64
K → R

• Output: score in R

Hyperparameters

• Manifold curvature: K = −1.0

• Gradient penalty coefficient: λ = 10

• For all hyperbolic linear layers:

– Dropout: 0.0
– Use bias: True

• Optimizer: Riemannian Adam (β1 = 0, β2 = 0.9)

• Learning Rate: 1e-4

• Batch size: 64

• Number of epochs: 20

• Gradient penalty λ: 10

F.2 Experiment Details for Random Tree Generation

We describe the detailed architecture and settings for the tree generation experiments.

31

Under review as submission to TMLR

F.2.1 Architecture Details of Hyperbolic Tree Encoder-Decoder

Tree Encoder

• Input: tree

• Hyperbolic GCN layers:

– Input dimension: 1
– Hidden dimension: 32
– Depth: 2
– Output dimension: 32

• Hyperbolic centroid on all vertices

• Output: tree embedding in L32
K

Tree Decoder

• Input: tree embedding in L32
K

• Message passing RNN:

– Input: node feature of current tree node, inward messages
– Hyperbolic linear layer on inward messages: L32

K → L32
K

– Hyperbolic centroid on inward messages
– Hyperbolic linear layer: L32

K → L32
K

– Output dimension: 32

• Topological Prediction:

– Input: tree embedding, inward messages
– Hyperbolic linear layer on inward messages: L32

K → L32
K

– Hyperbolic centroid on inward messages
– Lorentz Direct concatenation on inward message and tree embedding: L32

K → L64
K

– Hyperbolic linear layer: L64
K → L32

K

– Hyperbolic centroid distance layer: L32
K → R2

– Softmax on output
– Output dimension: 2

• Output: tree

Hyperparameters

• Manifold curvature: K = −1.0

• For all hyperbolic linear layers:

– Dropout: 0.0
– Use bias: True

• Optimizer: Riemannian Adam (β1 = 0.0, β2 = 0.999)

• Learning rate: 5e-3

• Learning rate scheduler: StepLR (step = 20000, γ = 0.5)

• Batch size: 32

• Number of epochs: 20

32

Under review as submission to TMLR

F.2.2 Architecture Details of Hyperbolic Generative Adversarial Network

Generator

• Input: points sampled from wrapped normal distribution G(o,diag(116)) in L16
K

• Hyperbolic linear layers for tree embedding:

– Input dimension: 16
– Hidden dimension: 32
– Depth: 2
– Output dimension: 32

• Output: tree embedding in L32
K

Critic

• Input: tree embedding in L32
K

• Hyperbolic linear layers for tree embedding:

– Input dimension: 32
– Hidden dimension: 32
– Depth: 2
– Output dimension: 32

• Hyperbolic centroid distance layer: L32
K → R

• Output: score in R

Hyperparameters

• Manifold curvature: K = −1.0

• Gradient penalty coefficient: λ = 10

• For all hyperbolic linear layers:

– Dropout: 0.1
– Use bias: True

• Optimizer: Riemannian Adam (β1 = 0, β2 = 0.9)

• Learning Rate: 1e-4

• Batch size: 64

• Number of epochs: 20

• Gradient penalty λ: 10

F.3 Experiment Details for Molecular Generation

We describe the detailed architecture and settings for the molecular generation experiments.

33

Under review as submission to TMLR

F.3.1 Architecture Details of Hyperbolic Junction Tree Encoder-Decoder

Graph Encoder

• Input: graph node features in R35

• Map features to hyperbolic space: R35 → L35
K

• Hyperbolic GCN layers:

– Input dimension: 35
– Hidden dimension: 256
– Depth: 4
– Output dimension: 256

• Hyperbolic centroid on all vertices

• Output: graph embedding in L256
K

Tree Encoder

• Input: junction tree features in R828

• Hyperbolic embedding layer: R828 → L256
K

• Hyperbolic GCN layers:

– Input dimension: 256
– Hidden dimension: 256
– Depth: 4
– Output dimension: 256

• Hyperbolic centroid on all vertices

• Output: tree embedding in L256
K

Tree Decoder

• Input: tree embedding in L256
K

• Message passing RNN:

– Input: node feature of current tree node, inward messages
– Hyperbolic linear layer on inward messages: L256

K → L256
K

– Hyperbolic centroid on inward messages
– Hyperbolic embedding layer on node feature: R828 → L256

K

– Lorentz Direct concatenation on node feature and inward message: L256
K → L512

K

– Hyperbolic linear layer: L512
K → L256

K

– Output dimension: 256

• Topological Prediction:

– Input: tree embedding, node feature of current tree node, inward messages
– Hyperbolic linear layer on inward messages: L256

K → L256
K

– Hyperbolic centroid on inward messages
– Hyperbolic embedding layer on tree feature: R828 → L256

K

34

Under review as submission to TMLR

– Lorentz Direct concatenation on node feature, inward message, and tree embedding: L256
K →

L768
K

– Hyperbolic linear layer: L768
K → L256

K

– Hyperbolic centroid distance layer: L256
K → R2

– Softmax on output
– Output dimension: 2

• Label Prediction:

– Input: tree embedding, outward messages
– Lorentz Direct concatenation on outward message, and tree feature: L256

K → L512
K

– Hyperbolic linear layer: L512
K → L256

K

– Hyperbolic centroid distance layer: L256
K → R828

– Softmax on output
– Output dimension: 828

• Output: junction tree

Graph Decoder

• Input: junction tree, tree message, and graph embedding

• Construction candidate subgraphs

• Hyperbolic graph convolution layers on all subgraphs:

– Input dimension: 256
– Hidden dimension: 256
– Depth: 4
– Output dimension: 256

• Hyperbolic centroid on vertices of all subgraphs

• Lorentz Direct concatenation on subgraph embedding and graph embedding: L256
K → L512

K

• Hyperbolic linear layer: L512
K → L256

K

• Hyperbolic centroid distance layer: L256
K → R

• Use subgraph score to construct molecular graph

• Output: molecular graph

Hyperparameters

• Manifold curvature: K = −1.0

• For all hyperbolic linear layers:

– Dropout: 0.0
– Use bias: True

• Optimizer: Riemannian Adam (β1 = 0.0, β2 = 0.999)

• Learning rate: 5e-4

• Learning rate scheduler: StepLR (step = 20000, γ = 0.5)

• Batch size: 32

• Number of epochs: 20

35

Under review as submission to TMLR

F.3.2 Architecture Details of Hyperbolic Generative Adversarial Network

Generator

• Input: points sampled from wrapped normal distribution G(o,diag(1128)) in L128
K

• Hyperbolic linear layers for graph embedding:

– Input dimension: 128
– Hidden dimension: 256
– Depth: 3
– Output dimension: 256

• Hyperbolic linear layers for tree embedding:

– Input dimension: 128
– Hidden dimension: 256
– Depth: 3
– Output dimension: 256

• Output: graph embedding and tree embedding in L128
K

Critic

• Input: graph embedding and tree embedding in L128
K

• Hyperbolic linear layers for graph embedding:

– Input dimension: 256
– Hidden dimension: 256
– Depth: 2
– Output dimension: 256

• Hyperbolic linear layers for tree embedding:

– Input dimension: 256
– Hidden dimension: 256
– Depth: 2
– Output dimension: 256

• Lorentz Direct concatenation on graph embedding and tree embedding: L256
K → L512

K

• Hyperbolic linear layer: L512
K → L256

K

• Hyperbolic centroid distance layer: L256
K → R

• Output: score in R

Hyperparameters

• Manifold curvature: K = −1.0

• Gradient penalty coefficient: λ = 10

• For all hyperbolic linear layers:

– Dropout: 0.1
– Use bias: True

36

Under review as submission to TMLR

• Optimizer: Riemannian Adam (β1 = 0, β2 = 0.9)

• Learning Rate: 1e-4

• Batch size: 64

• Number of epochs: 20

• Gradient penalty λ: 10

37

Under review as submission to TMLR

G Molecule Examples

We show a subset of molecule examples generated by HAEGAN.

Figure 13: Molecule examples generated by HAEGAN.

38

	Introduction
	Background
	Hyperbolic Geometry
	Hyperbolic Neural Operations

	Lorentz Concatenation
	Motivation and Definition
	Advantage of Lorentz Direct Concatenation

	Hyperbolic Auto-Encoder Generative Adversarial Networks
	Architecture of HAEGAN
	Hyperbolic GAN
	Architecture of HGAN
	Hyperbolic Wasserstein GAN and Gradient Penalty

	Hyperbolic AE

	Experiments
	Random Tree Generation
	Model Architecture
	Experimental Settings
	Results

	De Novo Molecular Generation
	Model Architecture
	Experimental Settings
	Results

	Conclusion and Limitations
	Preliminaries
	Hyperbolic Geometry
	Additional Hyperbolic Neural Operations
	Hyperbolic Aggregation Operations
	Hyperbolic Graph Neural Network
	Hyperbolic-Euclidean Conversion Layers

	Related Works
	Additional Analysis of Concatenation
	Proof of Theorem 3.1
	Numerical Validation of Theorem 3.1
	Empirical Validation of Theorem 3.1
	Effect on Hyperbolic Distances

	Additional Details in Hyperbolic GAN
	Proof of Proposition 4.1
	Toy Distribution Generation

	MNIST Generation Experiment
	Experimental Settings
	Results

	Additional Details on Experiments
	Experiment Details for MNIST Generation
	Architecture Details of Auto-Encoder
	Architecture Details of Hyperbolic Generative Adversarial Network

	Experiment Details for Random Tree Generation
	Architecture Details of Hyperbolic Tree Encoder-Decoder
	Architecture Details of Hyperbolic Generative Adversarial Network

	Experiment Details for Molecular Generation
	Architecture Details of Hyperbolic Junction Tree Encoder-Decoder
	Architecture Details of Hyperbolic Generative Adversarial Network

	Molecule Examples

