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ABSTRACT

Understanding 3D scenes requires flexible combinations of visual reasoning tasks,
including depth estimation, novel view synthesis, and object manipulation, all of
which are essential for perception and interaction. Existing approaches have typ-
ically addressed these tasks in isolation, preventing them from sharing a common
representation or transferring knowledge across tasks. A conceptually simpler
but practically non-trivial alternative is to unify these diverse tasks into a single
model, reducing different tasks from separate training objectives to merely dif-
ferent prompts and allowing for joint training across all datasets. In this work,
we present a physical world model for unified 3D understanding and interaction
(3WM), formulated as a probabilistic graphical model in which nodes represent
multimodal scene elements such as RGB, optical flow, and camera pose. Diverse
tasks emerge from different inference pathways through the graph: novel view
synthesis from RGB and dense flow prompts, object manipulation from RGB and
sparse flow prompts, and depth estimation from RGB and camera conditioning, all
zero-shot without task-specific training. 3WM outperforms specialized baselines
without the need for finetuning by offering precise controllability, strong geomet-
ric consistency, and robustness in real-world scenarios, achieving state-of-the-art
performance on NVS and 3D object manipulation. Beyond predefined tasks, the
model supports composable inference pathways, such as moving objects aside
while navigating a 3D environment, enabling complex geometric reasoning. This
demonstrates that a unified model can serve as a practical alternative to fragmented
task-specific systems, taking a step towards a general-purpose visual world model.

1 INTRODUCTION

Understanding 3D scenes from visual data is a fundamental challenge in computer vision and an
important step toward building world models that support real-world interaction. Holistic 3D under-
standing requires perceiving visible surfaces and reasoning about hidden geometry in a physically
consistent way. For example, to grasp a toy or a cat one must infer the back or underside that is not
directly visible. An agent navigating a cluttered hallway must estimate depth for free space, rea-
son about occluded structure, and manipulate objects to move them out of the way when necessary.
These scenarios highlight that 3D perception depends on flexible combinations of reasoning modes,
and that a general vision model capturing this broader structure can provide a stronger foundation
than systems designed narrowly around specific benchmarks.

Three essential components of 3D understanding are depth estimation, novel view synthesis, and
object manipulation, as they collectively capture the challenges of perceiving geometry, inferring
unseen views, and reasoning about dynamic interactions. Existing approaches address these tasks in-
dependently within specific frameworks and finetuned on narrow datasets, which leaves each model
with its own limitations. Depth models cannot infer occluded regions Yang et al. (2024); Wang et al.
(2024a), novel view synthesis methods struggles with geometric consistency and precise control
Sargent et al. (2023); Yu et al. (2024), object manipulation models Pandey et al. (2024); Wu et al.
(2024) allow localized editing but do not extend to scene-level reasoning, and none of them can
flexibly handle tasks that they were not optimized for. An alternative is to adopt a unified frame-
work that trains on a superset of all tasks together, free from fixed input–output designs and dataset
constraints. In such a framework, supervision from diverse tasks and datasets may shape a repre-
sentation grounded in the physical scene, enabling knowledge transfer across tasks and supporting
robust generalization.
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Unifying the diverse components of 3D understanding into a single model that works robustly in
real-world scenarios is difficult because it requires both flexibility and controllability. Most previ-
ous approaches are restricted to a single form of input and output, for example mapping RGB images
to depth, and therefore cannot flexibly support the diverse queries that arise in 3D understanding.
Additionally, achieving strong controllability in generative models has been challenging, motivating
extensive research on incorporating additional conditioning signals and architectural modifications
to better steer the generation process, most notably exemplified by ControlNet Zhang et al. (2023).
Yet reliably enforcing such controls in vision models remains unsolved, particularly for 3D under-
standing tasks, where outputs often deviate from the intended specification or or show distortions
in object and scene appearance despite ongoing efforts to address these issues Zhou et al. (2025);
Shi et al. (2024). These limitations motivate the need for a new general framework that unifies tasks
through flexible prompting while ensuring precise geometric control and physical consistency.

In this work, we propose a physical world model for 3D understanding (3WM) that provides a
unified framework supporting diverse inference pathways while remaining precisely controllable.
We formulate the model as a probabilistic graphical model (PGM) in which nodes represent multi-
modal scene elements such as RGB patches, optical flow patches, and camera pose. The graphical
model formulation allows for traversal across modalities and spatial locations, making it possible
to construct flexible inference pathways guided by conditioning. Queries are represented explicitly
as tokens rather than being hidden in auxiliary modules, providing a unified physical prompting in-
terface. To make this PGM practical and scalable, we formulate it as an autoregressive next token
predictor, enabling efficient training and inference on large-scale data. This framework enables the
model to integrate knowledge across tasks and modalities and develop a coherent understanding of
the 3D world.

With this design, tasks such as novel view synthesis, object manipulation, and depth estimation
emerge naturally within the same system as different forms of zero-shot causal inference rather than
as predefined objectives. Through extensive evaluation, we find that our model achieves precise
controllability, strong geometric consistency, and robustness in real-world scenarios, outperforming
specialized baselines in NVS and 3D object manipulation. Moreover, the model supports flexible
geometric reasoning, including joint object manipulation with NVS, complex egocentric navigation,
revealing occluded geometry by removing attached objects, and handling depth uncertainty, all of
which are required for reliable interaction and navigation in complex real-world 3D environments.
These results suggest that 3WM develops a strong 3D understanding of the world and opens the
possibility of tackling a wide range of 3D vision problems within a single framework, taking a step
toward general purpose visual world models.

Our work makes the following core contributions to unified physical world modeling.

• We introduce 3WM, a unified physical world model that represents RGB, optical flow, and
camera pose within a single generative autoregressive framework equipped with a shared
physical prompting interface.

• We propose a local random access sequence formulation that allows the model to condition
on, query, and update arbitrary spatial regions, enabling flexible inference pathways in
which modalities and spatial locations can be decoded in any order within a GPT-style
autoregressive transformer.

• 3WM performs novel view synthesis, 3D object manipulation, and self-supervised depth
estimation in a zero-shot manner while achieving state-of-the-art performance on real-
world benchmarks.

• The model further supports flexible geometric reasoning capabilities, including composi-
tional camera and object motion, amodal completion, and reasoning about depth uncer-
tainty.

2 RELATED WORKS

Novel View Synthesis (NVS) has been widely studied as a fundamental task in 3D vision.
Regression-based methods Yu et al. (2021); Charatan et al. (2024); Kulhánek et al. (2022); Saj-
jadi et al. (2022) perform well for view interpolation but yield blurry reconstructions in unobserved
regions. This leads to a shift toward generative models, mostly diffusion-based methods, which
enable high-quality and diverse NVS. Zero-1-to-3 Liu et al. (2023), trained on large-scale synthetic
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datasets Deitke et al. (2023); Chang et al. (2015), predicts novel views from a single image us-
ing implicit camera conditioning. ZeroNVS Sargent et al. (2023) integrates Zero-1-to-3’s approach
with a score distillation sampling framework Poole et al. (2022), and extends the application to
real-world scenes. Other approaches, such as MotionCtrl Wang et al. (2024c), inject camera em-
beddings to guide video diffusion without explicit 3D representations. ViewCrafter Yu et al. (2024)
utilized point-cloud rendering using DUSt3R Wang et al. (2024a) for improved performance with
better camera motion control. SEVA Zhou et al. (2025) handles diverse novel view synthesis tasks
and produces temporally consistent samples and long videos without requiring 3D distillation. In
this work, we explore autoregressive sequence modeling for the NVS problem as an alternative to
diffusion-based approaches to overcome the limitations of previous works.

3D Object Manipulation While NVS focuses on generating novel views of the input scene, object
manipulation refers to the task of transforming objects in the scene while keeping the camera fixed.
Drag-based image editing methods Wang et al. (2024c); Wu et al. (2024); Shi et al. (2024); Yin
et al. (2023) aim to solve this problem by parameterizing object transforms as 2D motion vectors
which are then used as conditioning to fine-tune stable diffusion (SD) Rombach et al. (2022). These
methods can be naturally extended to more complex 3D transforms by incorporating depth infor-
mation into the drag vectors Wang et al. (2024b). Another class of models Pandey et al. (2024);
Koo et al. (2025), performs 3D object manipulations by editing input depth maps according to the
desired object transform and utilizing a depth-conditioned diffusion model to generate the edited
image. However, these methods heavily rely on inverting the input image into the SD latent space,
which often fails on real-world images Mokady et al. (2023).

General Motion Control Recently, several works that have shown that motion-conditioned diffu-
sion models can be used to perform sophisticated image manipulations. Geng et al. (2024); Koroglu
et al. (2024); Jin et al. (2025) trains a spatio-temporal trajectory-conditioned control net on top of
a large video diffusion model Bar-Tal et al. (2024). The model demonstrates emergent capabilities
such as object and camera control and drag-based image editing and motion transfer. Another set
of recent work Gu et al. (2025); Zhang et al. (2024); Feng et al. (2024) uses 3D point trajectories
providing more powerful control over image generation. However, they have not shown the robust
and precise control in the real-world scenarios through extensive evaluations. It is also worth noting
that our approach is in the same spirit as sequential generative modeling frameworks such as Bai
et al. (2024), which can perform various perception and generation tasks using visual prompts. Our
approach goes further by enabling random access for scalability, incorporating non-visual queries
such as camera pose, and providing precise controllability for 3D tasks.

Language-Driven Semantic 3D Understanding Recent multimodal 3D LLMs, such as Inst3D-
LMM Yu et al. (2025), Video-3D LLM Zheng et al. (2025), PointLLM Xu et al. (2024), and
SceneLLM Fu et al. (2024), focus on semantic reasoning over pre-reconstructed 3D inputs, address-
ing tasks including 3D dense captioning, visual grounding, and question answering. These models
interpret an already constructed 3D scene rather than inferring physical geometry from images or
predicting how future observations change under camera or object motion. Their goals, inputs, and
evaluation settings therefore differ fundamentally from our formulation, which centers on learning
physical 3D structure and transformations directly from 2D observations.

3 METHODS

We first introduce 3WM as a probabilistic graphical model Ψ over RGB, optical flow, and camera
pose, represented using strictly local HLQ patch codes. We then describe how these variables are
serialized into a Local Random Access Sequence (LRAS) of pointer–value tokens, which allows Ψ
to learn conditional predictions over arbitrary nodes in the graph. Building on this formulation, we
next present our flexible inference pathways, with optical flow acting as a controllable intermediate
representation. Finally, we show how these pathways enable zero-shot prompts for 3D tasks, includ-
ing camera driven flow prediction for depth from motion, dense flow conditioning for novel view
synthesis, and object specific flow fields for 3D object manipulation.

3.1 LEARNING A PROBABILISTIC GRAPHICAL MODEL VIA LOCAL RANDOM ACCESS
SEQUENCE MODELING

We introduce a unified, precisely controllable world model, that treats visual data as nodes in a
Probabilistic Graphical Model (PGM) Koller & Friedman (2009). To efficiently implement such
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Figure 1: Local random access sequence modeling. Our modeling framework has three key com-
ponents: (a) a local patch quantizer trained based on a small convolutional autoencoder; (b) a video
serialization process based on a ”pointer-content representation”, which allows arbitrary ordering
of the patches during training and generation; and (c) an LLM-like autoregressive transformer to
predict the contents of the next patch, trained in random sequence order.

a model we formulate it as a GPT-style next token predictor, through the use of two key innova-
tions: (i) a local quantizer that preserves strict patch independence, and (ii) pointer tokens that allow
random-access encoding/decoding. Together they let us phrase a wide range of geometric tasks as
LLM-style prompts—without task-specific heads, losses, or datasets—while maintaining precise,
patch-level control.

Probabilistic Graphical Modeling. We construct a learnable PGM (Ψ) over local visual variables
(e.g., RGB or flow patches) and global control variables (e.g., camera pose). Each variable is as-
signed a unique pointer address (spatiotemporal patch index) from the set P and contains a value
from the discrete codebook V . We model the function Ψ, which takes as input X—the set of vari-
ables (pointer-value pairs) observed so far—and an as-of-yet unobserved pointer p from the set P ,
and outputs the distribution over possible values for node p from the codebook V . For example, X
might contain all patches from the current frame plus a sparse subset from the next frame, while p
could be any masked patch in the next frame that Ψ must predict from this partial observation.

Ψ : (X, p /∈ dom(X)) 7→ {Pr[(p, v) |X] : v∈V }.

This enables the model to predict the distribution over values at any node and sample values either
simultaneously or through autoregressive sampling, effectively populating all nodes in the graph.

Sequence formulation with pointers. To learn these conditionals efficiently, we serialize
pointer-structured data as an interleaved sequence of pointer and content tokens (p0, v0, p1, v1, . . . )
and train a causal autoregressive transformer:

Ψ(X, p) ≡ Pr
[
vk

∣∣ p0, v0, . . . , pk−1, vk−1, pk
]
.

Pointer tokens remove raster-order bias and enable random access: the next pointer can be pre-
dicted or provided as conditioning. Thus, decoding order itself becomes a controllable traversal of
PGM nodes, supporting fully sequential, fully parallel, or hybrid schedules, while keeping a single
next-token objective. This recasts learning a high-dimensional PGM as standard GPT-style training
on many random traversals.

Strict locality via HLQ. Instead of compressing an entire frame into global codes, we use a Hier-
archical Local Quantizer (HLQ), a convolutional autoencoder whose receptive field is restricted to
each patch, ensuring strict locality during encoding. Each patch is encoded into a short sequence
of four codes, where the first provides a coarse preview and the remaining codes progressively add
fine detail. This property ensures that local interventions such as masking, overwriting, or resam-
pling individual patches behave in a predictable way. Moreover, the resulting code structure makes
the autoregressive modeling objective better aligned with natural language modeling assumptions of
conditional independence, enabling tractable factorization and controllable local edits (see Figure 1).

We evaluate the contribution of the local random access sequence design through an ablation study
provided in Appendix A.1. Further details on datasets, filtering, and training of 3WM are provided
in Appendix A.2.

3.2 FLEXIBLE INFERENCE PATHWAYS

Optical flow as a control surface. Optical-flow patches serve as a powerful control mechanism
within our PGM, providing an explicit representation of motion that users can directly manipulate.

4
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Figure 2: Flexible inference pathways across modalities. Our framework allows us to flexibly
construct inference pathways for 3D scene understanding. Using optical flow tokens as conditioning,
the model performs image editing by generating the next RGB frame. Conversely, when optical flow
tokens serve as the prediction target, the model enables depth estimation by predicting the next flow
field from a single RGB image and in-plane camera motion input.

We adopt the causal ordering [RGB, C ]→ Flow → RGB in our sequences, where flow acts as an
intermediate action space: each patch specifies what moves and by how much at that spatial location.
This design enables users to provide sparse or dense flow constraints to guide generation, with
appearance synthesis and disocclusion resolution emerging naturally from the RGB predictions that
follow.

With this flexible design, we realize several inference pathways using the same model:

• Ψ(RGB0, F0→1) → RGB1: Dense flow-controlled RGB prediction—given an input image
and a pre-defined dense flow field (motion instructions), render the next frame.

• Ψ(RGB0, Fsparse) → F0→1: Sparse-to-dense flow completion—given an input image
and sparse flow seeds, complete a dense flow field. Can be composed with dense flow-
controlled RGB prediction to enable object removal and localized edits.

• Ψ(RGB0, Cin-plane) → F0→1: Camera-controlled flow prediction—given an input image
and camera translation, obtain the globally-induced flow field. Can be utilized for depth
estimation via induced parallax.

Each inference pathway represents a different conditional query Ψ(X, p) over the same underlying
joint distribution, where we condition on different subsets of nodes (RGB, flow, or camera) and
sample the remaining. The task itself is defined entirely by which nodes we choose to observe
versus predict: dense flow conditioning yields motion control, sparse flow yields completion, and
camera conditioning yields structure-from-motion. This PGM formulation eliminates the need for
task-specific architectures; instead, diverse capabilities emerge as different paths through the graph.
The effectiveness of optical flow as an intermediate representation is validated in Appendix A.1.

3.3 ZERO-SHOT PROMPTS FOR 3D TASKS

Novel view synthesis Novel view synthesis can be performed with the Ψ(RGB0, F0→1) → RGB1

inference pathway, by conditioning the model on 2D optical flow fields that represent how the pixels
move given a desired camera pose change. To generate these flow fields, we use the following
steps: a) estimate depth from the input image using an off-the-shelf model Yang et al. (2024);
Wang et al. (2024a), and unproject it into a 3D point cloud, b) apply a rigid transformation to the
point cloud given camera transformations, c) re-project the transformed point cloud and compute
the displacement relative to the pixels of the first frame to compute the 2D flow (See Figure 2 and
Appendix A.3). Finally, 3WM generates the edited image conditioned on the computed flow map
and the input image.

3D object manipulation 3D object manipulation can be performed with the Ψ(RGB0, F0→1) →
RGB1 infernece pathway by creating a flow field where the flow on the surface of the object charac-
terizes the 3D transformation to be performed, with the flow of the background set to 0 – condition-
ing the predictor to move the object, but keep the background fixed. We follow a similar procedure
described above to produce flow fields for rigid object transformations and use the SegmentAny-
thing Kirillov et al. (2023) model to suppress the flow of the background regions (See Figure 2 and
Appendix A.3). Additionally, we can use the Ψ(RGB0, Fsparse) → F0→1 pathway to produce dense
flow fields corresponding to object motion from a sparse flow prompt.

5
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Input Image MotionCtrl ZeroNVS ViewCrafter SEVA 3WM Ground Truth

Figure 3: Novel view synthesis from a single image. The results show that our model performs
controllable novel view synthesis with various camera motions in a diverse scenes. Compared to
other models, the reconstructed images do not show abrupt change in object and scene identity.

Depth extraction Camera conditioned flow generation through the Ψ(RGB0, Cin-plane) → F0→1

inference pathway provides a natural method for extracting depth maps without additional finetun-
ing. We provide in-plane camera motion as input to 3WM and predict the optical flow induced by
camera motion. Then, we compute the magnitude of the optical flow to compute the disparity which,
when inverted, yields 2.5D depth maps. That is, Ddepth ∝ 1

Fflow
, where Fflow = Ψ(RGB, Cin-plane).

In practice, we find that a simple downward camera translation is sufficient to generate high-quality
depth maps. Additionally, performance can be improved by statistical aggregation over disparity
maps generated with different seeds for the same image.

4 RESULTS

We begin by evaluating novel view synthesis from a single image, demonstrating that 3WM outper-
forms prior NVS models across object-centric and scene-level benchmarks. We then present results
on 3D object manipulation, using our 3DEditBench dataset to compare edit fidelity and geometric
adherence against diffusion- and drag-based baselines. Lastly, we examine self-supervised depth
estimation, showing that 3WM achieves strong performance on both static and dynamic indoor
datasets, despite never using depth supervision during training.

4.1 NOVEL VIEW SYNTHESIS

Evaluation Details. We evaluate novel view synthesis (NVS) from single images on two out-of-
distribution benchmarks: WildRGB-D for object-centric NVS and DL3DV for scene-level NVS. We
also report results on the SEVA benchmark for single-image NVS (small-viewpoint, Reconfusion
split). Quantitative metrics include PSNR and LPIPS Zhang et al. (2018). We compare against
MotionCtrl, ZeroNVS, ViewCrafter, and SEVA as baselines. Further details on dataset selection and
implementation are provided in the appendix A.4.

Qualitative and Quantitative Comparisons. As shown in Table 1, our model achieves the best
overall performance on WildRGB-D, DL3DV, and the SEVA benchmark, reflecting both recon-
struction quality and precise camera control. Qualitatively (Figure 3), MotionCtrl distorts scenes
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Model WildRGB-D DL3DV RE10K LLFF DTU

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

MotionCtrl 12.39 0.404 12.62 0.462 - - - - - -
ZeroNVS 16.14 0.283 15.62 0.331 - - - - - -
ViewCrafter 13.96 0.290 16.59 0.253 20.88 0.287 10.53 0.620 12.66 0.485
SEVA 15.10 0.278 11.82 0.516 18.11 0.308 14.03 0.389 14.47 0.316
3WM (Ours) 18.02 0.185 19.02 0.252 21.54 0.231 15.24 0.490 14.63 0.357

Our Evaluations SEVA Benchmark

Table 1: Comparison of metrics for novel view synthesis. The left block reports results on
WildRGB-D and DL3DV from our evaluation set. The right block presents SEVA benchmark Zhou
et al. (2025) performance on the small-viewpoint NVS setting using the Reconfusion split across
DTU, LLFF, and RE10K datasets.

Input Image DragAnything Lightning Drag DiffusionHandles 3WM Ground Truth

Figure 4: 3D object manipulation from a single image. We show that our model can perform both
3D object translation and rotation. Compared to other methods, our model preserves object identity
on real world images, and produces more photorealistic generated images with accurate object edits.

and objects inconsistently, and despite efforts to optimize scene scales, it fails to accurately con-
trol camera motion. ZeroNVS often produces inaccurate 3D reconstructions with artifacts, and its
hallucinated regions are blurry and unrealistic. ViewCrafter generates visually appealing images
but frequently changes object appearance and global illumination. SEVA performs reasonably on
WildRGB-D but requires scale sweeps for alignment and breaks down on DL3DV with more diverse
camera trajectories. In contrast, 3WM maintains both object and scene identity while offering robust
and reliable camera control.

7
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Model PSNR ↑ LPIPS ↓ EA ↑
DragAnything 15.13 0.443 0.517
Diffusion Handles 17.82 0.344 0.619
LightningDrag 19.52 0.184 0.722
3WM (ours) 22.73 0.133 0.797

Table 2: Comparison of metrics for 3D object manipulation.

4.2 3D OBJECT MANIPULATION

Evaluation Details. We compare our method against DiffusionHandles Pandey et al. (2024), the
closest related work that performs 3D object edits using depth-conditioned diffusion models, as
well as drag-based image editing approaches such as LightningDrag Shi et al. (2024) and DragAny-
thing Wu et al. (2024). While the latter cannot be directly conditioned on 3D transforms, we adapt
them by providing sparse 2D flow vectors from our dataset annotations, which enables them to per-
form 3D manipulations to a reasonable extent. For quantitative evaluation, we follow the metrics
used in our NVS experiments, including PSNR and LPIPS. However, prior work Pandey et al. (2024)
has shown that these metrics tend to favor perceptual image quality over edit accuracy. To address
this, we also report the Edit Adherence (EA) metric, which measures how well the boundaries of the
manipulated object align with the ground truth.

New Object Editing Benchmark. Most prior work in this area either use human evaluations
on a small set of images Michel et al. (2023), or synthetic benchmarks Pandey et al. (2024) to
evaluate their method. This can be attributed to the lack of high quality real-world datasets with
ground-truth 3D object transform annotations. To address this problem, we collect a dataset called
3DEditBench consisting of 100 image pairs with a diverse set of object types undergoing rotations
and translations, and inter-object occlusions. We capture these images in a variety of background
and lighting conditions. To obtain the ground-truth 3D object transformation for a given pair, we
annotate four corresponding points in the two images, unproject them, and use least-squares opti-
mization to find the best-fitting rigid transformation that aligns the two sets of points. This transform
is then used to create flow maps that condition 3WM to perform 3D object edits in natural scenes.

Qualitative and Quantitative Comparisons. We find that our model outperforms other methods
on all metrics (see Table 2). Qualitative comparisons in Figure 4 further show that our model pro-
duces more accurate and realistic results, particularly on complex 3D transformations. The Edit
Adherence (EA) metric Pandey et al. (2024), designed to measure how precisely the edited object
matches the intended transformation, strongly favors our model’s generations. Interestingly, Diffu-
sionHandles Pandey et al. (2024) often struggles on real-world images due to failures in the null-text
inversion process, which causes changes in surrounding object appearance and leads to unnatural
generations, blurry reconstructions, and incorrect 3D motion. A similar trend is observed in the
drag-based baselines, though LightningDrag degrades less severely. In contrast, 3WM overcomes
these issues and produces geometrically consistent edits.
4.3 SELF-SUPERVISED DEPTH ESTIMATION

Model NYUD-v2 BONN TUM
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

SC-DepthV2 0.132 0.828 0.172 0.814 0.257 0.582
IndoorDepth 0.116 0.864 0.154 0.846 0.205 0.697
MotionCtrl 0.232 0.664 0.171 0.793 0.205 0.682

SEVA 0.404 0.574 0.352 0.618 0.503 0.496
3WM (Ours) 0.078 0.940 0.084 0.942 0.137 0.869

Table 3: Comparison of metrics for self-supervised monocular depth estimation on NYUD-v2,
BONN, and TUM datasets.
Evaluation Details. Since we do not use any depth label during the training, for a fair comparison,
we compare our model with other self-supervised depth estimators. We evaluate SC-DepthV2 Bian
et al. (2021), IndoorDepth Fan et al. (2023), MotionCtrl Wang et al. (2024c), and SEVA Zhou et al.
(2025) as baselines, aligning with the self-supervised setting of our model. To extract depth from
MotionCtrl and SEVA, we induce an downward in-plane camera motion and compute the disparity

8
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Input Image SC-DepthV2 IndoorDepth MotionCtrl SEVA 3WM Ground Truth

Figure 5: Self-supervised monocular depth estimation. On both static and dynamic scenes, our
model outperforms existing self-supervised depth estimation methods. Compared to other genera-
tive model baselines, it shows stronger camera motion controllability and geometric understanding.
Yellow artifacts in ground truth depth maps are noise and excluded during the evaluation.

between the first and generated images using DPFlow Morimitsu et al. (2025). We evaluate the
performance on three datasets: NYUv2 Silberman et al. (2012), BONN Palazzolo et al. (2019),
TUM Sturm et al. (2012) datasets. NYUv2 is mostly composed of static scenes, whereas BONN and
TUM include humans with implied motion. To ensure consistent input resolution across methods,
we evaluate only the center-cropped regions of each image. Unlike relative depth estimation methods
that apply scale-and-shift alignment during evaluation Ranftl et al. (2020), we adopt only a global
scale adjustment using the median depth value.

Qualitative and Quantitative Comparisons. As shown in Table 3 and Figure 5, 3WM achieves
high-quality depth reconstruction in both static and dynamic settings, outperforming all baselines
across diverse evaluations. The self-supervised baseline models exhibit limitations in dynamic
scenes because they rely on static geometry consistency, preventing them from extracting train-
ing signals from moving objects. In contrast, our model effectively learns depth cues from optical
flow in unconstrained video. Although MotionCtrl and SEVA yield qualitative improvements on
dynamic objects compared to other baselines, their overall performance remains weak, indicating
limited controllability and geometric understanding. These results demonstrate the strong geometric
understanding and controllability of our model compared to existing baselines.

5 EMERGENT GEOMETRIC REASONING ABILITIES

Geometric reasoning in 3D scenes is inherently complex, requiring the ability to address scenar-
ios that extend beyond any single benchmark task. These include uncovering occluded geometry,
navigating cluttered environments, and handling ambiguous depth.

Figure 6 illustrates several representative cases. (a) 3WM can first perform object manipulation
to move obstacles aside and then apply novel view synthesis on the updated scene. This sequen-
tial reasoning exposes free space that was previously occluded, allowing navigation through newly
opened paths. (b) When the occluding object cannot be physically moved, the model should be able
to simulate navigation along complex trajectories to reveal hidden regions. In such a case, 3WM
can move forward, lower the viewpoint, and rotate the camera to the right to expose a hallway. The
model can also support navigation with objects, as in moving with a bike, where the bike remains
consistent with the egocentric viewpoint while the background updates with the camera motion. (c)
To reveal geometry hidden by attached objects, the model applies a large flow displacement to the
object targeted for removal and repeats this process iteratively. This allows the model to uncover
both the background and the previously occluded surfaces of other objects, effectively performing

9
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Figure 6: Flexible geometric reasoning in the complex real-world environment through 3WM.
(a) The model moves obstacles aside to reveal free space and simulates navigation through the newly
opened path. (b) The model follows complex egocentric trajectories to uncover hidden regions and
moves together with objects to capture realistic navigation scenarios. (c) The model removes at-
tached objects one by one to reveal the background geometry, performing a form of amodal com-
pletion. (d) The model handles depth uncertainty in cases such as transparent objects by generating
multiple plausible depth outputs.

amodal completion. (d) When conditioned on an in-plane camera motion, the model can generate
multiple optical flow maps corresponding to different plausible depth configurations. This captures
multimodal depth reasoning, which is essential in cases such as transparent or reflective materials
where depth cannot be uniquely defined.

These examples demonstrate that our model is not limited to predefined tasks or narrow benchmarks.
By supporting flexible inference pathways, it can generalize to a wide range of challenges that arise
in real-world 3D environments. This ability to reason flexibly about geometry highlights the strength
of our framework and points toward general-purpose models for 3D understanding.

6 DISCUSSION

We present several representative failure cases in Fig. 12. These behaviors occur occasionally rather
than systematically, and are already reflected in our quantitative evaluation, where our model still
outperforms prior methods. Because the model is trained on real videos, it sometimes reproduces
motion-induced blur when objects move rapidly. Also, object motion may occasionally lead to a
residual copy appearing at the original location. Finally, rigid-object manipulation is sensitive to
input segmentation quality. Incorrect masks impose incorrect zero-flow constraints and can lead to
unpredictable results.

7 CONCLUSION

In this work, we demonstrates that 3WM can unify novel view synthesis, object manipulation, and
depth estimation through diverse inference pathways while maintaining precise controllability and
strong geometric consistency. By showing that complex 3D reasoning can emerge naturally within
a unified system, 3WM provides a step toward general-purpose visual world models capable of
supporting richer interaction with the physical environment.
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rendering from few images using transformers. In European Conference on Computer Vision, pp.
198–216. Springer, 2022.

Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
Zixun Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22160–22169, 2024.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9298–9309, 2023.

Oscar Michel, Anand Bhattad, Eli VanderBilt, Ranjay Krishna, Aniruddha Kembhavi, and Tanmay
Gupta. Object 3dit: Language-guided 3d-aware image editing. Advances in Neural Information
Processing Systems, 36:3497–3516, 2023.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6038–6047, 2023.

Henrique Morimitsu, Xiaobin Zhu, Roberto M Cesar, Xiangyang Ji, and Xu-Cheng Yin. Dpflow:
Adaptive optical flow estimation with a dual-pyramid framework. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 17810–17820, 2025.

Emanuele Palazzolo, Jens Behley, Philipp Lottes, Philippe Giguere, and Cyrill Stachniss. Refu-
sion: 3d reconstruction in dynamic environments for rgb-d cameras exploiting residuals. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7855–7862.
IEEE, 2019.

Karran Pandey, Paul Guerrero, Matheus Gadelha, Yannick Hold-Geoffroy, Karan Singh, and Niloy J
Mitra. Diffusion handles enabling 3d edits for diffusion models by lifting activations to 3d. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7695–
7704, 2024.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.
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A APPENDIX

A.1 ABLATION STUDIES

We conduct several ablation studies to validate two key design choices of our framework: the use of
local random access sequence modeling and the use of optical flow as an intermediate representation.

Local random access sequence modeling. We compare different tokenization and sequence mod-
eling strategies using 100M-parameter models in Table 4. Our approach with local random se-
quence shows clear benefits over the raster order approach. As observed in MAE He et al. (2022),
VideoMAE Tong et al. (2022), and CWM Bear et al. (2023), random masking encourages stronger
representation learning while allowing us to represent each frame with fewer tokens. In contrast,
raster order models must encode all patches sequentially, leading to inefficiency and degraded per-
formance. Moreover, we find that local tokens provide finer control over scene elements than global
token alternatives Esser et al. (2020); Rombach et al. (2022), improving both controllability and out-
put quality. Together, these results demonstrate that local random access sequence design not only
improves training efficiency but also enhances the model’s ability to support robust controllability
in flexible inference pathways.

WildRGB-D: Novel View Synthesis

Model (100M) PSNR ↑ SSIM ↑ LPIPS ↓

Local & Random 17.28 0.530 0.236
Local & Raster 15.00 0.459 0.385
VQGAN & Random 17.16 0.515 0.238
VQGAN & Raster 15.71 0.454 0.298

Table 4: Advantage of local random access sequence modeling. Comparison of 100M models
with different tokenizers and sequence strategies shows the benefit of random access. Local tokens
further improve controllability of the scene, yielding the best overall performance.

Optical flow as causal intermediate. Table 5 shows that using optical flow as a control signal
substantially improves performance across tasks. Flow provides a direct handle on scene geometry,
enabling more precise inference than camera-only control, which suffers from scale ambiguity. This
advantage is most apparent in depth estimation, where predicting flow directly yields more geomet-
rically consistent reconstructions than first predicting RGB and deriving flow afterward from the
input image and predicted image. These results support our claim that intermediate modalities such
as flow enable more controllable and robust inference pathways, grounding the model in physical
structure.

WildRGB-D: Novel View Synthesis

Model PSNR ↑ SSIM ↑ LPIPS ↓

3WMrgb 14.49 0.389 0.346
3WM 18.02 0.555 0.185

NYU Depth Estimation

Dataset AbsRel ↓ Log10 ↓ δ1 ↑

3WMrgb 0.173 0.064 0.825
3WM 0.078 0.033 0.940

Table 5: Advantage of optical flow for causal inference. The results highlight the advantage of
optical flow as a control signal. Optical flow provides a direct handle on scene geometry, enabling
more precise inference than camera-only control, which is affected by scale ambiguity. This benefit
is also reflected in depth estimation, where predicting flow directly outperforms deriving it from
predicted image.

A.2 DATASETS AND TRAINING DETAILS

Training Datasets. 3WM was pre-trained on a combination of a large-scale internet video collec-
tion, termed BVD (Big Video Dataset), and several 3D vision benchmarks. The latter include the
train splits of ScanNet++ Yeshwanth et al. (2023), CO3D Reizenstein et al. (2021), RealEstate10K
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Zhou et al. (2018), MVImgNet Yu et al. (2023), DL3DV Ling et al. (2024), and EgoExo4D Grau-
man et al. (2024). Optical flow was computed for all videos using DPFlow Morimitsu et al. (2025)
and UFM Zhang et al. (2025).

Big Video Dataset. The BVD consists of roughly 7,000 hours of internet videos automatically
crawled using search queries generated by LLaMA 3 Dubey et al. (2024). The queries targeted
videos containing rich physical dynamics, diverse environments, and varied objects. Specifically,
action categories from Kinetics400 Kay et al. (2017) were expanded with additional sports, physical
activities, and product review categories. To ensure training relevance, we filtered videos by requir-
ing a minimum level of optical flow and by applying CLIP Radford et al. (2021)-based keyword
alignment. Positive keywords included action, activity, motion, and place, while negative keywords
included animation, cartoon, face, game menu, graphic, map, newscast, person, and screenshot.
Alignment was quantified by the dot product between CLIP embeddings of keywords and video
frames.

Training Details. 3WM sequence model was trained autoregressively using cross-entropy loss on
next-token prediction with a batch size of 512 and a sequence length of 4,096. Training for RGB
and camera pose tokens ran for 500K steps. The learning rate was linearly warmed up over 2K
iterations to 3×10−4, held constant until 500K steps. Training was then continued for an additional
200K steps with optical flow tokens, where the learning rate stayed at 3×10−4 initially and decayed
linearly to zero during the last 100K steps.

The RGB variant of HLQ was trained on a combination of ImageNet and OpenImages with a batch
size of 512 for 200K iterations. The objective combined an ℓ1 reconstruction loss, a low-resolution
loss, and a DinoV2-based perceptual loss. Optimization was performed using AdamW with a learn-
ing rate of 1× 10−4, including 2K warmup steps followed by 198K steps of decay to zero.

The flow variant of HLQ was trained on the same dataset used for training the sequence model, with
a batch size of 512. Optical flow was extracted from video data using DPFlow. Optimization was
again performed using AdamW with a learning rate of 1 × 10−4. Training used 2K warmup steps,
followed by 300K iterations with a fixed learning rate and then 200K iterations with linear decay.

A.3 3D EDITING METHODS

Figure 7: 3D scene editing through optical flow field manipulation: We perform 3D scene edits
by constructing optical flow fields corresponding to the desired transformations - either camera or
object motion in 3D.

We illustrate the procedure for constructing flow fields used in both novel view synthesis and 3D
object manipulation. For novel view synthesis (Section 3.3), the flow encodes pixel displacements
induced by a desired camera motion. For object manipulation (Section 3.3), the flow specifies
the motion of object surfaces under a 3D transformation while background regions remain fixed.
Figure 7 provides a unified visualization of these processes, complementing the method descriptions
in the corresponding subsections.

A.4 NVS EVALUATION DETAILS

To ensure a fair evaluation of novel view synthesis (NVS) on out-of-distribution datasets, we se-
lected two benchmarks: WildRGB-D for object-centric NVS and DL3DV for scene-level NVS. For
WildRGB-D, we randomly sampled 100 scenes from its evaluation split. For DL3DV, since some
models were trained on this dataset, we selected 100 scenes from its recently released 11K subset,
which, to the best of our knowledge, was not used to train any of the compared models. From each
video, we extracted a 25-frame sequence and used the first frame as the input image and evaluat-
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ing the generated frames. For quantitative evaluation, we measured PSNR and LPIPS Zhang et al.
(2018). As baselines, we compared against MotionCtrl, ZeroNVS, ViewCrafter, and SEVA.

To evaluate novel view synthesis, we compare generated images to ground-truth real-world images
using known camera poses. While camera rotation is unambiguous, camera translation may have
arbitrary scale. Therefore, it is necessary to find the right scene scale to perform fair evaluations
for all of the models. To align MotionCtrl, ZeroNVS, and SEVA results with ground-truth images,
we sweep a range of scene scales and take the generated trajectories with the best median LPIPS
score across frames. For ZeroNVS, we sweep scales in the range 0.1 to 10, multiplying the scale by
the ground-truth camera translations from each evaluation dataset. ZeroNVS introduces a normal-
ization scheme Sargent et al. (2023) at training time to address this scale ambiguity, but does not
apply it at inference. For MotionCtrl, we sweep the range 1 to 10, as smaller translation scales em-
pirically weaken the camera conditioning and lead to incorrect camera pose trajectories. For SEVA,
we search the scale from 0.1 to 2.0 and used their set NVS method for evaluation. Scale align-
ment for these models often fail for samples with especially poor 3D reconstruction quality. For
ViewCrafter, we resolve the scene scale using their method of aligning point clouds from DUSt3R
Wang et al. (2024a). For 3WM, we have computed the single scale value per scene by matching
the optical flow computed from the video using DPFlow and the 2D flow computed using the depth
from DepthAnythingV2 or DUSt3R and relative camera pose changes.

Since ViewCrafter operates on wide rectangular videos, we adapt the input images accordingly. For
DL3DV, which consists of wide images, we provide the full image to ViewCrafter. or WildRGB-D,
whose images have greater height than width, we crop them into wide rectangular regions to match
ViewCrafter’s aspect ratio. All other models receive a center-cropped square image as input for both
datasets. All evaluation metrics are computed only on the overlapping regions. For WildRGB-D,
this region is rectangular, and for DL3DV it is square.
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A.5 TEASER FIGURE

Figure 8: A foundation model for 3D understanding. Geometric scene understanding from a
single image involves three key components: depth estimation, novel view synthesis, and object ma-
nipulation. In this work, we present a single foundation model for 3D understanding that performs
all of these tasks in a unified, simple, and scalable way.

Figure 8 shows the candidate teaser figure referenced in the rebuttal. This example uses an earlier
version of the model and is included solely to illustrate the possible style and layout of a teaser
figure. We welcome feedback on whether a teaser of this form would strengthen the main paper.
Due to space limitations in the main submission, we did not include a teaser figure, but we would be
happy to refine and incorporate one if the reviewers believe it would improve the presentation.

A.6 LIGHTING AND APPEARANCE UNDERSTANDING

Figure 9: Lighting and appearance understanding. Additional qualitative examples illustrating
the model’s handling of lighting and appearance. In case (a), specular highlights on objects change
appropriately as the object moves, and in case (b), cast shadows shift consistently with the object’s
motion. While some examples still show incomplete specular or shading behavior, many exhibit
correct reasoning about shadows and view-dependent appearance. These results suggest that lighting
fidelity is primarily constrained by model and data scale rather than by limitations of the approach.

Our model does not yet capture lighting effects perfectly across all conditions. At the same time, we
consistently observe many cases where the model correctly predicts shadows and view-dependent
lighting changes, indicating that it learns meaningful aspects of object appearance (Figure 9). We
do not regard the remaining failure cases in challenging lighting as fundamental limitations of the
formulation. Rather, they reflect the current scale of the model and the limited diversity of illumina-
tion conditions in the training data. We expect lighting fidelity to improve as the model is scaled up
and trained on datasets with broader lighting variation.
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Figure 10: Additional qualitative examples of object manipulation. (a) The model performs
deformable-object manipulation by applying flow conditioning only to the deforming regions, which
allows it to infer the resulting non-rigid transformations. In the figure, the red circles indicate regions
where non-zero flow is applied on the object. Other regions are left unspecified, requiring the model
to infer their behavior from the local conditioning. (b) In multi-object scenes, the model achieves
selective manipulation by applying flow conditioning to a segmented target object while assigning
zero flow to the rest of the scene.

A.7 EXTENDED DISCUSSION ON OBJECT MANIPULATION

The examples in the main paper focus on rigid object manipulation, reflecting the fact that
3DEditBench primarily contains rigid transformations. However, our framework is not limited to
rigid object manipulation. Because the model operates on local tokens and the conditioning interface
supports both sparse and dense flow control, it can naturally handle deformable-object manipulation.
By applying flow conditioning only to the deforming region and leaving the rest of the object un-
constrained, the model infers the resulting non-rigid transformation. We additionally set the flow to
zero in the four corners of the image to signal that the transformation is local rather than global. We
have added qualitative examples that illustrate this behavior in Figure 10. Finally, we show exam-
ples with and without stop patches on the blanket to illustrate how these signals affect the model’s
probabilistic behavior in Figure 11.

For stacked or multi-object scenes, we include additional examples in Figure 10 where the model
manipulates a single object while preserving the geometry and appearance of the others. In these
cases, we segment the target object and apply full flow conditioning to that object, while the rest
of the scene receives zero flow in the conditioning. These results show that the model can selec-
tively operate on one object among several and maintain coherent scene structure throughout the
manipulation.

Figure 11: Effect of stop patches on probabilistic deformation. Left: predictions from three
random seeds using only the motion patch (red). Right: predictions using both the motion patch
(red) and stop patches (blue). Yellow arrow indicates the model’s predicted deformation. Without
stop patches, the model exhibits uncertainty in how the rest of the blanket moves. Stop patches
constrain the motion and lead to more stable outcomes.

A.8 AMODAL COMPLETION EVALUATION

Here, we show a quantitative amodal completion evaluation. Since all baseline editing methods
in the paper can perform amodal completion by moving objects, we assess how accurately each
method reconstructs the depth behind the removed object on 3DEditBench. We segment the region
previously occupied by the object and compare the predicted depth in the edited image with the
ground-truth depth of the target view, restricted to this occluded region. Depth maps are estimated
using DepthAnything v2 and aligned by median-based scale normalization.
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Model AbsRel ↓ Log10 ↓ δ1 ↑
DragAnything 0.0666 0.0285 0.9480
Diffusion Handles 0.0500 0.0215 0.9680
Lightning Drag 0.0324 0.0145 0.9782
3WM (Ours) 0.0263 0.0120 0.9740

Table 6: Amodal completion depth evaluation on 3DEditBench. Metrics are computed on the
region originally occupied by the moved object.

This metric directly measures a model’s ability to infer the hidden geometry. As shown in Table 6,
our model achieves lower AbsRel and Log10 errors than all baselines while maintaining competitive
δ1, indicating more accurate reconstruction of the unseen surface.

A.9 LIMITATIONS & FUTURE WORK

Figure 12: Additional qualitative examples illustrating current limitations. (a) Motion blur:
Because the model is trained on real videos, it sometimes reproduces motion-induced blur when
large object displacements are present. This behavior is consistent with the training distribution
but may be undesirable for fine-grained manipulation. (b) Object duplication: The model may
occasionally generate a duplicated copy at the original location. (c) Segmentation errors: For rigid-
object manipulation, incorrect input segmentation leads to incorrect zero-flow constraints, causing
unpredictable or distorted outcomes.

Limitations We present several representative failure cases in Fig. 12. These behaviors occur oc-
casionally rather than systematically, and are already reflected in our quantitative evaluation, where
our model still outperforms prior methods. Because the model is trained on real videos, it sometimes
reproduces motion-induced blur when objects move rapidly. Also, object motion may occasionally
lead to a residual copy appearing at the original location. Finally, rigid-object manipulation is sen-
sitive to input segmentation quality. Incorrect masks impose incorrect zero-flow constraints and can
lead to unpredictable results. Efficiency is another practical limitation. Our runtime is within the
typical generative-model range, but it is not real-time, which may be a constraint for interactive
applications.

Future Work We expect efficiency improvements from standard engineering optimizations
widely used in large autoregressive models. Another promising direction is to evaluate the model’s
navigation and planning capabilities. This requires implementing an online control loop and a sim-
ulator interface, which is beyond the scope of this work. We believe that exploring these directions
is highly interesting and represents natural next steps for unified physical world models.

A.10 TRAINING SEQUENCE

Every training example is formed as a causal token sequence in which all previous tokens serve as
observed context and the next token is supervised, identical to standard language-model training.
In practice, all RGB and flow tokens after the first frame are predicted autoregressively. The only
exceptions are the RGB0 tokens, camera-pose tokens, and pointer tokens, which we do not supervise
in this work, though the framework is not limited to this choice.
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Within RGB+flow sequences, the model naturally encounters several supervision patterns depending
on whether flow is the final target or an intermediate variable used to produce the next RGB frame.
Some sequences terminate with flow (e.g., RGB0 → Flow0→1 or RGB0 → RGB1 → Flow1→2),
while others place flow mid-sequence and continue autoregressively to the next RGB frame (e.g.,
RGB0 → Flow0→1 → RGB1 or RGB0 → RGB1 → Flow1→2 → RGB2). When available, pose
tokens are inserted between RGB frames or immediately before flow. These variations provide bal-
anced supervision across modalities and naturally expose the model to different geometric reasoning
configurations.

The curriculum over training steps controls which of these sequence types the model sees. Before
500k steps, training uses RGB-only sequences drawn from 2–4 consecutive frames, where each
frame is partially masked according to fixed visible-token ratios ([0.5, 0.3] for 2-frame sequences,
[0.5, 0.15, 0.15] for 3-frame sequences, and [0.5, 0.1, 0.1, 0.1] for 4-frame sequences). After 500k
steps, we introduce flow and train on a mixture of RGB-only and RGB+flow sequences, with random
allocation of tokens across frames, modalities, and time indices. This particular schedule simply re-
flects one reasonable choice rather than an optimized design. The same autoregressive formulation
supports arbitrary modality mixtures, token allocations, and sequence orderings, and exploring al-
ternative training schedules and sequence constructions would be an interesting direction.

A.11 USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as a general-purpose assist tool for grammar checking and for suggesting alternative
expressions or synonyms. LLMs did not play a role in developing the research ideas, designing
experiments, or writing substantive content.

21


	Introduction
	Related Works
	Methods
	Learning a Probabilistic Graphical Model via Local Random Access Sequence Modeling
	Flexible Inference Pathways
	Zero-shot prompts for 3D tasks

	Results
	Novel View Synthesis
	3D Object Manipulation
	Self-Supervised Depth Estimation

	Emergent Geometric Reasoning Abilities
	Discussion
	Conclusion
	Appendix
	Ablation Studies
	Datasets and Training Details
	3D Editing Methods
	NVS Evaluation Details
	Teaser figure
	Lighting and Appearance Understanding
	Extended Discussion on Object Manipulation
	Amodal Completion Evaluation
	Limitations & Future Work
	Training Sequence
	Use of Large Language Models (LLMs)


