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ABSTRACT

The Sliced Wasserstein barycenter (SWB) is a widely acknowledged method
for efficiently generalizing the averaging operation within probability measure
spaces. However, achieving marginal fairness SWB, ensuring approximately equal
distances from the barycenter to marginals, remains unexplored. The uniform
weighted SWB is not necessarily the optimal choice to obtain the desired marginal
fairness barycenter due to the heterogeneous structure of marginals and the non-
optimality of the optimization. As the first attempt to tackle the problem, we
define the marginal fairness sliced Wasserstein barycenter (MFSWB) as a con-
strained SWB problem. Due to the computational disadvantages of the formal
definition, we propose two hyperparameter-free and computationally tractable sur-
rogate MFSWB problems that implicitly minimize the distances to marginals and
encourage marginal fairness at the same time. To further improve the efficiency,
we perform slicing distribution selection and obtain the third surrogate definition
by introducing a new slicing distribution that focuses more on marginally unfair
projecting directions. We discuss the relationship of the three proposed problems
and their relationship to sliced multi-marginal Wasserstein distance. Finally, we
conduct experiments on finding 3D point-clouds averaging, color harmonization,
and training of sliced Wasserstein autoencoder with class-fairness representation to
show the favorable performance of the proposed surrogate MFSWB problems1.

1 INTRODUCTION

Wasserstein barycenter (Agueh & Carlier, 2011) generalizes "averaging" to the space of probability
measures. In particular, a Wasserstein barycenter is a probability measure that minimizes a weighted
sum of Wasserstein distances between it and some given marginal probability measures. Due to the
rich geometry of the Wasserstein distance (Peyré & Cuturi, 2020), the Wasserstein barycenter can be
seen as the Fréchet mean (Grove & Karcher, 1973) on the space of probability measures. As a result,
Wasserstein barycenter has been applied widely to various applications in machine learning such
as Bayesian inference (Srivastava et al., 2018; Staib et al., 2017), domain adaptation (Montesuma
& Mboula, 2021), clustering (Ho et al., 2017), sensor fusion (Elvander et al., 2018), text classifica-
tion (Kusner et al., 2015), and so on. Moreover, Wasserstein barycenter is also a powerful tool for
computer graphics since it can be used for texture mixing (Rabin et al., 2012), style transfer (Mroueh,
2020), shape interpolation (Solomon et al., 2015), and many other tasks on many other domains.

∗Equal Contribution
†Qualcomm Vietnam Company Limited
1Code for the paper is published at https://github.com/khainb/MFSWB.
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Figure 1: The uniform SWB and the MFSWB of 4 Gaussian distributions.

Despite being useful, it is very computationally expensive to compute Wasserstein barycenter. In
more detail, the computational complexity of Wasserstein barycenter is O(n3 log n) when using
linear programming (Anderes et al., 2016) where n is the largest number of supports of marginal
probability measures. When using entropic regularization for optimal transport (Cuturi, 2013), the
computational complexity is reduced to O(n2) (Kroshnin et al., 2019). Nevertheless, quadratic
scaling is not enough when the number of supports approaches a hundred thousand or a million. To
address the issue, Sliced Wassserstein Barycenter (SWB) is introduced in (Bonneel et al., 2015) by
replacing Wasserstein distance with its sliced variant i.e., Sliced Wasseretein (SW) distance. Thank
to the closed-form of Wasserstein distance in one-dimension, SWB has a low time complexity i.e.,
O(n log n) which enables fast computation. Combining with the fact that Sliced Wasserstein is
equivalent to Wasserstein distance in bounded domains (Bonnotte, 2013) and Sliced Wasserstein does
not suffer from the curse of dimensionality (Nguyen et al., 2021; Nadjahi et al., 2020; Manole et al.,
2022; Nietert et al., 2022), SWB becomes a scalable alternative choice of Wasserstein barycenter.

In some applications, we might want to find a barycenter that minimizes the distances to marginals
while having equal distances to marginals at the same time e.g., constructing shape template for a
group of shapes (Bongratz et al., 2022; Sun et al., 2023) that can be further used in downstream tasks,
exact balance style mixing between images (Bonneel et al., 2015), fair generative modeling (Choi
et al., 2020), and so on. We refer to such a barycenter as a marginal fairness barycenter. Both the
Wasserstein barycenter and SWB are defined based on a given set of marginal weights (marginal
coefficients), and these weights represent the importance levels of marginals toward the barycenter.
Nevertheless, a uniform (weights) barycenter does not necessarily lead to the desired marginal fairness
barycenter as shown in Figure 1. Moreover, obtaining the marginal fairness barycenter is challenging
since such a barycenter might not exist and might not be identifiable given non-global-optimal
optimization (Karcher mean problem). To the best of our knowledge, there is no prior work that
investigates finding a marginal fairness barycenter.

In this work, we make the first attempt to tackle the marginal fairness barycenter problem i.e., we
focus on finding Marginal Fairness Sliced Wasserstein Barycenter (MFSWB) to utilize the scalability
of SW distance.

Contribution: In summary, our main contributions are four-fold:

1. We define the Marginal Fairness Sliced Wasserstein Barycenter (MFSWB) problem, which is a
constrained barycenter problem where the constraint aims to limit the average pair-wise absolute
difference between distances from the barycenter to the marginals. We derive the dual form of
MFSWB, discuss its computation, and address its computational challenges.

2. To address this issue, we propose surrogate definitions of MFSWB that are hyperparameter-free
and computationally tractable. Motivated by Fair PCA (Samadi et al., 2018), we propose the first
surrogate MFSWB, which minimizes the largest SW distance from the barycenter to the marginals.
To solve the problem of biased gradient estimation of the first surrogate MFSWB, we propose the
second surrogate MFSWB, which is the expectation of the largest one-dimensional Wasserstein
distance from the projected barycenter to the projected marginals. We show that the second surrogate
is an upper bound of the first surrogate and can yield an unbiased gradient estimator. We further
extend the second surrogate to the third surrogate by applying slicing distribution selection and show
that the third surrogate is an upper bound of the previous two.

3. We discuss the connection between the proposed surrogate MFSWB problems and the Sliced
Multi-marginal Wasserstein (SMW) distance with the maximal ground metric. In particular, solving
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the proposed MFSWB problems is equivalent to minimizing a lower bound of the SMW. By showing
that the SMW with the maximal ground metric is a generalized metric, we demonstrate that it is safe
to use the proposed surrogate MFSWB problems.

4. We conduct simulations with Gaussian data and experiments on various applications, including
3D point-cloud averaging, color harmonization, and sliced Wasserstein autoencoder with class-fair
representation, to demonstrate the favorable performance of the proposed surrogate definitions.

Organization. We first discuss some preliminaries on SW distance, SWB, its computation, and
Sliced Multi-marginal Wasserstein distance in Section 2. We then introduce the formal definition
and surrogate definitions of marginal fairness SWB in Section 3. Next, we conduct experiments to
demonstrate the favorable performance and fairness of the proposed definitions in Section 4. We
conclude the paper and provide some future directions in Section 5. Finally, we defer the proofs of
key results, the discussion on related works, and additional materials to the Appendices.

2 PRELIMINARIES

Sliced Wasserstein distance. The definition of sliced Wasserstein (SW) distance (Bonneel et al.,
2015) between two probability measures µ1 ∈ Pp(Rd) and µ2 ∈ Pp(Rd) is:

SWp
p(µ1, µ2) = Eθ∼U(Sd−1)[W

p
p(θ♯µ1, θ♯µ2)], (1)

where the Wasserstein distance has a closed form in one-dimension which is Wp
p(θ♯µ1, θ♯µ2) =∫ 1

0
|F−1
θ♯µ1

(z) − F−1
θ♯µ2

(z)|pdz where θ♯µ and θ♯ν denotes the pushforward measures of µ and ν
through the function f(x) = θ⊤x, Fθ♯µ1 and Fθ♯µ2 are the cumulative distribution function (CDF)
of θ♯µ1 and θ♯µ2 respectively.

Sliced Wasserstein Barycenter. The definition of the sliced Wasserstein barycenter (SWB) prob-
lem (Bonneel et al., 2015) of K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd) with marginal weights
ω1, . . . , ωK > 0 (

∑K
i=k ωk = 1) is defined as:

min
µ

F(µ;µ1:K , ω1:K); F(µ;µ1:K , ω1:K) =

K∑
k=1

ωkSWp
p(µ, µk). (2)

When ω1 = . . . = ωK = 1/K, we obtain an uniform SWB problem.

Computation of parametric SWB. Let µϕ be parameterized by ϕ ∈ Φ, SWB can be
solved by gradient-based optimization. In that case, the interested quantity is the gradient
∇ϕF(µϕ;µ1:K , ω1:K) =

∑K
k=1 ωk∇ϕSWp

p(µϕ, µk). However, the gradient

∇ϕSWp
p(µϕ, µk) = ∇ϕEθ∼U(Sd−1)[W

p
p(θ♯µϕ, θ♯µk)] = Eθ∼U(Sd−1)[∇ϕWp

p(θ♯µϕ, θ♯µk)]

for any k = 1, . . . ,K is intractable due to the intractability of SW with the expectation with respect
to the uniform distribution over the unit-hypersphere. Therefore, Monte Carlo estimation is used.
In particular, projecting directions θ1, . . . , θL are sampled i.i.d from U(Sd−1), and the stochastic
gradient estimator is formed:

∇ϕSWp
p(µϕ, µk) ≈

1

L

L∑
l=1

∇ϕWp
p(θl♯µϕ, θl♯µk). (3)

With the stochastic gradient, the SWB can be solved by using a stochastic gradient descent algorithm.
We refer the reader to Algorithm 1 in Appendix B for more detail. Specifically, we now discuss the
discrete SWB i.e., marginals and the barycenter are discrete measures.

Free supports barycenter. In this setting, we have µϕ = 1
n

∑n
i=1 δxi

, µk = 1
n

∑n
i=1 δyi , and

ϕ = (x1, . . . , xn), we can compute the (sub-)gradient with the time complexity O(n log n):

∇xiW
p
p(θ♯µϕ, θ♯µk) = p|θ⊤xi − θ⊤yσ(i)|p−1sign(θ⊤xi − θ⊤yσ(i))θ, (4)

where σ = σ1 ◦ σ−1
2 with σ1 and σ2 are any sorted permutation of {x1, . . . , xn} and {y1, . . . , yn}.

Here, [n] denotes the set {1, 2, . . . , n}, σ1 : [n] → [n] is the permuation function such that xσ1(1) ≤
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xσ1(2) ≤ . . . ≤ xσ1(n) or xσ1(1) ≥ xσ1(2) ≥ . . . ≥ xσ1(n). Similarly, σ2 : [n] → [n]] is the
permuation function such that yσ2(1) ≤ yσ2(2) ≤ . . . ≤ yσ2(n) or yσ2(1) ≥ yσ2(2) ≥ . . . ≥ yσ2(n),
and σ−1

2 is the argsort operator. The transport map is contructed as σ = σ1 ◦ σ−1
2 .

Fixed supports barycenter. In this setting, we have µϕ =
∑n
i=1 ϕiδxi

, µk =
∑n
i=1 βiδxi

,
∑n
i=1 ϕi =∑n

i=1 βi and ϕ = (ϕ1, . . . , ϕn). We can compute the gradient as follows:

∇ϕWp
p(θ♯µϕ, θ♯µk) = f⋆, (5)

where f⋆ is the first optimal Kantorovich dual potential of Wp
p(θ♯µϕ, θ♯µk) which can be obtained

with the time complexity of O(n log n). We refer the reader to Proposition 1 in (Cuturi & Doucet,
2014) for the detail and Algorithm 1 in (Séjourné et al., 2022) for the computational algorithm.

When the supports or weights of the barycenter are the output of a parametric function, we can use
the chain rule to estimate the gradient of the parameters of the function. For the continuous case,
we can approximate the barycenter and marginals by their empirical versions, and then perform the
estimation in the discrete case. Since the sample complexity of SW is O(n−1/2) (Nadjahi et al.,
2019; Nguyen et al., 2021; Manole et al., 2022; Nietert et al., 2022), the approximation error will
reduce fast with the number of support n increases. Another option is to use continuous Wasserstein
solvers (Fan et al., 2021; Korotin et al., 2022; Claici et al., 2018), however, this option is not as simple
as the first one.

Sliced Multi-marginal Wasserstein Distance. Given K ≥ 1 marginals µ1, . . . , µK ∈ Pp(Rd),
Sliced Multi-marginal Wasserstein Distance (Cohen et al., 2021) (SMW) is defined as:

SMW p
p (µ1:K ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
c(θ⊤x1, . . . , θ

⊤xK)pdπ(x1, . . . , xK)

]
, (6)

where the expectation is under θ ∼ U(Sd−1). When using the barycentric cost i.e.,

c(θ⊤x1, . . . , θ
⊤xK)p =

K∑
k=1

βk

∣∣∣∣∣θ⊤xk −
K∑
k′=1

βk′θ
⊤xk′

∣∣∣∣∣
p

,

for βk > 0 ∀k and
∑
k βk = 1. Minimizing SMW p

p (µ1:K , µ; c) with respect to µ is equivalent to
a barycenter problem. We refer the reader to Proposition 7 in (Cohen et al., 2021) for more detail.

3 MARGINAL FAIRNESS SLICED WASSERSTEIN BARYCENTER

We first formally define the marginal fairness Sliced Wasserstein barycenter in Section 3.1. We
then propose surrogate problems in Section 3.2. Finally, we discuss the connection of the proposed
surrogate problems to sliced multi-marginal Wasserstein in Section 3.3.

3.1 FORMAL DEFINITION

Now, we define the Marginal Fairness Sliced Wasserstein Barycenter (MFSWB) problem by adding
marginal fairness constraints to the SWB problem.
Definition 1. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), admissible ϵ ≥ 0 for i = 1, . . . ,K
and j = i+ 1, . . . ,K, the Marginal Fairness Sliced Wasserstein barycenter (MFSWB) is defined as:

min
µ

1

K

K∑
k=1

SWp
p(µ, µk) s.t.

2

(K − 1)K

K−1∑
i=1

K∑
j=i+1

|SWp
p(µ, µi)− SWp

p(µ, µj)| ≤ ϵ. (7)

Remark 1. We want ϵ in Definition 1 to be close to 0 i.e., µ1, . . . , µK are on the SWp-sphere with
the center µ. However, for a too-small value of ϵ, there might not exist a solution µ.

Duality objective. For admissible ϵ > 0, there exist a Lagrange multiplier λ such that we have the
dual form

L(µ, λ) = 1

K

K∑
k=1

SWp
p(µ, µk) +

2λ

(K − 1)K

K−1∑
i=1

K∑
j=i+1

|SWp
p(µ, µi)− SWp

p(µ, µj)| − λϵ. (8)
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Computational challenges. Firstly, MFSWB in Definition 1 requires an admissible ϵ > 0 to guarantee
the existence of the barycenter µ. In practice, it is unknown if a value of ϵ satisfies such a property.
Secondly, given an ϵ, it is not trivial to obtain the optimal Lagrange multiplier λ⋆ in Equation equa-
tion 8 to minimize the duality gap, which can be non-zero (weak duality). Thirdly, directly using the
dual objective in Equation equation 8 requires hyperparameter tuning for λ and might not provide
a good landscape for optimization. Moreover, we cannot obtain an unbiased gradient estimate of
ϕ in the case of the parametric barycenter µϕ. In greater detail, the Monte Carlo estimation of the
absolute distance between two SW distances is biased. Finally, Equation equation 8 has a quadratic
time complexity and space complexity in terms of the number of marginals, i.e., O(K2).

3.2 SURROGATE DEFINITIONS

Since it is not convenient to use the formal MFSWB in applications, we propose three surrogate
definitions of MFSWB that are free of hyperparameters and computationally friendly.

First Surrogate Definition. Motivated by Fair PCA (Samadi et al., 2018), we propose a practical
surrogate MFSWB problem that is hyperparameter-free.
Definition 2. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), the surrogate Marginal Fairness
Sliced Wasserstein Barycenter (s-MFSWB) problem is defined as:

min
µ

SF(µ;µ1:K); SF(µ;µ1:K) = max
k∈{1,...,K}

SW p
p (µ, µk). (9)

The s-MFSWB problem tries to minimize the maximal distance from the barycenter to the marginals.
Therefore, it can minimize indirectly the overall distances between the barycenter to the marginals
and implicitly make the distances to marginals approximately the same.

Gradient estimator. Let µϕ be paramterized by ϕ ∈ Φ, and F(ϕ, k) = SW p
p (µϕ, µk), we would like

to compute ∇ϕmaxk∈{1,...,K} F(ϕ, k). By Danskin’s envelope theorem (Danskin, 2012), we have:

∇ϕ max
k∈{1,...,K}

F(ϕ, k) = ∇ϕF(ϕ, k⋆) = ∇ϕSWp
p(µϕ, µk⋆),

for k⋆ = argmaxk∈{1,...,K} F(ϕ, k). Nevertheless, k⋆ is intractable due to the intractablity of
SW p

p (µϕ, µk) for k = 1, . . . ,K. Hence, we can form the estimation

k̂⋆ = argmax
k∈{1,...,K}

ŜW
p

p(µϕ, µk;L)

where ŜW
p

p(µϕ, µk;L) =
1
L

∑L
l=1 Wp

p(θl♯µϕ, θl♯µk) with θ1, . . . , θL
i.i.d∼ U(Sd−1). Then, we can

estimate ∇ϕSWp
p(µϕ, µk̂⋆) as in Equation 3. We refer the reader to Algorithm 2 in Appendix B for

the gradient estimation and optimization procedure. The downside of this estimator is that it is biased.

Second Surrogate Definition. To address the biased gradient issue of the first surrogate problem, we
propose the second surrogate MFSWB problem.
Definition 3. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), the unbiased surrogate Marginal
Fairness Sliced Wasserstein Barycenter (us-MFSWB) problem is defined as:

min
µ

USF(µ;µ1:K); USF(µ;µ1:K) = Eθ∼U(Sd−1)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

]
. (10)

In contrast to s-MFSWB which minimizes the maximal SW distance among marginals, us-MFSWB
minimizes the expected value of the maximal one-dimensional Wasserstein distance among marginals.
By considering fairness on one-dimensional projections, us-MFSWB can yield an unbiased gradient
estimate which is the reason why it is named as unbiased s-MFSWB.

Gradient estimator. Let µϕ be paramterized by ϕ ∈ Φ, and F(θ, ϕ, k) = W p
p (θ♯µϕ, θ♯µk),

we would like to compute ∇ϕEθ∼Sd−1 [maxk∈{1,...,K} F(θ, ϕ, k)] which is equivalent to
Eθ∼Sd−1 [∇ϕmaxk∈{1,...,K} F(θ, ϕ, k)] due to the Leibniz’s rule. By Danskin’s envelope theorem,
we have:

∇ϕ max
k∈{1,...,K}

F(θ, ϕ, k) = ∇ϕF(θ, ϕ, k⋆) = ∇ϕWp
p(θ♯µϕ, θ♯µk⋆),

5
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for k⋆θ = argmaxk∈{1,...,K} F(θ, ϕ, k) where we can estimate ∇ϕWp
p(θ♯µϕ, θ♯µk⋆θ ) can be com-

puted as in Equation 4- 5. Overall, with θ1, . . . , θL
i.i.d∼ U(Sd−1), we can form the final estimation

1
L

∑L
l=1 ∇ϕWp

p(θl♯µϕ, θl♯µk⋆θl
) which is an unbiased estimate. We refer the reader to Algorithm 3 in

Appendix B for the gradient estimation and optimization procedure.

Proposition 1. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd), we have SF(µ;µ1:K) ≤ USF(µ;µ1:K).

Proof of Proposition 1 is given in Appendix A.1. From the proposition, we see that minimizing the
objective of us-MFSWB also reduces the objective of s-MFSWB implicitly.

Proposition 2. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), θ1, . . . , θL
i.i.d∼ U(Sd−1), we have:

E

∣∣∣∣∣∇ϕ
1

L

L∑
l=1

Wp
p(θl♯µϕ, θl♯µk⋆θ )−∇ϕUSF(µϕ;µ1:K)

∣∣∣∣∣ ≤ 1√
L

Var
[
∇ϕWp

p(θ♯µϕ, θ♯µk⋆θ )
] 1

2 , (11)

where k⋆θ = argmaxk∈{1,...,K}W
p
p (θ♯µϕ, θ♯µk); and the expectation and variance are under the

random projecting direction θ ∼ U(Sd−1)

Proof of Proposition 2 is given in Appendix A.2. From the proposition, we know that the approxi-
mation error of the gradient estimator of us-MFSWB reduces at the order of O(L−1/2). Therefore,
increasing L leads to a better gradient approximation. The approximation could be further improved
via Quasi-Monte Carlo methods (Nguyen et al., 2024a).

Third Surrogate Definition. The us-MFSWB in Definition 3 utilizes the uniform distribution as the
slicing distribution, which is empirically shown to be non-optimal in statistical estimation (Nguyen
et al., 2021). Following the slicing distribution selection approach in (Nguyen & Ho, 2023), we
propose the third surrogate with a new slicing distribution that focuses on unfair projecting directions.

Marginal Fairness energy-based Slicing distribution. Since we want to encourage marginal fairness,
it is natural to construct the slicing distribution based on fairness energy.

Definition 4. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), the Marginal Fairness energy-based
Slicing distribution σ(θ;µ, µ1:K) ∈ P(Sd−1) is defined with the density function as follow:

fσ(θ;µ, µ1:K) ∝ exp

(
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

)
, (12)

We see that the marginal fairness energy-based slicing distribution in Definition 4 put more mass to a
projecting direction θ that has the larger maximal one-dimensional Wasserstein distance to marginals.
Therefore, it will penalize more marginally unfair projecting directions.

Energy-based surrogate MFSWB. From the new proposed slicing distribution, we can define a new
surrogate MFSWB problem, named Energy-based surrogate MFSWB.

Definition 5. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), the energy-based surrogate Marginal
Fairness Sliced Wasserstein Barycenter (es-MFSWB) problem is defined as:

min
µ

ESF(µ;µ1:K); ESF(µ;µ1:K) = Eθ∼σ(θ;µ,µ1:K)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

]
. (13)

Similar to the us-MFSWB, es-MFSWB also employs the implicit one-dimensional marginal fairness.
Nevertheless, es-MFSWB utilizes the marginal fairness energy-based slicing distribution to reweight
the importance of each projecting direction instead of treating them equally.

Proposition 3. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd), we have USF(µ;µ1:K) ≤ ESF(µ;µ1:K).

Proof of Proposition 3 is given in Appendix A.3. According to the proposition, we see that minimizing
the objective of es-MFSWB implicitly reduces the objective of us-MFSWB thereby decreasing the
objective of s-MFSWB as well (Proposition 1)."

Gradient estimator. Let µϕ be parameterized by ϕ ∈ Φ, we want to estimate ∇ϕESF(µϕ;µ1:K).
Since the slicing distribution is unnormalized, we use importance sampling to form an estimation.
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With θ1, . . . , θL
i.i.d∼ U(Sd−1), we can form the importance sampling stochastic gradient estimation:

∇̂ϕESF(µϕ;µ1:K , L) =
1

L

L∑
l=1

∇ϕ

W p
p (θl♯µ, θl♯µk⋆θl

)
exp

(
W p
p (θl♯µ, θl♯µk⋆θl

)
)

1
L

∑L
i=1

[
exp

(
W p
p (θi♯µ, θi♯µk⋆θi

)
)]
 ,

which can be further derived by using the chain rule and previously discussed techniques. It is worth
noting that the above estimation is only asymptotically unbiased. We refer the reader to Algorithm 4
in Appendix B for the gradient estimation and optimization procedure.

Computational complexities of proposed surrogates. For the number of marginals K, the three
proposed surrogates have a linear time complexity and space complexity i.e., O(K) which is the
same as the conventional SWB and is better than O(K2) of the formal MFSWB. For the number of
projections L, the number of supports n, and the number of dimensions d, the proposed surrogates
have the time complexity of O(Ln(log n+ d)) and the space complexity of O(L(n+ d)) which are
similar to the formal MFSWB and SWB.

3.3 SLICED MULTI-MARGINAL WASSERSTEIN DISTANCE WITH MAXIMAL GROUND METRIC

To shed some light on the proposed substrates, we connect them to a special variant of Sliced
multi-marginal Wasserstein (SMW) (see Equation 6) i.e., SMW with the maximal ground metric

c(θ⊤x1, . . . , θ
⊤xK) = max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |.

We first show that SMW with the maximal ground metric is a generalized metric on the space of
probability measures.
Proposition 4. Sliced multi-marginal Wasserstein distance with the maximal ground metric is a
generalized metric i.e., it satisfies non-negativity, marginal exchangeability, generalized triangle
inequality, and identity of indiscernibles.

Proof of Proposition 4 is given in Appendix A.4. It is worth noting that SMW with the maximal
ground metric has never been defined before. Since our work focuses on the MFSWB problem, we
will leave the careful investigation of this variant of SMW to future work.
Proposition 5. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), the maximal ground metric
c(θ⊤x1, . . . , θ

⊤xK) = maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |, we have:
min
µ1

USF(µ1;µ2:K) ≤ min
µ1

SMW p
p (µ1, µ2, . . . , µK ; c). (14)

Proof of Proposition 5 is given in Appendix A.5 and the inequality holds when changing µ1 to any
µi with i = 2, . . . ,K. Combining Proposition 1, we have the corollary of minµ1

SF(µ1;µ2:K) ≤
minµ1

SMW p
p (µ1, µ2, . . . , µK ; c). From the proposition, we see that minimizing the us-MFSWB is

equivalent to minimizing a lower bound of SMW with the maximal ground metric. Therefore, this
proposition implies the us-MFSWB could try to minimize the multi-marginal distance. Moreover,
this proposition can help to understand the proposed surrogates through the gradient flow of SMW.
We can further extend the proposition to show the minimizing es-MFSWB objective is the same as
minimizing a lower bound of energy-based SMW with the maximal ground metric, a new special
variant of SMW. We refer the reader to Propositon 6 in Appendix B for more detail.

4 EXPERIMENTS

In this section, we compare the barycenter found by our proposed surrogate problems i.e., s-MFSWB,
us-MFSWB, and es-MFSWB with the barycenter found by USWB and the formal MFSWB. For
evaluation, we use two metrics i.e., the F-metric (F) and the W-metric (W) which are defined as
follows:

F =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

|W p
p (µ, µi)−W p

p (µ, µj)|, W =
1

K

K∑
i=1

W p
p (µ, µi),

where µ is the barycenter, µ1, . . . , µK are the given marginals, and W p
p is the Wasserstein dis-

tance (Flamary et al., 2021) of the order p. Here, the F-metric represents the marginal fairness degree
of the barycenter and the W-metric represents the centrality of the barycenter. For all following
experiments, we use p = 2 for the Wasserstein distance and barycenter problems.
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Figure 2: Barycenters from USWB, MFSWB with λ = 1, s-MFSWB, us-MFSWB, and es-MFSWB along
gradient iterations with the corresponding F-metric and W-metric.

4.1 BARYCENTER OF GAUSSIANS

We first start with a simple simulation with 4 marginals which are empirical distributions with
100 i.i.d samples from 4 Gaussian distributions i.e., N ((0, 0), I), N ((20, 0), I), N ((18, 8), I), and
N ((18,−8), I). We then find the barycenter which is represented as an empirical distribution with
100 supports initialized by sampling i.i.d from N ((0,−5), I). We use stochastic gradient descent
with 50000 iterations of learning rate 0.01, the number of projections 100. We show the visualization
of the found barycenters with the corresponding F-metric and W-metric by using USWB, s-MFSWB,
us-MFSWB, and es-MFSWB at iterations 0, 1000, 5000, and 50000 in Figure 2. We observe that
the USWB does not lead to a marginal fairness barycenter. The three proposed surrogate problems
help to find a better barycenter faster in both two metrics than USWB. At convergence i.e., iteration
50000, we see that USWB does not give a fair barycenter while the three proposed surrogates lead to
a more fair barycenter. Among the proposed surrogates, es-MFSWB gives the most marginal fairness
barycenter with a competitive centerness. The formal MFSWB (dual form with λ = 1) leads to the
most fair barycenter. However, the performance of the formal MFSWB is quite sensitive to λ. We
also observe the same phenomenon for different choices of learning rate in Figure 5 in Appendix D.
We show the visualization for λ = 0.1 and λ = 10 in Figure 6 in Appendix D.

4.2 3D POINT-CLOUD AVERAGING

We aim to find the mean shape of point-cloud shapes by casting a point cloud X = {x1, . . . , xn}
into an empirical probability measures PX = 1

n

∑n
i=1 δxi

. We select two point-cloud shapes which
consist of 2048 points in ShapeNet Core-55 dataset (Chang et al., 2015). We initialize the barycenter
with a spherical point-cloud. We use stochastic gradient descent with 10000 iterations of learning rate
0.01, the number of projections 10. We report the found barycenters for two car shapes in Figure 3 at
the final iteration and the corresponding F-metric and W-metric at iterations 0, 1000, 5000, and 10000
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Figure 3: Averaging point-clouds with USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB.

Table 1: F-metric and W-metric along iterations in point-cloud averaging application.

Method Iteration 0 Iteration 1000 Iteration 5000 Iteration 10000

F (↓) W (↓) F (↓) W (↓) F (↓) W (↓) F (↓) W (↓)

USWB 252.24± 0.0 3746.05± 0.0 4.89± 0.28 85.72± 0.18 3.79± 0.32 45.37± 0.18 1.55± 0.48 39.81± 0.18
MFSWB λ = 0.1 252.24± 0.0 3746.05± 0.0 4.76± 0.27 84.86± 0.17 3.78± 0.2 45.2± 0.11 1.32± 0.22 39.73± 0.16
MFSWB λ = 1 252.24± 0.0 3746.05± 0.0 0.49± 0.2 79.08± 0.15 3.64± 0.26 44.71± 0.19 1.03± 0.06 39.45± 0.18
MFSWB λ = 10 252.24± 0.0 3746.05± 0.0 4.03± 2.43 71.24± 0.9 7.32± 2.5 45.21± 0.2 4.13± 2.48 42.56± 0.36
s-MFSWB 252.24± 0.0 3746.05± 0.0 2.52± 0.77 81.84± 0.14 4.01± 0.38 44.9± 0.13 1.15± 0.09 39.58± 0.17
us-MFSWB 252.24± 0.0 3746.05± 0.0 0.3± 0.18 78.69± 0.17 3.74± 0.26 44.38± 0.1 0.87± 0.18 39.26± 0.1
es-MFSWB 252.24± 0.0 3746.05± 0.0 0.2± 0.19 78.1± 0.16 3.5± 0.29 44.37± 0.08 0.84± 0.22 39.18± 0.08

in Table 1 from three independent runs. As in the Gaussian simulation, s-MFSWB, us-MFSWB,
and es-MFSWB help to reduce the two metrics faster than the USWB. With the slicing distribution
selection, es-MFSWB performs the best at every iteration, even better than the formal MFSWB with
three choices of λ i.e., 0.1, 1, 10. We also observe a similar phenomenon for two plane shapes in
Figure 7 and Table 3 in Appendix D. We refer the reader to Appendix D for a detailed discussion.

4.3 COLOR HARMONIZATION

We want to transform the color palette of a source image, denoted as X = (x1, . . . , xn) for n is the
number of pixels, to be an exact hybrid between two target images. Similar to the previous point-cloud
averaging, we transform the color palette of an image into the empirical probability measure over
colors (RGB) i.e., PX = 1

n

∑n
i=1 δxi . We then minimize barycenter losses i.e., USWB, MFSWB

(λ ∈ {0.1, 1, 10}), s-MFSWB, us-MFSWB, and es-MFSWB by using stochastic gradient descent
with the learning rate 0.0001 and 20000 iterations. We report both the transformed images and the
corresponding F-metric and W-metric in Figure 4. We also report the full results in Figure 8- 10 in
Appendix D. As in previous experiments, we see that the three proposed surrogates yield a better
barycenter faster than USWB. The proposed es-MFSWB is the best variant among all surrogates since
it has the lowest F-metric and W-metric at all iterations. We refer the reader to Figure 11-Figure 14 in
Appendix D for additional flowers-images example, where a similar relative comparison happens.
For the formal MFSWB, it is worse than es-MFSWB in one setting and better than es-MFSWB in
one setting with the right choice of λ. Therefore, it is more convenient to use us-MFSWB in practice.

4.4 SLICED WASSERSTEIN AUTOENCODER WITH CLASS-FAIR REPRESENTATION

Problem. We consider training the sliced Wasserstein autoencoder (SWAE)(Kolouri et al., 2018)
with a class-fairness regularization. In particular, we have the data distributions of K ≥ 1 classes i.e.,
µk ∈ P(Rd) for k = 1, . . . ,K and we would like to estimate an encoder network fϕ : Rd → Rh
(ϕ ∈ Φ) and a decoder network gψ : Rh → Rd (ψ ∈ Ψ with Rh is a low-dimensional latent space.
Given a prior distribution µ0 ∈ P(Rh), p ≥ 1, κ1 ∈ R+, κ2 ∈ R+, and a minibatch size M ≥ 1, we
perform the following optimization problem:

min
ϕ,ψ

E

[
1

KM

K∑
k=1

M∑
i=1

c(Xki, gψ(fϕ(Xki)) + κ1SW
p
p (PZ , P(fϕ(Xk))Kk=1

) + κ2B(PZ ;Pfϕ(X1) : Pfϕ(XK))

]
,

where (X1, . . . , XK) ∼ µ⊗M
1 ⊗. . .⊗µ⊗M

K , Z ∼ µ⊗M
0 , c is a reconstruction loss, PZ = 1

M

∑M
i=1 δZi

,
P(fϕ(Xk))Kk=1

= 1
KM

∑K
k=1

∑M
i=1 δfϕ(Xki), Pfϕ(Xk) =

1
M

∑M
i=1 δfϕ(Xki) for k = 1, . . . ,K, and B

denotes a barycenter loss i.e., USWB, MFSWB, s-MFSWB, us-MFSWB, and es-MFSWB. This
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Source Image Target Image 1 Target Image 2

USWB F = 775.785, W = 1767.517 MFSWB = 1, F = 131.047, W = 1494.58 s-MFSWB  F = 150.764, W = 1601.877 us-MFSWB F = 284.228, W = 1429.567 es-MFSWB F = 18.271, W = 1265.477

Figure 4: Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB.

Table 2: Results of grid search for learning rates in {0.0001, 0.0005, 0.001} for training SWAE.

Methods RL (↓) W2
2,latent × 102 (↓) W2

2,image × 102 (↓) F × 102 (↓) W × 102 (↓) Fimages (↓)

SWAE 3.002 9.949 26.572 17.661 28.512 7.787
USWB 3.195 9.174 27.446 5.190 12.448 7.140
MFSWB λ = 0.1 2.812 8.981 26.636 17.206 28.734 7.846
MFSWB λ = 1.0 2.883 7.978 26.355 18.069 29.701 7.367
MFSWB λ = 10.0 3.801 8.497 26.658 18.501 28.768 7.950
s-MFSWB 3.170 7.806 28.277 2.037 8.699 7.419
us-MFSWB 2.833 8.720 27.939 2.072 7.780 6.898
es-MFSWB 3.056 9.154 28.012 1.760 7.268 7.485

setting can be seen as an inverse barycenter problem i.e., the barycenter is fixed and the marginals are
learnt under some constraints (e.g., the reconstruction loss and the aggregated distribution loss).

Results. We train the autoencoder on MNIST dataset (LeCun et al., 1998) (d = 28 × 28) with
κ1 = 8.0, κ2 = 0.5, 250 epochs, using a uniform distribution on a 2D ball (h = 2) as µ0 with differnt
learning rates: {0.0001, 0.0005, 0.0008, 0.001} and do grid search on each method, reporting their
best score for each metric. Following the training phase, we evaluate the trained autoencoders on
the test set. Similar to previous experiments, we use the metrics F (Flatent) and W (Wlatent) in the
latent space distributions fϕ♯µ1, . . . , fϕ♯µK and the barycenter µ0. We use the reconstruction loss
(binary cross-entropy, denoted as RL), the Wasserstein-2 distance between the prior and aggregated
posterior distribution in latent space W2

2,latent := W 2
2

(
µ0,

1
K

∑K
k=1 fϕ♯µk

)
, as well as in image

space W2
2,image := W 2

2

(
gψ♯µ0,

1
K

∑K
k=1 µk

)
. Furthermore, we quantify the practical effect of the

method by measuring Fairness metric in Image space. During evaluation, we approximate µ0 by its
empirical version of 10000 samples. We report the quantitative result of grid search in Table 2, and
reconstructed images, generated images, and images of latent codes in Figure 15 in Appendix D.
From the results, the proposed surrogate MFSWB generally yield better scores than USWB, except
for the generative score i.e, W2

2,image. The formal MFSWB performs well in reconstruction loss and
W2

2,image, though its F and W scores are high. The W2
2,latent varies slightly across runs, with minor

differences in performance order, indicating relatively similar results. While us-MFSWB achieves
the best Fimages score, indicating the best fairness performance in image space, es-MFSWB excels in
fairness within the latent space. Compared to conventional SWAE, using a barycenter loss results in a
more class-fair latent representation but sacrifices image reconstruction and generative quality.

5 CONCLUSION

We introduced marginal fairness sliced Wasserstein barycenter (MFSWB), a special case of sliced
Wasserstein barycenter (SWB) which has approximately the same distance to marginals. We first
defined the MFSWB as a constrainted uniform SWB problem. After that, to overcome the com-
putational drawbacks of the original problem, we propose three surrogate definitions of MFSWB
which are hyperparameter-free and easy to compute. We discussed the relationship of the proposed
surrogate problems and their connection to the sliced Multi-marginal Wasserstein distance with the
maximal ground metric. Finally, we conduct simulations with Gaussian and experiments on 3D
point-cloud averaging, color harmonization, and sliced Wasserstein autoencoder with class-fairness
representation to show the benefits of the proposed surrogate MFSWB definitions. Future works
will focus on replacing SW with other metrics such as generalized sliced Wasserstein (Kolouri et al.,
2019) and augmented sliced Wasserstein (Chen et al., 2022).
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Supplement to “Marginal Fairness Sliced Wasserstein
Barycenter"

We present skipped proofs in Appendix A. We then provide some additional materials which are
mentioned in the main paper in Appendix B. After that, related works are discussed in Appendix C. We
then provide additional experimental results in Appendix D. Finally, we report the used computational
devices in Appendix E.

A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. From Definition 2, we have

SF(µ, µ1:K) = max
k∈{1,...,K}

SW p
p (µ, µk)

= max
k∈{1,...,K}

Eθ∼U(Sd−1)[W
p
p (θ♯µ, θ♯µk)]

Let k⋆ = argmaxk∈{1,...,K} Eθ∼U(Sd−1)[W
p
p (θ♯µ, θ♯µk)], we have

SF(µ, µ1:K) = Eθ∼U(Sd−1)[W
p
p (θ♯µ, θ♯µk⋆)]

≤ Eθ∼U(Sd−1)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

]
= USF(µ, µ1:K),

as from Definition 3, which completes the proof.

A.2 PROOF OF PROPOSITION 2

Using the Holder’s inequality, we have:

E

∣∣∣∣∣∇ϕ
1

L

L∑
l=1

Wp
p(θl♯µϕ, θl♯µk⋆θl

)−∇ϕUSF(µϕ;µ1:K)

∣∣∣∣∣
≤

E

∣∣∣∣∣∇ϕ
1

L

L∑
l=1

Wp
p(θl♯µϕ, θl♯µk⋆θl

)−∇ϕUSF(µϕ;µ1:K)

∣∣∣∣∣
2
 1

2

=

E

(
∇ϕ

1

L

L∑
l=1

Wp
p(θl♯µϕ, θl♯µk⋆θl

)−∇ϕE
[
Wp
p(θ♯µϕ, θ♯µk⋆θ )

])2
 1

2

=

E

(
1

L

L∑
l=1

∇ϕWp
p(θl♯µϕ, θl♯µk⋆θl

)− E
[
∇ϕWp

p(θ♯µϕ, θ♯µk⋆θ )
])2

 1
2

=

(
Var

[
1

L

L∑
l=1

∇ϕWp
p(θl♯µϕ, θl♯µk⋆θl

)

]) 1
2

=
1√
L

Var
[
∇ϕWp

p(θ♯µϕ, θ♯µk⋆θ )
] 1

2 ,

which completes the proof.

A.3 PROOF OF PROPOSITION 3

We first restate the following Lemma from (Nguyen et al., 2024b) and provide the proof for com-
pleteness.
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Lemma 1. For any L ≥ 1, 0 ≤ a1 ≤ a2 ≤ . . . ≤ aL and 0 < b1 ≤ b2 ≤ . . . ≤ bL, we have:

1

L
(

L∑
i=1

ai)(

L∑
i=1

bi) ≤
L∑
i=1

aibi. (15)

Proof. For L = 1, we directly have aibi = aibi. Assuming that for L the inequality holds i.e.,
1
L (
∑L
i=1 ai)(

∑L
i=1 bi) ≤

∑L
i=1 aibi which is equivalent to (

∑L
i=1 ai)(

∑L
i=1 bi) ≤ L

∑L
i=1 aibi.

Now, we show that 1
L (
∑L
i=1 ai)(

∑L
i=1 bi) ≤

∑L
i=1 aibi i.e., the inequality holds for L+1. We have

(

L+1∑
i=1

ai)(

L+1∑
i=1

bi) = (

L∑
i=1

ai)(

L∑
i=1

bi) + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1

≤ L

L∑
i=1

aibi + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1.

Since aL+1bL+1 + aibi ≥ aL+1bi + bL+1ai for all 1 ≤ i ≤ L by rearrangement inequality. By
taking the sum of these inequalities over i from 1 to L, we obtain:

(

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 ≤
L∑
i=1

aibi + LaL+1bL+1.

Then, we have

(

L+1∑
i=1

ai)(

L+1∑
i=1

bi) ≤ L

L∑
i=1

aibi + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1

≤ L

L∑
i=1

aibi +

L∑
i=1

aibi + LaL+1bL+1 + aL+1bL+1

= (L+ 1)(

L+1∑
i=1

aibi),

which completes the proof.

Now, we go back to the main inequality which is USF(µ;µ1:K) ≤ ESF(µ;µ1:K). From Defini-
tion 5, we have:

ESF(µ;µ1:K) = Eθ∼σ(θ;µ,µ1:K)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

]
= Eθ∼U(Sd−1)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

fσ(θ;µ, µ1:K)
Γ(d/2)
2πd/2

]
,

where fσ(θ;µ, µ1:K) ∝ exp
(
maxk∈{1,...,K}W

p
p (θ♯µ, θ♯µk)

)
. Now, we consider a Monte Carlo

estimation of ESF(µ;µ1:K) by importance sampling:

ÊSF(µ;µ1:K , L) =
1

L

L∑
l=1

[
max

k∈{1,...,K}
W p
p (θl♯µ, θl♯µk)

exp
(
maxk∈{1,...,K}W

p
p (θl♯µ, θl♯µk)

)∑L
i=1 exp

(
maxk∈{1,...,K}W

p
p (θi♯µ, θi♯µk)

)] ,
where θ1, . . . , θL

i.i.d∼ U(Sd−1). Similarly, we consider a Monte Carlo estimation of USF(µ;µ1:K):

ÛSF(µ;µ1:K , L) =
1

L

L∑
l=1

[
max

k∈{1,...,K}
W p
p (θl♯µ, θl♯µk)

]
,

for the same set of θ1, . . . , θL. Without losing generality, we assume that
maxk∈{1,...,K}W

p
p (θ1♯µ, θ1♯µk) ≤ . . . ≤ maxk∈{1,...,K}W

p
p (θL♯µ, θL♯µk). Let
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maxk∈{1,...,K}W
p
p (θi♯µ, θi♯µk) = ai and exp

(
maxk∈{1,...,K}W

p
p (θi♯µ, θi♯µk)

)
= bi, ap-

plying Lemma 1, we have:

ÛSF(µ;µ1:K , L) ≤ ÊSF(µ;µ1:K , L) ∀L ≥ 1.

By letting L→ ∞ and applying the law of large numbers, we obtain:

USF(µ;µ1:K) ≤ ESF(µ;µ1:K),

which completes the proof.

A.4 PROOF OF PROPOSITION 4

We first recall the definition of the SMW with the maximal ground metric:

SMW p
p (µ1, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
.

Non-negativity. Since maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |p ≥ 0 for any x1, . . . , xK and
for any θ, we can obtain the desired property SMW p

p (µ1, . . . , µK ; c) ≥ 0 which implies
SMWp(µ1, . . . , µK ; c) ≥ 0.

Marginal Exchangeability. For any permutation σ : [[K]] → [[K]], we have:

SMW p
p (µ1, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
= E

[
inf

π∈Π(µσ(1),...,µσ(K))

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
= SMW p

p (µσ(1), . . . , µσ(K); c).

Generalized Triangle Inequality. For µ ∈ Pp(Rd), we have :

SMW p
p (µ1, . . . , µK ; c)

= E
[

inf
π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
≤ E

[
inf

π∈Π(µ1,...,µK)

∫ K∑
k=1

max
i∈{1,...,K}\{k},j∈{1,...,K}\{k}

|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]

= E

[
inf

π∈Π(µ1,...,µK)

K∑
k=1

∫
max

i∈{1,...,K}\{k},j∈{1,...,K}\{k}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]

= E

[
K∑
k=1

∫
max

i∈{1,...,K}\{k},j∈{1,...,K}\{k}
|θ⊤xi − θ⊤xj |pdπ⋆(x1, . . . , xk−1, xk+1, . . . xK)

]

for π⋆ is the optimal multi-marginal transportation plan and π⋆(x1, . . . , xk−1, xk+1, xK ) is the
marginal joint distribution by integrating out xk. By the gluing lemma (Peyré & Cuturi, 2020), there
exists optimal plans π⋆(x1, . . . , xk−1, y, xk+1, xK ) for any k ∈ [[K]] and y follows µ. We further
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have:

SMW p
p (µ1, . . . , µK ; c)

≤ E

[
K∑
k=1

∫
max

(
max

i∈{1,...,K}\{k},j∈{1,...,K}\{k}
|θ⊤xi − θ⊤xj |p,

max
i∈{1,...,K}\{k}

|θ⊤xi − θ⊤y|p ) dπ⋆(x1, . . . , xk−1, y, xk+1, . . . xK)]

=

K∑
k=1

E
[

inf
π∈Π(µ1,...,µk−1,µ,µk+1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]

=

K∑
k=1

SMW p
p (µ1, . . . , µk−1, µ, µk+1, . . . , µK ; c).

Applying the Minkowski’s inequality, we obtain the desired property:

SMWp(µ1, . . . , µK ; c) ≤
K∑
k=1

SMWp(µ1, . . . , µk−1, µ, µk+1, . . . , µK ; c).

Identity of Indiscernibles. From the proof in Appendix A.5, we have:

SMW p
p (µ1, . . . , µK ; c) ≥ E

[
max

i∈{1,...,K},j∈{1,...,K}
W p
p (θ♯µi, θ♯µj)

]
≥ max
i∈{1,...,K},j∈{1,...,K}

E
[
W p
p (θ♯µi, θ♯µj)

]
= max
i∈{1,...,K},j∈{1,...,K}

SW p
p (µi, µj).

Therefore, when SMWp(µ1, . . . , µK ; c) = 0, we have SW p
p (µi, µj) = 0 which implies µi = µj for

any i, j ∈ [[K]]. As a result, µ1 = . . . = µK from the metricity of the SW distance. For the other
direction, it is easy to see that if µ1 = . . . µK , we have SMWp(µ1, . . . , µK ; c) = 0 based on the
definition and the metricity of the Wasserstein distance.

A.5 PROOF OF PROPOSITION 5

Given the maximal ground metric c(θ⊤x1, . . . , θ⊤xK) = maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |,
from Equation 6

SMW p
p (µ1, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
c(θ⊤x1, . . . , θ

⊤xK)pdπ(x1, . . . , xK)

]
= E

[
inf

π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
By Jensen inequality i.e., (x1, . . . , xK) → maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |p is a convex
function, we have:

SMW p
p (µ1, . . . , µK ; c) ≥ E

[
inf

π∈Π(µ1,...,µK)
max

i∈{1,...,K},j∈{1,...,K}

∫
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
.

Using max-min inequality, we have:

SMW p
p (µ1, . . . , µK ; c) ≥ E

[
max

i∈{1,...,K},j∈{1,...,K}
inf

π∈Π(µ1,...,µK)

∫
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
≥ E

[
max

i∈{1,...,K},j∈{1,...,K}
inf

π∈Π(µi,µj)

∫
|θ⊤xi − θ⊤xj |pdπ(xi, xj)

]
= E

[
max

i∈{1,...,K},j∈{1,...,K}
W p
p (θ♯µi, θ♯µj)

]
.
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Algorithm 1 Computational algorithm of the SWB problem

Input: Marginals µ1, . . . , µK , p ≥ 1, weights ω1, . . . , ωK , the number of projections L, step size
η, the number of iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
for l = 1 to L do

for k = 1 to K do
Set ∇ϕ = ∇ϕ +∇ϕ

ωk

L Wp
p(θl♯µϕ, θl♯µk)

end for
end for
ϕ = ϕ− η∇ϕ

end for
Return: µϕ

Algorithm 2 Computational algorithm of the s-MFSWB problem

Input: Marginals µ1, . . . , µK , p ≥ 1 the number of projections L, step size η, the number of
iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
k⋆ = 1
for k = 1 to K do

for l = 1 to L do
if 1
L

∑L
l=1 Wp

p(θl♯µϕ, θl♯µk) >
1
L

∑L
l=1 Wp

p(θl♯µϕ, θl♯µk⋆) then
k⋆ = k

end if
end for

end for
∇ϕ = ∇ϕ +

1
L

∑L
l=1 ∇ϕWp

p(θl♯µϕ, θl♯µk⋆)
ϕ = ϕ− η∇ϕ

end for
Return: µϕ

Therefore, minimizing two sides with respect to µ1, we have:

min
µ1

SMW p
p (µ1, . . . , µK ; c) ≥ min

µ1

E
[

max
i∈{1,...,K},j∈{1,...,K}

W p
p (θ♯µi, θ♯µj)

]
≥ min

µ1

E
[

max
i∈{2,...,K}

W p
p (θ♯µ1, θ♯µi)

]
= min

µ1

USF(µ1;µ2:K),

which completes the proof.

B ADDITIONAL MATERIALS

Algorithms. As mentioned in the main paper, we present the computational algorithm for SWB in
Algorithm 1, for s-MFSWB in Algorithm 2, for us-MFSWB in Algorithm 3, and for es-MFSWB in
Algorithm 4.

Energy-based Sliced Multi-marginal Wasserstein. As shown in Proposition 5, us-MFSWB is
equivalent to minimizing a lower bound of SMW with the maximal ground metric. We now show
that es-MFSWB is also equivalent to minimizing a lower bound of a variant of SMW i.e., Energy-
based sliced Multi-marginal Wasserstein with the maximal ground metric. We refer the reader
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Algorithm 3 Computational algorithm of the us-MFSWB problem

Input: Marginals µ1, . . . , µK , p ≥ 1 the number of projections L, step size η, the number of
iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
for l = 1 to L do
k⋆l = 1
for k = 2 to K do

if Wp
p(θl♯µϕ, θl♯µk) > Wp

p(θl♯µϕ, θl♯µk⋆l ) then
k⋆l = k

end if
end for
∇ϕ = ∇ϕ +∇ϕ

1
LWp

p(θl♯µϕ, θl♯µk⋆l )
end for
ϕ = ϕ− η∇ϕ

end for
Return: µϕ

Algorithm 4 Computational algorithm of the es-MFSWB problem

Input: Marginals µ1, . . . , µK , p ≥ 1 the number of projections L, step size η, the number of
iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
for l = 1 to L do
k⋆l = 1
for k = 2 to K do

if Wp
p(θl♯µϕ, θl♯µk) > Wp

p(θl♯µϕ, θl♯µk⋆l ) then
k⋆l = k

end if
end for

end for
for l = 1 to L do
wl,ϕ =

exp(Wp
p(θl♯µϕ,θl♯µk⋆

l
))∑L

j=1 exp(Wp
p(θj♯µϕ,θj♯µk⋆

j
))

end for
∇ϕ = ∇ϕ +∇ϕ

wl,ϕ

L Wp
p(θl♯µϕ, θl♯µk⋆l )

ϕ = ϕ− η∇ϕ

end for
Return: µϕ

to Proposition 6 for a detailed definition. The proof of Proposition 6 is similar to the proof of
Proposition 5 in Appendix A.5.

Proposition 6. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), the maximal ground metric
c(θ⊤x1, . . . , θ

⊤xK) = maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |, we have:

min
µ1

ESF(µ1;µ2:K) ≤ min
µ1

ESMW p
p (µ1, µ2, . . . , µK ; c), (16)

where

ESMW p
p (µ1, µ2, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
c(θ⊤x1, . . . , θ

⊤xK)pdπ(x1, . . . , xK)

]
,
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Figure 5: Barycenters from USWB, MFSWB with λ = 1, s-MFSWB, us-MFSWB, and es-MFSWB with
learning rate 0.001 (first row), 0.005 (second row), and 0.05 (third row).

and the expectation is with respect to σ(θ) i.e.,

fσ(θ;µ1, µ2:K) ∝ exp

(
max

k∈{2,...,K}
W p
p (θ♯µ1, θ♯µk)

)
.

C RELATED WORKS

Fair Learning with Wasserstein Barycenter. A connection between fair regression and one-
dimensional Wasserstein barycenter is established by deriving the expression for the optimal function
minimizing squared risk under Demographic Parity constraints (Chzhen et al., 2020). Similarly,
Demographic Parity fair classification is connected to one-dimensional Wasserstein-1 distance
barycenter in (Jiang et al., 2020). The work (Hu et al., 2023) extends the Demographic Parity
constraint to multi-task problems for regression and classification and connects them to the one-
dimensional Wasserstein-2 distance barycenters. A method to augment the input so that predictability
of the protected attribute is impossible, by using Wasserstein-2 distance Barycenters to repair the data
is proposed in (Gordaliza et al., 2019). A general approach for using one-dimensional Wasserstein-1
distance barycenter to obtain Demographic Parity in classification and regression is proposed in (Silvia
et al., 2020). Overall, all discussed works define fairness in terms of Demographic Parity constraints
in applications with a response variable (classification and regression) in one dimension. In contrast,
we focus on marginal fairness barycenter i.e., using a set of measures only, in any dimensions.

Other possible applications. Wasserstein barycenter has been used to cluster measures in (Zhuang
et al., 2022). In particular, a K-mean algorithm for measures is proposed with Wasserstein barycenter
as the averaging operator. Therefore, our MFSWB can be directly used to enforce the fairness for
averaging inside each cluster. The proposed MFSWB can be also used to average meshes by changing
the SW to H2SW which is proposed in (Nguyen & Ho, 2024).

D ADDITIONAL EXPERIMENTS

Gaussians barycenter with the formal MFSWB. We report the result of finding barycenters from
USWB, MFSWB with λ = 1, s-MFSWB, us-MFSWB, and es-MFSWB with learning rate 0.001,
0.005, and 0.05 in Figure 5. We present the result of finding barycenters of Gaussian distributions
with MFSWB λ = 0.1 and λ = 10 in Figure 6.
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Figure 6: Barycenters from MFSWB with λ = 0.1 and λ = 10 along gradient iterations with the corresponding
F-metric and W-metric.

Figure 7: Averaging point-clouds with USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB.

Table 3: F-metric and W-metric along iterations in point-cloud averaging application.

Method Iteration 0 Epoch 1000 Epoch 5000 Epoch 10000

F (↓) W (↓) F (↓) W (↓) F (↓) W (↓) F (↓) W (↓)

USWB 746.67± 0.0 4814.71± 0.0 35.22± 1.04 161.11± 0.54 7.82± 0.26 109.82± 0.28 11.08± 0.06 108.52± 0.17
MFSWB λ = 0.1 746.67± 0.0 4814.71± 0.0 35.15± 0.36 159.84± 0.55 4.95± 0.23 109.14± 0.33 6.95± 0.8 107.83± 0.16
MFSWB λ = 1 746.67± 0.0 4814.71± 0.0 33.21± 2.72 151.24± 0.64 2.54± 1.5 109.66± 0.26 4.66± 2.1 108.1± 0.05
MFSWB λ = 10 746.67± 0.0 4814.71± 0.0 34.03± 22.6 158.66± 1.39 29.19± 14.29 122.66± 0.88 20.55± 13.57 123.65± 1.52
s-MFSWB 746.67± 0.0 4814.71± 0.0 36.23± 1.88 154.4± 0.67 0.66± 0.44 109.17± 0.34 2.54± 2.06 107.57± 0.19
us-MFSWB 746.67± 0.0 4814.71± 0.0 28.65± 1.37 144.27± 0.65 1.02± 0.8 109.67± 0.1 1.35± 0.77 108.2± 0.19
es-MFSWB 746.67± 0.0 4814.71± 0.0 28.05± 1.16 143.24± 0.76 0.99± 0.32 109.68± 0.14 1.36± 0.62 108.28± 0.07

Point-cloud averaging. We report the averaging results of two point-clouds of plane shapes n
Figure 7 and the corresponding F-metrics and W-metric along iterations in Table 3. We see that the
proposed surrogates achieve better F-metric and W-metric than the USWB. In this case, us-MFSWB
gives the best F-metric at the final epoch, however, es-MFSWB also gives a comparable performance
and performs better at earlier epochs. For the formal MFSWB, it does not perform well with the
chosen set of λ.

Color Harmonization. We first present the harmonized images of different methods including
USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at iteration 5000 and 10000 for
the demonstrated images in the main text in Figure 8-Figure 9. Moreover, we report the results of
MFSWB (λ = 0.1, 10) at iteration 5000, 10000, and 20000 in Figure 10. Similarly, we repeat the
same experiments with flower images in Figure 11- 14. Overall, we see that es-MFSWB helps to
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Source Image Target Image 1 Target Image 2

USWB F = 1663.415, W = 5638.846 MFSWB = 1, F = 769.439, W = 5219.855 s-MFSWB  F = 1150.143, W = 5413.16 us-MFSWB F = 1421.797, W = 5082.181 es-MFSWB F = 103.12, W = 3030.714

Figure 8: Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at
iteration 5000.

Source Image Target Image 1 Target Image 2

USWB F = 1287.088, W = 3494.898 MFSWB = 1, F = 251.733, W = 3047.908 s-MFSWB  F = 539.51, W = 3241.862 us-MFSWB F = 874.584, W = 2867.402 es-MFSWB F = 109.643, W = 1718.495

Figure 9: Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at
iteration 10000.

MFSWB = 0.1, F = 1547.639, W = 5590.296 MFSWB = 10, F = 48.953, W = 3149.456 MFSWB = 0.1, F = 1086.353, W = 3435.965 MFSWB = 10, F = 70.221, W = 2043.315

MFSWB = 0.1, F = 492.712, W = 1722.733 MFSWB = 10, F = 28.018, W = 1405.82

Figure 10: Harmonized images from MFSWB with λ = 0.1 and λ = 10 at iterations 5000, 10000, and 20000.

reduce both F-metric and W-metric faster than USWB and other surrogates. For the formal MFSWB,
the performance depends significantly on the choice of λ.

Sliced Wasserstein autoencoder with class-fairness representation. We use the RMSprop opti-
mizer with learning rate 0.01, alpha=0.99, eps=1e− 8. As mentioned in the main text, we report the
used neural network architectures:

We report some randomly selected reconstructed images, some randomly generated images, and the
test latent codes of trained autoencoders in Figure 15. Overall, we observe that the qualitative results
are consistent with the quantitive results in Table 2. From the latent spaces, we see that the proposed
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Source Image Target Image 1 Target Image 2

USWB F = 4582.919, W = 7888.161 MFSWB = 1, F = 3562.971, W = 7408.885 s-MFSWB  F = 4074.09, W = 7627.971 us-MFSWB F = 4277.279, W = 7417.909 es-MFSWB F = 2269.199, W = 5220.856

Figure 11: Harmonized images from USWB, MFSWB (λ = 1) s-MFSWB, us-MFSWB, and es-MFSWB at
iteration 5000.

Source Image Target Image 1 Target Image 2

USWB F = 3801.19, W = 5446.39 MFSWB = 1, F = 1966.134, W = 4898.801 s-MFSWB  F = 2852.586, W = 5112.62 us-MFSWB F = 3204.296, W = 4813.547 es-MFSWB F = 1003.603, W = 3131.569

Figure 12: Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at
iteration 10000.

surrogates helps to make the codes of classes have approximately the same structure which do appear
in the conventional SWAE’s latent codes.
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Source Image Target Image 1 Target Image 2

USWB F = 2644.279, W = 3147.174 MFSWB = 1, F = 488.311, W = 2766.264 s-MFSWB  F = 1115.146, W = 2900.635 us-MFSWB F = 1567.183, W = 2574.847 es-MFSWB F = 193.701, W = 1884.393

Figure 13: Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at
iterations 20000.

MFSWB = 0.1, F = 4481.706, W = 7832.764 MFSWB = 10, F = 639.082, W = 5363.916 MFSWB = 0.1, F = 3611.277, W = 5368.453 MFSWB = 10, F = 574.182, W = 2745.862

MFSWB = 0.1, F = 2314.042, W = 3072.12 MFSWB = 10, F = 26.742, W = 1486.442

Figure 14: Color harmonized images from MFSWB with λ = 0.1 and λ = 10 at iterations 5000, 10000, and
20000.

E COMPUTATIONAL DEVICES

For the Gaussian simulation, point-cloud averaging, and color harmonization, we use a HP Omen
25L desktop for conducting experiments. Additionally, for the Sliced Wasserstein Autoencoder with
class-fair representation experiment, we employ the NVIDIA Tesla V100 GPU.
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Method Reconstructed Images Generated Images Latent Space

SWAE

USWB

MFSWB λ = 0.1

MFSWB λ = 1.0
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Method Reconstructed Images Generated Images Latent Space

MFSWB λ = 10.0

s-MFSWB

us-MFSWB

es-MFSWB

Figure 15: Reconstructed images, generated images and latent space of all methods.
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Layer Description
MNISTAutoencoder
Encoder

Conv2d (1, 16, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Conv2d (16, 16, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
AvgPool2d (kernel size=2)
Conv2d (16, 32, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Conv2d (32, 32, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
AvgPool2d (kernel size=2)
Conv2d (32, 64, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Conv2d (64, 64, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
AvgPool2d (kernel size=2, padding=1)
Linear (in_features=1024, out_features=128)
ReLU (inplace=True)
Linear (in_features=128, out_features=2)

Decoder
Linear (in_features=2, out_features=128)
Linear (in_features=128, out_features=1024)
ReLU (inplace=True)
Upsample (scale_factor=2, mode=nearest)
Conv2d (64, 64, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Conv2d (64, 64, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Upsample (scale_factor=2, mode=nearest)
Conv2d (64, 64, kernel size=3, stride=1)
LeakyReLU (negative slope=0.2, inplace=True)
Conv2d (64, 64, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Upsample (scale_factor=2, mode=nearest)
Conv2d (64, 32, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Conv2d (32, 32, kernel size=3, stride=1, padding=1)
LeakyReLU (negative slope=0.2, inplace=True)
Conv2d (32, 1, kernel size=3, stride=1, padding=1)

Table 4: MNIST Autoencoder Architecture
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Table 5: Comparison of methods with κ2 = 0.5 on CIFAR10 after 500 epochs.

Methods RL (↓) W2
2,latent (↓) W2

2,image (↓) Flatent (↓) Wlatent (↓) Fimages (↓) Wimages (↓)

SWAE 0.640 6.101 141.984 0.280 4.585 46.006 178.798

UBSW 0.640 6.104 135.944 0.228 4.572 44.024 174.322
MFSWB λ = 0.1 0.640 6.097 142.530 0.281 4.585 46.080 179.210
MFSWB λ = 1.0 0.641 6.092 142.289 0.279 4.578 46.076 179.135

MFSWB λ = 10.0 0.640 6.100 141.503 0.282 4.585 46.088 178.373
s-MFBSW 0.640 6.103 134.766 0.218 4.569 42.503 173.530

us-MFBSW 0.642 6.088 131.934 0.209 4.546 39.329 171.204
es-MFBSW 0.642 6.060 132.170 0.212 4.534 40.642 171.573

Table 6: Comparison of methods with κ2 = 0.5 on STL10 after 500 epochs.

Methods RL (↓) W2
2,latent (↓) W2

2,image (↓) Flatent (↓) Wlatent (↓) Fimages (↓) Wimages (↓)

SWAE 0.613 16.826 301.397 0.647 15.699 25.827 199.175

UBSW 0.616 16.908 301.143 0.585 15.719 24.905 199.918
MFSWB λ = 0.1 0.614 16.823 301.704 0.647 15.698 25.637 199.662
MFSWB λ = 1.0 0.614 16.814 301.505 0.647 15.688 25.790 199.307

MFSWB λ = 10.0 0.613 16.831 301.370 0.648 15.705 25.546 199.168
s-MFBSW 0.613 16.842 302.632 0.580 15.658 23.520 200.262

us-MFBSW 0.616 16.830 297.952 0.586 15.645 23.638 197.057
es-MFBSW 0.616 16.796 296.548 0.557 15.658 22.551 199.117

Results. We evaluate the scalability of our method using two well-established datasets: CI-
FAR10 (Krizhevsky et al., 2009) (d = 32×32×3) and STL10 (Coates et al., 2011) (d = 64×64×3).
For these experiments, we set κ1 = 8.0, κ2 = 0.5, and train for 500 epochs with a learning rate of
0.0005. The CIFAR10 experiment uses a uniform distribution on a 48-dimensional ball (h = 48),
while the STL10 experiment uses a 128-dimensional ball (h = 128).

We assess fairness and averaging distance in the latent space, denoted as Flatent andWlatent, respectively.
Additionally, we measure the reconstruction loss (RL) and the Wasserstein-2 distance between
the prior and aggregated posterior distribution in the latent space, W2

2,latent. Unlike the MNIST
experiments, where the Wasserstein distance was used to measure metrics related in image space, we
employ the FID score (Heusel et al., 2017) for CIFAR10 and STL10 due to its widespread use and
reliability in measuring distances. Specifically, the F-metric and W-metric in the image domain and
the gap between generated images and the dataset W2

2,image are calculated as:

Fimages =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

∣∣FID(µ, µi)− FID(µ, µj)
∣∣, (17)

Wimages =
1

K

K∑
i=1

FID(µ, µi), (18)

W2
2,image = FID

(
µ0,

1

K

K∑
k=1

µk

)
(19)

where µ is the empirical distribution of generated images, µ1, . . . , µK are the images for each label
in the dataset, and FID() is the FID score (Heusel et al., 2017). We report the quantitative results in
Table 5 for the CIFAR10 experiment and Table 6 for the STL10 experiment.

The proposed methods outperform baselines across nearly all metrics. For CIFAR10, us-MFBSW
and es-MFBSW deliver the best results, with us-MFBSW excelling in image domain metrics like
W2

2,image, Fimage, and Wimage. On STL10, es-MFBSW stands out, achieving the best W2
2,latent, W2

2,image,
and Fimage, while also improving fairness in the latent space with the lowest Flatent, while us-MFBSW
does its best at reducing the averaging distance both in latent and image domain, which are Wlatent
and Wimage, respectively.
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Overall, compared to the baselines, the proposed methods achieve greater geometric fairness and
bring the generated images closer to the dataset distribution in both latent and image spaces, though
this comes at the expense of reduced image reconstruction quality.
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