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ABSTRACT

We propose ABSignSGD, a block-coordinate variant of sign-based descent with
flexible block selection that enables memory- and runtime-efficient full-parameter
fine-tuning of large language models. We present a unified convergence analysis
under mild conditions, covering both the base method and a majority-vote exten-
sion for distributed training. The latter improves communication efficiency by ag-
gregating only gradient signs rather than averaging full gradients. Experiments on
Qwen3-8B, Llama3-8B, and Qwen3-32B, spanning mathematical reasoning and
general instruction-following tasks, show that ABSignSGD converges faster per
iteration and delivers superior downstream performance while reducing both run-
time and memory usage compared to existing methods. Ablation studies further
indicate that the memoryless sign-based update naturally complements block-wise
updates, explaining the method’s strong empirical performance.

1 INTRODUCTION

Large Language Models (LLMs) achieve state-of-the-art results in reasoning, dialogue, and code
generation (Achiam et al., |2023)), but specialized applications still require task-specific adapta-
tion (Ding et al.| 2023). Fully retraining is prohibitively expensive, making fine-tuning the prac-
tical route for domains such as biomedical text (Singhal et al., 2023) or legal text (Chalkidis et al.,
2020) and for aligning behavior like multilingual support. Yet even fine-tuning imposes heavy GPU
memory demands (Han et al., [2024), motivating methods that reduce memory and runtime without
degrading performance. Existing strategies to reduce the memory footprint of LLM fine-tuning span
multiple directions. System-level techniques such as quantization (Dettmers et al., |2022; 2023}, |[Lin
et al., 2023)) modify the numerical representation of model parameters or activations (e.g., storing
weights in lower precision), while offloading (Ren et al., |2021; Rajbhandari et al., |2021)) changes
the storage location of tensors within the hardware memory hierarchy (e.g., moving optimizer states
to CPU or NVMe). Complementary to these system-level approaches, algorithmic optimizers form
the second major axis of memory-efficient fine-tuning. Among them, zeroth-order methods (Zhang
et al.l2024; |Liu et al., [2024) represent an important line of work, eliminating backward passes and
achieving inference-level memory usage. However, their slow convergence often limits practical
applicability for LLM fine-tuning.

In this work, we focus on first-order algorithmic methods that aim to reduce memory and runtime
without sacrificing performance. Existing methods can be broadly grouped into three families.

(i) Parameter-efficient fine-tuning (PEFT). These methods reduce memory usage by training only
a small set of additional parameters while keeping the base model frozen. Representative techniques
include prefix-tuning (Li & Liang, [2021), prompt-tuning (Lester et al.,|2021)), and adapter architec-
tures (Houlsby et al.| 2019; Pfeiffer et al., 2021). The most widely adopted strategy is Low-Rank
Adaptation (LoRA) (Hu et al.| 2021)), which reparameterizes weight matrices using low-rank fac-
tors. PEFT reduces memory and makes fine-tuning feasible on limited hardware, yet usually yields
lower performance than full-parameter training.

(ii) Low-rank projection for full-parameter training. Methods such as Galore (Zhao et al.,
2024]), Fira (Chen et al.,|2024)), Flora (Hao et al., 2024), and GoLore (He et al., 2024) cut optimizer
memory by projecting gradients into a low-rank subspace via SVD or faster/cheaper random pro-
jections, sometimes applied intermittently to reduce cost. They preserve full-parameter updates but
may face: (a) performance gaps compared to strong baselines like AdamW, (b) incompatibility with
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standard gradient accumulation under layerwise updates for maximal memory saving, and (c) slow
runtime when frequent costly decompositions are needed.

(iii) Block-wise optimization. This approach updates only a subset of parameters per iteration. For
example, BAdam (Luo et al.||2024) combines block-coordinate updates with Adam, saving memory
by storing optimizer states only for the active block and reducing runtime by halting backpropagation
at that block. However, Adam’s dependence on first- and second-moment estimates conflicts with
block switching, requiring frequent state resets that, as shown in our ablations, degrade convergence
relative to Adam with full-model updates.

Motivated by these trade-offs, we propose Arbitrary-order Block SignSGD (ABSignSGD),
which combines block-coordinate updates with sign-based descent. Leveraging the simplicity of
SignSGD, our method offers greater memory savings and extra runtime gains from arbitrary-order
updates while maintaining competitive performance. We further introduce ABSignSGD-MYV, a
communication-efficient data-parallel variant that transmits only block gradient signs (1 bit per co-
ordinate) cutting communication cost by 960x (with 30 blocks) over standard DDP (Paszke et al.,
2019) without harming convergence. As shown in Table[I] ABSignSGD achieves the lowest mem-
ory overhead, smallest communication budget, and fastest runtime.

Table 1: Memory-efficient optimizer comparison. M: model parameters (billions); r: rank for low-
rank methods; m: weight matrix dimension (assumed square); IN: layers (for layer-wise update) or
blocks. Memory/communication in GB. ABSignSGD achieves the lowest memory and communi-
cation costs and the fastest runtime. See Appendix [E] for derivations and details.

Method Memory Comm. Gradient Runtime
o Overhead! Budget* Accum. Speedup
. v —

ABSignSGD & 2 v /5
BAdam % 47]151 v/ v
LoRA 36771:” % v/ X
GalLore % + 12% Ty % N X p
Apollo % + 8%7’ + % B X X

 Excludes the 2M GB half-precision weights stored by all methods. ¥ For low-rank projection methods,
original papers omit communication budgets; sending full gradients costs 4/ GB—orders of magnitude higher
than others—and even low-rank gradients remain comparable to LoRA and far above ABSignSGD. ¥ Double
checkmark denotes additional runtime speedup from arbitrary-order block updates.

1.1 CONTRIBUTIONS

(i) We introduce ABSignSGD, a block-coordinate variant of SignSGD that enables arbitrary-order
block updates, allowing us to tailor the update policy for maximal efficiency (e.g., depth-biased
updates; see Contribution (iii)). This design delivers substantial memory and runtime savings while
preserving competitive convergence and downstream performance. We further extend the method to
distributed training with ABSignSGD-MV, which aggregates only gradient signs via majority vote,
thereby achieving extreme communication efficiency.

(i) We establish theoretical convergence guarantees under mild assumptions, providing a unified
analysis for ABSignSGD and ABSignSGD-MV. Specifically, they achieve O(\/—%) convergence

under arbitrary block selection schemes given bounded update intervals.

(iii) We introduce a depth-biased update that prioritizes deeper layers, providing runtime speedup
without sacrificing performance. Extensive experiments on fine-tuning Qwen3-8B and Llama3-8B
for mathematical reasoning and instruction-following show that ABSignSGD achieves the lowest
memory footprint, fastest runtime, and superior downstream performance among memory-efficient
optimizers. A targeted ablation study further pinpoints the factors driving its effectiveness.

Next, we formalize the fine-tuning setting and present the ABSignSGD algorithm.



Under review as a conference paper at ICLR 2026

2 ALGORITHM DESIGN

2.1 PROBLEM SETTING

We consider the general unconstrained optimization problem

i . 1
min f(z) (1
In the case of LLM fine-tuning, the objective f(z) = E¢opF(x,&), where F is the loss function
and D is the data distribution. And one uses a batch gradient g(x) to estimate V f ().

Notation: [n] := {1,2,...,n} denotes the set of integers from 1 to n. Let P = {my,...,7n} be
a partition of [d] into N blocks; that is m; N7, = @ for i # j and Uzj\il m; = [d]. We write
T = (Tay,-r, Try ), Where z,, € R% collects the coordinates of = indexed by ;. For notation

convenience, we denote the i-th block by x; := x,, while x; denotes the j-th coordinate of x for
j € [d]. For memory analysis, we assume the model has M billion parameters.

2.2 PROPOSED METHOD: ABSIGNSGD

The most widely used optimizer for LLMs is Adam (Kingma & Bal 2015)), which stores first-order
and second-order momentum for each parameter. The update rule scales the learning rate adaptively
based on these estimates. While effective, maintaining these optimizer states nearly triples the mem-
ory required for parameters, posing a significant bottleneck. In contrast, SignSGD (Bernstein et al.,
2018) is a stateless optimizer that discards gradient magnitude entirely, relying only on the sign of
the gradient for parameter updates:

k+1

2F L = 2k — o - sign(g(z®)).

This memory-efficient approach remains competitive because its dynamics share similarities with
Adam (Kunstner et al., [2023}/2024)). Sign-based principles have been successfully incorporated into
modern optimizers for LLMs, such as Lion (Chen et al., 2023)), which leverages the sign of the
momentum term. Crucially, recent empirical evaluations (Zhao et al., [2025)) show that sign-based
methods are comparable to AdamW in both performance and hyperparameter robustness. However,
previous applications have focused on full-model updates; combining the efficiency of SignSGD
with a block-update framework remains unexplored.

We adopt SignSGD with block-coordinate updates to solve Problem (). At iteration k, the algorithm
selects a block z;, and updates its coordinates using stochastic gradient signs:

xﬁj‘l = xfk — a - sign(gi, (xk)), 2)
where g;, (2*) is the block gradient estimate. We refer to update as Arbitrary-order Block-
Coordinate SignSGD (ABSignSGD). Algorithm (1| presents its complete procedure, along with a
communication-efficient variant (see Section[2.2.2). The name reflects its tolerance for flexible block
selection: each block only needs to be updated at least once every B steps (see Section [3.1). This
property enables customized update rules that speed up training without degrading performance. As
one example, we propose a depth-biased selection strategy (see Section [4.I)) that updates deeper
layers more frequently, yielding additional runtime savings while maintaining strong accuracy.

2.2.1 ABSIGNSGD IS MEMORY- AND TIME-EFFICIENT

ABSignSGD offers notable memory savings, requiring only 2M + SMN GB of memory (exclud-
ing activations) for training. In contrast, Adam with mixed-precision training requires 18/ GB of
memory. The savings mostly stem from storing optimizer states only for the active block. For com-
parison, BAdam (Luo et al., 2024), Adam with block updates, consumes 2M + % GB memory.
ABSignSGD achieves further savings by (i) avoiding moment storage and (ii) only using signs for
updates. For an 8B model with N = 36, this yields an extra 3.5 GB memory reduction.

Second, as a block-update method, ABSignSGD also enjoys backpropagation runtime savings when
blocks align with neural network layers. As observed in (Luo et al., |2024), computing the gra-
dient for a given layer (block) allows the backward pass to terminate at that layer; updating only
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the final layer thus eliminates nearly all backpropagation cost. BAdam uses cyclic block updates,
yielding about a 50% reduction in backpropagation time. ABSignSGD extends this advantage by
allowing arbitrary (see Assumption [3.3)) block updates, enabling deeper layers to be updated more
frequently and further reducing backward-pass computation. In the extreme, updating the last layer
for B — (N — 1) consecutive iterations before updating each remaining layer once reduces the av-
erage backpropagation time to approximately ﬁ for large B. In practice, we develop a strategy

(see Section that delivers an additional ~ 20% runtime saving without impairing performance.

Algorithm 1 ABSignSGD and ABSignSGD-MV (local view)

Require: Initial point z° € RY; partition P = {1, ..., mn'}; stepsize a; block-selection rule.
1: fork=0,1,2,...do
2: Select block 7z,
if single-agent then > ABSignSGD

v sign(gmk (xk))
else multi-agent > ABSignSGD-MV

end if

k+1 k
Tplt i xn — v

k+1 k vy
T« xy forall i # iy

3
4
5
6: R sign( Z?Zl sign (ggnk (ggk))> > Aggregate signs with majority vote
7
8
9
0: end for

1

2.2.2 A COMMUNICATION-EFFICIENT EXTENSION

We further extend ABSignSGD to the data-parallel setting, yielding an extremely communication-
efficient multi-agent variant: Arbitrary-order Block-Coordinate SignSGD with Majority Vote
(ABSignSGD-MV). This method inherits all the memory and runtime benefits of ABSignSGD while
substantially reducing inter-agent communication.

In ABSignSGD-MYV, n agents compute stochastic gradients in parallel. At iteration k, all agents
update the same block z;, according to

n
afth =af —a-sign| ) sign (gf («F)) |, 3)
=1

where gijk (2*) denotes the block stochastic gradient computed by agent j. Unlike the standard

approach, which applies sign(Z?:1 gijk (x*)), ABSignSGD-MYV first takes the sign of each agent’s
block gradient, then aggregates these signs via majority vote.

With this design, each iteration requires agents to exchange only the signs of the block gradient,
amounting to just 1 bit per coordinate, rather than full-precision values (32 bits per coordinate). For
N = 30 blocks, this reduces communication volume by 960x relative to the standard PyTorch
DistributedDataParallel implementation (Paszke et al. 2019). Under the same setting,
the reduction is 32x compared to BAdam, and 4.5x compared to LoRA with rank » = 8 and
internal dimension m = 4096. Moreover, the MV estimator is asymptotically more robust under
heavy-tailed noise, as indicated by Theorem [3.3]

2.2.3 PRACTICAL CONSIDERATIONS: COMPATIBILITY AND LIMITATIONS

ABSignSGD inherently applies extreme gradient quantization by reducing each gradient coordinate
to a single bit, making any additional gradient quantization redundant. However, weight quantization
and activation quantization remain fully compatible and can be combined with ABSignSGD to
further reduce memory footprint and runtime. Similarly, offloading of weights or activations is
compatible, though optimizer-state offloading is irrelevant due to ABSignSGD’s statelessness.

Convergence of sign-based updates requires the sign-agreement probability to exceed 0.5. Prior
work Safaryan & Richtarik|(2021) shows divergence on toy problems when this condition fails, so
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such methods may underperform under certain regimes, e.g. with extremely small batch sizes. Ap-
pendix [G.T] shows that ABSignSGD is indeed more sensitive to noise (i.e., decreasing batch sizes)
than the baseline. Crucially, however, it avoids breakdown and maintains a faster convergence rate
than BAdam even under the extreme noise of batch size 4. Furthermore, in our main experiments
(Section[) with a relatively small batch size of 16, ABSignSGD demonstrates a substantial perfor-
mance lead. The observed sensitivity can be partially attributed to the absense of orthogonal mech-
anisms (e.g., momentum and adaptive learning rate) rather than the sign update itself. A promising
future direction is to incorporate such stateful techniques via system-level offloading. Since block-
coordinate methods require only the active block’s state at each iteration, the I/O bandwidth demand
is minimal. This allows for the offloading of optimizer states to enable momentum-based variance
reduction without compromising the method’s ultra-low memory footprint or runtime efficiency.

3 THEORETICAL ANALYSIS

Having introduced the algorithm and its distributed extension, we now present a theoretical analysis,
establishing convergence guarantees for both under mild conditions within a unified framework

3.1 ASSUMPTIONS

Assumption 3.1 (L-smoothness and Lower Boundedness). The function f is L-smooth and lower
bounded, i.e. ||V f(x) =V f(y)ll2 < L||lx —yll2 and f(z) > f*,Vr,y.

Assumption 3.2. For each element in the gradient estimator g(x) , its sign aligns with that of the
ground truth gradient V f (x) with a probability larger than 1/2. Namely,

1

pi(x) = Plsign(gi(z)) = sign(Vif(2))] > 3,

Vz € R and all i € [d).

Assumption 3.2} also referred to as the Success Probability Bound (SPB) in (Safaryan & Richtérik]
2021)(equivalently, the sign-agreement probability bound) has several sufficient conditions. One
such condition holds when the gradient noise is unimodal and symmetric, a property observed in
many deep learning tasks (Bernstein et al.l|2018). Another guarantee arises if the gradient noise vari-
ance satisfies the element-wise bound o7 (z) < ¢; g(z) and the mini-batch size exceeds 2 max; ¢;.

Assumption 3.3 (Bounded Update Interval). There exists a positive integer B such that, for every t,
each block index j € [N] is selected at least once within the interval {t, . .. ,t+B— 1} Equivalently,
for every t and every j € [N], there exists some k € {t,...,t + B —1} wzth ik = J.

This assumption affords the algorithm substantial flexibility in block selection, which, as analyzed
in Section [2.2.1) and corroborated by later results, can further reduce runtime.

3.2 CONVERGENCE RESULTS

We establish convergence theorems for both ABSignSGD and its Majority Vote variant under this
customized alignment norm, following the formulation in (Safaryan & Richtarik, [2021).

Definition 3.1 (Alignment norm). Let g(z) € R? and {w;(x)}?_, be alignment weights with 0 <
w;(z) < 1. Define the alignment norm

MIW—ZM ) lgi(

For ABSignSGD, we use w;(z) = 2p;(x) — 1, where p;(z) is from Assumption 32| For
ABSignSGD-MV, w;(x) = 21(p;(x);1,1) — 1, where Il = [(n + 1)/2] and 1(-;-,") is the regu-

larized incomplete beta function.

Although termed a “norm,” || - || o7 is not a true mathematical norm; it is a weighted ¢;-type measure
in which each coordinate’s contribution is scaled by its likelihood of sign agreement with the true
gradient. Coordinates with higher p;(x) receive greater weight, reflecting their higher expected
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contribution to descent and their importance for convergence guarantees. In the single-agent case
(n = 1), the ABSignSGD-MV weights reduce to those of ABSignSGD.

We now present a unified convergence guarantee for both ABSignSGD and its Majority Vote (MV)
variant under this alignment-norm framework. The result applies to both single- and multi-agent
settings, differing only in the definition of the alignment weights.

Theorem 3.4 (Unified Convergence of ABSignSGD and ABSignSGD-MV). Given Assumption
to[3.3]and assuming identical block size, ABSignSGD and ABSignSGD-MV converge as follows:

K-1 .
BNV )y _ S~ 1
K - aK
with different weights w; as defined in Definition[3.1]

1 N+1

When the smoothness and lower-boundedness, SPB, and bounded-update interval conditions hold,
and block sizes are identical, both ABSignSGD and its Majority Vote (MV) variant converge up to
a steady-state term determined by the step size, the block-update interval, and the number of blocks,
with convergence defined in the alignment norm. The single- and multi-agent settings are unified
within a common proof framework, differing only in the definition of the alignment weights. With
a proper step size & = 1/v/K, we arrive at a O(1/+/K) convergence rate, which persists despite
aggressive reductions in memory, runtime, and, via MV, communication cost.

Although MV discards gradient magnitude information, it can match or even outperform gradient
averaging in certain regimes, particularly under heavy-tailed noise (a common phenomenon in deep
learning (Gurbuzbalaban et al., [2021)). This robustness stems from its resistance to confidently
misaligned outliers, as it ignores gradient magnitudes and thus avoids amplifying their influence.
This is validated by the following result.

Theorem 3.5 (Informal Statement of Theorem [C.3). Under heavy-tailed noise, Majority Vote is
asymptotically a superior sign estimator compared to aggregation by arithmetic mean.

Together, these results establish that ABSignSGD and its MV variant retain strong convergence
guarantees while offering robustness under heavy-tailed noise, providing the theoretical foundation
for the empirical studies in Section ]

4 EXPERIMENTS

We now evaluate ABSignSGD against leading memory-efficient fine-tuning optimizers, measuring
memory usage, runtime, convergence speed, and downstream performance.

4.1 EXPERIMENTAL SETUP

Tasks and datasets. We fine-tune QWEN3-8B on OpenMathInstruct-2 (Toshniwal et al.| [2024)
(50K samples) for mathematical reasoning and Stanford—Alpaca (Taori et al., [2023) (35K samples)
for general instruction following. The 8B scale is the primary focus, as it represents the most com-
mon use case for full-parameter fine-tuning. Each dataset is fine-tuned separately and evaluated on
task-specific benchmarks: math-evaluation-harness (Gou & Zhang, 2025) for math rea-
soning, and MT-Bench with a GPT-5 judge via FastChat (Zheng et al., 2023) for instruction
following, following the official protocol. Results on LLAMA3-8B show similar trends and are re-
ported in Appendix [E] Scalability is further validated by fine-tuning QWEN3-32B on the math task,
where consistent performance gains are observed; these results are provided in Appendix

Baselines. We compare ABSIGNSGD with leading memory-efficient optimizers from three fami-
lies: low-rank adaptation (LORA), low-rank projection (GALORE, APOLLO), and block-coordinate
(BADAM) methods. To narrow the comparison, we exclude any method that inherently uses orthog-
onal techniques, like quantization/offloading, as part of its core design, such as QLoRA (Dettmers
et al.l |2023). We also exclude sign methods that rely primarily on momentum buffers, such as
Lion (Chen et al., [2023), since these incur substantially higher memory costs unless paired with
orthogonal techniques. Hyperparameters follow each method’s official implementation where pos-
sible, with all other settings matched. We adopt gradient checkpointing while disabling gradient
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accumulation (even when possible) to avoid runtime bias. No offloading, quantization, or other
memory-saving techniques are applied. Further details are deferred to Appendix [D}

Block partitioning and selection strategy. The model is partitioned into N blocks at the layer
level, where each Transformer layer (including attention and FFN modules) constitutes a single
block (resulting in N = 36 for Qwen3-8B). Building on this layer-wise partition, our framework
supports arbitrary block selection. As discussed in Section [2.2.1] prioritizing deeper layers yields
measurable runtime gains. We also hypothesize that this may help mitigate catastrophic forgetting,
as shallower layers tend to encode more general features (Howard & Ruder, 2018)). We leave a
thorough empirical validation of this effect to future work. Moreover, we seek to avoid repeatedly
updating the same block in succession, which risks premature convergence to poor local minima. To
balance these considerations, we adopt an event-driven depth-biased update rule.

To implement this strategy while satisfying the bounded update interval assumption (Assump-
tion [3.3)), an event-driven update rule is adopted. Each block 1 is assigned a fixed “virtual update
cost” 7;, which serves as a hyperparameter to control the relative update frequency. A “next-ready”
virtual timestamp 77 is maintained for each block, initialized to 7;. At each iteration k, the algorithm
selects the block with the minimum timestamp, 7;, = arg min; 7}, performs the update, and incre-
ments the timestamp: 7j, < Tj, + 7;,.. This scheme ensures that every block is updated at least
once within a fixed interval B (the derivation of B and a concrete execution trace are provided in
Appendix . The costs are defined as 7; = N 4 ¢(N — i+ 1), where ¢ is the block index (1 being
shallowest) and c is a bias coefficient. In the experiments, ¢ = 10 is used, ensuring deeper blocks
are updated more frequently. Note that ABSignSGD and its MV variant remain fully synchronous.

4.2 MEMORY FOOTPRINT AND RUNTIME

Table [2] reports the peak reserved GPU memory during training and the wall-clock runtime. AB-
SignSGD attains the smallest peak memory usage at 20.29 GB, about 2 GB lower than LoRA and
Apollo, and nearly 3 GB lower than BAdam and GaLore. In terms of runtime, ABSignSGD is ~20%
faster than BAdam and roughly twice as fast as LoRA, with even larger gains over projection-based
methods. The speedup relative to BAdam indicates that the depth-biased block-selection scheme
delivers additional runtime benefits beyond those of block updates alone. Overall, the empirical evi-
dence reinforces ABSignSGD’s suitability for large-model fine-tuning under tight memory budgets.

Table 2: Maximum reserved GPU memory and runtime for fine-tuning Qwen3-8B on 50K
OpenMathlInstruct-2 samples for 3 epochs. ABSignSGD achieves the lowest memory footprint and
fastest runtime among all compared methods.

Metric ABSignSGD LoRA GaLore BAdam Apollo
Mem. Reserved (GB) 20.29 22.54 23.47 23.19 22.58
Runtime (h) 2.66 5.51 12.77 3.32 6.64

4.3 CONVERGENCE SPEED

We present convergence curves for fine-tuning Qwen3-8B on the OpenMathlInstruct-2 dataset, using
each method’s optimal step size determined via grid search (details in Appendix [D). As shown in
Figure[T] ABSignSGD reduces training loss more quickly than all baselines, both in terms of training
token count and wall-clock time.

This improvement arises from combining sign-based updates, which deliver strong per-iteration
progress, with a depth-biased update rule that reduces runtime. Together, these features allow AB-
SignSGD to achieve lower loss in fewer updates and finish training sooner, making it well-suited
when both convergence speed and runtime are critical.

The distributed Majority Vote (MV) variant is further analyzed in Figure [T} Although not empha-
sized in the caption, Figure[T](Left) includes the convergence curve for ABSignSGD-MV running on
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Figure 1: Training loss for Qwen3-8B on OpenMathlInstruct-2. Left & Middle: Convergence com-
parison against baselines in terms of tokens and wall-clock time (ABSignSGD-MYV is excluded for
time comparison as it uses multiple agents). ABSignSGD achieves the fastest reduction in both
metrics. Right: Robustness of ABSignSGD-MV. The curves show loss vs. iterations as the number
of agents increases from 1 to 32 (fixing local batch size). The MV variant closely tracks the single-
agent baseline regardless of the agent count, demonstrating high scalability.

four agents with an identical global batch size to the single-node version. The MV variant tracks the
non-MYV baseline closely, confirming that the sign-based aggregation preserves convergence speed.
Figure[T](Right) further highlights the method’s robustness to scaling. With the local batch size fixed
at 4, the number of agents is increased from 1 to 32 (scaling the global batch size from 4 to 128).
ABSignSGD-MV consistently tracks the single-agent baseline across all settings, confirming the
predictions of Theorem [3.5]and demonstrating that the method remains stable even as the number of
voting agents increases. Further results on a fixed global batch size is deferred to Appendix [G.2}

4.4 DOWNSTREAM TASKS PERFORMANCE

To assess the practical impact of faster convergence, we evaluated the fine-tuned models on down-
stream tasks. The results show that ABSignSGD’s optimization efficiency translates into stronger
generalization across both specialized and general domains.

Mathematical Reasoning. On diverse mathematical benchmarks, Qwen3-8B fine-tuned with AB-
SignSGD achieves substantial and consistent accuracy gains over all baselines (Figure 2). These
improvements highlight the method’s ability to produce models that handle complex, specialized
reasoning more effectively, benefiting from faster and more stable optimization.

[ Base @7 ABSignSGD I LoRA I Galore [ BAdam 3 Apollo

99
100 9 92 94 94 94

83 8p

0

Accuracy

76
69 69 68 .. 10
6 6 6 6 65 g
. 44 44 27 4 4 44
ol

ASDiv GSM-hard MATH-OAI MAWPS Minerva-Math Svamp Tabmwp Average

Figure 2: Accuracy on diverse mathematical reasoning benchmarks for Qwen3-8B fine-tuned on
OpenMathlnstruct-2 with different optimizers. ABSignSGD consistently outperforms baselines
across tasks and achieves a 6% accuracy improvement against the second best, indicating that faster
convergence during training translates into stronger task-level generalization.

General Instruction-Following. On MT-Bench (Table [3), ABSignSGD attains the highest overall
average score (6.18) across eight categories, leading in five and remaining highly competitive in the
rest. This breadth of strength shows that the method enhances not only domain-specific reasoning
but also broad, multi-skill instruction-following capabilities.

Across specialized and general tasks, ABSignSGD consistently surpasses strong memory-efficient
baselines. By combining sign-based updates with depth-biased block selection, it accelerates con-
vergence without loss of accuracy, producing high-performing models with limited resources.
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Table 3: MT-Bench scores (higher is better) for Qwen3-8B fine-tuned on Stanford-Alpaca with
different optimizers. ABSignSGD attains the highest overall average and leads in five categories.

Method T Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Ave.

Base 4.64 5.04 5.12 4.93 5.07 4.66 4.88 4.59 4.87
Ours 5.77 6.31 6.39 6.56 6.06 6.12 6.04 6.20 6.18
LoRA 5.82 5.81 5.34 5.87 5.37 5.77 5.48 5.66 5.64
GaLore 5.80 5.11 532 5.02 5.58 4.74 6.10 5.15 5.48
BAdam 5.79 5.75 6.08 5.21 6.11 5.54 5.25 6.00 5.72
Apollo 5.63 543 5.51 5.56 5.11 5.45 5.08 543 5.40

4.5 ABLATION STUDY

The preceding results establish ABSignSGD as a powerful, efficient method for fine-tuning LLMs.
To identify the key design components behind its success, we perform a thorough ablation study.
Unless stated otherwise, all ablations use the smaller Qwen3-1.7B model with the same training
configuration as the main experiments, reducing computational cost while preserving the relative
behavior of variants. Additional results are provided in Appendix

Justification for SignSGD. To isolate the effect of the core optimizer, we compare ABSignSGD
with BAdam and BlockSGD (the block-coordinate extension of SGD that updates a single parameter
block per iteration) under an identical block-selection scheme with their optimal learning rates, and
also include their base optimizers (SignSGD, Adam, and SGD) for reference.

As shown in Figure |3| (Left & Middle), combining a block update strategy with Adam impairs
convergence, likely because its adaptive step size relies on past gradient history that block switching
erases. In contrast, SGD and SignSGD are not affected as much because they only depend on current
gradient information, making them inherently more compatible with the block-coordinate approach.

1 1]
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Figure 3: Convergence curves from two ablation experiments on fine-tuning Qwen3-1.7B with
OpenMathlInstruct-2. Left & Middle: Token- and time-wise training loss for core optimizers (SGD,
SignSGD, Adam) and their block-update counterparts under an identical block-selection scheme.
Adam degrades under block switching, whereas memoryless methods (SGD and SignSGD) remain
compatible; SignSGD further outperforms SGD, yielding faster iteration-wise convergence. Right:
ABSignSGD under different update rules exhibits similar convergence.

Figure [} Left illustrates why SignSGD converges in our setting: the sign-agreement probability dis-
tribution is sharply skewed toward 1. Only around 1% of coordinates have agreement probabilities
below 0.5, while for a large fraction the sign is almost always correct. This closely matches the
method’s core assumption and supports its stable convergence behavior.

We now turn to explaining why sign-based methods outperform SGD (Figure [B}Left). Two factors
are central. i) regularization: prior work shows SignSGD induces an Adam-like regularization ef-
fect that is beneficial under heavy class imbalance, which we quantify via the foken-class frequency
distribution. For example, in the Stanford-Alpaca dataset the most frequent token appears roughly
10x more than the second most frequent (Figure [@-Middle). ii) noise resilience: the relative gradi-
ent noise magnitude remains consistently > 1 and can exceed 10% (Figure E]-Right); such noise can
impede SGD but is naturally damped by sign-based updates.

On block update rule. We validate the necessity of our flexible block selection scheme by com-
paring (1) depth-biased updates (DB-c), where c is the relative backprop. time ratio; (2) deep-to-
shallow selection (DS-K ), a deterministic scheme updating from the deepest to the shallowest layer
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Figure 4: Factors explaining ABSignSGD’s success (Qwen3-1.7B on Stanford-Alpaca; details in
Appendix[F). Left & Right: Metrics derived from comparing full gradients with multiple mini-batch
gradients over the same parameters. The left panel shows the sign-agreement probability histogram,
while the right shows the relative gradient noise magnitude histogram. Middle: Token-class fre-
quency distribution, revealing severe class imbalance in the training set.

with block-switching interval K; and (3) uniform random selection (UR). Consistent with (Luo
et al [2024), Figure [3}Right shows that, within a moderate hyperparameter range, the selection
choice minimally affects convergence. Appendix [G.3]further verifies that the choice of scheme has
negligible impact on downstream generalization. Consequently, the depth-biased method’s primary
advantage is efficiency—by updating shallower layers more often, it achieves substantial runtime
savings without performance loss.

5 CONCLUSION

We introduced ABSignSGD, an arbitrary-order block-coordinate extension of SignSGD for efficient
full-parameter fine-tuning of large language models. The framework supports diverse block selec-
tion strategies, with the depth-biased scheme as one effective example, and includes a majority-vote
(MV) variant for data-parallel training. We provide unified theoretical convergence guarantees for
both methods under the SPB assumption. Empirical results show that ABSignSGD surpasses strong
baselines in convergence speed and downstream accuracy while reducing memory footprint and
wall-clock runtime.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our results. All implementation details, includ-
ing hyperparameters, learning rate schedules, optimizer configurations, dataset splits, evaluation
protocols, and hardware specifications, are provided in Appendix [D} We also rely on official im-
plementations for baseline methods and evaluation methods to ensure fairness and comparability.
Together, these details should enable independent researchers to replicate our experimental findings
without ambiguity.

ETHICS STATEMENT

This work focuses on developing memory- and runtime-efficient optimization algorithms for fine-
tuning large language models. All experiments were conducted on publicly available datasets (e.g.,
OpenMathlInstruct-2, Stanford-Alpaca) with open-source models (e.g. Qwen3, Llama3) that do not
contain personally identifiable information. We do not foresee direct risks of harm arising from our
methodology. Nevertheless, as with any system that improves the efficiency of LLM fine-tuning,
there exists the potential for downstream misuse, including generating harmful or biased content.
We emphasize that our contributions are intended to advance research in optimization and efficiency,
and we encourage responsible and ethical use of the resulting models and techniques.
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A  MEMORY AND COMMUNICATION ANALYSIS

We first analyze the memory efficiency of different optimizers from two perspectives: block-wise
storage during the update of a single block and the global memory footprint across the entire model.

A.1 BLOCK-WISE STORAGE

Table 4: Block-wise storage requirements (in parameter counts) for different methods during the up-
date of a single block. The table reports the number of parameters that must be stored for weights,
gradients, optimizer states, and projection matrices. Precision (e.g., FP16 vs. FP32) is not consid-
ered here; actual memory usage can be derived by multiplying these counts by the storage size per
parameter.

Method Weight Gradient  Opt. State  Proj. Matrix
ABSignSGD mn mn - -
BAdam mn mn 2mn -
LoRA mn+mr+nr mr4+nr  2mr+4 2nr -
Galore mn mn + nr 2nr mr
Apollo mn mn + nr 2nr -

Table [4| reports the storage requirements incurred when updating one block of parameters. The
values are expressed in terms of the number of parameters that must be stored (weights, gradients,
optimizer states, and projection matrices). These counts are independent of numerical precision;
actual memory usage in bytes can be obtained by multiplying the counts by the storage size per
parameter (e.g., 2 bytes for FP16, 4 bytes for FP32).

We assume a block weight W € R™", with r denoting the low-rank dimension and m ~ n > r.
For all low-rank methods, we assume they use Adam as the base optimizer.

» ABSignSGD requires only the block weights and their gradients, with no optimizer states,
since updates rely solely on gradient signs.

* BAdam stores both gradients and optimizer states just as Adam.

* LoRA reduces gradient storage by restricting updates to low-rank matrices. Therefore, it
only store two low-rank gradient matrices and their corresponding optimizer states.

* GaLore and Apollo requires the gradient to conduct low-rank projection. Moreover, Ga-
Lore needs to store a projection matrix, while Apollo uses random matrices for projection.

At first glance, low-rank methods appear advantageous because they store only compact matrices.
However, block-based methods like ABSignSGD scale more favorably, since they only maintain
variables for the currently updated block, whereas low-rank methods must maintain auxiliary states
across all blocks.

A.2 GLOBAL MEMORY FOOTPRINT

Table[5]extends the analysis to the full model (excluding activations), assuming M -B parameters and
rectangular weights of dimension m. We assume the low-rank projection methods to use layer-wise
update, as they otherwise require much more memory because they need to store full gradients. N
represents the number of blocks or layers for different optimizers. Here we incorporate precision
assumptions: we assume model weights to be stored in half-precision, while gradients, optimizer
states, and other parameters are maintained in full precision. The total memory footprints are:

* ABSignSGD: weights in FP16 plus cached block sign gradients:

M
2M —.
+ 8N
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* BAdam: weights in FP16 plus block gradients and optimizer states in FP32 (and an FP32
copy of the block weight for the update):

16 M
2M R
+ N
* LoRA: weights and low-rank matrices in FP16 plus, high-precision copies of the low-ranl
matrices, gradients, and optimizer states in FP32:

oM + 36M1".
m

* GaLore: weights in FP16, block gradients and projected gradients in FP32, plus projec-
tion/auxiliary terms:

8M 12Mr 4Mr
2M — .
+ N + m + mN

* Apollo: weights in FP16, block gradients and projected gradients in FP32:

8M SM 4M
oM + o n r r

m mN

Overall, ABSIGNSGD achieves the lightest footprint by eliminating FP32 optimizer states and us-
ing sign-only cached information, while block-wise storage ensures that only the currently updated
block contributes transient overhead.

Table 5: Global memory footprint comparison of different methods.

Method Weight Gradient  Opt. State  Other Total
ABSignSGD 2M M - - 2M + %
BAdam 2M + 4 i 8 - 20 + 1M

LoRA 20 121 sﬁr T - 21 + 36Mr
Galore ap4 G s o sl gy sy sl g
Apollo oM 441 el M sl T g s sl i

A.3 COMMUNICATION BUDGET

In distributed implementations, the communication budget is determined by the amount of gradient
information that must be exchanged across workers at each synchronization step.

For ABSIGNSGD-MV, BADAM, and LORA, the communication cost is directly proportional to
their gradient storage requirements in Table[5] That is, each worker must transmit the same number
of parameters as it stores locally for gradients, ensuring consistency across replicas.

In contrast, GALORE and APOLLO require transmitting the full gradient of size 4M to maintain
mathematical equivalence during distributed updates. This communication volume is orders of mag-
nitude larger than that of the other methods, and can quickly become the dominant bottleneck in
multi-GPU or multi-node training.

While it might be possible to reduce this overhead by transmitting only the low-rank projected
gradient of size ‘%{}“ , such a modification would alter the update rule and falls outside the scope of
this paper.

B CONVERGENCE PROOF

B.1 AUXILIARY LEMMAS

Lemma B.1. The alignment norm || - |z satisfies the following conditions
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o Triangular inequality: ||x — yl|n > ||zl|n — llYlln, Ve, v.

» Upper bounded by 1y norm: ||z||xr < ||z||1, V2.

Proof. Note that

2l = llylla = wslzi| — wily;l
< wilz; — yil
= [lz = ylln,

lzllxe =D wilai]
i
< Z|$z‘|
4

= [l

and

Lemma B.2. For all x € R?, 11-norm and ly-norm have the following relation

lzlly < V|zll2.

B.2 PROOF OF THEOREM [3.4]

The proof is an extension of the one in (Safaryan & Richtarik, 2021) to the block-update scheme.
We first provide a block descent lemma, which arises naturally after the definition of the customized
norm || - .

Lemma B.3. [Block descent lemma] Given Assumption[3.1|and[3.2], and assuming identical block
sizes, the updates of ABSignSGD and ABSignSGD-MV satisfy
K-1 X
[ EIV S GHy _ fa) 1 ad
K - aK 2N’

“4)

Proof. We first prove for the case of ABSignSGD. By L-smoothness of the objective function f(-),

FE) = F() < VAT (@ - ok 4 Dbt k2

2
. OAQdi L
= —aVi, f(@*)" - sign(gi, (") + 5

Note that by the definition of sign-alignment probabilities p;, we get
E[Vi f(«")" - sign(gi, (a7))] = Vi f(a")" - E[sign(gs, (2"))]
= 37 Vil (@) (ps(a")sign(Vif (%)) — (1~ pi(a"))sign(V ("))
LET;,
= > @pilar) = 1)[Vif ()]
1€y,

= | Vi f(2")In

Combining the above and take full expectation, we arrive at
fah) = f@) | ad, L

. k <
BV, £zl < 2~ :

&)
For ABSignSGD-MYV, we define the majority vote of block gradient signs as

(e = Y sign(, (+4)).
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Update (3 can be rewritten as

2 = 2l — o sign(gi, (o).

Following an identical reasoning as in ABSignSGD,

Fa*th) — f(2F) < —aVi, f(2®)T - sign(gs, (2%)) + azd#L ©)

By Lemma 13 in (Safaryan & Richtarik, [2021)), we have

E[vikf(xk)T ’ Sign(gik( ))] - 1kf( ) [Slgn(glk( ))]
= > !v.kf )| E[sign (g (") - Vi, f(2"))]

1<i<d
Vi f(@*)#£0

S Vi@ @) 1 D)~ 1)

1<i<d
Vi, f(z®)#0

= |Vii f (") |-

Combining equation (6) with the above, we reached equation (3)).

Sum over equation (E]) over K iterations, we have

im0 BIVaf @)y _ f@®) — 1", oL Ty di,

K - aK 2K
B f(x%) — f* . adL
o oK 2N

Lemma [B.3]states that the average of block gradient alignment norm converges under a proper step
size. Now, we analyze the relation between the block gradient and the full gradient to show the
convergence of the latter.

Lemma B.4. Given identical assumptions in Lemma [B.3| and Assumption the updates of AB-
SignSGD and ABSignSGD-MYV satisfy

N+1
IVl = D IV f(@)lly < Lad(B — ——) ()
teSk

Proof. From Assumption [3.3] each block is updated at least once for every B iterations. Therefore,
we pick N steps in which each step updates a different block and we have

k+B—1
> Vi @)l =D IV f@)w
t=k teS:

where S; C {k, ...,k + B — 1}, |S¢| = N, and {i; }+cs, = [N].
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We compare the RHS to the full-gradient at step k as follows

N

IVF (")l = D IV f @)l =D (IVif @) v = IV @ )
teSK =1
N

IN

> (IVif @) = Vaf (1 )

1

.
Il

(IVif(@@®) = Vif ("))

M=

ﬁ
Il
-

] =

(\F 1957 (%) = Vaf @+t )

<.
[

z

< (Va&Ivs*) - Vi@ )e)

1

~.
Il

<Y (VALle -7
i=1

where the updating block at k + ¢; — 1 is the i-th block.

Note that the second last inequality above is necessary, as the difference between x* and 2**%i—1

crosses multiple blocks, so

IVif (@*) = Vif @72 < Lljef - a2
does not hold.
Note that

N N d k+t;—2
Z(\/{ZLka—wkHi_le)SZL\/; 3o a7t -2,

i=1 i—1 =k
N d k+t;—2 d
<;Lﬁ Z: o\ §

<La—z

Block ¢ updates at iteration k + ¢; — 1. However, there is only one block updating at each iteration.
The worst case is when all blocks update once within the last NV iterations in the [k, k + B — 1]
window. Therefore,

N N-1

Y ti—1)< Y (B-N+))

i=1 §j=0

=N(B - M)
2
Now we bound the staleness error, or the distance traveled between the ¢; steps
k+t;
o — by < 3 (et 2

t=k
k+t;

= Z Oé\/d,‘t
t=k
< an/%.
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Combining the above, we arrived at the conclusion. O

Theorem 3.4]is a straightforward combination of Lemma[B.3|and

Sum equation (7)) over K B iterations, we have

K—1 (K-1)B Nl

Do IVIE I < 3 Vs @)y + aLdK (B = =),

k=0 t=0

Combine the above with equation @), we have
im0 BIVI@HD)l _ S5 PRIV @Ol e
K = K
f(a) — f 1 N+1

<) ) L and(B(1+ —) — 7).
ST ag - Teld(B(1+ 5p) 5))

C ROBUSTNESS OF MAJORITY VOTING

Safaryan & Richtarik (2021) states that the Majority Vote (MV) estimator’s error rate converges
exponentially to 0. But we are not sure how the MV estimate compared to averaging the gradient.
Here we prove that under heavy-tailed noise, the MV estimator is asymptotically infinitely more
accurate than the standard Summation (or Averaging) estimator.

C.1 PROBLEM SETTING

With a slight abuse of notation, we consider the problem of estimating the sign of a true signal f € R
from a set of M independent observations. Each observation is generated from a signal-plus-noise
model:

g=f+e, fori=1...,M,
where {¢;}M | are i.i.d. random noise variables with E[¢;] = 0. We assume each observation
provides a weak but better-than-random signal about the sign of f. This is captured by the per-
worker accuracy p:

p := P(sign(g;) = sign(f)) > 1/2.
We analyze and compare two sign estimators:

1. Majority Vote (MV): The sign is estimated by aggregating the signs of the individual
observations. Let S; = sign(g;) € {—1,+1}.

M
fmv = sign (Z Si) .
i=1
2. Summation (SUM): The sign is estimated from the sum of the raw observations.
M
fsum = sign (Z !h‘) :
i=1

Without loss of generality, let f > 0. The error probabilities are then PMV(M) = P(>°.S; < 0)
and PSUM(M) =P(3>-g: <0) =P e; < —Mf).

C.2 ASYMPTOTIC ANALYSIS OF ESTIMATOR ERROR

We first establish the benchmark performance of the MV estimator, which is known to be robust
regardless of the noise distribution’s tail behavior.

Theorem C.1 (MV Error Bound). The error probability of the Majority Vote estimator converges
exponentially to zero:

PMV(M) < exp(—CM),
where C = (2p — 1)?/2 is a positive constant.
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Proof. The result is a direct application of Hoeffding’s inequality (Hoeffding} |1963) to the sum of
i.i.d. bounded variables S; € [—1, 1] with positive mean E[S;] = 2p — 1 > 0. O

Next, we analyze the SUM estimator under the condition of heavy-tailed noise, modeled as a regu-
larly varying distribution.

Assumption C.2 (Heavy-Tailed Noise). The noise distribution has a regularly varying left tail. Let
Y; = —e¢;. The tail probability P(Y; > t) is regularly varying at infinity with index o > 1:

P(Y; > 1) =t~ L(0),
where L(t) is a slowly varying function.
Under this assumption, the SUM estimator’s performance degrades significantly. The following
theorem formalizes this by showing that its error, relative to the MV estimator, diverges.
Theorem C.3 (Asymptotic Dominance of Majority Vote). Under Assumption the ratio of the
error probabilities for the Summation and Majority Vote estimators diverges to infinity:

PSUM(M) M—oo

PMV(M)

Proof. We establish an asymptotic lower bound for the ratio. The error of the SUM estimator is
determined by the “big-jump principle” for subexponential distributions (Embrechts et al.l [2013),
which states PSUM(M) ~ M - P(Y; > M f) when M f — co. Under Assumption|C.2] this yields
the asymptotic lower bound:

PSUM(M) 2 e; M= f~*L(Mf),

for some constant ¢; > 0. Combining this with the upper bound for the MV error, we have for all
sufficiently large M:

PSUM(M) _ etM'~*f~*L(Mf)
PMV(M) ~ exp(—CM)
= f % exp(CM) - M~ =D L(MFf).

The limit of this expression as M — oo is determined by the competition between the exponential
growth term, exp(C' M), and the product of the polynomial decay term, M —(e=1) "and the slowly
varying term, L(M f). As exponential growth dominates both polynomial decay and slowly varying
functions, the lower bound diverges to infinity. Consequently, the ratio itself must also diverge to
infinity. This demonstrates that the MV estimator is asymptotically infinitely more accurate than the
SUM estimator in this setting. O

D DETAILS ON EXPERIMENTAL SETUP

To ensure a fair and reproducible comparison across all methods, we standardized the training and
evaluation pipeline. Below we describe the configuration in detail.

D.1 LEARNING RATE SCHEDULE AND HYPERPARAMETER SEARCH

All methods adopt a linear learning rate schedule with a warmup phase covering the first 10% of
total training steps. Learning rates were selected via a logarithmic grid search in the range 3 x 10~
to 1 x 103, with a multiplicative step size of 3. The chosen learning rates for each method—model
pair are summarized in Table [6]

D.2 DETAILS ON DEPTH-BIASED UPDATE RULE
Derivation of the Bounded Update Interval 5. Recall that our depth-biased rule selects the

block 7 with the minimum timestamp 7; and updates it as T; < T; + 7;. This is equivalent to a
weighted round-robin schedule where the frequency of block 4 is proportional to 1/7;.
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Model ABSignSGD LoRA GaLore BAdam Apollo
Qwen3-8B-Math 3e-5 3e-6 le-5 le-5 le-5
Qwen3-8B-Alpaca 3e-5 le-5 le-4 le-5 le-5
Llama3-8B-Math le-5 3e-6 3e-5 3e-6 3e-5
Llama3-8B-Alpaca le-5 3e-6 3e-5 3e-6 3e-5
Llama3-32B-Math 3e-5 le-6 3e-5 le-5 le-5

Table 6: Final learning rates for each method across models.

To satisfy Assumption 3.3, we must show there exists a finite integer B such that every block is
visited at least once in any window of B iterations. Consider the “slowest” block 4., Which
has the largest virtual cost 7,4, = max; 7;. In the worst-case scenario, between two consecutive
updates of block i, any other block j can be updated at most [7,,,q4/7; ] times. Therefore, the
maximum number of iterations between two updates of any block is bounded by the sum of these

worst-case update counts:
N
Tmaz
B = —_— 8
3| ®
j=1

Given that all 7; > 1 and N is finite, B is finite, thereby satisfying the bounded update interval
assumption.

Execution Trace. To clarify the mechanism described in Section [d.1} we provide a concrete ex-
ample of the depth-biased selection strategy. This strategy is purely algorithmic and does not depend
on real-time hardware measurements.

Consider a simplified model with N = 4 blocks. We define the virtual update cost 7; such that deeper
blocks have lower costs (higher frequency). Let us assume the costs are calculated as 7 = [6, 5, 4, 3]
for blocks 1 through 4 respectively (where Block 4 is the deepest).

The algorithm maintains a virtual timestamp vector T, initialized as T = 7. At every step, the block
with the lowest T; is selected, and its value is incremented by its cost 7;.

Table 7: Trace of block selection over the first 5 steps.

Step (k) State vector T Min Value Selected Block (i) Action
(before selection) (T, < T, +73,)
0 [6,5,4,3] 3 Block 4 T4+ 34+3=6
1 [6,5,4,06] 4 Block 3 T3+ 4+4=28
2 [6,5,8,6] 5 Block 2 T+ 54+5=10
3 [6,10,8, 6] 6 Block 1* T+ 64+6=12
4 [12,10,8, 6] 6 Block 4 T4+~ 6+3=9

“Note: In the event of a tie (as seen in Step 3 where 71 = 6 and T, = 6), we prioritize the shallower block to
ensure coverage, though any consistent tie-breaking rule works.

As shown, Block 4 (the “fastest” or deepest block) is updated again at Step 4, while Block 2 has not
yet been revisited. Over many iterations, the update count for block ¢ converges to be proportional
tol / Ti.

D.3 OPTIMIZERS AND PRECISION SETTINGS

* AdamW: Used whenever “Adam” is referenced, with PyTorch default hyperparameters
(ﬂ 1, ﬂQ, 6)'

* LoRA: Configured with rank r = 8, consistent with its common lightweight adapter set-
ting.

* Low-Rank Projection Methods (GaLore, Apollo, Flora): Configured with rank » = 128,
aligning with their reported accuracy—efficiency trade-off.
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¢ Precision:

— ABSignSGD run in half-precision as it does not benefit from mixed-precision training
due to its sign-based update rule.

— Low-rank projection methods (GaLore, Apollo) run in half-precision following their
official implementations.

— LoRA and BAdam follow their official/popular implementations, using mixed preci-
sion training.

D.4 TRAINING CONFIGURATION
* Epochs: All models are trained for 3 epochs, with the final checkpoint used for evaluation.
» Batch size = 16, sequence length = 128.
* Gradient checkpointing: Enabled.

* Gradient accumulation: Disabled. Note that ABSignSGD, BAdam, and LoRA are compat-
ible with gradient accumulation for much larger batches. But this option is off for a fair
comparison.

» Layer-wise updates: Low-rank projection methods (GalLore, Apollo) employ layer-wise
updates for maximum memory save, which are incompatible with standard gradient accu-
mulation.

 Trainable weights: All methods update only the transformer layers leaving other weights
intact.

* Offloading: Disabled.

¢ Quantization: Disabled.

D.5 HARDWARE ENVIRONMENT
* GPU: All experiments are conducted on a single NVIDIA RTX 3090 GPU (24 GB VRAM).
¢ CPU: Intel(R) Xeon(R) Silver 4310 @ 2.10GHz.

* Repetition: Each configuration is repeated 3 times with different random seeds; we report
mean =+ standard deviation.

* Isolation: No GPU interconnect is used, ensuring results are not influenced by distributed
hardware variability.

D.6 EVALUATION PROTOCOLS

e MT-Bench: Evaluated using GPT-5 as a judge via FastChat, with fixed decoding pa-
rameters (temperature = 0, top-p = 1, fixed seed, official prompt templates).

* Math-Eval-Harness: Official dataset splits with standardized prompt formatting and de-
coding parameters (temperature = 0, top-p = 1, max new tokens = 256, fixed seeds).

D.7 RUNTIME AND MEMORY MEASUREMENT

* Runtime: Measured using t ime .time () and torch.cuda.synchronize () before
and after the timed region.

* Memory: Record peak reserved GPU memory us-
ing torch.cuda.max.memory._reserved () after calling
torch.cuda.reset_peak memory_stats ().

D.8 BASELINE IMPLEMENTATIONS

To ensure reproducibility, we rely on the official implementations of baseline methods without mod-
ification:
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Method Official Repository

LoRA (PEFT) https://github.com/huggingface/peft
GalLore https://github.com/jiaweizzhao/GaLore
BAdam https://github.com/Ledzy/BAdam

Apollo https://github.com/zhuhanging/APOLLO

Table 8: Official implementation links for baseline methods.

E ADDITIONAL RESULTS FOR MAIN EXPERIMENTS

E.1 CONVERGENCE

We provide extended convergence curves for Qwen3-8B on Stanford-Alpaca, Llama3-8B on both
OpenMathInstruct-2 and Stanford-Alpaca, and Qwen3-32B on OpenMathInstruct-2 (see Figure [3).
Across all tasks, ABSignSGD demonstrates consistently faster iteration-wise convergence compared
to LoRA, GaLore, BAdam, and Apollo. Moreover, ABSignSGD’s lead widens with respect to time.
These findings reinforce the claim that the sign-based block updates are particularly well-suited for
large-scale fine-tuning, where both iteration count and runtime are critical bottlenecks.

E.2 DOWNSTREAM PERFORMANCE

We next evaluate downstream task performance of Llama3-8B and Qwen3-32B fine-tuned with
different optimizers on mathematical reasoning (See Figure [6) and general instruction-following
(see Table[9) benchmarks. The trends are similar to those of the main text.

Table 9: MT-Bench scores (higher is better) for Llama3-8B fine-tuned on Stanford-Alpaca with
different optimizers. ABSignSGD attains the highest overall average and leads in four categories,
while remaining competitive in the rest.

Method T Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Ave.

Base 4.85 5.37 492 4.72 4.65 4.57 4.49 4.87 4.81
Ours 5.52 6.35 6.15 6.39 5.90 5.71 6.22 5.66 5.99
LoRA 5.40 6.03 5.29 5.39 5.08 4.71 5.31 5.16 5.30
GalLore 5.17 5.76 5.06 5.35 5.50 5.40 6.01 6.30 5.57
BAdam 5.35 5.72 6.03 5.78 4.99 6.38 5.48 5.19 5.62
Apollo 5.58 5.78 5.60 6.09 5.92 5.78 5.23 5.37 5.67

F DETAILS ON ABLATION STUDY

In this section, we detail how the ablation statistics in Figure 4 were computed and how to inter-
pret them. We also include additional results across more models and datasets, demonstrating the
generality of our findings.

F.1 METHODOLOGY

We create a set S, of 20,000 parameters uniformly sampled across transformer layers (attention,
MLP, embeddings). For each parameter i € .S, we compute (i) the full-batch gradient V, f by

aggregating over the entire training set and (ii) 500 mini-batch gradients {g’ }5% from randomly

sampled mini-batches.

From these, we derive:
1. Sign agreement probability

500

;= — 31 ‘7 = 31 ;
"= 50 2 1{sign(s?) = sign(Vif) } .
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Figure 5: Additional Training Loss Curves. Left column: Loss vs. Tokens. Right column: Loss
vs. Wall-clock Time. Rows represent different Model/Task combinations. ABsignSGD consistently
outperforms baselines, with the advantage widening in terms of wall-clock time.
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Figure 6: Accuracy on diverse mathematical reasoning benchmarks. Top: Llama3-8B results. Bot-
tom: Qwen3-32B results. In both scales, ABSignSGD achieves a significant accuracy improvement
against the second-best baseline (e.g., 5% improvement for both models).

which measures how reliably the mini-batch gradients align in direction with the full gra-
dient.

2. Relative noise magnitude

500

1
500 [V, f] 2

Jj=1

gl —V.f

)

which quantifies the average deviation of the mini-batch gradients relative to signal
strength.

Figure [} Left and -Right plot the distributions of p; and 7, respectively. Figure f}Middle shows
the class index histogram for all tokens in the training set, which exhibits a pronounced long-tail
distribution.

F.2 KEY OBSERVATIONS
Across all primary settings, we observe:

* Stable signs: Most coordinates have large p; (e.g. > 0.7), indicating that gradient signs
provide meaning information to guide training. This matches Assumption [3.2] for theoreti-
cal analysis.

* Long-tailed token frequencies: Class frequency histograms show a heavy head and long
tail, evidencing severe class imbalance.

* Noise-dominated magnitudes: 7); is typically >> 1, implying that raw gradient magnitudes
are unreliable compared to their signs.
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F.3 ADDITIONAL RESULTS ACROSS MODELS AND DATASETS

To assess robustness and demonstrate generality, we extend the ablation to additional model—dataset
pairs, including Qwen3-1.7B, Llama-3.2-1B, and GPT-Neo-1.3B on OpenMathInstruct-2 and
Stanford-Alpaca. As shown in Figure [/ the same qualitative patterns persist across architectures
and corpora: gradient signs remain highly reliable, token distributions are strongly imbalanced, and
noise magnitudes exceed signal strength in most coordinates.
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Figure 7: Additional ablation results across model—dataset pairs. The qualitative trends match those
in Figure 4]

26



Under review as a conference paper at ICLR 2026

G ROBUSTNESS AND SCALABILITY ANALYSIS

In this section, we provide additional empirical results assessing the robustness of ABSignSGD
under diverse conditions. Specifically, we evaluate: (1) the method’s sensitivity to extreme noise via
batch size reduction, (2) its scaling behavior in distributed settings, and (3) the impact of different
block-switching schemes on downstream generalization.

G.1 NOISE SENSITIVITY (BATCH SIZE LIMITS)

As discussed in Section 2.2.3] sign-based methods can theoretically diverge if the sign-agreement
probability drops below 0.5. To empirically test this limit, we fine-tune QWEN3-8B on the
OpenMathlInstruct-2 dataset while decreasing the batch size from 16 down to 4. To strictly iso-
late the effects of noise, we fix the learning rate to the optimal value identified for the baseline
configuration (batch size 16, non-MV) across all experimental runs. As shown in Figure[§] although
the convergence speed degrades as noise increases, the method remains stable.
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045 Il —— ABSignSGD-BS16  —— SignSGD-BS16
—— ABSignSGD-BS8  —— SignSGD-BS4
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Iter.

Figure 8: Convergence comparison under decreasing batch sizes (increasing noise). While sign-
based methods (ABSignSGD and SignSGD) exhibit higher sensitivity to noise than full-precision
baselines (BAdam) as batch size decreases (16 — 4), ABSignSGD avoids divergence and maintains
a performance lead even at the extreme batch size of 4.

G.2 DISTRIBUTED SCALABILITY (FIXED GLOBAL BATCH)

In the main text (Section [£.3), we demonstrated scalability by fixing the local batch size. Here, we
present additional scaling results for ABSignSGD-MV in Figure 0] where the global batch size is
fixed at 16 while the number of agents varies. Similar to the sensitivity analysis, we use QWEN3-8B
on OpenMathlInstruct-2 with the fixed optimal baseline learning rate.
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Figure 9: Convergence of ABSignSGD-MV with a fixed global batch size of 16. As the number

of agents increases, the convergence trajectory remains virtually unchanged, confirming that the
Majority Vote aggregation is robust to the number of voters.

27



Under review as a conference paper at ICLR 2026

G.3 ROBUSTNESS TO BLOCK SWITCHING SCHEME

We further investigate whether the choice of block update rule impacts the final model quality. Fig-
ure[T0]compares the downstream accuracy of models trained with different schemes (Depth-Biased,
Cyclic, Uniform Random). The results are from finetuning QWEN3-1.7B on OpenMathInstruct-2.
Taken together with Figure[3}Right, these results confirm that ABSignSGD is robust to variations in
block-switching strategies, thereby offering flexibility and tunability without compromising perfor-
mance.
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Figure 10: Downstream generalization performance across different block switching schemes. The
consistent accuracy confirms that the runtime efficiency gained from the depth-biased update rule
does not come at the cost of generalization capability.

H LLM USAGE

In preparing this manuscript, we made limited use of Large Language Models (LLMs) solely for
minor text polishing. Specifically, the LLM was employed to improve grammar, clarity, and read-
ability of certain sentences. All conceptual development, theoretical analysis, experimental design,
and result interpretation were conducted entirely by the authors without assistance from LLMs. The
scientific content remains the authors’ original work.
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