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ABSTRACT

Generating long, temporally consistent video remains an open challenge in video
generation. Primarily due to computational limitations, most prior methods
limit themselves to training on a small subset of frames that are then extended
to generate longer videos through a sliding window fashion. Although these
techniques may produce sharp videos, they have difficulty retaining long-term
temporal consistency due to their limited context length. In this work, we
present Temporally Consistent Video Transformer (TECO), a vector-quantized
latent dynamics video prediction model that learns compressed representations to
efficiently condition on long videos of hundreds of frames during both training and
generation. We use a MaskGit prior for dynamics prediction which enables both
sharper and faster generations compared to prior work. Our experiments show that
TECO outperforms SOTA baselines in a variety of video prediction benchmarks
ranging from simple mazes in DMLab, large 3D worlds in Minecraft, and
complex real-world videos from Kinetics-600. In addition, to better understand
the capabilities of video prediction models in modeling temporal consistency, we
introduce several challenging video prediction tasks consisting of agents randomly
traversing 3D scenes of varying difficulty. This presents a challenging benchmark
for video prediction in partially observable environments where a model must
understand what parts of the scenes to re-create versus invent depending on its
past observations or generations. Generated videos are available on the website:
https://sites.google.com/view/iclr23-teco
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Figure 1: TECO generates sharp and consistent video predictions for hundreds of frames on
challenging datasets. The figure shows evenly spaced frames of the 264 frame predictions, after
being conditioned on 36 context frames. From top to bottom, the datasets are are DMLab, Minecraft,
Habitat, and Kinetics-600.
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1 INTRODUCTION

Recent work in video prediction has seen tremendous progress (Ho et al., 2022; Clark et al., 2019;
Yan et al., 2021; Le Moing et al., 2021; Ge et al., 2022; Tian et al., 2021; Luc et al., 2020) in
producing high-fidelity and diverse samples on complex video data. This can largely be attributed
to a combination of increased computational resources and more compute efficient high-capacity
neural architectures. However, much of this progress has focused on generating short videos, where
models can perform well by basing their predictions on only a handful of previous frames.

Video prediction models with short context windows can generate long videos in a sliding window
fashion. While the resulting videos can look impressive at first sight, they lack temporal consistency.
We would like models to predict temporally consistent videos — where the same content is generated
if a camera pans back to a previously observed location. On the other hand, the model should
imagine a new part of the scene for locations that have not yet been observed, and future predictions
should remain consistent to this newly imagined part of the scene.

Prior work has investigated techniques for modeling long-term dependencies, such as temporal
hierarchies (Saxena et al., 2021) and strided sampling with frame-wise interpolation (Ge et al., 2022;
Hong et al., 2022). Other methods train on sparse sets of frames selected out of long videos (Harvey
et al., 2022; Skorokhodov et al., 2021; Clark et al., 2019; Saito & Saito, 2018; Yu et al., 2022), or
model videos via compressed representations (Yan et al., 2021; Rakhimov et al., 2020; Le Moing
et al., 2021; Seo et al., 2022; Gupta et al., 2022; Walker et al., 2021). Refer to Appendix M for more
detailed discussion on related work.

Despite this progress, many methods still have difficulty scaling to datasets with many long-
range dependencies. While Clockwork-VAE (Saxena et al., 2021) trains on long sequences, it is
limited by training time (due to a recurrent architecture) and difficult to scale to more complex
data. On the other hand, transformer-based methods over latent spaces (Yan et al., 2021) scale
poorly to long videos due to quadratic complexity in attention, with long videos containing
tens of thousands of tokens. Methods that train on subsets of tokens are limited by truncated
backpropagation through time (Hutchins et al., 2022; Rae et al., 2019; Dai et al., 2019) or naive
temporal operations (Hawthorne et al., 2022).

In this paper, we introduce Temporally Consistent Video Transformer (TECO), a vector-quantized
latent dynamics model that effectively models long-term dependencies in a compact representation
space using efficient transformers. The key contributions are summarized as follows:

• We introduce TECO, an efficient and scalable video prediction model that learns a set of
compressed VQ-latents to allow for efficient training and generation.

• We propose several long-length video prediction datasets centered around 3D scenes in
DMLab (Beattie et al., 2016), Minecraft (Guss et al., 2019), and Habitat (Szot et al., 2021;
Savva et al., 2019) to help better evaluate temporal consistency in video predictions.

• We show that TECO has strong performance on a variety of difficult video prediction tasks, and
is able to leverage long-term temporal context to generate high quality videos with consistency.

• We provide several ablations providing intuition for why TECO is able to generate more
temporally consistency predictions, and how these insights can extend to future work in long-
term video prediction.

2 PRELIMINARIES

2.1 VQ-GAN

VQ-GAN (Esser et al., 2021; Van Den Oord et al., 2017) is an autoencoder that learns to compress
data into a set of discrete latents, consisting of an encoder E, decoder G, codebook C, and
discriminator D. Given an image x ∈ RH×W×3, the encoder E maps x to its latent representation
h ∈ RH′×W ′×D, which is quantized by nearest neighbors lookup in a codebook of embeddings
C = {ei}Ki=1 to produce z ∈ RH′×W ′×D. The discretized latent z is fed through decoder G to
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reconstruct x. A straight-through estimator (Bengio, 2013) is used to maintain gradient flow through
the quantization step. The codebook optimizes the following loss:

LVQ = ∥ sg(h)− e ∥22 + β ∥h− sg(e) ∥22 (1)

where β = 0.25 is a hyperparameter, and e is the corresponding nearest-neighbors embedding
from codebook C. For reconstruction, VQ-GAN replaces the original ℓ2 loss with a perceptual
loss (Zhang et al., 2012), LLPIPS. Finally, in order to encourage higher-fidelity samples, patch-level
discriminator D is trained to classify between real and reconstructed images, with.

LGAN = logD(x) + log(1−D(x̂)) (2)

Overall, VQ-GAN optimizes the following combination of losses:

min
E,G,C

max
D

LLPIPS + LVQ + λLGAN (3)

where λ =
∥∇GL

LLPIPS ∥
2

∥∇GL
LGAN ∥

2
+δ

is an adaptive weight, GL is the last decoder layer, δ = 10−6, and

LLPIPS is the exact distance metric described in Zhang et al. (2012).

2.2 MASKGIT

MaskGit (Chang et al., 2022) is a generative model that models distributions over tokens, such as
produced by a VQ-GAN. Instead of autoregressively modelling the sequence of tokens, MaskGit
generates images with competitive sample quality at a fraction of the sampling cost by using a
masked token prediction objective during training. Formally, we denote z ∈ ZH×W as the discrete
latent tokens representing an image. For each training step, we uniformly sample t ∈ [0, 1)
and randomly generate a mask m ∈ {0, 1}H×W with N = ⌈γHW ⌉ masked values, where
γ = cos

(
π
2 t
)
. Then, MaskGit learns to predict the masked tokens with the following objective

Lmask = −Ez∈D
[
log p(z | z ⊙m)

]
. (4)

During inference, because MaskGit has been trained to model any set of unconditional and
conditional probabilities, we can sample any subset of tokens per sampling iteration, from the
extreme case of sampling all tokens (independent) to sampling one token at a time (autoregressive).
Chang et al. (2022) introduces a confidence-based sampling mechanism whereas other work (Lee
et al., 2022) proposes iterative sample-and-revise approaches.

3 TECO

Generating temporally consistent videos requires training on long videos to correctly learn long-
term temporal dependencies between frames. However, computational and memory requirements
remain the primary bottleneck in preventing from doing so. We present Temporally Consistent
Video Transformer (TECO), a video generation model that more efficiently scales to training on
longer horizon videos.

First, we train a VQ-GAN to spatially compress our video data. Shown in prior work (Seo et al.,
2022), this is an important step for video prediction in a more efficient and scalable manner.
However, even in latent space, existing methods are still limited to modeling short sequences of
16–24 frames, which can be attributed to the quadratics costs of transformer layers as sequence
length grows. With 256 tokens per frame, 16 frame videos already consist of 4096 tokens, and
scaling to longer videos of 100s frames is prohibitively expensive, where resulting videos have tens
of thousands of tokens. Therefore, in the following sections, we propose several key design choices
to building a more efficient video prediction model.

3.1 VECTOR-QUANTIZED LATENT DYNAMICS

Our proposed framework shown in Figure 2 follows similarly to prior work in latent dynamics
models (Hafner et al., 2019; 2020; Saxena et al., 2021), with several key differences in architectural
and latent variable design. Let x1:T consist of a sequence of video frames encoded using a pretrained
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Figure 2: The architectural design of TECO. Our proposed method models sequences of videos
encoded with a pretrained VQ-GAN. We achieve efficient and scalable training and generation on
long sequences through several key design choices to maximally compress our representations. We
leverage temporal redundancies by encoding frames conditioned on the previous one, and model
temporal dependencies in a downsampled latent space. For fast sampling, we learn a MaskGit
dynamics for the prior.

VQ-GAN. In the following sections, we motivate each component for our model, with several
specific design choices to ensure efficiency and scalability. TECO consists of four components:

Encoder: zt = E(xt, xt−1) Temporal Transformer: ht = H(z≤t)

Dynamics Prior: p(zt | ht−1) Decoder: p(xt | zt, ht−1)
(5)

Encoder Although VQ-GAN exploits spatial redundancies, we can achieve more compressed
representations by leveraging temporal redundancy in video data. To do this, we learn a CNN
encoder zt = E(xt, xt−1) which encodes the current frame xt conditioned on the previous frame
by channel-wise concatenating xt−1, and then quantizes the output using codebook C to produce
zt. We apply the VQ loss defined in Equation (1) per timestep. In addition, we ℓ2-normalize the
codebook and embeddings to encourage higher codebook usage (Yu et al., 2021). Conditionally
encoding nearby frames lets the model learn smaller latents, and provides a general way to take
advantage of temporal redundancy. The most common form of temporal redundancy is the large
amount of shared bits between neighboring frames, generally only differing in small movements,
such as slight camera shifts, or objects moving slightly. The first frame is concatenated with zeros
and does not quantize z1 to prevent information loss. As we focus on video prediction, there is
always at least 1 frame to condition on, so we do not need to predict the un-quantized representation
of the first frame when computing decoding and dynamics losses. Intuitively, this also does not
burden the dynamics model to learn an unconditional prior.

Temporal Transformer Compressed, discrete latents are more lossy and tend to require
higher spatial resolutions compared to continuous latents. Therefore, before modeling temporal
information, we apply a single strided convolution to downsample each discrete latent zt, where
visually simpler datasets allow for more downsampling and visually complex datasets require less
downsampling. Afterwards, we learn a large transformer to model temporal dependencies, and then
apply a transposed convolution to upsample our representation back to the original resolution of zt.
In summary, we use the following architecture:

ht = H(z<t) = ConvTranspose(Transformer(Conv(z<t))) (6)

Decoder The decoder is an upsampling CNN that reconstructs x̂t = D(zt, ht), where zt can be
interpreted as the posterior of timestep t, and ht is the output of the temporal transformer which
summarizes information from previous timesteps. zt and ht are concatenated channel-wise before
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Figure 3: Quantitative comparisons between TECO and baseline methods in long-horizon temporal
consistency (left) and sampling speed (right). Our method is able to remain temporally consistent
while still generating sharp samples with fast sampling speed.

being fed into the decoder. Together with the encoder, the decoder optimizes the following cross
entropy reconstruction loss

Lrecon = − 1
T

∑T
t=1 log p(xt | zt, ht). (7)

which encourages zt features to encode relative information between frames since the temporal
transformer can aggregate information over time. This allows us to learn more compressed codes
that enable more efficient modeling over longer sequences.

Dynamics Prior Lastly, we use a MaskGit (Chang et al., 2022) to model the dynamics prior,
p(zt | ht). In our experiments, we show that using a MaskGit prior allows for not just faster but also
higher quality sampling compared to an autoregressive prior. During every training iteration, we use
the same process as prior work to sample a random mask mt and optimize

Lprior = − 1
T

∑T
t=1 log p(zt | zt ⊙mt). (8)

where ht is concatenated channel-wise with masked zt to predict the masked tokens. During
generation, we follow Lee et al. (2022), where we initially generate each frame in chunks of 8
at a time and then go through 2 revise rounds of re-generating half the tokens each time.

Training Objective The final objective is the sum of these losses:

LTECO = LVQ + Lrecon + Lprior (9)

3.2 DROPLOSS

To train the model efficiently on long videos, we propose DropLoss, a simple trick to allow for
more scalable and efficient training. Due to its architecture design, TECO can be separated into
two components: (1) learning temporal representations, consisting of the encoder and the temporal
transformer, and (2) predicting future frames, consisting of the dynamics prior and decoder. We
can increase training efficiency by dropping out random timesteps that are not decoded and thus
omitted from the reconstruction loss. For example, given a video of T frames, we compute ht for all
t ∈ {1, . . . , T}, and then compute the losses Lprior and Lrecon for only 10% of the indices. Because
random indices are selected each iteration, the model still needs to learn to accurately predict all
timesteps. This reduces training costs significantly because the decoder and dynamics prior require
non-trivial computations. DropLoss is applicable to both a wide class of architectures and to tasks
beyond video prediction.

4 EXPERIMENTS

4.1 DATASETS

We introduce three challenging video datasets to better measure long-range consistency in video
prediction. We design these benchmarks around 3D environments in DMLab (Beattie et al., 2016),
Minecraft (Guss et al., 2019), and Habitat (Savva et al., 2019), with videos of agents randomly
traversing different scenes of varying difficulty. These datasets require video prediction models to
re-produce observed parts of scenes, and newly generate unobserved parts of the scene. In contrast,
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Table 1: Quantitative evaluation on all four datasets. Detailed results in Appendix K.

DMLab Minecraft
Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
FitVid 176 12.0 0.356 0.491 956 13.0 0.343 0.519
CW-VAE 125 12.6 0.372 0.465 397 13.4 0.338 0.441
Perceiver AR 96 11.2 0.304 0.487 76 13.2 0.323 0.441
Latent FDM 181 17.8 0.588 0.222 167 13.4 0.349 0.429
TECO (ours) 48 21.9 0.703 0.157 116 15.4 0.381 0.340

Habitat Kinetics-600
Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Perceiver AR 164 12.8 0.405 0.676 1022 13.4 0.310 0.404
Latent FDM 433 12.5 0.311 0.582 960 13.2 0.334 0.413
TECO (ours) 73 12.8 0.363 0.604 799 13.8 0.341 0.381

many existing video benchmarks do not have strong long-range dependencies, where a model with
limited context is sufficient. Refer to Appendix N for further details on each dataset.

DMLab DeepMind Lab is a simulator that procedurally generates random 3D mazes with random
floor and wall textures. We generate 40k action-conditioned 64×64 videos of 300 frames of an agent
randomly traversing 7 × 7 mazes by choosing random points in the maze and navigating to them
via the shortest path. We train all models for both action-conditioned and unconditional prediction
(by periodically masking out actions) to enable both types of generations. We use both modes to
evaluate since a video model may generate new parts of a scene that do not correlate with the action
(e.g. run into a wall) which results in out-of-distribution errors. However, action-conditioning is
useful with enough conditioned past context, and substantially lowers variance on PSNR, SSIM,
and LPIPS evaluations.

Minecraft This popular game features procedurally generated 3D worlds that contain complex
terrain such as hills, forests, rivers, and lakes. We collect 200k action-conditioned videos of length
300 and resolution 128 × 128 in Minecraft’s marsh biome. The player iterates between walking
forward for a random number of steps and randomly rotating left or right, resulting in parts of
the scene going out of view and coming back into view later. We train action-conditioned for
all models for ease of interpreting and evaluating, though it is generally easy for video models
to unconditionally learn these discrete actions.

Habitat Habitat is a simulator for rendering trajectories through scans of real 3D scenes. We
compile ∼1400 indoor scans from HM3D (Ramakrishnan et al., 2021), MatterPort3D (Chang et al.,
2017), and Gibson (Xia et al., 2018) to generate 200k action-conditioned videos of 300 frames at a
resolution of 128× 128 pixels. We use Habitat’s in-built path traversal algorithm to construct action
trajectories that move our agent between randomly sampled locations. Similar to DMLab, we train
all video models to perform both unconditional and action-conditioned prediction.

Kinetics-600 Kinetics-600 (Carreira & Zisserman, 2017) is a highly complex real-world video
dataset, originally proposed for action recognition. The dataset contains ∼400k videos of varying
length of up to 300 frames. We evaluate our method in the video prediction without actions (as they
do not exist), generating 80 future frames conditioned on 20. In addition, we filter out videos shorter
than 100 frames, leaving 392k videos that are split for training and evaluation. We use a resolution of
128×128 pixels. Although Kinetics-600 does not have many long-range dependencies, we evaluate
our method on this dataset to show that it can scale to complex, natural video.

4.2 BASELINES

We compare against SOTA baselines selected from several different families of models: latent-
variable-based variational models, autoregressive likelihood models, and diffusion models. In
addition, for more fair comparisons, we train all models on VQ codes using the same VQ-GAN
as our method. For our diffusion baseline, we follow Rombach et al. (2022) and use a pretrained
VAE instead of a VQ-GAN. Note that we do not have any GANs for our baselines, since to the best
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of our knowledge, there does not exist a GAN that trains on latent space instead of raw pixels, an
important aspect for properly scaling to long video sequences.

FitVid FitVid (Babaeizadeh et al., 2021) is a state-of-the-art variational video prediction model
based on CNNs and LSTMs that scales to complex video by leveraging efficient architectural design
choices in its encoder and decoder.

Clockwork VAE CW-VAE (Saxena et al., 2021) is also a variational video prediction model that
is designed to better learn long-range dependencies through a hierarchies of latent variables with
exponentially slower tick speeds for each new level.

Perceiver AR We use Perceiver AR (Hawthorne et al., 2022) as our AR baseline over VQ-
GAN discrete latents, which has been show to be an effective generative model that can efficiently
incorporate long-range sequential dependencies. Conceptually, this baseline is similar to HARP (Seo
et al., 2022) with a Perceiver AR as the prior instead of a sparse transformer (Child et al., 2019).
We choose Perceiver AR over other autoregressive baselines such as VideoGPT (Yan et al., 2021)
or TATS (Ge et al., 2022) primarily due to the prohibitive costs of transformers when applied to tens
of thousands of tokens.

Latent FDM For our diffusion baseline, we train a Latent FDM model with frame-wise
autoregressive sampling. Although FDM (Harvey et al., 2022) is originally trained on pixel
observations, we also train in latent space for a more fair comparison with our method and other
baselines, as training on long sequences in pixel space is too expensive. We follow LDM (Rombach
et al., 2022) to separately train an autoencoder to encode each frame into a set of continuous latents.

4.3 EXPERIMENTAL SETUP

Training All of our models are trained for 1 million iterations under fixed compute budget
(measured in TPU v3 days) allocated for each dataset. Models are trained on TPU-v3 instances,
ranging from v3-8 to v3-128 TPU pods (similar to 4 V100s to 64 V100s) with training times of
roughly 3-5 days. For DMLab, Minecraft, and Habitat we train all models on full 300 frames
videos, and 100 frames for Kinetics-600. Our VQ-GANs are trained on 8 A5000 GPUs, taking
about 2-4 days for each dataset, and downsample all videos to 16 × 16 grids of discrete latents per
frame regardless of original video resolution. More details on exact hyperparameters and compute
budgets for each dataset can be found in Appendix O.

Evaluation We evaluate our models using a combination of standard video prediction metrics such
as PSNR (Huynh-Thu & Ghanbari, 2008), SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2012),
and FVD (Unterthiner et al., 2019). For DMLab, Minecraft, and Habitat, we measure FVD on
300 frame videos, conditioned on 36 frames (264 predicted frames). For Kinetics-600, we evaluate
FVD on 100 frame videos, conditioned on 20 frames (80 predicted frames). To evaluate temporal
consistency, we measure PSNR, SSIM, and LPIPS on video predictions conditioned on 144 frames
(156 predicted frames), and action condition for all models. Conditioning on a large portion of
the video ensures that the model can observe a large part of the scene, and combined with action-
conditioning, the model with temporally-consistent predictions should generate future frames close
to the ground truth. Due to this reduced stochasticity, we only sample one prediction for computing
PSNR, SSIM, and LPIPS. We compute all metrics over batches of 256 examples, averaged over 4
runs to make 1024 total samples.

4.4 BENCHMARK RESULTS

DMLab & Minecraft Table 1 shows quantitative results on the DMLab and Minecraft datasets.
TECO performs the best across all metrics for both datasets when training on the full 300 frame
videos. Figure 4 shows sample trajectories and 3D visualizations of the generated DMLab mazes,
where TECO is able to generate more stable and consistent 3D mazes. For both datasets, CW-VAE,
FitVid, and Perceiver AR can produce sharp predictions, but do not model long-horizon context
well, with per-frame metrics sharply dropping as the future prediction horizon increases as seen in
Figure C.1. Latent FDM has consistent predictions, but high FVD most likely due to FVD being
sensitive to high frequency errors.
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Figure 4: 3D visualization of predicted trajectories in DMLab for each model, generating 156
frames conditioned on 144. TECO is the only model that retain maze consistency with ground-
truth, whereas baselines tend to extend out of the maze or create fictitious corridors that did not
exist. Video predictions use only the first-person RGB frames. Refer to Appendix N.1 for
more details on 3D evaluation. A video corresponding to this figure is available at: https:
//sites.google.com/view/iclr23-teco.

In order to better investigate scaling properties of our models, Figure D.1 and Figure D.2 compare
TECO and Latent FDM on different training sequence lengths. Intuitively, under a fixed computation
budget and batch size, models that train on shorter sequence lengths can scale larger, with more
FLOPs allocated per frame. In general, this is reflected in model architectures through computations
at higher spatial resolutions (e.g. less downsampling). For DMLab, we see that in terms of per-
frame metrics, models generally benefit from training on longer videos, where more computation
per image has less of an effect due to saturation in image quality because of relatively simple visual
complexity. For Minecraft, we observe that models generally perform best when training with 100
frames of context, which have better per-image sample quality compared to training on 300 frames
due to higher downsampling required for longer sequences. Models trained on 300 frames generally
have more distortion in predictions compared to 100 frames. Theoretically, as the compute budget
is increased, training on 300 frames would eventually outperform models trained on 100 frames.

Habitat Table 1 shows results for our Habitat dataset. We only evaluate our strongest baselines,
Perceiver AR and Latent FDM due to the need to implement model parallelism. Because of high
complexity of Habitat videos, all models generally perform equally as bad in per-frame metrics.
However, TECO has significantly better FVD. Qualitatively, Latent FDM quickly collapses to
blurred predictions with poor sample quality, and Perceiver AR can generate high quality frames,
though less temporally consistent than TECO: agents in Habitat videos navigate to far points in
the scene and back whereas Perceiver AR tends to generate samples where the agent is constantly
turning. TECO generates traversals of a scene that match the data distribution more closely.
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Kinetics-600 Table 1 shows FVD for predicting 80 128 × 128 frames conditioned on 20 for
Kinetics-600. Although Kinetics-600 does not have many long-range dependencies, we found that
TECO is able to produce more stable generations that degrade slower by incorporating longer
contexts. In contrast, Perceiver AR tends to degrade quickly, with Latent FDM performing in
between. Figure K.1 and Table K.4 include further investigations using top-k sampling for Perceiver
AR and TECO. Table 1 does not use top-k sampling for a fair comparison against Latent FDM. With
top-k sampling, Perceiver AR outperforms our method at k = 8. However, resulting videos tend to
be uninteresting with little to no dynamics movement.

Sampling Speed Figure 3 compares sampling speed for all models. We report sampling speed on
Minecraft and observed similar results for the different model sizes used on other datasets. FitVid
and CW-VAE are both significantly faster that other methods, but have poor sample quality. On the
other end, Perceiver AR and Latent FDM can produce high quality samples, but are 20-60x slower
than TECO, which has comparably fast sampling speed while retaining high sample quality.

4.5 ABLATIONS

In this section, we perform ablations on various architectural decisions of our model. For simplicity,
we evaluate our methods on short sequences of 16 frames from Something-Something-v2 (SSv2).
We choose SSv2 as it provides insight into scaling our method on complex real-world data more
similar to Kinetics-600 while being computationally cheaper to run.

Table F.1 shows several ablations comparing posterior, prior, and various architectural design
choices. We demonstrate that using VQ-latent dynamics with a MaskGit prior proves better
compared to alternative formulations for latent dynamics models, such as popular variational
methods. In addition, we show that conditional encodings learn better representations for video
predictions. We also ablate the codebook size, showing that although there exists an optimal
codebook size, it does not matter too much as along as there are not too many codes, which may
make it more difficult for the prior to learn. Lastly, we show the benefits of DropLoss, with up to
60% faster training and a minimal increase in FVD. The benefits are greater for longer sequences,
and allow video models to better account for long horizon context with little cost in performance.

Table F.2 shows ablations on scaling different parts of our model, such as the encoder, decoder,
temporal transformer, and prior. In general, it is more beneficial to have an imbalanced encoder
decoder architecture, with more parameters in the decoder. For the temporal transformer, it is more
beneficial to have larger resolution features (4 × 4), especially for more complex data like SSv2,
and less useful for visually simpler datasets such as DMLab or Minecraft. Similarly, having a larger
width is more beneficial than more layers due to increased capacity to represent each frame. Lastly,
for scaling the MaskGit prior, more layers is better than larger width networks.

5 DISCUSSION

We introduced TECO, an efficient video prediction model that leverages hundreds of frames of
temporal context. Our evaluation demonstrated that TECO accurately incorporates long-range
context, outperforming SOTA baselines across a wide range of datasets. In addition, we introduce
several difficult video datasets, which we hope make it easier to evaluate temporal consistency in
future video prediction models. We identify several limitations as directions for future work:

• Although we show that PSNR, SSIM, and LPIPS can be reliable metrics to measure consistency
when video models are properly conditioned, there remains room for better evaluation metrics
that provide a reliable signal as the prediction horizon grows, since new parts of a scene that are
generated are unlikely to correlate with ground truth.

• Our focus was on learning a compressed tokens and an expressive prior, which we combined with
a simple full attention transformer as the sequence model. Leveraging prior work on efficient
sequence models (Choromanski et al., 2020; Wang et al., 2020; Zhai et al., 2021; Gu et al., 2021;
Hawthorne et al., 2022) would likely allow for further scaling.

• We trained all models on top of pretrained VQ-GAN codes to reduce the data dimensionality.
This compression step lets us train on longer sequences at a cost of reconstruction error, which
causes noticeable artifacts in Kinetics-600, such as corrupted text and incoherent faces. Although
TECO can train directly on pixels, a ℓ2 loss results in slightly blurry predictions. Training
directly on pixels with diffusion or GAN losses would be promising.
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6 REPRODUCIBILITY

We provide several resources in order to aim for better reproducilbity. We include anonymized code
in the supplementary materials for our models, baselines, and datasets. In addition, Appendix O
details hyperparameters and compute requirements for all models.
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A SAMPLING PROCESS

Given a sequence of conditioning frames, o1, . . . , ot, we encode each frame using the pretrained VQ-
GAN to produce x1, . . . , xt, and then use the conditional encoder to compute z1, . . . , zt. In order to
generate the next frame, we use the temporal transformer to compute ht, and feed it into the MaskGit
dynamics prior to predict ẑt+1. Let zt+1 = ẑt+1 and feed it through the temporal tranformer and
MaskGit to predict ẑt+2. We repeat this process until the entire trajectory is predicted, ẑt+1, . . . , ẑT .
In order to decode back into frames, we first decode into the VQ-GAN latents, and then decode
to RGB using the VQ-GAN decoder. Note that generation can be completely done in latent space,
and rendering back to RGB can be done in parallel over time once the latents for all timesteps are
computed.
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B SAMPLES

B.1 DMLAB
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Figure B.1: 156 frames generated conditioned on 144 (action-conditioned)
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Figure B.2: 264 frames generated conditioned on 36 (no action-conditioning)
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Figure B.3: 3D visualizations of the resulting generated DMLab mazes
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B.2 MINECRAFT
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Figure B.4: 156 frames generated conditioned on 144 (action-conditioned)
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Figure B.5: 264 frames generated conditioned on 36 (action-conditioned)
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B.3 HABITAT
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Figure B.6: 156 frames generated conditioned on 144 (action-conditioned)
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Figure B.7: 264 frames generated conditioned on 36 (no action-conditioning)
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B.4 KINETICS-600
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Figure B.8: 80 frames generated conditioned on 20 (no top-k sampling)
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Figure B.9: 80 frames generated conditioned on 20 (with top-k sampling)
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C PERFORMANCE VERSUS HORIZON
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(a) DMLab
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(b) Minecraft
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(c) Habitat

Figure C.1: All plots shows PSNR, SSIM, and LPIPS on 150 predicted frames conditioned on 144
frames. The 144 conditioned frames are not shown on the graphs and timestep 0 corresponds to the
first predicted frame

Figure C.1 shows PSNR, SSIM, and LPIPS as a function of prediction horizon for each dataset.
Generally, each plot reflected the corresponding aggregated metrics in Table 1. For DMLab, TECO
shows much better temporal consistency for the full trajectory, with Latent FDM coming in second.
CW-VAE is able retain some consistency but drops fairly quickly. Lastly, FitVid and Perceiver
AR lose consistency very quickly. We see a similar trend in Minecraft, with Latent FDM coming
closer in matching TECO. For Habitat, all methods generally have trouble producing consistent
predictions, primarily due to the difficulty of the environment.
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D PERFORMANCE VERSUS TRAINING SEQUENCE LENGTH
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Figure D.1: DMLab
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Figure D.2: Minecraft
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Figure D.1 and Figure D.2 show plots comparing performance with training models on different
sequence lengths. Under a fixed compute budget and batch size, training on shorter videos enables
us to scale to larger models. This can also be interpreted as model capacity or FLOPs allocated
per image. In general, training on shorter videos enables higher quality frames (per-image) but at
a cost of worse temporal consistency due to reduced context length. We can see a very clear trend
in DMLab, in that TECO is able to better scale on longer sequences, and correspondingly benefits
from it. Latent FDM has trouble when training on full sequences. We hypothesize that this may be
due to diffusion models being less amenable towards downsamples, it it needs to model and predict
noise. In Minecraft, we see the best performance at around 50-100 training frames, where a model
has higher fidelity image predictions, and also has sufficient context.

E SAMPLING
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TECO (ours) 186
Latent FDM 3606
Perceiver-AR 8443
CW-VAE 0.062
FitVid 0.074

F ABLATIONS

DropLoss Rate FVD Train Step (ms)

0.8 187 125
0.6 186 143
0.4 184 155
0.2 184 167
0.0 182 182

(a) DropLoss Rates

Posteriors FVD

VQ (+ MaskGit prior) (ours) 189
OneHot (+ MaskGit prior) 199
OneHot (+ Block AR prior) 209
OneHot (+ Independent prior) 228
Argmax (+ MaskGit prior) 336

(b) Posteriors

Dynamics Prior FVD

MaskGit (ours) 189
Independent 220
Autoregressive 207

(c) Prior Networks

Conditional Encoding FVD

Yes (ours) 189
No 208

(d) Conditional Encoding

Number of Codes FVD

64 191
256 195
1024 186
4096 200

(e) VQ Codebook Size

Table F.1: Ablations comparing alternative prior, posterior, and codebook designs
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FVD
Size 2× 2 4× 4

Base 204 189
Small Enc 214 191
Small Dec 232 198

(a) Encoder and Decoder

FVD
Layers Width 2× 2 4× 4

8 768 204 189
8 384 260 196
2 768 216 202

(b) Temporal Transformer

FVD
Layers Width 2× 2 4× 4

8 768 204 189
8 384 228 193
2 768 228 201

(c) MaskGit Prior

Table F.2: Ablations on scaling different parts of TECO.

FVD (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Train Step Time (ms)

TECO (ours) 48 21.9 0.703 0.157 151
MaskGit 950 19.3 0.605 0.274 167
Autoregressive 44 20.1 0.640 0.197 267

Table F.3: DMLab dataset comparisons against similar model as TECO without latent dynamics,
and Maskgit or AR model on VQ-GAN tokens directly.

Table F.3 shows comparisons between TECO and alternative architectures that do not use latent
dynamics. Architecturally, MaskGit and Autoregressive are very similar to TECO, with a few small
changes: (1) there is no CNN decoder and (2) MaskGit and AR directly predict the VQ-GAN latents
(as opposed to the learned VQ latents in TECO). In terms of training time, MaskGit and AR are a
little slower since they operate on 16 × 16 latents instead of 8 × 8 latents for TECO. In addition,
conditioning for the AR model is done using cross attention, as channel-wise concatenation does
not work well due to unidirectioal masking. Both models without latent dynamics have worse
temporal consistency, as well as overall sample quality. We hypothesize that TECO has better
temporal consistency due to weak bottlenecking of latent representation, as a lot of time can be
spent modeling likelihood of imperceptible image / video statistics. MaskGit shows very high FVD
due to a tendency to collapse in later frames of prediction, which FVD is sensitive to.
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G METRICS DURING TRAINING

Figure G.1: Comparing FVD and LPIPS evaluation metrics over the course of training. FVD tends
to saturate earlier (200k) while LPIPS keeps on improving up until 1M iterations.

Figure G.1 shows plots of FVD (over chunks of generatd 16 frame video) and LPIPS during training,
evaluated at saved model checkpoints every 50k iterations over 1M iterations. We can see that
although FVD (measuring frame fidelity) tends to saturate early on during training (at around 200k
iterations), the long-term consistency metric (LPIPS) continues to improve until the end of training.
We hypothesize that this may be due to the model first learning the ”easier bits” more local in time,
and then learning long-horizon bits once the easier bits have been learned.

H PROGRESSION FROM EXISTING WORK

Model Architecture Time per
Training Step (s) FVD↓ PSNR↑ SSIM↑ LPIPS↓

VideoGPT
/ TATS

3D VQ-VAE
+ Autoregressive (time + space) 0.881 156 11.1 0.296 0.468

Phenaki 3D VQ-VAE
+ MaskGit (time + space) 0.905 725 11.0 0.202 0.474

TECO w/o
latent dynamics

2D VQ-VAE
+ CNN encoder
+ Autoregressive (time)
+ MaskGit (space)

0.169 950 19.3 0.605 0.274

TECO (ours)

2D VQ-VAE
+ CNN encoder
+ Autoregressive (time)
+ MaskGit (latent)
+ CNN decoder (space)

0.131 48 21.9 0.703 0.157

Table H.1: We iteratively apply architectural modifications starting from existing work up to TECO

Table H.1 shows the progressive improvement from existing work (TATS, Phenaki) and how TECO
is able to scale far better on all metrics with our proposed architectural improvements.
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I HIGH QUALITY SPATIO-TEMPORAL COMPRESSION

Model Dataset FVD↓

TATS DMLab 54
Minecraft 226

TECO DMLab 7
Minecraft 53

Table I.1: Reconstruction FVD comparing TATS Video VQGAN to TECO

Table I.1 compares reconstruction FVD between TECO and TATS. At the same compression rate
(same number of discrete codes), TECO learns far better spatio-temporal codes that TATS, with
more of a different on more visually complex scenes (Minecraft vs DMLab).

J TRADE-OFF BETWEEN FIDELITY AND LEARNING LONG-RANGE
DEPENDENCIES

Downsample Resolution FVD↓ PSNR↑ SSIM↑ LPIPS↓
1× 1 44 20.4 0.666 0.170
2× 2 38 18.6 0.597 0.221
4× 4 33 17.7 0.578 0.242

Table J.1: Comparing different input resolutions to the temporal transformer

Latent FDM Arch FVD↓ PSNR↑ SSIM↑ LPIPS↓
More downsampling + lower resolution computations 181 17.8 0.588 0.222
Less downsample + higher resolution computations 94 15.6 0.501 0.277

Table J.2: Comparing different Latent FDM architectures with more computation at different
resolutions

Table J.1 and Table J.2 show a trade-off between fidelity (frame or image quality) and temporal
consistency (long-range dependencies) for video prediction architectures (both TECO, and Latent
FDM).
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K FULL EXPERIMENTAL RESULTS

TPU-v3 Days Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↑
TECO (ours) 32 169M 27.5± 1.77 22.4± 0.368 0.709± 0.0119 0.155± 0.00958
Latent FDM 32 31M 181± 2.20 17.8± 0.111 0.588± 0.00453 0.222± 0.00493
Perceiver-AR 32 30M 96.3± 3.64 11.2± 0.00381 0.304± 0.0000456 0.487± 0.00123
CW-VAE 32 111M 125± 7.95 12.6± 0.0585 0.372± 0.000330 0.465± 0.00156
FitVid 32 165M 176± 4.86 12.0± 0.0126 0.356± 0.00171 0.491± 0.00108

Table K.1: DMLab

TPU-v3 Days Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↑
TECO (ours) 80 274M 116± 5.08 15.4± 0.0603 0.381± 0.00192 0.340± 0.00264
Latent FDM 80 33M 167± 6.26 13.4± 0.0904 0.349± 0.00327 0.429± 0.00284
Perceiver-AR 80 166M 76.3± 1.72 13.2± 0.0711 0.323± 0.00336 0.441± 0.00207
CW-VAE 80 140M 397± 15.5 13.4± 0.0610 0.338± 0.00274 0.441± 0.00367
FitVid 80 176M 956± 15.8 13.0± 0.00895 0.343± 0.00380 0.519± 0.00367

Table K.2: Minecraft

TPU-v3 Days Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↑
TECO (ours) 275 386M 76.3± 1.72 12.8± 0.0139 0.363± 0.00122 0.604± 0.00451
Latent FDM 275 87M 433± 2.67 12.5± 0.0121 0.311± 0.000829 0.582± 0.000492
Perceiver-AR 275 200M 164± 12.6 12.8± 0.0423 0.405± 0.00248 0.676± 0.00282

Table K.3: Habitat

TPU-v3 Days Params FVD ↓
TECO (ours) 640 1.09B 649± 16.5
Latent FDM 640 831M 960± 52.7
Perceiver-AR 640 1.06B 607± 6.98

(a) Using top-k sampling for Perceiver AR and TECO

TPU-v3 Days Params FVD ↓
TECO (ours) 640 1.09B 799± 23.4
Latent FDM 640 831M 960± 52.7
Perceiver-AR 640 1.06B 1022± 32.4

(b) No top-k sampling

Table K.4: Kinetics

2 8 32 128 512 2048 8192
Top k

600

700

800

900

1000

FV
D

FVD ( ) vs Top k

TECO (ours)
Perceiver AR
Latent FDM

Figure K.1: FVD on Kinetics-600 with different top-k values for Perceiver-AR and TECO
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L SCALING RESULTS

TPU-v3
Days

Train
Seq Len Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

TECO (ours) 32

300 169M 48.2± 2.02 21.9± 0.368 0.703± 0.0114 0.157± 0.0119
200 169M 59.7± 2.29 19.9± 0.186 0.628± 0.00821 0.187± 0.00460
100 86M 63.9± 7.84 15.4± 0.199 0.476± 0.00745 0.322± 0.00792
50 195M 52.7± 6.23 13.9± 0.0311 0.418± 0.000659 0.383± 0.000302

Latent FDM 32

300 31M 181± 2.20 17.8± 0.111 0.588± 0.00453 0.222± 0.00493
200 62M 66.4± 3.31 17.7± 0.114 0.561± 0.00623 0.253± 0.00550
100 80M 55.6± 1.36 15.5± 0.233 0.468± 0.00776 0.336± 0.00511
50 110M 68.3± 3.19 14.0± 0.0445 0.414± 0.424 0.385± 0.00151

Table L.1: DM Lab scaling

TPU-v3
Days

Train
Seq Len Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

TECO (ours) 80

300 274M 116± 5.08 15.4± 0.0603 0.381± 0.00192 0.340± 0.00264
200 261M 109.5± 1.46 15.4± 0.0906 0.379± 0.00263 0.343± 0.00148
100 257M 85.1± 4.09 15.7± 0.0516 0.385± 0.00244 0.325± 0.00121
50 140M 80.7± 1.42 14.8± 0.0404 0.369± 0.00197 0.360± 0.00133

Latent FDM 80

300 33M 167± 6.26 13.4± 0.0904 0.349± 0.00327 0.429± 0.00284
200 80M 104.9± 3.21 15.0± 0.0701 0.384± 0.00320 0.366± 0.00311
100 69M 92.8± 4.40 15.1± 0.0866 0.390± 0.00281 0.358± 0.00250
50 186M 85.6± 2.25 14.8± 0.0578 0.378± 0.00144 0.372± 0.000966

Table L.2: Minecraft scaling
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M RELATED WORK

Video Generation Prior video generation methods can be divided into a few classes of models:
variational models, exact likelihood models, and GANs. SV2P (Babaeizadeh et al., 2017),
SVP (Denton & Fergus, 2018), SVG (Villegas et al., 2019), and FitVid Babaeizadeh et al. (2021) are
variational video generation methods models videos through stochastic latent dynamics, optimized
using the ELBO (Kingma & Welling, 2013) objective extended in time. SAVP (Lee et al., 2018)
adds an adversarial (Goodfellow et al., 2014) loss to encourage more realistic and high-fidelity
generation quality. Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2014) have recently
emerged as a powerful class of variational generative models which learn to iteratively denoise
an initial noise sample to generate high-quality images. There have been several recent works
that extend diffusion models to video, through temporal attention (Ho et al., 2022; Harvey et al.,
2022), 3D convolutions (Höppe et al., 2022), or channel stacking (Voleti et al., 2022). Unlike
variational models, autoregressive models (AR) and flows (Kumar et al., 2019) model videos by
optimizing exact likelihood. Video Pixel Networks (Kalchbrenner et al., 2017) and Subscale Video
Transformers (Weissenborn et al., 2019) autoregressively model each pixel. For more compute
efficient training, some prior methods (Yan et al., 2021; Le Moing et al., 2021; Seo et al., 2022;
Rakhimov et al., 2020; Walker et al., 2021) propose to learn an AR model in a spatio-temporally
compressed latent space of a discrete autoencoder, which has shown to be orders of magnitudes
more efficient compared to pixel-based methods. Instead of a VQ-GAN, Le Moing et al. (2021),
learns a frame conditional autoencoder through a flow mechanism. Lastly, GANs (Goodfellow
et al., 2014) offer an alternative method to training video models. MoCoGAN (Tulyakov et al.,
2018) generates videos by disentangling style and motion. MoCoGAN-HD (Tian et al., 2021)
can efficiently extend to larger resolutions by learning to navigate the latent space of a pretrained
image generator. TGANv2 (Saito & Saito, 2018), DVD-GAN (Clark et al., 2019), StyleGAN-
V (Skorokhodov et al., 2021), and TrIVD-GAN (Luc et al., 2020) introduce various methods to
scale to complex video, such as proposing sparse training, or more efficient discriminator design.

The main focus of this work lies with video prediction, a specific interpretation of conditional video
generation. Most prior methods are trained autoregressive in time, so they can be easily extended
to video prediction. Video Diffusion, although trained unconditionally proposes reconstruction
guidance for prediction. GANs generally require training a separate model for video prediction.
However, some methods such as MoCoGAN-HD and DI-GAN can approximate frame conditioning
by inverting the generator to compute a corresponding latent for a frame.

Long-Horizon Video Generation CW-VAE (Saxena et al., 2021) learns a hierarchy of stochastic
latents to better model long term temporal dynamics, and is able to generate videos with long-term
consistency for hundreds of frames. TATS (Ge et al., 2022) extends VideoGPT which allows for
sampling of arbitrarily long videos using a sliding window. In addition, TATs and CogVideo (Hong
et al., 2022) propose strided sampling as a simple method to incorporate longer horizon contexts.
StyleGAN-V (Skorokhodov et al., 2021) and DI-GAN (Yu et al., 2022) learn continuous-time
representations for videos which allow for sampling of arbitrary long videos as well. Brooks et al.
(2022) proposes an efficient video GAN architecture that is able to generate high resolution videos
of 128 frames on complex video data for dynamic scenes and horseback riding. FDM (Harvey et al.,
2022) proposes a diffusion model that is trained to be able to flexibly condition on a wide range of
sampled frames to better incorporate context of arbitrarily long videos. Lee et al. (2021) is able to
leverage a hierarchical prediction framework using semantic segmentations to generate long videos.

Long-Horizon Video Understanding Outside of generative modeling, prior work such as
MeMViT (Wu et al., 2022) and Vis4mer (Mohaiminul Islam & Bertasius, 2022) introduce
architectures for modeling long-horizon dependencies in videos.
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N DATASET DETAILS

N.1 DMLAB

We generate random 7× 7 mazes split into four quadrants, with each quadrant containing a random
combination of wall and floor textures. We generate 40k trajectories of 300 frames, each 64 × 64
images. Actions in this environment consist of 20◦ left turn, 20◦ right turn, and walk forward.
In order to maximally traverse the maze, we code an agent that traverses to the furthest unvisited
point in the maze, with some added noise for stochasticity. Since the maze is a grid, we can easily
hard-code a navigation policy to move to any specified point in the maze.

For 3D visualizations, we also collect depth, camera intrinsics and camera extrinsics (pose) for
each timestep. Given this information, we can project RGB points into a 3D coordinate space and
reconstruct the maze as a 3D pointcloud. Note that since videos are generated only using RGB as
input, they do not have groundtruth depth and pose. Therefore, we train depth and pose estimators
that are used during evaluation. Specifically, we train a depth estimator to map from RGB frame to
depth, and a pose estimator that takes in two adjacent RGB frames and predicts the relative change
in orientation. During evaluation, we are given an initial ground truth orientation that we apply
sequentially to predicted frames.

Although the GQN Mazes (Eslami et al., 2018) already exists as a video prediction dataset, it is
difficult to properly measure temporal consistency. The 3D scenes are relatively simple, and it does
not have actions to help reduce stochasticity in using metrics such as PSNR, SSIM, and LPIPS. As
a result, FVD is the reliable metric used in GQN Mazes, but tends to be sensitive to noise in video
predictions. In addition, we perform 3D visualizations using our dataset that are not possible with
GQN Mazes.

N.2 MINECRAFT

We generate 200k trajectories (each of a different Minecraft world) of 300 128× 128 frames in the
Minecraft marsh biome. We hardcode an agent to randomly traverse the surroundings by taking left,
right, and forward actions with different probabilities. In addition, we let the agent constantly jump,
which we found to help traverse simple hills, and prevent itself from drowning. We specifically chose
the marsh biome, as it contains hilly turns with sparse collections of trees that act as clear landmarks
for consistent generation. Forest and jungle biomes tend to be too dense for any meanginfully clear
consistency, as all surroundings look nearly identical. On the other hand, plains biomes had the
opposite issue where the surroundings were completely flat. Mountain biomes were too hilly and
difficult to traverse.

We opt to introduce an alternative to the MineRL Navigate (Guss et al., 2019) since this dataset
primarily consists of human demonstrations of people navigating to specific points. This means that
trajectories usually follow a relatively straight line, so there are not many long-term dependencies in
this dataset, as only a few past frames of context are necessary for prediction.

N.3 HABITAT

Habitat is a 3D simulator that can render realistic trajectories in scans of 3D scenes. We compile
roughly 1400 3D scans from HM3D (Ramakrishnan et al., 2021), MatterPort3D (Chang et al., 2017)
and Gibson (Xia et al., 2018), and generate a total of 200k trajectories of 300 128 × 128 frames.
We use the in-built path traversal algorithm provided in Habitat to construct action trajectories that
allow our agent to move between randomly sampled locations in the 3D scene. Similar to Minecraft
and DMLab, the agent action space consists of left turn, right turn, and move forward.
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O HYPERPARAMETERS

O.1 VQ-GAN & VAE

DMLab / Minecraft Habitat / Kinetics-600

GPU Days 16 32
Resolution 64 / 128 128
Batch Size 64 64
LR 3× 10−4 3× 10−4

Num Res Blocks 2 2
Attention Resolutions 16 16
Channel Mult 1,2,2,2 1,2,3,4
Base Channels 128 128
Latent Size (VQ-GAN) 16× 16 16× 16
Embedding Dim (VQ-GAN) 256 256
Codebook Size (VQ-GAN) 1024 8192
Latent Size (VAE) 16× 16× 4 16× 16× 8

O.2 TECO

Hyperparameters DMLab Minecraft Habitat Kinetics-600

TPU-v3 Days 32 80 275 640
Params 169M 274M 386M 1.09B
Resolution 64 128 128 128
Batch Size 32 32 32 32
Sequence Length 300 300 300 100
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
DropLoss Rate 0.9 0.9 0.9 0.9

Encoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 2 4 4 8

Codebook Size 1024 1024 1024 1024
Embedding Dim 32 32 32 32

Decoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 4 8 8 10

Temporal
Transformer

Downsample Factor 8 8 4 2
Hidden Dim 1024 1024 1024 1536
Feedforward Dim 4096 4096 4096 6144
Heads 16 16 16 24
Layers 8 12 8 24
Dropout 0 0 0 0

MaskGit

Mask Schedule cosine cosine cosine cosine
Hidden Dim 512 768 1024 1024
Feedforward Dim 2048 3072 4096 4096
Heads 8 12 16 16
Layers 8 6 16 24
Dropout 0 0 0 0
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Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 32 32 32 32
Params 169M 169M 86M 195M
Resolution 64 64 64 64
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
DropLoss Rate 0.9 0.85 0.85 0.85

Encoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 2 2 2 2

Codebook Size 1024 1024 1024 1024
Embedding Dim 32 32 32 32

Decoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 4 4 4 4

Temporal
Transformer

Downsample Factor 8 8 2 2
Hidden Dim 1024 1024 512 1024
Feedforward Dim 4096 4096 2048 4096
Heads 16 16 8 16
Layers 8 8 8 8
Dropout 0 0 0 0

MaskGit

Mask Schedule cosine cosine cosine cosine
Hidden Dim 512 512 512 768
Feedforward Dim 2048 2048 2048 3072
Heads 8 8 8 12
Layers 8 8 8 8
Dropout 0 0 0 0

Table O.1: Hyperparameters for scaling TECO on DMLab
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Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 80 80 80 80
Params 274M 261M 257M 140M
Resolution 128 128 128 128
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
DropLoss Rate 0.9 0.85 0.25 0.25

Encoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 4 4 4 4

Codebook Size 1024 1024 1024 1024
Embedding Dim 32 32 32 32

Decoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 8 8 8 8

Temporal
Transformer

Downsample Factor 8 4 2 2
Hidden Dim 1024 1024 1024 512
Feedforward Dim 4096 4096 4096 2048
Heads 16 16 16 8
Layers 12 12 12 12
Dropout 0 0 0 0

MaskGit

Mask Schedule cosine cosine cosine cosine
Hidden Dim 768 768 768 768
Feedforward Dim 3072 3072 3072 3072
Heads 12 12 12 12
Layers 6 6 6 8
Dropout 0 0 0 0

Table O.2: Hyperparameters for scaling TECO on Minecraft

O.3 LATENT FDM

Hyperparameters DMLab Minecraft Habitat Kinetics-600

TPU-v3 Days 32 80 275 640
Params 31M 33M 87M 831M
Resolution 64 128 128 128
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Optimizer Adam Adam Adam Adam
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
Base Channels 128 128 128 256
Num Res Blocks 1,1,1,2 1,1,2,2 1,2,2,4 2,2,2,2
Head Dim 64 64 64 64
Attention Resolutions 4,2 4,2 4,2 8,4,2
Dropout 0 0 0 0
Channel Mult 1,1,1,2 1,2,2,2 1,2,2,4 1,2,3,8

Table O.3: Hyperparameters for Latent FDM
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Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 32 32 32 32
Params 31M 62M 80M 110M
Resolution 64 64 64 64
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Optimizer Adam Adam Adam Adam
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
Base Channels 128 128 128 192
Num Res Blocks 1,1,1,2 1,1,2,2,4 2,2,2,2 3,3,3,3
Head Dim 64 64 64 64
Attention Resolutions 4,2 4,1 4,2 8,4,2
Dropout 0 0 0 0
Channel Mult 1,1,1,2 1,1,2,2,4 1,2,3,4 1,2,3,4

Table O.4: Hyperparameters for scaling Latent FDM on DMLab

Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 80 80 80 80
Params 33M 80M 69M 186M
Resolution 128 128 128 128
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Optimizer Adam Adam Adam Adam
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
Base Channels 128 128 128 192
Num Res Blocks 1,1,2,2 2,2,2,2 3,3,3,3 2,2,2,2
Head Dim 64 64 64 64
Attention Resolutions 4,2 4,2 8,4,2 8,4,2
Dropout 0 0 0 0
Channel Mult 1,2,2,2 1,2,3,4 1,2,2,3 1,2,3,4

Table O.5: Hyperparameters for scaling Latent FDM on Minecraft
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O.4 CW-VAE

Hyperparameters DMLab Minecraft

TPU-v3 Days 32 80
Params 111M 140M
Resolution 64 128
Batch Size 32 32
LR 1× 10−4 1× 10−4

LR Schedule cosine cosine
Optimizer Adam Adam
Warmup Steps 10k 10k
Total Training Steps 1M 1M

Encoder Kernels 4,4,4 4,4,4
Filters 256,512,1024 256,512,1024

Decoder Depths 256,512 256,512
Blocks 4 8

Dynamics

Levels 3 3
Abs Factor 6 6
Enc Dense Layers 3 3
Enc Dense Embed 1024 1024
Cell Stoch Size 128 256
Cell Deter Size 1024 1024
Cell Embed Size 1024 1024
Cell Min Stddev 0.001 0.001

Table O.6: Hyperparameters for CW-VAE

O.5 FITVID

Hyperparameters DMLab Minecraft

TPU-v3 Days 32 80
Params 165M 176M
Resolution 64 128
Batch Size 32 32
LR 1× 10−4 1× 10−4

LR Schedule cosine cosine
Optimizer Adam Adam
Warmup Steps 10k 10k
Total Training Steps 1M 1M
g Dim 256 256
RNN Size 512 768
z Dim 64 128
Filters 128,128,256,512 128,128,256,512

Table O.7: Hyperparameters for FitVid
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